
Jonathan S. Shapiro Cambridge, 2/05/20041

Thinking About Capabilities

An EROS-Centric View

Jonathan S. Shapiro
Johns Hopkins University

shap@eros-os.org
www.eros-os.org

Jonathan S. Shapiro Cambridge, 2/05/20042

Plan of Talk

� Capabilities: a conceptual view

� Bits of Architecture

� Why is this idea so compelling?

� System-scale overview

Jonathan S. Shapiro Cambridge, 2/05/20043

Conventional Page Tables

Page
Table

Page
Directory

(page frame, W|S|V)

Object Name Permissions

Jonathan S. Shapiro Cambridge, 2/05/20044

Classical Definition

� Term “capability” is due to Dennis and van Horn, 1966,
Programming Semantics for Multiprogrammed Computations

� A capability is an (object name, access rights pair)

� The term “object name,” in this context, has been commonly (mis)
understood to mean “the global name of some system resource.”

� A page table entry is a capability in exactly this sense, but the
concept is much more general.

Jonathan S. Shapiro Cambridge, 2/05/20045

Modern Page Tables

Page
Table

Page
Directory

(page frame, type, W|S|V)

Object Name Permissions

4MB
Page

Note that the type field was always latent, implied by containership in
a structure (the page table/page directory) that contained typed slots

Jonathan S. Shapiro Cambridge, 2/05/20046

From Memory Protection to Objects

� Latent in this view of capability is a generalized notion of object
semantics

� Most of the uses have been in memory naming and protection

� Capability is not just a memory idea

� Type + permission == interface (structure in ML terminology)

� This implies that capabilities provide a general model for naming the
interface to an arbitrary object.

� OS people don't use the term “object” correctly

� Object = behavior + representation state

� OS people focus almost exclusively on the representation state

Jonathan S. Shapiro Cambridge, 2/05/20047

Examples from Real Systems

� UNIX:

� Socket descriptor: capability to socket connection

� File descriptor: capability to a file with RO or RW permissions

� CWD, “root” descriptor: capabilities to file system, directory

� Windows has many of the same

� EROS uses capabilities pervasively:

� Pages

� Mapping structures

� Processes

� A few kernel services

Jonathan S. Shapiro Cambridge, 2/05/20048

What is EROS?

� A pure, capability-based operating system

� It is an object-based, not a client-server architecture

� High performance invocation (includes IPC)

� Transparent persistence

� Built on a decidable access model

� Questions of policy enforceability are decidable (and the outcome is
good)

� Confinement mechanism is verified

� Implementation is not (and won't be)

Jonathan S. Shapiro Cambridge, 2/05/20049

Everything is an Object

� Kernel Implemented

� Pages (hold data)

� Nodes (hold capabilities)

� Wrappers

� Processes

� Void object
� User Implemented

� Implemented by some user
process

� One process can implement
multiple objects, multiple
interfaces, or mutiple facets on
a single object

(type, object-id, permissions) (type, object-id, facet-id)

Jonathan S. Shapiro Cambridge, 2/05/200410

Nodes

� Since capabilities are not user-accessible data, we need some
container object to hold them: Nodes

� Each node is fixed size, holds 32 capabilities

� Could be page-sized, but this was not space efficient.

� In hindsight, probably should have made them page sized anyway

� Side effect: a type partitioning between data and authority that is
carried through all the way to the disk

Jonathan S. Shapiro Cambridge, 2/05/200411

Nodes Define Address Spaces
Page Table TreeNode Tree

Demand
Translation

Reverse
Dependency

Tracking

Jonathan S. Shapiro Cambridge, 2/05/200412

Processes

� From the kernel perspective, interesting process state is capability
state. For this reason, process state is represented as an
arrangement of Nodes

� New capability type “number capability” to hold the register bits.

� A representation pun required because of persistence

� Not needed in a non-persistent design

Jonathan S. Shapiro Cambridge, 2/05/200413

Kernel Objects

� The kernel-implemented capabilities implement interfaces to the
core kernel abstractions: pages, nodes, processes, and address
spaces

� Because these are kernel objects, the kernel understands their
semantics, and can implement permissions on them.

� This is NOT true of user-implemented objects.

� Example: kernel cannot tell when a user-implemented object is read-only

� Given current kernel technology, user-mode (extended) objects are
necessarily second-class w.r.t. The primitive protection system.

Jonathan S. Shapiro Cambridge, 2/05/200414

Capability Rescind

� Allocation Count

� Most capability types carry a version number: the allocation count.

� Every object likewise carries a version number.

� Version is incremented on object rescind.

� No match => capability is void.

� Call Count

� Special mechanism for call/return. Similar to allocation count

� Every node has a call count. Incremented by every call.

� Call generates a resume key that contains call count for node.

� No match => capability is void

Jonathan S. Shapiro Cambridge, 2/05/200415

Protection Issue: Transitivity

� Capability systems present a problem: a read-only object may
contain a read-write capability

� Similar to non-const pointer within const object.

� Sometimes, the real issue is transitive read-only access.

� This motivates a new access restriction: weak

� Any capability that is fetched by invoking a weak capability will
have read-only, weak access restrictions imposed on it.

Jonathan S. Shapiro Cambridge, 2/05/200416

Exceptions

� EROS distinguishes two types of exceptions:

� Memory exceptions occur when accessing address spaces

� Non-memory exceptions occur from mis-executing exceptions

� Memory exceptions are first delivered to the “appropriate”
memory keeper (fault handler).

� If no memory keeper is defined, they go to the process keeper.

� Memory keeper can patch the problem and restart the instruction.

� All other exceptions go to the process keeper.

� Identified by a per-process capability slot

Jonathan S. Shapiro Cambridge, 2/05/200417

Spaces, Processes have “Keepers”

Subject
Keeper

Keeper

Fault goes to nearest
enclosing keeper

Process keeper encloses all
memory keepers

Keeper

Jonathan S. Shapiro Cambridge, 2/05/200418

Interrupt-Style Kernel

� Originally: Every operation has three phases:

� Prepare (includes all exceptions, access checks)

� Commit

� Mutate

� Now: certain operations cheat

� Exceptions allowed during mutate

� These restart the operation from the beginning

� Restricted to mutations that do not alter security state

� Security state updates only legal after success guaranteed

Jonathan S. Shapiro Cambridge, 2/05/200419

Persistence

� Entire system is periodically (efficiently) checkpointed

� Motivation: simplest path to secure bootstrap

� Do not need to argue successful reduction of authority

� Argue instead that saved state is successfully resumed

� Argue that any saved state resulted from a correctness-preserving
sequence of operations proceeding from an initially safe state

� Check the base case separately

� Via assurance (trusted components)

� Via reachability (initial capabilities)

Jonathan S. Shapiro Cambridge, 2/05/200420

Capability Invocation

Available

Running

Waiting

RETURN

CALL

invoke(start capability)

invoke(resume capability)

SEND

Invocation type determines
invoker transition

Capability type determines
invokee transition

Rule: kernel capabilities
behave exactly as if a
call was made to a start
cap. to some process that
returned using the
generated resume cap.
after producing the
result by magic.

CALL invocation
generates a resume
capability

Jonathan S. Shapiro Cambridge, 2/05/200421

Space Bank Hierarchy

� All storage allocated from some
space bank

� Space banks exist in logical
hierarchy (all one program)

� Allocates disk space, not memory
space

� Destroying bank either

� Destroys all allocated storage, or

� Propagates storage ownership to
parent

Prime
Bank

User
Bank

User
Bank

App.
Bank

App.
Bank

Jonathan S. Shapiro Cambridge, 2/05/200422

Constructor

� Constructs instances of some
program

� Tests for confinement

� By testing initial capabilities

� New instance can only write to
client at creation time.

� Any further permission must come
from client

� Definition is recursive

� Capability to constructor of
confined thing is considered safe

“Foo”
Construc-

tor

Client Yield

Jonathan S. Shapiro Cambridge, 2/05/200423

MetaConstructor

� Constructors are build by the
singleton metaconstructor

� Space bank and metaconstructor
are “primordial objects”

Meta-
Construc-

tor

Client
Construc-

tor

Jonathan S. Shapiro Cambridge, 2/05/200424

Big Picture
(user, passwd, *shell)

Login
Agent

(shap)
shell

(shap)
Directory

Password DB

file file
file file

Window
System

eTerm

Open/
Save

Agent

EROS
Word

Other
App

eWord
Directory

eWord
Tool

eWord
Tool

System TCB
Shap TCB
Untrusted

Jonathan S. Shapiro Cambridge, 2/05/200425

Why is This Idea So Compelling?

� Capability concept dates back to early 1960's; perhaps earlier.

� It has been conclusively discredited two or three times a decade,
from both a theoretical and a practical perspective

� Yet it refuses to die, and the participants are a very unusual
collection of operating system architects:

� System architects: Needham, Lampson, Wulf, Fabry, Wilkes, Rashid
(probably didn't know it), Neumann, Schroeder, Hardy, myself, many
others

� Theorists: Jones, Boyer, Levitt, Snyder, Lipton, Bishop, Boyer

� What do these people share in common, and why has this idea
categorically refused to die?

Jonathan S. Shapiro Cambridge, 2/05/200426

Semantics

� Note the key word in the Dennis and van Horn title:

� Programming Semantics for Multiprogrammed Computations

� Largely unnoticed by the mainstream operating system community

� Hint

� (object-name + interface) � (closure + continuation)

� Capability semantics � lambda calculus w/ side effects

� The capability model is currently the only model offering a
semantics that allows us to reason all the way from user-level
object interactions down to machine-level instructions in a
uniform and consistent way.

� Or indeed, any semantics of systems computation at all

Jonathan S. Shapiro Cambridge, 2/05/200427

Models and Results

� Anita K. Jones, 1973

� Protection in Programmed
Systems

� Harrison, Ruzzo, Ullman,
1976

� Protection in Operating
Systems

� Jones, Lipton Snyder, 1976

� A Linear-Time Algorithm for
Deciding Security

� Neumann, Boyer, et al., 1980

� A Provably Secure Operating
System: The System, Its
Applications, and Proofs

� Shapiro, Weber, 2000
� Verifying the EROS

Confinement Mechanism
� Notably not:

� Lampson, Protection

� Static snapshots reveal very
little about the evolution of
dynamic systems

Jonathan S. Shapiro Cambridge, 2/05/200428

Recent Events: L4 Summit Meeting

� L4x3 (evolution from L4x2) will be a capability system

� Now provides descriptors for all system resources

� EROS and L4 groups appear to be merging into a single effort to
provide a high-performance, protected system

� Extended “team” includes several groups interested in formal
verification.

Jonathan S. Shapiro Cambridge, 2/05/200429

Invocation Performance

� Not measurably different from L4 in common case

� Usual case: 1 resume capability in call, 0 in return

� Rest of path nearly identical

� No intrinsic reason to believe that this should change

