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Foreword

Arthur Norman produced these excellent auxiliary notes when I was on sabbatical leave in 1999–
2000. I include them in since you may find them useful too; please note that any accolades belong to
Dr Norman but that that any errors are my responsibility, so please point them out to me.

Alan Mycroft, January 2002.

1 Introduction

These notes form a supplement to Alan Mycroft’s and explain:

• Details of Java versions of some compiler-construction tools where the main notes discuss C-
based ones.

For the first part of the course the main books refereed to will be Modern Compiler Implementation
in Java[2] and the Red Dragon[1] book1.

A compiler is something that takes the description of a program from a user and converts it into
a form that a computer can make much more direct use of. It is useful to think of this translation
process as being done in two parts. The first involves un-picking the input files, building neat and
rational data-structures to represent the user’s intents, checking for consistency and then applying
generally valid conversions that simplify or optimise the program. The second part is concerned with
mapping high-level constructs in a programming language down onto the concrete operations that a
real computer can perform. This may involve making interesting choices about the representation of
data, and provides scope for lots of effort to go into the machine-specific aspects of optimisation.

Compiler technology is, in various guises, used in many more places than just things that are ex-
plicitly labelled “compiler”. This means that an understanding of the issues and techniques involved
can be useful to almost every computer scientist. The parsing techniques that form the early phases
of a regular compiler may be useful when decoding all sorts of structured data: HTML, word pro-
cessor documents, serialized data being sent as part of a remote method invocation and many more.
Lessons from type-checking and other consistency tests applied by compilers can help keep other data
structures straight. Almost any textual user-interface will need some sort of parser to disentangle the
user’s utterances and a study of compilers can let us implement things in an organised and uniform
(and hence reliable) way.

Similarly the issues that are central to the code-generation parts of a compiler have wide uses else-
where. Page markup languages (e.g.latex andpostscript ) are specialised and rather curious
programming languages: knowing about compilers must help in implementing them well. Visual text
layout systems will still need to do the same sorts of adjustment and transformations on their data
so can use related technology. Some graphics-rendering procedures may be best performed fast by
arranging to generate machine code tuned to the particular situation and then executing it: again this
is related to the code-generation parts of any compiler.

Almost any large current system will have an embedded scripting language and handling that is
a compilation process. In these varied applications compilation may not be seen as a central part of
what is going on, but without knowledge of the established techniques of compiler construction it is
probable that seriously slow, clumsy or unreliable solutions will be invented.

1So known from the picture on its front cover.
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2 Lexical and Syntax Analysis

This section of the course is concerned with reading in the file that contains a program and building
an internal representation of that program. Almost always it is reasonable to imagine that this repre-
sentation comes in two parts. The first is asymbol tablethat keeps track of all the names used by the
programmer, and the symbols recorded in that take their place in aparse tree. This tree will have a
node for each construct and each operator in the original program, and its structure will make quite
explicit all groupings. Most current practical compilers will build and analyse these structures using
three rather separate bodies of code:

Lexical Analysis: This will split the source code up intotokens, i.e. names, numbers, operators and
so on. It will discard comments and white-space (i.e. blanks and newlines). This is usually
done as a separate sub-program (a) because it can be, and this leads to a clean logical structure
overall, (b) because this task is (amazingly) often one of the most expensive parts of a whole
compiler, so using careful code and special tricks in it can be valuable, and (c) because there
are convenient tools that can help write the program that does this work;

Parsing: This is sometimes calledsyntax analysis. Very often the compiler designer will select a
set of syntax rules that are easy to work with here but that lead to a parser that is somewhat
over-generous in that it will accept some strings of tokens that do not form real valid programs:
these excess cases are then filtered out later. Proper error detection, reporting and repair are
critical issues for parsers;

Checking and Tree Transformations: These must arrange to generate any diagnostics that the ear-
lier steps failed to, and might simplify or otherwise transform the parse tree into some usefully
standard state.

There are a number of key ideas that form the foundations of all sensible ways to write these parts
of compilers:

1. A formal description of the language that you are trying to accept should be preparedbefore
you start writing any programs at all. This means that a study of compiler construction has to
begin with a discussion of the language description notations that have emerged as the common
ones used in practise. It also makes it sensible to talk about a rather general categorisation of
possible sorts of languages that one may try to use in programming languages;

2. A theoretical basis for processing text against these language descriptions is needed, and the
trade-offs involved between exploitation of this and use of ad hoc programs needs to be under-
stood;

3. In almost all cases there will be practical and fairly convenient tools that turn descriptions of a
language into a program that will parse it. The benefits and limitations of these and the details
of how they are used can be important.

2.1 Lexical Analysis

Amazingly if is often the case that in a real complete compiler a major part of the time is spent reading
the input file and splitting it up into tokens. It will generally be necessary to remove comments and
categorise input as numbers, symbols, keywords or punctuation characters. It will often be the case
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that certain pairs of punctuation characters, when occurring together, should be treated as a single
item (e.g. in Java and C the pairs++ and<= (and many more) are treated this way.

One could imagine a programming language with amazingly messy rules about just how charac-
ters should be grouped into tokens, and for instance itmight have been that the Java designers had
wanteda+++++b (with no blanks at all) to be treated asa++ + ++b which is probably the nearest
to a meaningful possibility for it. For that to happen there would have had to be some way to ensure
that in this case the string of five+ signs got clustered into a 2-1-2 break-up. Pretty well every modern
language designer has taken the view that such treatment is too delicate: one runs the risk of ending
up with valid programs that might have two or more interpretations (in the above example one could
imagine the first+ as an infix operator and the remaining four all prefix operators acting onb) nd
there is a risk of the user being confused as well as the compiler. So more or less universally2 splitting
programs into tokens is expected to be done without concern for context and in a way that can be
based on a rather simple program that scans through the input strictly from left to right.

The descriptive tool used for this will beRegular Expressions. Those of you who missed out on
the Part IA course on them may like to check the notes on my section of the lab web pages (find where
these Compiler Construction notes are. . . ), obtain a copy of last year’s printed notes or read a book. I
will not actually need very great depth of understanding. As examples, here are a few (perhaps crude)
attempts to use regular expressions to describe the shape of a few of the sorts of token that Java has:

decimalint: (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*
octalint: 0(0|1|2|3|4|5|6|7)*
lesseq: <=
plusplus: ++
less: <
keyword_if if

A challenge at this stage is to construct a regular expression that generates exactly the strings that Java
would consider to be valid floating point constants. Before doing that you almost certainly have to
find a very detailed section in a Java book to find outexactlywhat the rules are.

Those of you who are on the ball will already have notes that I am cheating somewhat: but it is a
cheat that is universally accepted! The regular expression I showed above for a decimal integer will
match an arbitrarily long sequence of digits. In a real Java program you ought never to see a decimal
constant standing for a value more than231 − 1 for an int or263 − 1 for a long. However for the
purposes of lexical analysis the usual understanding is that these constraints are based on themeaning
of the string of characters and so overflow will be checked for later on. A typical lexical analyser will
treat a sequence of 50 digits as a single token representing an integer and leave it to later parts of the
compiler to moan about the number being too big. In practical lexical analysers one may impose some
upper bound on the length of a name or number (to allow for the size of buffers used to store things)
but it is normal to pretend that this is not so!

Three key things motivate the use of regular expressions as a way of describing tokens:

1. They are easy to write and seem natural and convenient to work with. At least this is true if
various extended notations are used: but the well developed theory allows us to be certain that
these extensions do not bring any unpleasant side-effects;

2. They appear to be a good natural fit to our intuitive idea of how how text should be split into
tokens;

2The main counterexample that springs to my mind is FORTRAN, but a careful discussion of the way in which one
might tokenize that really lies twenty years in the past now.
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3. A big result, Kleene’s theorem, tells us that any regular expression can be converted into the
description of a finite automaton that will “accept” items matching the expression. This leads
to a good way to implement tokenizers based on regular expressions: finite automata allow one
to recognise tokens working efficiently character at a time.

Using the most primitive notation of Regular Expressions would be possible here but is so clumsy
as to be unworkable. The short-cuts most normally used will be

• alternation between various characters can be compressed, for instance[a-zA-Z] might be
used to stand for any single letter. Expanded out it would have to be written something like
(a|b|c| . . .|z|A|B| . . .|Y|Z)

• The notationS+ is used to stand for one or more instances ofS in much that way thatS* stood
for zero or more repetitions, as in[0-9]+ for a string of digits of length at least one.

• It is sometimes useful to layer on a notation that is much more based directly on finite automata.
Such a facility allows the tokenizing engine to be in one of a number of major states. These
might, for instance, represent the situation of being in the middle of processing a string, a
comment or normal program text.

Anybody who has spent time working through the Regular Languages and Automata lecture notes
will be aware that following through the application of Kleene’s theorem to derive a finite automaton
from a regular expression is somewhat tedious: not something most people would like to do by hand
very often. However it is systematic enough that programs to do it are neither large nor especially
complicated. I will come back to a description of a use of a particular such tool after I have discussed
the next stage of parsing.

2.2 Parsing

Once again the key to parsing involves finding a way to describe grammars. The method that has
become totally dominant involvesphrase structure grammars. The supposition is that the material
to be parsed is a sequence of tokens (not just of characters) and that the parsing only depends on the
types of these tokens not on any other attributes. For instance if a number can appear at some place
thenanynumber can appear. Thus an obvious start to defining a grammar is to list all the tokens that
can possibly appear. These are referred to asTerminal Symbols. On then has another set of symbols,
referred to asNon-Terminal Symbols. One non-terminal is identified as aStart Symbol. The grammar
is completed by giving a set of re-write rules. Each of these (in the most general case) has a sequence
of symbols (maybe some terminal and some non-terminal) on the left and another such sequence on
the right. There must be at least one non-terminal in the pattern in the left hand part of a rule. The set
of sentences that make up the language defined by such a grammar can be obtained by starting with
the start symbol. Then any time a sequence on the left of a rule appears in the string it can be replaced
by the corresponding sequence on the right. If at some stage a string with no non-terminals arises
then that string is part of the language. If there is no way of generating a string of terminals, however
many productions (the term usually used for what I just started to call re-write rules) are used then
that string is not part of the language.

It turns out to be interesting and sensible to consider various restrictions on the form of the pro-
ductions.

The first such set of conditions looks backwards in this course: insist that the left hand side of
each production is just a single non-terminal, and each right hand side is either empty or consists of
just a terminal followed by a non-terminal. Eg
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S ⇒ A
A ⇒ a B
B ⇒ b A
B ⇒

In this example I have used upper case letters for non-terminals and lower case for terminals. Some
typographic distinction is generally useful, but just what is used will depend on context. IfS is the
starting state then this grammar generated the languagea(ba)* . In general grammars restricted in
this severe way correspond very naturally to descriptions of non-deterministic finite automate (the
non-terminals are states, and where there is a production with an empty right hand side that marks an
accepting state).

The next useful class of phrase structured grammars impose just the constraint that the left hand
side of each production should be a single non-terminal, as in the example:

S ⇒ A
A ⇒ a A a
A ⇒ b A b
A ⇒

Informal study of this should convince you that the language it defines is that of palindromes over
the alphabet{a,b} . We know that this language is not regular so no regular expression could define
it and no finite automaton could accept it. Grammars where the left hand sides of productions are
single non-terminals are known ascontext freegrammars. Results you know already say that regular
languages can be recognised using finite automata. A very similar style of result asserts that context
free languages can be accepted bystack automata. These augment a finite-state control mechanism
with a stack! Just as there is a pumping lemma for regular languages (and it can be used to show
that certain languages are not regular) there is a pumping lemma for context free languages and again
it can be used to show that some languages are not context free. The usual example to quote is the
languageanbncn This consists of the stringsabc , aabbcc , aaabbbccc and so on where in each
case the number of occurrences of each letter match.

Many texts on parsing discuss a class of grammars known ascontext sensitive. I will not emphasis
these here, but will mention the way in which they correspond to a model of computation again later
on.

Unconstrained phrase-structure grammars still generate languages. Once again they correspond
to a model of computation: in this case Turing Machines. The fact that the ability to parse a general
grammar of this form can call on the full power of general computation (and conversely any Turing
machine program can have its behaviour captured in a language defined by some phrase structure
grammar) tells us that there will be many undecidable problems around and that general grammars
will not usually be sensible things to work with.

A final remark is that since there are computations that even a Turing Machine can not perform
there will be languages that can not be defined at all phrase structure grammars. The most obvious
example will be the language of “all programs in existing computer language X subject to the extra
constraint that they must terminate”. And of course this would be a grammar we really did want our
compiler to accept, so it could generate a diagnostic “this program may not terminate” for input that
had that property!

Many years of experience has shown that context free grammars are powerful enough to express
the structure that people want in programming languages, but constrained enough to be practical to
work with. But just as when I explained that regular languages were used for lexical analysis but that
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left over issue such as name-length, over-large numeric values and so on, when we use context free
grammars for parsing we give up on checking such things as having variables referenced only when
in scope, having types used consistently, guaranteeing that the programs we parse will terminate and
all sorts of other conditions. Some of these can be checked in later parts of a compiler.

Before looking at detailed parsing parsing techniques there is a slight area of conflict between the
language theory approach and the practical one we need. The idea of mapping a grammar onto an
automaton works in the context of “accepting the language’s. This means it is directly valuable if we
want a syntax checker that reports a simple yes/no answer as to whether our input text satisfies the
rules of our grammar. However in most real compilers one wants more: a trace of which production
rules were fired to get to the input sentence. These can be interpreted as aparse treefor the program.
Extending a parser to build one of these is typically not that hard, but the big issue that this does raise
is that ofambiguous grammars. These are one where some particular sentence might be generated on
two or more ways. In each case the parsing mechanism will accept the text, but there is no certainty
which parse tree will be created. The simple approach to this is to restrict attention to grammars that
are not ambiguous. A more complicated scheme allows grammars to start off ambiguous but provides
ways of annotating the grammar to ensure that just one version of the parse can actually happen.

A further messy area is that of error recovery. The beautiful theory of stack automata allows us to
accept valid programs really rather efficiently. It does not automatically help too much with producing
error messages that are much better than

+++ Error: your file does not contain a valid program.

and this is a bit sad. Again practical parsers will need to extend the theory with practical techniques
(and sometimes tricks) to do better.

The main Compiler Construction notes and the Red Dragon book describe various ways for mov-
ing from the specification of an unambiguous context free grammar to a parser based on it. In this
supplement to the notes I am not going to write all that out again, but I should cross-reference some of
the key terms: LL-parsing, Recursive Descent, left-recursion, LR-parsing, shift, reduce, precedence:
general precedence and operator precedence, LR(0), LR(k), start-sets, characteristic finite state ma-
chine, ALR, LALR. A general message from all that is that there is a great deal of quite complicated
technology that goes into understanding and building good parsers! The course expects you to under-
stand what the options are and to be able to apply the techniques by hand to small grammars.

2.3 CUP and JLex

Building any sort of LR parser by hand is tedious. For the grammars of full programming languages
it is not really feasible. However the steps involved are all systematic, and so people have written
parser generators to do the bulk of the work for you. A notable feature of these is that (for syntax
checking at least) there can be asingleprogram that is an interpreter for a general stack automaton.
The transitions it must make in response to input symbols can all be stored in a neat tabular form.
Processing an input symbol then involves taking the current state and the new symbol and looking in
the table: what will be found is an action which will be eithershiftor reduce. The first of these pushes
an item onto the stack, the second pops one or more items before putting a replacement on. In each
case the machine will generally change its state. The main parsing loop is thus actuallyvery simple
and it only performs a rather few instructions as it deals with each new input symbol. Thus parsing is
typically rather fast. All the cleverness goes into the preparation of the tables!

If you study a book on parsing techniques you will find that there are several available, notably
LR(k), SLR and LALR. These differ in the pain it is to generate the tables, how compact the tables
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are and how wide a range of grammars can be coped with. Typical real parser generators use LALR
which is not the easiest one to understand but counts as a “best buy” in terms of ability to cope with
the widest range of grammars for sensible table size.

The software tool discussed here is called CUP, and a version has been placed in the laboratory
web pages close to where these compiler construction notes live. When I was preparing this course
I came across several different versions of CUP and for now I suggest you use the version I have
provided a copy of so we are all certain we are talking about exactly the same thing!

A generated parser will need to call on a lexical analyser to give it a sequence of tokens. The
interface between the two programs is a potential area for confusion and although one could in theory
interface almost any lexical analyser to almost any generated parser it is much easier if the two start of
consistent. Thus as part of the CUP kit that I provide there is a compatible lexical analyser generator
called Jlex. In each case the main documentation (including copyright statements) is there as an
HTML file. In case of doubt please read the documentation, which I wish to consider as an extension
to this handout (again for those of you minded to litigation I should indicate that there will not be
examination questions on the minutiae of CUP and Jlex based on material only available in their
manuals, but you will find that writing your own parsers using them will cause you to understand
them much better (which will be good for both exams and for project work next year and later in life)
and the manuals will be helpful then).

To introduce CUP and JLex I will provide the example that comes with them, which builds a very
simple desk calculator. This example is just big enough to illustrate the main features. First consider
lexical analysis. Here I am going to support a very simple syntax so that the only symbols used are
numbers, addition, multiplication, parentheses and a semicolon. I think up textual names for each,
for instanceINTEGER, SEMI and so on. Then prepare the following file, which should be called
minimal lex.:

import java_cup.runtime.Symbol;
%%
%cup
%%
";" { return new Symbol(sym.SEMI); }
"+" { return new Symbol(sym.PLUS); }
"*" { return new Symbol(sym.TIMES); }
"(" { return new Symbol(sym.LPAREN); }
")" { return new Symbol(sym.RPAREN); }
[0-9]+ { return new Symbol(sym.NUMBER,

new Integer(yytext())); }
[ \t\r\n\f] { /* ignore white space. */ }
. { System.err.println(

"Illegal character: "+yytext()); }

This may look a little dense, and for a grammar as simple as this you might think you could do as
well writing the whole lexical analyser by hand. However for bigger examples the use of Jlex will
really pay off! There are some section separators involving percent signs, and a directive telling
Jlex it will be working with CUP. But then the main body of the file consists of (extended) regular
expressions followed by actions to perform when the expression concerned is found. Here most
of the regular expressions are simple constant strings, such as"+" . In such cases the action is to
return something indicating what had been found. The classedSymbol andsym represent part of
the details of the interface to CUP. The pattern[0-9]+ matches integers, and Jlex arranges that the
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functionyytext() can be called to retrieve a string that is the actual set of digits read (and here they
are decoded to make a JavaInteger ). The empty action associated with spaces, tabs and newlines
causes them to be ignored, and the final pattern (just a dot) is a catch-all that gets activated if no other
patterns match.

If you have the set of files I provide you can build a lexical analyser out of this file by saying

java -jar Jlex.jar minimal.lex

and you will see a pile of informative messages that may or may not impress you, but you should then
find (barring errors) that a file calledYylex.java has been created for you. Do not rush to compile
it! Until the CUP bit has been done you will not have thesym class available and so you will see
errors.

To cope with CUP I will work in two stages. In the first I will show a CUP parser that just check
syntax and moans if it finds something wrong. Call this oneminimal.cup and go

java -jar cup.jar < minimal.cup

which should make filesparser.java andsym.java for you:

import java_cup.runtime.*;

parser code
{:
public static void main(String args[])

throws Exception
{

new parser(new Yylex(System.in)).parse();
}
:}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER;

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;
expr_part ::= expr SEMI;
expr ::= NUMBER

| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN
;

The section labelledparser code allows you to include an arbitrary bit of Java in the generated
file, and is used here to set up and run the parser. The constructed parser will read stuff and process it
when you call itsparse method.
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The next bit lists your terminal and non-terminal symbols. A convention of spelling the terminals
in upper case and the non-terminals in lower has been followed, but by declaring all the symbols you
make things very nice and explicit. TheNUMBERterminal is declared to be able to carry back an
Integer value to you. The others will not carry any information beyond their own type.

Finally there is the context free grammar. The symbol::= marks a production, and vertical bars
separate alternatives. The grammar as given is ambiguous, but theprecedence declarations instruct
CUP to resolve ambiguities to make multiplication bind more tightly then addition and to make both
operations associate to the left. The exact options for and understandings about ambiguity resolution
are a mildly murky area!

When you compile all the generated Java code you now have and try it you will get a parser that
should do nothing provided you feed it input in accordance with the syntax it supports, but which
should moan if you deviate from that.

The next version ofminimal.cup does a bit more. Each production in the grammar is decorated
with a semantic action, which is Java code to be executed when the relevant reduction is performed.
Items in the grammar can now have names attached (following a colon) to make it possible to refer
back to them in the semantic action. Non-terminals can now be given types so that you can do
interesting things with them. In this example the non-terminalexpr is given the typeInteger (it
could not be given the typeint since valid types here have to be sub-classes ofObject ). Then the
actual numeric value can be extracted using theintValue() method. You will see that the actions
here compute the value of the expression. They could equally well have build a parse tree. In all cases
they form segments of Java code enclosed in funny brackets{: to :} and including an assignment to
the special pseudo-variableRESULT. Within such a block the names attached to components of the
pattern (e.g.expr:e attaches the namee to anexpr that is read) can be treated as items with the
type declared for the relevant symbol.

import java_cup.runtime.*;

parser code
{:
public static void main(String args[])

throws Exception
{

new parser(new Yylex(System.in)).parse();
}
:}

terminal SEMI, PLUS, TIMES, LPAREN, RPAREN;
terminal Integer NUMBER;

non terminal expr_list, expr_part;
non terminal Integer expr;

precedence left PLUS;
precedence left TIMES;

expr_list ::= expr_list expr_part | expr_part;
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expr_part ::= expr:e
{: System.out.println(" = "+e+";");
:} SEMI;

expr ::= NUMBER:n
{: RESULT=n; :}

| expr:l PLUS expr:r
{: RESULT=new Integer(

l.intValue() + r.intValue());
:}

| expr:l TIMES expr:r
{: RESULT=new Integer(

l.intValue() * r.intValue());
:}

| LPAREN expr:e RPAREN
{: RESULT=e; :}

;

To try to show that this technology scales I now include a small section of Jlex and CUP input
files that I use to define a parser for a subset of the language ML. First an extract from the code that
provides a lexical analyser:

";" { return new Symbol(sym.SEMICOLON); }
"op" { return new Symbol(sym.OP); }
"(" { return new Symbol(sym.LPAR); }
")" { return new Symbol(sym.RPAR); }
"[" { return new Symbol(sym.LBRACKET); }
"]" { return new Symbol(sym.RBRACKET); }
"," { return new Symbol(sym.COMMA); }
":" { return new Symbol(sym.COLON); }
"˜" { return new Symbol(sym.NEGATE); }
"->" { return new Symbol(sym.ARROW); }
"=>" { return new Symbol(sym.BIGARROW); }
"|" { return new Symbol(sym.VBAR); }
"_" { return new Symbol(sym.UNDERSCORE); }
"nil" { return new Symbol(sym.NIL); }
"unit" { return new Symbol(sym.UNIT); }
"not" { return new Symbol(sym.NOT); }
"true" { return new Symbol(sym.TRUE); }
"false"{ return new Symbol(sym.FALSE); }
"if" { return new Symbol(sym.IF); }
"then" { return new Symbol(sym.THEN); }
"else" { return new Symbol(sym.ELSE); }
"as" { return new Symbol(sym.AS); }
"and" { return new Symbol(sym.AND); }
"fn" { return new Symbol(sym.FN); }
"let" { return new Symbol(sym.LET); }
"in" { return new Symbol(sym.IN); }
"end" { return new Symbol(sym.END); }
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"fun" { return new Symbol(sym.FUN); }
"val" { return new Symbol(sym.VAL); }
"local"{ return new Symbol(sym.LOCAL); }
"rec" { return new Symbol(sym.REC); }
[A-Za-z][A-Za-z0-9_]*

{ return new Symbol(sym.NAME,
new String(yytext())); }

[0-9]+ { return new Symbol(sym.NUMBER,
new BigInteger(yytext())); }

and now a rather smaller (in proportion) extract from the CUP rules about the syntax.

terminal String NAME;
terminal java.math.BigInteger NUMBER;
terminal NIL, OP, UNIT, NOT, NEGATE, TRUE;
terminal FALSE, LPAR, RPAR, LBRACKET, RBRACKET;
terminal COMMA, IF, THEN, ELSE, AS, AND, ARROW;
terminal VAL FN, LET, IN, END, SEMICOLON, COLON;
terminal VBAR, UNDERSCORE, BIGARROW, FUN, LOCAL;
terminal REC;
terminal Graph PLUS, MINUS, TIMES, DIVIDE;
terminal Graph REMAINDER, LESS, GREATER;
terminal Graph LESSEQ, GREATEREQ, EQUAL;
terminal Graph NOTEQUAL, ANDALSO, ORELSE, CONS;

nonterminal program, prog1;
nonterminal Graph aexp, aexp2, exp, exp1, exp2;
nonterminal Tuple aexp1;
nonterminal Rule match, rule;
nonterminal Graph op;
nonterminal Type ty;
nonterminal Pattern pat, pat1, apat, apat2;
nonterminal PatTuple apat1;
nonterminal Args fb3;
nonterminal Definition dec, dec1, vb, vb1;
nonterminal Definition fb, fb1, fb2;

precedence right SEMICOLON;
precedence left ORELSE;
precedence left ANDALSO;
precedence right CONS;
precedence nonassoc LESSEQ, GREATEREQ,

EQUAL, NOTEQUAL,
LESS, GREATER;

precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE, REMAINDER;
precedence right ARROW;
/*
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* "->" is specifically more binding than "*"
* so that a type like ’a*’b->’c
* will be parsed as ’a*(’b->’c)
*/

precedence left COLON;

start with program;

program
::= prog1
| program SEMICOLON prog1
| program SEMICOLON
;

prog1
::= dec1:a {: Graph.text("Statement ");

a.print();
:}

| exp:a {: Graph.text("Expression ");
a.print();

:}
;

exp
::= exp2:a {: RESULT = a; :}
| exp:a COLON ty:b {: RESULT =

new Typed(a, b); :}
| FN match:m {: RESULT = m.abs(); :}
| IF exp:a THEN exp:b ELSE exp:c

{: RESULT =
Application.ap3(

new If(), a, b, c);
:}

;

op ::= PLUS:x {: RESULT = x; :}
| MINUS:x {: RESULT = x; :}

etc
;

I obviously do not want you to understand all the details of the above, especially since it is incom-
plete. but I hope you can see that in a real(-ish) parser many more non-terminals will be declared to
have types (and these will be types as used to represent the parse tree).
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2.4 Comparison with lex and yacc

The commonly-used C parser generator tools are lex and yacc (yet another compiler compiler), or
their GNU equivalents flex and bison (almost as shaggy as a yak but more American?).

The C versions use simple curly brackets to mark out semantic actions. They do not attach types
to syntactic categories. Instead of linking names to parts of a patter you have to refer to the parts by
number, as in

expr ::= expr ’+’ expr { $$ = $1 + $3; }

where$$ is used in place ofRESULTand the$1 and$3 relate to the first and third items present in
the pattern. In general I think that CUP is somewhat nicer, but if you have learned to use one you can
easily enough adapt to the other.

There are a number of other parser generation kits around, and while lex and yacc and quite stably
dominant in the C world it may still be too early to know which one will be the ultimate winner for
Java. It remains the case that having used one it is very probable that others will not give you trouble.

[AM 2004: the ANTLR (www.antlr.com) framework seems also to be becoming quite popular
and can generate C++, Java or C]. See the main part of the course for more details.]

3 Exercises and the like

Both the main text-books suggested here have exercises at the end of each chapter. The computer lab-
oratory has been teaching courses on compilation for over thirty years and so there is a very adequate
collection of past examination questions available: transliterating some of the old ones so that they
mention Java rather than (say) Algol is itself a valuable exercise. There are also a few exercises in the
main notes, and I view it as implicit in almost any computer-related course that keen students should
try to apply the technology that they are being taught about in practical cases. So here I can explicitly
suggest that you might get the desk calculator example running, expand it to support a fuller comple-
ment of operations, then give it memories that it can store values: you may by then be well along the
line towards building a simple interpreter for a tidy programming language. As an alternative work
towards a syntax checker for ML or Java or C (or whatever) based on CUP but now without having to
install any semantic actions.
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