Prolog

Andrew Rice
Michealmas 2007

Assessment

* 1 Exam question in Paper 4

* Tickable Assessed Exercise

- you must get a tick for either Prolog or C & C++
(next term)

- more information to follow

Course Aims
Introduce a declarative style of programming

Fundamental elements of Prolog: terms,
clauses, lists, arithmetic, cut, negation

Write programs in Prolog and understand their
execution

Learn to use difference structures

Understand the basic principles of constraint
programming

2

Supervision Work
* Separate set of questions at the end of the
lecture handout

* | will give some pointers and outline solutions
during the lectures

Recommended Text

“PROLOG Programming for Artificial Intelligence”,

Ivan Bratko

Imperative Programming
/* to compute the sum of the list, go through the

* list adding each value to the accumulator */

int sum(int[] list) {
int result = 0;
for(int i=0; i<list.length; ++i) {
result += list[i];

}

return result;

Lecture 1

Logic programming and declarative programs

Introduction to Prolog

How to use it

Prolog syntax: Terms

Unification

Solving a logic puzzle

Functional Programming

(* The sum of the empity list is zero and the sum of
the list with head h and tail t is h plus the sum of the
tail *)

fun sum([]) =
| sum(h:t) = h + sum(t);

Logic Programming

% the sum of the empty list is zero
sum([],0).

% the sum of the list with head H and tail T is N
% if the sum of the list TisMandNisM + H
sum([H|T],N) :- sum(T,M), N is M+H.

This is a declarative reading of a program
- it describes the result not the procedure

Prolog came from the field of
Natural Language Processing

PROgramming en LOGique

Colmerauer, A., Kanoui, H., Roussel, P . and
Pasero, R. “Un systeme de communication
homme-machine en francais”, Groupe de
Recherche en Intelligence Artificielle, Université
d'Aix-Marseille. 1973.

Prolog Programs Answer Questions

Y/ \\

Questions Answers

Modern Prolog Interpreters Use the
Warren Abstract Machine

David H. D. Warren. “An abstract Prolog
instruction set.” Technical Note 309, SRI
International, Menlo Park, CA, October 1983.

You are expected to use SWI-Prolog

* Open-source Prolog environment.

* Development began in 1987

* Available for Linux, MacOS X and Windows.
* http://www.swi-prolog.org/

We will use SWI-Prolog throughout this course
Get a copy! 13

We will usually write programs to a
source file on disk

cat milestone.pl ... enter your program in a text file
milestone(rousell,1972). ... it must have a .pl extension
milestone(warren,1983).
milestone(swiprolog,1987).
milestone(yourcourse,2007).

prolog
[milestone].
milestone(warren,1983).

........... instruct prolog to load the program

milestone(X,Y). find answers

............ you type a semi-colon (;) for more

you press enter when you've had enough

halt. 15

Prolog's database can answer
simple questions

...................... or maybe pl on your system
............. get ready to enter a new program

prolog

[user].
milestone(rousell, 1972).
milestone(warren,1983).
milestone(swiprolog,1987).
milestone(yourcourse,2007).cccceeveennenns type [CTRL]-D when done
% user://1 compiled 0.01 sec, 764 bytes

milestone(warren,1983). ... ask it a question

.................................... the answer is “yes”
milestone(swiprolog,X). oo let it find an answer
.................................... the answer is 1987
milestone(yourcourse,2000)...........cccovverireenrerireeneennne ask it a question
...................................... the answer is “no”

halt. exit the interpreter

Our program is composed of facts
and queries

cat milestone.pl
milestone(rousell,1972).
milestone(warren,1983).
milestone(swiprolog,1987).
milestone(yourcourse,2007).

These are facts
(a particular type of clause)

prolog
[milestone].
milestone(warren,1983).

These are queries

milestone(X,Y).

Using the prolog shell

* The Prolog shell accepts only queries at the
top-level.

* Press enter to accept the answer and return to
the top level

* Type a semi-colon (;) to request the next
answer

* Type w to fully display a long result which
Prolog has abbreviated

Unification is Prolog's fundamental

operation

unify(A,A).
Do these unify:
a a a b
a A a B
tree(l,r) A tree(l,r) |tree(B,C)
tree(A,r) tree(l,C) tree(A,r) tree(A,B)
A a(A) a a(A) ?

Terms can be
Constants,Compounds or Variables

Constants

Compound

Numbers: 1 -2 likes(pooh_bear,honey)

3.14 plus(4,mult(3,plus(1,9)))
Atoms: tigger

'100 Acre Wood'

Variables
X Sticks s

Zebra Puzzle

There are five houses.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffee is drunk in the green house.

The Ukrainian drinks tea.

The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the first house.

The man who smokes Chesterfields lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.
The Lucky Strike smoker drinks orange juice.

The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who drinks water? Who owns the zebra?

© N O DN =

- A a 4O a a ©
gD o

Model the situation

Represent each house with the clause:
house(Nationality,Pet,Smokes,Drinks,Colour)
Represent the row of houses as follows:

(H1,H2,H3,H4,H5)

21

Question

What sort of a term is:

house(Nationality,Pet,Smokes,Drinks,Colour)

Question
What sort of a term is:

Nationality

a) number

b)

c) compound
d) variable

23

a) number
b) atom
c) compound
d) variable
Question
What sort of a term is:
(H1,H2,H3,H4,H5)
a) number

b) atom
c) compound
d) variable

24

Define relevant facts

Read this as “exists(A,(A,_, , ,))is true if
the details of house A unifies with the
state of the first house”

25

6.

More Facts

The green house is immediately to the right of the ivory house.

rightOf(A,B,(B,A,_,_,_)).
rightOf(A,B,(_,B,A,_,_)).
rightOf(A,B,(_,_,B,A,.)).

rightOf(A,B,(_,_, ,B,A)). 2%

More Facts

9. Milk is drunk in the middle house.

middleHouse(A,(_, A, ,)).

10. The Norwegian lives in the first house.
firstHouse(A,(A, , , ,)).

27

11.

More facts

The man who smokes Chesterfields lives in the house next to the man with

"X nextTo(A,B,(A,B,_ .,)).
nextTo(A, AB, :
nextTo(
nextTo(

nextTo(

(
(
(

J) J , ,

B,)
AB,)
AB,(._._, ,B)).
AB,BA,__.)).
AB,(_BA,_)
AB,(L_BA,))
AB,L_)

b)

b)

nextTo
nextTo
nextTo

J J
28

b)

Express the puzzle as a query

exists(house(british,_,_,_,red),Houses),
exists(house(spanish,dog,_,_,_),Houses),
exists(house(_,_,_,coffee,green),Houses),
exists(house(ukranian,_,_,tea,_),Houses),
rightOf(house(_,_,_, ,green),house(_,_, , .ivory),Houses),

exists(house(_,snail,oldgold,_,_),Houses),
exists(house(_,_,kools,_,yellow),Houses),

middleHouse(house(_,_,_,milk,_),Houses),
firstHouse(house(norwegian,_,_,_,_),Houses),
nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_ ,),Houses),
nextTo(house(_,_.kools,_,_),house(_,horse,_, ,),Houses),

exists(house(_,_,luckystrike,orangejuice,_),Houses),
exists(house(japanese,_,parliaments,_,),Houses),

nextTo(house(norwegian,_,_, ,),house(_,_, ,_ ,blue),Houses),
exists(house(WaterDrinker,_,_,water,_),Houses),
exists(house(ZebraOwner,zebra,_,_,_),Houses).

2. The Englishman lives in the red house. 29

Express the puzzle as a query

exists(house(british,_,_,_,red),Houses),
exists(house(spanish,dog,_,_,_),Houses),
exists(house(_,_,_,coffee,green),Houses),
exists(house(ukranian,_,_,tea,_),Houses),
rightOf(house(_,_,_,_ ,green),house(_,_, , .ivory),Houses),
exists(house(_,snail,oldgold,_,_),Houses),
exists(house(_,_,kools,_,yellow),Houses),
middleHouse(house(_,_,_,milk,_),Houses),
firstHouse(house(norwegian,_,_,_,_),Houses),
nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,),Houses),
nextTo(house(_,_.kools,_,_),house(_,horse,_, ,),Houses),
exists(house(_,_,luckystrike,orangejuice,_),Houses),
exists(house(japanese,_,parliaments,_,),Houses),
nextTo(house(norwegian,_,_, ,),house(_,_, ,_ ,blue),Houses),
exists(house(WaterDrinker,_,_,water,_),Houses),
exists(house(ZebraOwner,zebra,_,_,_),Houses).

6. The green house is immediately to the right of the ivory house. 3

3.

Express the puzzle as a query

exists(house(british,_,_,_,red),Houses),
exists(house(spanish,dog,_,_,),Houses),
exists(house(_,_,_,coffee,green),Houses),
exists(house(ukranian,_,_,tea,_),Houses),
rightOf(house(_,_,_,_,green),house(_,_,_, ,ivory),Houses),
exists(house(_,snail,oldgold,_,_),Houses),
exists(house(_,_,kools,_,yellow),Houses),

middleHouse(house(_,_,_,milk,_),Houses),
firstHouse(house(norwegian,_,_,_,),Houses),
nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,),Houses),
nextTo(house(_,_.kools,_,_),house(_,horse,_, ,),Houses),

exists(house(_,_,luckystrike,orangejuice,_),Houses),
exists(house(japanese,_,parliaments,_,),Houses),

nextTo(house(norwegian,_,_, ,_),house(_,_, , ,blue),Houses),
exists(house(WaterDrinker,_, ,water,_),Houses),
exists(house(ZebraOwner,zebra,_,_,_),Houses).

The Spaniard owns the dog. 30

You can include queries in your

source file
* Normal lines in the source file define new
clauses

* Lines beginning with :- (colon followed by
hyphen) are queries that Prolog will execute
immediately

* Use the print() query to print the results

32

Zebra Puzzle

prolog We use print(WaterDrinker),
print(ZebraOwner) in our query

[zebral].
for this output

halt.

33

Lecture 2

Rules

* Lists

Arithmetic

Last-call optimisation

Backiracking

* Generate and Test

Rules have a head which is true if
the body is true

head body
rule(X,Y) :- part1(X), part2(X,Y).

Read this as: “rule(X,Y) is true if part1(X) is true and
part2(X,Y) is true”

Internal variables are common

rule2(X) :- something(X,2), else(Z).

Read this as “rule2(X) is true if there is a Z such that
something(X,Z) is true and else(Z) is true”

Prolog identifies clauses by name
and arity

The clause
rule.

is referred to as rule/0 and is different to:
rule(A).

which is referred to as rule/1

We sometimes identify the way to
use parameters of a rule

myrule(+A,+B,-C,-D)
means the clause “myrule” should be queried with two

ground (input) terms A and B and two variable (output)
terms C and D

Prolog has builtin support for lists

Notated with square brackets e.g. [1,2,3,4]
The empity list is denoted []

Use a pipe symbol to refer to the tail of a list e.g. [H]|
Tl and [1|T] and [1,2,3|T]

Rules can be recursive

rule3(ground).
rule3(In) :- anotherRule(In,Out), rule3(Out).

We can write a rule to find the last
element of a list

last([H],H).
last([_|T],H) :- last(T,H).

Question

What happens if | ask: last([],X). ?

a) pattern-match exception
b) Prolog says no

c) Prolog says yes, X =]

d) Prolog says yes, X = ?7??

You should include tests for your
clauses in your source code

Example last.pl:

last([H],H).
last([_|T],H) :- last(T,H).

- last([1,2,3],A), A=3

We use trace to see the execution
2 [last]. path

% last compiled 0.01 sec, 604 bytes

Yes

?- trace,last([1,2],A).
Call: (8) last([1, 2], _G187) ? creep
Call: (9) last([2], _G187) ? creep
Exit: (9) last([2], 2) ? creep
Exit: (8) last([1, 2], 2) ? creep

to the next level

Press s to skip and
jump straight to
A=? the result of the call

Yes 11

Press enter to “creep”

Arithmetic Expressions

What happens if you ask prolog:

A=1+2.

Arithmetic equality != Unification

A=1+2.

1+2 = 3.

Equals (=) in Prolog means “unifies with”

Use the “is” operator

The “is” operator tells prolog to evaluate the right-
hand expression numerically and unify with the left
Ais 1+2.

A is money+power.

Arithmetic equality != Unification

A = money+power.

Plus (+) just forms a compound term e.g. +(1,2)

The right hand side must be a
ground term (no variables)

Ais B+2.

3is B+2.

A rule can be written to compute the
list length

List length:

len([],0).
len([_|T],N) :- len(T,M),N is M+1.

This uses O(N) stack space for a list of length N

« Apply len([1] [2]],A) :- len([2],M), A is M+1

List Length using O(N) stack space

* Evaluate len([1,2],A).

* Evaluate len([2],M)

* Apply len([2 | []],M) :- len([],M1), M is M1+1
* Evaluate len([],M1)

* Apply len([],0) soM1 =0

* Evaluate M is M1+1 so M = 1

* Evaluate AisM+1soA=2

L sweld Yoels

2 dWweld yoels

* Result len([1,2],2) 18

List length using O(1) stack space

List length using an accumulator:

len2([],Acc,Acc).

len2([_|T],Acc,Result) :- Acci is Acc + 1,
len2(T,Acc1,Result).

len2(List,Result) :- len2(List,0,Result).

List length using O(1) stack space

* Evaluate len2([1,2],0,R)

* | Apply len2([1] [2]],0,R) :- Acc1 is 0+1,len2([2],Acc1,R)
* Evaluate Acc1 is 0+1 so Accl = 1

* Evaluate len2([2],1,R)

* Apply len2([2| []],1,R) :- Acc1 is 1+1,len2([],Acc1,R).

| dwelq 3oeis

* Evaluate Acci1 is 1+1 so Accl =2
* Evaluate len2([],2,R).
* Apply len2([],2,2) so R =2

2 dWel yoelS

20

Last Call Optimisation

* This technique is applied by the prolog
interpreter

* The last clause of the rule is executed as a
branch — we can forget that we were ever
interested in the head

* We can only do this if the rule is determinate
up to that point

21

Prolog uses depth-first search to

| _find answers
Here is a (boring) program

What does prolog do when given the query:
c(A,B). ”

¢(A,B) - a(A), b(B)

c(AB) A=1,B=1x

Backtracking is used to find other
solutions

C(A’B) A=1) B=224

C(A’B) A=1) B=3.s

c(A,B) :- a(A), b(B)
b(1)
b(1) Db(2) b(3) \
NS
a(1), a%Z)

c(AB) A=2, B=1x

Take from a list
Here is a program which takes an element from
a list

take([H[T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

What does prolog do when given the query:

take([1,2,3],H,T). .

take([1,2,3],H,T).

take([1]12,3]],1.12:3)).

take([1,2,3],H,T) H=1, T=[2;3]

Backtrack to get the next answer

take([2|[3]],2,L1])\

take([1][2,3]],H,[1|S]) :- take([2,3],H,S). S=[3]
take([1][2,3]], L,[2,3]).

take([1,2,3[,H,T) H=2, T=[1,3]

Prolog says “no”
take([3|[],H.[3|S3]) - take([],H,S3).
take([3[[1.3,[Ix T
take([2|[3]L.H.[21S2]) - take([3],H.S2).
take([2][3]],2,[3])-

take([1[2,3]LH,11/S]) - take([2,31H,S). No
take([1][2,3]], L,[2,3]).

Backtrack again for another answer

take([3|[I1.3,[Ik

take([2|[3]],H,[2]|S2]) :- take([3],H,S2). S=]]
take([2][3]],2,[3])-

take([1|[2.3]LH,[1]S]) - take([2,31H.S). S=[2]
take([1][2,3]],L.[2,3]).

take([1,2,3,H,T) H=3, T=[1,2]

List permutations is very elegant

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).

32

Dutch national flag

[red,white,blue,whifte,red]

|

[red,red,white,white,blue]

Take a list and re-order such that red precedes white precedes blue33

Place 8 Queens so that none can
take any other

[1,5,8,6,3,7,2,4]

Generate and Test is a technique
for solving problems like this

1) Generate a solution
2) Test if its valid
3) If not valid then backtrack to next solution

flag(In,Out) :- perm(In,Out), checkColour(Out).

34

Generate and Test works for 8
Queens too

8queens(R) :- perm([1,2,3,4,5,6,7,8],R),
checkDiagonals(R).

36

Anagrams

Load the dictionary into the prolog database e.qg.:
word([a,a,r,d,v,a,rK]).

Generate permutations of the input word and test if
they are words from the dictionary
or
Generate words from the dictionary and test if they
are a permutation!

http://www.cl.cam.ac.uk/~acr31/anagram.pl

Lecture 3

* Symbolic evaluation of arithmetic
* Controlling backtracking: cut

* Negation

Evaluation starts with the first

matching clause
Q: How does prolog evaluate:

eval(plus(1,mult(4,5)),Ans)

A: use the first matching clause to see if its true
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1), C is Al + B1.

In this case: A =1, B = mult(4,5) and C = Ans

Symbolic Evaluation

Let's write some prolog rules to evaluate
symbolic arithmetic expressions such as
plus(1,mult(4,5))

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1), C is A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1), C is A1 * B1.
eval(AA).

Next it looks at the body of the rule

eval(1,A1), eval(mult(4,5),B1), Ans is A1 + B1

The body is checked from left to right
First part of the body: eval(1,A1)

Try: eval(plus(A,B),C) :- eval(A,A1), eval(B,B1), C is Al + B1.
Fail because 1 does not unify with plus(A,B)

Try: eval(mult(A,B),C) :- eval(A,A1), eval(B,B1), Cis A1 * B1.
Fail because 1 does not unify with mult(A,B)

Try: eval(AA).
Succeed: eval(1,A1) is true if A1 =1 °

The body is checked from left to right

eval(1,1), eval(mult(4,5),B1), Ans is 1 + B1

The body is checked from left to right

eval(1,1), eval(mult(4,5),20), Ansis 1 + 20

The body is checked from left to right

eval(1,1), eval(mult(4,5),20), 21 is 1 + 20

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 + B1.

eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 * B1.

eval(AA).

eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), eval(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1
A

eval(A,A).

A

\
eval(plus(1,mult(4,5)),Ans)

9

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 +B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 * B1.
eval(AA).

CHOICE POINT

eval(plus(1 ,muIt(4,§),Ans) - eval(1,T1), eval@nult(4,5),T2), Ansis T1 + T2

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C ¥ A1 + B1
A

eval(A,A).
A

eval(plus(1,mult(4,5)),Ans) 10

eval(A,A).

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 + B1.

eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 * B1.

eval(1,1).
eval(A,A).
3
eval(plus(1,mult(4,5)),Ans) :- Qal(1 ,T1), eval(mult(4,5),72), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1
A
\

eval(A,A).

A

eval(plus(1,mult(4,5)),Ans)

11

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 +B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 * B1.
eval(AA).

eval(mult(4,5),T2) 'eval(4,T3),evaI(5,T4), T2is T3 * T4.

eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1.

A

eval(AA).

A

F
eval(1,1).
eval(A,A).

3

eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1

A

eval(A,A).

eval(plus(1,mult(4,5)),Ans) 12

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 *B1.
eval(AA).
eval(4,4).
eval(A,A).
b
eval(mult(4,5),T2) :- eval(4,Tﬂeval(5,T4), T2is T3 * T4.
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. eva';A’A)-
f
eval(1,1).
eval(A,A).
[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A

\
eval(plus(1,mult(4,5)),Ans)

13

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis Al + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 * B
eval(AA). ;
| A eval(AA).
eval(4,4).
eval(A,A).
b
eval(mult(4,5),T2) :- eval(4,T3),evaI(5,T4’T2 is T3 * T4.
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. e"a'(:\’A)-
A
F
eval(1,1).
eval(A,A).
[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A

\
eval(plus(1,mult(4,5)),Ans)

14

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
20is 5 * 4. Cis A1 +B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 * B
eval(A,A). ’
| A eval(AA).
eval(4,4).
eval(A,A).
E—
eval(mult(4,5),T2) :- eval(4,T3),eval(5,T4), T2is T3 * T'
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. eva';A’A)-
A
F
eval(1,1).
eval(A,A).
[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A

l
eval(plus(1,mult(4,5)),Ans) 15

2lis? +20 eval(plus(A,B),C) - eval(A,A1), eval(B,B1),
20is5* 4. Cis A1 +B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 *B1.
eval(A,A).
| A eval(AA).
eval(4,4).
eval(A,A).
E—
eval(mult(4,5),T2) :- eval(4,T3),eval(5,T4), T2is T3 * T’
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. e"a'(:\’A)-
A
F
eval(1,1).
eval(A,A).
b
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), eval(mult(4,5)‘2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(AA).
A A
T
eval(plus(1,mult(4,5)),Ans) 16

What happens if we use backtracking and ask Prolog

for the next solution?

alist 20 eval(plus(A,B),C) - eval(A,A1), eval(B,B1),
20is5* 4. Cis A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 *B1.
eval(A,A).
| A eval(AA).
eval(4,4).
eval(A,A).
‘—\
eval(mult(4,5),T2) :- eval(4,T3),eval(5,T4), T2is T3 * T’
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. e"a'(:\’A)-
A
F
eval(1,1).
eval(A,A).

[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2

21 B +20. eval(plus(A,B),C) - eval(A,A1), eval(B,B1),
20is 5 * 4. Cis A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 * B
eval(A,A). ’
| A eval(AA).
eval(4,4).
eval(A,A).
o —
eval(mult(4,5),T2) :- eval(4,T3),evaI(5,T4,T2 is T3 * T4.
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. eva';A’A)-
A
F
eval(1,1).
eval(A,A).
b
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A

l
eval(plus(1,mult(4,5)),Ans) 19

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A
\
eval(plus(1,mult(4,5)),Ans) 18
21 B +20. eval(plus(A,B),C) - eval(A,A1), eval(B,B1),
20is 5 * 4. Cis Al + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(5.5). Cis A1 * Bi
eval(AA). ;
Y eval(AA).
eval(4,4).
eval(A,A).
E—
eval(mult(4,5),T2) :- eval(4,T3‘evaI(5,T4), T2is T3 * T4.
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. e"a'(:\’A)-
A
F
eval(1,1).
eval(A,A).
[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(AA).
A A
\
eval(plus(1,mult(4,5)),Ans) 20

21is 1+ 20. eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
20is5* 4. Cis A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),

eval(3.5). Cis A1 * B

eval(AA). ;

Y eval(AA).
eval(4,4).
eval(A,A).
‘—\

eval(mult(4,5),T2) :- eval(4,T3),eval(5,T4), T2is T3 * T4. eval(mult(4,5),mult(4,5))
eval(mult(A,B),C) :- eval(A,Al),eval(B,B1), Cis A1 *B1. eval(AA).

A A
{

eval(1,1).
eval(A,A).
[N
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A
\
eval(plus(1,mult(4,5)),Ans) 2

21)s 1+ 20 eval(plus(A,B),C) - eval(A,A1), eval(B,B1),
20is 5 * 4. Cis A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1),
eval(3.5). Cis A1 * B
eval(AA). ’
| A eval(AA).
eval(4,4).
eval(AA).
b
eval(mult(4,5),T2) 'eval(4,T3),eval(5,T4), T2is T3 * T4.
eval(mult(A,B),C) :- eval(A,A1),eval(B,B1), C is A1 * B1. eva';A’A)-
A
F
eval(1,1).
eval(A,A).
b
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A
I
eval(plus(1,mult(4,5)),Ans) 21
21is 1 + 20.
A
20is5* 4.
eval(5,5).
eval(A,A).
L4
eval(4,4).
eval(AA).
b

eval(mult(4,5),T2) :- eval(4,T3),eval(5,T4), T2is T3 * T4. eval(mult(4,5),mult(4,5))
eval(mult(A,B),C) :- eval(A,Al),eval(B,B1), Cis A1 *B1. eval(AA).
A A
[
eval(1,1).
eval(A,A).
3
eval(plus(1,mult(4,5)),Ans) :- eval(1,T1), qal(mult(4,5),T2), Ansis T1 + T2
eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).

A ‘ A

eval(plus(1,mult(4,5)),Ans) 23

Eliminate spurious solutions by
making your clauses orthogonal
* We need to eliminate the choice point

* The first way to do this is to make sure only
one clause matches: eval(A,A) becomes
eval(gnd(A),A).

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1),
Cis A1 + B1.

eval(mult(A,B),C) - eval(A,A1), eval(B,B1),
Cis A1 * B1.
eval(gnd(A),A). 2

Eliminate spurious solutions by
explicitly discarding choice points

* Alternatively we can tell Prolog to commit to its
first choice and discard the choice point

* We do this with the cut operator. Written: !

eval(plus(A,B),C) :- l,eval(A,A1), eval(B,B1),
Cis A1 + B1.

eval(mult(A,B),C) - l,eval(A,A1), eval(B,B1),
Cis A1 * B1.

eval(A,A). ’s

Cutting out Choice

Whenever Prolog evaluates a cut it discards all
choice points back to the parent clause

An example:
a(1). c(A,B,C) :- a(A),d(B,C).
a(2). c(A,B,C) :- b(A),d(B,C).
a(3). d(B,C) :- a(B),!,a(C)
b(apple). d(B,_) :- b(B).
b(orange).

27

21is 1 + 20.

I'y
2" “Cut removes choice points

eval(5,5).
eval(A,A). . L
| A These choices are eliminated

eval(4,4).
eval(A,A).
A \

eval(mult(4,5),T2) :- L,eval(4,T3),eval(5,T4), T2 is T3 * T4.

eval(muW l,eval(A,A1),eval(B,B1), C is A1 * B1. eva|(+A,A).
A
F

CuT eval(1,1).

eval(A,A)
[\
eval(plus(1,mult(4,3)),Ans) :- l,eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2

eval(plus(A,B),C) :- !,eval(A,A1), eval(B,B1),C is A1 + B1 eval(A,A).
A A
\

eval(plus(1,mult(4,5)),Ans) 26

a(1).

a(2).

a(3).

apple).

¢(A,B,C) - a(A),d(B,C).
¢(A,B,C) - b(A),d(B,C).
C) - a(B),,a(C).

)

(
(
(
b(
b(orange).
(
(
d(B,
d(B,_) :- b(B).

c(A,B,C) - a(A),d(B,C). ¢(A,B,C) :- b(A),d(B,C).

c(A,B,C). 28

.) 3
oo | 2]
N E) =
° 9w <
e i
T o0m g
- . L © 7 (@)
— O ~ —~ i e
L2 200 - - >
. g @8@mO] s
c¥osgs<<ug °©
T ® ©® O 89 O O O © .
o
©
O
— o
mf <
o] (&)
)
o
S -
1
o
©
Py O
Q Q
© Vd,
& = <.
= - - ©
va © AN
pig)
O o
o <
© S
. o A
oo | =
N T) =2
T oW <
<o e
T o0 m ~
- N ® 5 O
—~ O —~ —~ . fos)
92 200 - - >
s 8 8dagO] 3
cSogssg<<dg ©
C © © O O O O T © 3
= -
©
O
— o
mf <
o] o
o
Q
>
— <
A - © -
© . N

c(A,B,C)

. o) &
oo | =
OO G S
29w <
T = 27
T o0m g
- . L ® 7 (©]
— O ~ —~ i o
2 200 - -
. g @8@mO] s
c¥ossogLgLaa °
T © © O 0 0O 00T DO .
& -
©
O
— o
N -] <
o] o
i)
Pug o]
© -
qa
©
S =
T . puS O
o ©
S -d
- - = T < ca—
© © ©
.
g)
Q o
Q <
© kel
L 9 -
oo . Q
) 2
© T T <
S o
T o0 m ~
- N ® 5 O
—~ O —~ —~ . fos)
2 200 - -
s 8 8dgO] 3
c¥osgog<dd ©
T © © O 6 0O 0T DT .
& -
w
O
— o
N -] <
o] o
)
. o]
D - S
@ I
)
S
S —~
© —~ n.N
S) =)
< 2
T - B - <+— © -
© ®© © . .
.
g)
O)
Q <
© kel

. 5) 3 . o) 2
oQ | 2] oQ | Q
oo =4 OO G =4
T3 T < T35 <
=< &<y =< Sy
- - SZas -
P o1 &) L N ® 75 ®)
\Fe\l\)_u_D . \Fe\l\)_u_D .
© 200 " a © 200 " @
g @8@mmO] < . . .S saomO 7] <
T¥ossogsLaa °© TY¥ossogsLona °©
T ® ©®m O O © 0O © . T ® ©® O O © O © © .
o o
© ©
O O
— — o
N - < : N - <
1 [3) J/a% 3]
))
~ Q ~ Q
™ - ' -— D - |- n
© — © —
]] (D)
o = =
. ° ° —
© T puS O () @ w = O ()]
S Q (&) o o ()]
—
= = = = > c
N . T - —- lt— © - N - T - - lt— © -
© . © © < o w o] . © © (9] . e m
1 ._. —— —_~
%) O (4y] o O (48]
) m — o m —
. o < < . o o =
- kel 5 - - ° 5 -
= g = ;
.) ? .)
oo) OO0 Q
NPV o NPV °
a5 = 220 2
337 < 33T <
sz 3 - <<= ey
Txag - STag -
P o1 o P o1 O
~ O —~ —~ < By =~ O —~ —~ .n_u By
© 200 ") © 200 ")
o T 3 . . . gsdadQ] <
Tc¥ogsgog<caoa © Tc¥ogsgog<coa ©
T ©® ©® O O O O © © . T ® ©® O O © O O © .
o ©
w w
O O
— o m
N - < N - <
© © © ©
&) i)
— Qo = Qo
D - S - [= 1 -
@ 3 @ -
u] u)
° . °
g ~ ~ ~
© T . = O @ @ = O (D)
)) @) o O
< ok < © M
q 4 T - - — © - q - T - - t— © -
S . I ©] o © . © © ®© . *.u
1 1 |
~) ~ @)
O o O m m
. a1 A; . m As —
—~ = < = = > X
T - © [&] T - © o C
® “ ©

Cut can change the logical meaning
of your program

p :- a,b.

o c. pe(@ab)ve
p:-alb pe(@aAb)Vv(manac)
p:-C

This is a red cut - DANGER!

37

Cut can be used for efficiency
reasons

split([,[1.[1)-
split([H|TL,[HILL,R) :- H < 5, split(T,L,R).
split([H|TL,L,[H|R]) :- H >= 5, split(T,L,R).

If the second clause succeeds the third cannot
-> we don't need to keep a choice point
-> the interpreter cannot infer this

38

Cut can be used for efficiency
reasons

split([L[L.[])-
split([H|TL,[HIL],R) - H < 5,1, split(T,L,R).
split((H|T],L,[H|R]) :- H >= 5, split(T,L,R).

Add a cut to make the orthogonality explicit

Thisis a cut — it makes things go better

39

We could go one step further at the
expense of readability

split([], 1,])-
split((H|T],[HIL],R) - H < 5,!, split(T,L,R).
split((H|T],L,[H|R]) :- split(T,L,R).

The comparison in the third clause is no longer
necessary

- but each clause no longer stands on its own

- stylistic preference — | avoid doing this w0

Cut gives us more expressive
power

isDifferent(A,A) :- | fail.
isDifferent(_,).

isDifferent(A,B) is true if A and B do not unify

41

Negation by Failure

Negation by failure is based on the closed world
assumption

Everything which is true is stated (or can be
derived from) the clauses in the program

43

Implementing “not”

not(A) - Al fail.
not().

not(A) is true if A cannot be shown to be true
This is negation by failure

42

Negation Example

good_food(theWrestlers).
good_food(theCambridgeLodge).
expensive(theCambridgeLodge).

bargain(R) :- good_food(R), not(expensive(R)).

44

Negation Example

bargain(R) :- good_food(R), not(expensive(R)).

we can ask: bargain(R) and Prolog replies:
R = theWrestlers

45

Why?

bargain(R) :- not(expensive(R)), good_food(R).

Prolog first tries to find an R such that
expensive(R) is true, and therefore
not(expensive(R)) will fail if there are any
expensive restaurants

47

Negation Gotcha!

swapped round

/

bargain(R) :- not(expensive(R)), good food(R).

we can ask: bargain(R) and Prolog replies:
no

46

Databases
Store information as tuples in the Prolog database

tName(acr31,'Andrew Rice').
tName(arb33,'Alastair Beresford').

tGrade(acr31,'lA"',2.1).
tGrade(acr31,'IB',1).
tGrade(acr31,'ll',1).
tGrade(arb33,'1A",2.1).
tGrade(arb33,'1B',1).
tGrade(arb33,'I',1).

48

Databases

We can now write a program to find all names:

gName(N) :- tName(_,N).

49

Databases

Or a program to find the full name and all grades for

acr31.

gGrades(F,G) :- tName(C,F), tGrade(C,G).

50

Lecture 4

* Playing Countdown
* lterative deepening

* Search

Countdown Numbers

* Strategy — generate and test

— maintain a list of symbolic arithmetic terms

— initially this list consists of ground terms e.g.:
[gnd(25),9nd(6),gnd(3),gnd(3),gnd(7),gnd(50)]

— if the head of the list evaluates to the total then
succeed

— otherwise pick two of the elements, combine them
using one of the available arithmetic operations,
put the result on the head of the list, and repeat

3

Countdown Numbers

* Select 6 of 24 numbers tiles

— large numbers: 25,50,75,100

— small numbers: 1,2,3...10 (two of each)

* Contestant chooses how many large and small
* Randomly chosen 3-digit target number

* Get as close as possible using each of the 6 numbers at

most once and the operations of addition, subtraction,
multiplication and division

* No floats or fractions allowed

Countdown Numbers

* Prerequisites

- eval(A,B) — true if the symbolic expression A
evaluates to B

- choose(N,L,R,S) — true if R is the result of
choosing N items from L and S is the remaining
items left in L

— arithop(A,B,C) — true if C is a valid combination of
A and B

* e.g. arithop(A,B,plus(A,B)).

%%% arith_opgg,) 95%91 own Numbers

%%% unify C with a valid binary operation of expressions A and B
arithop(A,B,plus(A,B)).

% minus is not commutative

arithop(A,B,minus(A,B)) :- eval(A,D), eval(B,E), D>E.
arithop(B,A,minus(A,B)) :- eval(A,D), eval(B,E), D>E.

% don't allow mult by 1

arithop(A,B,mult(A,B)) :- eval(A,D), D\==1, eval(B,E), E \==1.
% div is not commutative and dont allow div by 0 or 1
arithop(A,B,div(A,B)) :- eval(B,E), E\==1, E\==0,

eval(A,D), 0OisDremE.
arithop(B,A,div(A,B)) :- eval(B,E), E\==1, E\==0, .
eval(A,D), Ois D rem E.

Countdown Numbers

countdown([Soln|_],Target,Soln) :-
eval(Soln,Target).

countdown(L,Target,Soln) :-
choose(2,L,[A,B],R),
arithop(A,B,C),
countdown([C|R], Target,Soln).

Closest Solution

If there are no solutions we want to find the closest
solution

solve([Soln|_],Target,Soln,D) :- eval(Soln,R), diff(Target,R,D).
solve(L,Target,Soln,D) :- choose(2,L,[A,B],R),

arithop(A,B,C),

solve([C|R],Target,Soln,D).
solve(L,Target,Soln) :- range(0,100,D), solve(L,Target,Soln,D).

This is iterative deepening — wait until the Artificial Intelligence course

Searching

Searching

i
B

Searching

Searching

(5

NG

Searching

Searching
A

/
L G B
L/ [F] Cc [H|]

Searching

route(a,g).

route(g,l). start(a).
route(l,s) finish(u).
travel(A,A).

travel(A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

We need to remember the route

travellog(A,A,[]).
travellog(A,C,[A-B|Steps]) :-
route(A,B), travellog(B,C,Steps).

solve(L) :- start(A), finish(B), travellog(A,B,L).

Cycllc Graphs

Cyclic Graphs

S — D O
a .
route(q,v). f ﬁ J
route(v,d). LV | [P | R

3 Missionaries 3 B 1 boat

The boat carries 2 peo%l%nmbals

If the Cannibals outnumber the Missionaries they will eat them
Get them all from one side of the river to the other? 19

Searching

Solution: maintain a set of places we've already been
— the closed set

travelsafe(AA,).

travelsafe(A,C,Closed) :-
route(A,B),
\+member(B,Closed),
travelsafe(B,C,[B|Closed]).

Towers of Hanoi

20

Umbrella problem

A group of 4¥ople, Andy, Brenda, Carl, & Dana, arrive in a car near a friend's
house, who is having a large party. It is raining heavily, & the group was forced to
park around the block from the house because of the lack of available parking
spaces due to the large number of people at the party. The group has only 1
umbrella, & agrees to share it by having Andy, the fastest, walk with each person
into the house, & then return each time. It takes Andy 1 minute to walk each way, 2
minutes for Brenda, 5 minutes for Carl, & 10 minutes for Dana. It thus appears that it
will take a total of 19 minutes to get everyone into the house. However, Dana
indicates that everyone can get into the house in 17 minutes by a different method.
How? The individuals must use the umbrella to get to & from the house, & only 2
people can go at a time (& no funny stuff like riding on someone's back, throwing the

umbrella, etc.).
21

Lecture 5

* Difference structures
* Difference lists
* Notational fun

* Appendless append

append([],L,L).

append([X|T],L,[X|R]) :- append(T,L,R).

append([],[3,4].[3,4]).

T2=[3,4]
append([],L,L).
append([2|[J[.[3,41,[2T2)) - append([}[3.4].T2). T1=2[T2]
append([X|T],L,[X|R]) :- append(T,L,R).
append([1[[21].[3.41.[1[T1]) :- append((2],[3.41.T1). A< [1[T1]

append([X|TL,L,[XIR]) :- append(T,L,R).

f

append([1,2],[3,4],A).

Appending two Lists

append([],L,L).
append([X|T],L,[X|R]) :- append(T,L,R).

Difference Lists

Store two lists, the Difference List is the difference
between them

We might represent [1,2,3] as

[1,2,3,4,5]-[4,5] or [1,2,3,acr]-[acr] or [1,2,3|X]-X

Difference Lists are useful as Partial

Difference List Append
Structures PP

Store two lists, the Difference List is the
difference between them 1:(2:(3:1]))

We might represent [1,2,3] as

4:(5:(6:())
[1 %<[4,5] or [1 ,2%] or [1,2,3/X]-X
Difference List Append Difference List Append
1:(2:(3:A))
1:(2:(3:0]))
/ (5:(6:B))
4:(5:(6:1])) t Y —

Prolog syntax for the first list is [1,2,3|A]

7 8

Difference List Append

dapp(L1,V1,L2,V2,L3,V3).

T

First list The variable at the
e.g. [1,2,3|V1] end of the first list

Difference List Append
(implementation)

L1 L1 = L1 oL [VA]
L2 12 = L2 .. L2 1 [V2]
L3 L1 .o L1 k2. L2 o [V2]

dapp(L1-V1,L2-V2,L3-V3) - V1=L2, L3=L1,V3=V2.

11

Difference List Append

dapp(L1-V1,L2-V2,L3-V3)

By convention we write our difference list pair as
A-B
But we could also write
differenceList(A,B) or A+B or A*B

Difference List Append
(implementation)

dapp(L1-V1,L2-V2,L3-V3) - V1=L2, L3=L1,V3=V2.

We know that V1 and L2 must be the same so
replace all instances of V1 and L2 with a new
variable B

dapp(L1-B,B-V2,L3-V3) :- B=B, L3=L1,V3=V2.

12

Difference List Append
(implementation)

dapp(L1-B,B-V2,L3-V3) :- L3=L1,V3=V2.

We know that L3 and L1 must be the same so
replace all instances of L3 and L1 with a new
variable A

dapp(A-B,B-V2,A-V3) :- A=A,V3=V2.

Difference List Append

dapp(A-B,B-C,A-C).

The technique of making simple substitutions
when we know two variables must be equal
turns out to apply in lots of situations
(and supervision work)

Difference List Append
(implementation)

dapp(A-B,B-V2,A-V3) :- V3=V2.

We know that V3 and V2 must be the same so
replace all instances of V3 and V2 with a new
variable C

dapp(A-B,B-C,A-C) :- C=C.

Empty Difference Lists

The empty difference list is an empty list with a
variable appended to the end for later use:
l@A
which is equivalent to (simply):

A
we write this in the conventional notation as:
A-A

Converting to difference lists Convert to difference lists

double(A-A,B-B).
double([],[])- double([H|T]-T1,[R|S]-S1) :-
double([H|T],[R|S]) :- R is H*2, double(T,S). Ris H*2,
double(T-T1,S-S1).

Question Another Difference List Example

What does double([1,2,3|T]-T,R) produce? _
Define a procedure rotate(X,Y) where both X and Y

are represented by difference lists, and Y is formed by

a) yes, R =[2,4,6|X]-X :
)Y [2,4.6/X] rotating X to the left by one element.

b) no
c) yes, R = X-X
d) an exception

[14 marks]
1996-6-7

Write the answer first without
Difference Lists

Take the first element off the first list and append it to
the end

rotate([H|T],R) :- append(T,[H],R).

21

Rename Variables To Get Rid Of
Append

rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).
rename T1 to be [H|A]

rotate([H|T]-[H|A],R-S) :-
append(T-[H|AL[H|A]-A,R-S).

23

Rewrite with Difference Lists

rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).

22

Rename Variables To Get Rid Of

Append
rotate([H|T]-[H|A],R-S) :-

append(T-[H|A],[H|A]-A,R-S).
Rename Rtobe T

rotate([H|T]-[H|A], T-S) :-
append(T-[H|A],[H|A]-A,T-S).

24

Rename Variables To Get Rid Of
Append
rotate([H|T]-[H|A], T-S) :-
append(T-[H|A],[H|A]-A, T-S).
Rename S to be A
rotate([H|T]-[H|A], T-A) :-
append(T-[H|A],[H|A]-A, T-A).

25

Final Answer

rotate([H|T]-[H|A], T-A).

If you have code like this | suggest you comment
it really well!

27

The call to append/3 is now
redundant and we can remove it

% difference list append
append(A-B,B-C,A-C).

rotate([H|T]-[H|A], T-A) -
append(T-[H|A][H|A]-A,T-A).

Towers of Hanoi Revisited

* Move n rings from Src to Dest

— move n-1 rings from Src to Aux
— move the nth ring from Src to Dest

— move n-1 tiles from Aux to Dest

* Base case: move 0 rings from Src to Dest

26

28

Lecture 6

* A Sudoku solver

* Constraint Logic Programming

Make the problem easier

4

Playing Sudoku

List permutations model this
problem in Prolog

* Each row must be a permutation of [1,2,3,4]
* Each column must be a permutation of [1,2,3,4]

* Each 2x2 box must be a permutation of
[1,2,3,4]

Represent the board as a list of lists

A B|lC D

E F|G H| [ABGDL
[E,F,G,H],

| K L| [JKL

M N|o p| MNOF

Specify constraints with permutation

sudoku([[X11,X12,X13,X14],[X21,X22,X23,X24],
[X831,X32,X33,X34],[X41,X42,X43,X44]]) :-

Yorows

perm([X11,X12,X13,X14],[1,2,3,4]), perm([X21,X22,X23,X24],[1,2,3,4]),
perm([X31,X32,X33,X34],[1,2,3,4]), perm([X41,X42,X43,X44],[1,2,3,4]),
Y%cols

perm([X11,X21,X31,X41],[1,2,3,4]), perm([X12,X22,X32,X42],(1,2,3,4]),
perm([X13,X23,X33,X43],[1,2,3,4]), perm([X14,X24,X34,X44],[1,2,3,4]),
Y%boxes

perm([X11,X12,X21,X22],[1,2,3,4]), perm([X13,X14,X23,X24],[1,2,3,4]),

perm([X31,X32,X41,X42],[1,2,3,4]), perm([X33,X34,X43,X44],[1,2,3,4]).
6

Scale up in the obvious way to 3x3

X11 | X12 | X13|X14 X15|X16|X17|X18 X19

X21 | X22 | X23|X24 X25|X26|X27|X28 X29

X31 | X32 | X33| X34 X35|X36|X37|X38 X39

X41 | X42 | X43|X44 | X45|X46 | X47 | X48 X49

X51| X52 | X53|X54 X55|X56|X57|X58 X59

X61 | X62 | X63|X64 X65|X66|X67 | X68 X69

X71 | X72 | X73|X74 | X75|X76|X77 | X78 X79

X81 | X82 | X83| X84 | X85|X86|X87 | X88 X89

X91 | X92 | X93|X94 X95|X96 | X97 | X98 X99

Brute-force is impractically slow for
this problem

There are very many valid grids:
6670903752021072936960 = 6.671 x 107

See: http://www.afjarvis.staff.shef.ac.uk/sudoku/

Prolog programs can be viewed as
constraint satisfaction problems

Prolog is limited to the single equality constraint
that two terms must unify

We can generalise this to include other types of
constraint

This gives us Constraint Logic Programming
(and a means to solve Sudoku problems)

Sudoku can be expressed as
constraints

Variables and Domains

Consider variables over domains
with constraints
Given:
the set of variables
the domains of each variable
constraints on these variables

Find:
an assighment of values to variables satisfying
the constraints

10

A€ {1,2,3,4} B e {1,2,3,4)
A cC D C e {1,2,3,4) D € {1,2,3,4}
E G H E € {1,2,3,4]} Fe {1,234}
G e {1,2,3,4) He {1,2,3,4}
! KL | € {1,2,3,4) Je{1,2,3,4)
M O P K e {1,2,3,4) L € {1,2,3,4)
M € {1,2,3,4) N € {1,2,3,4}
O € {1,2,3,4) Pe{1,2,3,4}

11

Express Sudoku as a Constraint

Graph
{1,2,3,4} {1,2,3,4)

1,234} o g {1,2,3,4)
{1,2,3,4} N c {1,2,3,4}
{1,2,3,4) M D {1,2,3,4)
{1,2,3,4) L E {1,2,3,4)
1,234 K F (1,2,3,4)
{1,2,3,4) J | G (1,2,3,4)

{1,2,3,4} {1,2,3,4}

12

Constraints: All variables in rows
are different

Each edge
represents {1,2,3,4} {1,2,3,4}
inequality {1234 0 g {1234}
12,34} N c {1,2,3.4)
{1,2,3,4) M D {1,2,3,4}
{1,234} L E {1,2,3,4)
{12,334 K F {1,2,3,4}
2347 1 4 G11234
{1,2,3,4} {1,2,3,4}

13

Constraints: All variables in boxes
are different

{1,2,3,4) {1,2,3,4)
(1234 o h~ A g{1234)
{1,2,3,4} N c {1,2,3.4)
{1,2,3,41 M D {1,2,3,4}
(12,34} L E {1,2,3,4)
12,34 K F {1,2,3,4)
2347 1} G234

{1,2,3,4} {1,2,3,4}

15

Constraints: All variables in columns
are different

{1,2,3,4} {1,2,3,4)
1234 o & f gi{1234
{1,2,3,4) N ' c {1,2,3,4}
{1,234} M D {1,2,3,4)
{1,234} L E {1,2,3,4)
1,234 K F (1,2,3,4)
(123.4)) | G (1,2,3,4)
{1,2,3,4) {1,2,3,4)

14

All constraints

{1,2,3,4} {1,2,3,4}
P A

{1,234} o g {1,2,3.4)
{1,234} N_ / ¢ {1,234}
X 22
{1,2,3,4} M i ez —D {1,2,3,4}
1,234} LS 2 E {1,2,3,4}
(1,234 K A F {1,2,3,4)
234 1 S11234

{1,2,3,4} {1,2,3,4}

16

Reduce domains according to initial

4 values

: {1,2,3,4} {1,2,3,4}
> {1,2,3,4} O e B {1’2,3’4}
BN \‘]\ L c 4
1284} M “‘ } D {1,23,4)
(ke w ’/ F oy
(1234) | G (1254
{1,2,3,4} {1,2,3,4}

17

When a domain changes we update

R its constraints
1 {1,2,3,4) {1,2,3,4)
3 1,234 0 » 5 {1.2.3.4)

{3 N
{1,2,3,4} M

' - C {4
D {1,2,3,4)

>E {1,2,3,4]

The asterisk (*) notation reminds F (o
us that all constraints which connect
to this variable need updating {1.2,3,4}

3,4}

18

Update constraints connected to C

A| B|C D
E F| G| H
S {1,2,3,4}
Min[o P ez B4
{3} N C
{1,2,34} M D
{1,2,3,4} L E {1,2,3,4}
(K F iy
12347 Ho {1234
{1,2,3,4} {1,2,3,4}

19

Update constraints connected to C

A ‘ B| C|D
E F| G| H
bkt {1,2,3,4}
M NJO Pl 412534 o P A 5
{3}"N C
{12,3,4} M D
{1234} L E {1,2,3,4}
(< F 2y
(12347 Ho {1234
{1,2,3,4} {1,2,3,4}

20

Update constraints connected to C
A B C D
ETF[[G |A
L) kL {1,2,3,4) {1,2,3)*
MIMICRPT {1234 o g {1,2,3})"
{3}* N c {4
{1,2,3,44 M D {1,2,3}
{1,2,3,4) L E {1,2,3,4)
() K F {2y
(1234}) G (12,34
{1,2,3,4) {1,2,3,4)

21

Update constraints connected to C

A B C §D
xEg
TR {1,2,3,4) {1,2,3)*
M N!i Pl (123 o g {1.2.3}
{3}* N c {4
{1,2,3,44 M D {1,2,3}
{1,2,3,4) L E {1,2,3,4)
{1}*K F {2y
2347 | 4 G123y
{1,2,3,4) {1,2,3,4)

23

Update constraints connected to C

ﬂ Bl| c Ip
E F G |H
Nl I i {1,2,3,4} {1,2,3}"
M oMo P 123 o g {1,2,3}"
{3}* N c {4
(12,34} M D {1.2,3F
1234 L E {1,2,3,4)
(13 K F {2}
J G .
{1,2,3,4) | {1.2,3)
{1,2,3,4) {1,2,3,4}

22

Update constraints connected to C

ﬂ B C D
xRg
TR {1,2,3.4} {1,2,3)*
M N!i Pl (123" o g {1.2.3}
{81* N c {4
{1,2,3,44 M D {1,2,3}
{1,2,3,4) L E {1,2,3,4)
1y K F {2y
(2347 | 1 G129
{1,2,3,4) {1,2,3)*

24

Update constraints connected to F

A

' 8lclp]

E F G H
KL (1234)p A {123}
M|N|O P {1,2,31 0] B {1,2,3}*
@y N C 4
(1,234 M D (12,3
{1,2,3,4) L E
K F
e G
{1,2,3,4} I H
{1,2,3,4)

25

Update constraints connected to F

\ A \ B | C D ‘
E F (G H
Tk T {1234}p , {123
Ml N [JO P {1,2,3}* O B {1,2,3}*
3+ N C 4
{1234 M P {123
{1,2,3,4} L E {1,3,4}*
K Fow
{1} | c @
(1.2.3.4) | H {1,3}*
{1,2,3,4} {1,3}"

27

Update constraints connected to F

| A

Blc b

? F G H
T KT {1234}p A {123}
M| N|O|P {1,2,3 @] B {1,2,3}*
@y N C {4
1,234 M D (1,2,3)*
{1,2,3,4) L E
K F
{1,2,3,4} I H
{1,2,3,4)

26

Update constraints connected to F

\ A \ B | C| D ‘
E | F G H
Tk T {1234}p A {123V
Ml N|JO P {1,2,3}* O B {1,3}*
3N C {4
H23.4 M D (12,3
{1,2,3,4} L E {1,3,4}*
K F
e =2
(13.4) | H {1,3}*
{1,2,3,4} {1,3}"

28

Update constraints connected to F

Al s Jc o]
Efl Fllc H
T Ik C {1234}p , {123
MENJlo Pl qogp O B {1,3}
3+ N C 4
{1234 M P {123y
{1,2,3,4} L E 134
K Foow
{1} | c @
(1.3.4)* | H {1,3}*
{1,2,3,4} {1,3}"

29

Update constraints connected to F

_A\ B | C D \
E | F G H
T IK | T {1234}p A {13V
Ml N|JO P {1,2,3}* O B {1,3}*
3+ N C {4
H234M D (12,3
{1,2,3,4} L E {1,3,4}*
K F
e e
(1.3.4)" |l H {1,3}*
{1,2,3,4} {1,3}"

30

Update constraints connected to K

A B C D
E F|G H
: J K L {1a213!4}P A{1=3}*
M NJO P (123 O B {1,3}*
@y N C 4
(1,234 M D (1,23}
L E{1,3,4}*
K F
] G {2}
I H {1,3}*

{1.3}*

31

Update constraints connected to K

A‘ B C D
E F G H
LKkt {1234}p A {13V
‘ M| N | O P ‘ {1,2,31 O B {1,3}*
{3}*N C (4
H23.4 M D 123}
L E {1,3,41*
K F
| c @
|l H {1,3}*
{1,3}*

32

Update constraints connected to K
A B C D
E F G H
e | E {1234} A {1.3"
[MINJJOJP| (423 O B {1,3}*
@y N C 4
{1,234 M D (123
{2,3,4}* L E {1,3,4}*
K F
ay 2)
{3,4}* | H {1,3}
{2,3,4}* {1,3}*

33

Update constraints connected to K

A B C D
E__FLG IH
I {1234}p A {13V
M N[O]P] 2,3 O B {1,3}
e 3 N C (4
{1234 M P {123y
234 - E 34y
" @
(3,4}* J | H G {3}*
{2,3,4}* {1,3}*

35

Update constraints connected to K
ﬂ B C D
E F G H
R E 1234 A {131
(M N[O IP| q231* O B {1,3}*
@y N C (4)
1,234 M D (1,2,3)"
{2,3,4}* L E {1,3,4}*
K F
ar . @
@4 1 H @y
{2,3,4}* {1,3}*

34

Update constraints connected to K

ﬂ B! C D
E F- G H
| J‘ <L 234) 5 (137
M N.'L PIl 2,3 O B {1,3}*
N C {4
1234 M D {1,2,3)"
2345 " E 3.4
K F
ar . @
(3,4} I H {3}
(2.3.4)* {1,3)*

36

Update constraints connected to K

A ’ B C D
E__FLG IH
| Y (234 p 5 {13
M | N | O P ‘ {2,3}* O B {1,3}*
@y N C {4
(1,234 M D (123
2345 - E 34y
K F
M c ©
{3.4} I H {31*
{2,3,4)* (1,3

37

Update constraints connected to D

A‘B C|D
F

G H
K|lL {2,3,4}*
o P

E
b
il 2.3 ©

Sometimes no change occurs in the

JOGEE domain
ETF[G H
| J K L {2,3,4}* p A
M| N| O P {2,3}* O B {1,3}*
N C {4
(1,234 M D
{2,3,4}* L E 34y

K F
M . @
3.4y L H ey
{2,3,4} {1,3}*

39

{3}* N
1,234 M

{2,3,4}* L E {1,3,4}*
K
{1}] c
{3,4}* I H {3)*

{2,3,4}" {1,3}*

38

Sometimes a change occurs in the

~ o el source domain
EFl| Gl A
L ITRTT 234 5 5 {13
M| N[O P {2,3}* (@) B{1,3}*
@y N C {4
1,234 M D (123
{2,3,4}* L E {1,3,4}*
K F
o . @
{3,4}* I H {3}*

{2,3,4}" {1,3}*

40

Sometimes a change occurs in the

~ dl ol source domain
ET ol A
L TR 234y , L (13
M| N|Of P 2,31 O B {1,3}*
3N C {4}
12,34 M D (1,2}
2347 - E (134
K F
Mmoo . @
{34} I H {3}*

{2,3,4} {1,3}*

41

Eventually the algorithm will converge
and no further changes occur

4, A0

43

If the source domain changes we mark
all its constraints for update again

234y 5, {13
2,3} O B {1,3}*
3N C {4}
12,34 M D (1,2}
234 - E (134
K F
e . @
{3,4}* I H {3}*

{2,3,4}" {1,3}*

42

Outcome 1: Single valued
domains

We have found a unique solution to the problem

4 3
@M B,
{3}n 4

02}

OV

0
= N NN w

4
3
1
2

2
1
3
4

w N =

44

Outcome 2: Some empty
domains

Our constraints are inconsistent — there is no
solution to this problem

Variables {1}
A e {1} A
B e {12}
Ce{1,2
C B
Constraints {} {2}
A #B, A #C,B #C a5

Outcome 3: Some multivalued
domains

w0 b 23

{1,2} {1,2,3}

Not all combinations of the remaining possibilities
are global solutions a6

Outcome 3: Hypothesise
labellings

» To find global solutions from the
narrowed domains we hypothesise a
solution in a domain and propogate the
changes

« Backtrack if something goes wrong

47

Using CLP in Prolog

:- use_module(library(bounds)).

valid4(L) :- L in 1..4, all_different(L).
sudoku2([[X11,X12,X13,X14],[X21,X22,X23,X24],[X31,X32,X33,X34]
, [X41,X42,X43,X44]]) -

Rows
valid4([X11,X21,X31,X41]),valid4([X12,X22,X32,X42]), Cols
valid4([X13,X23,X33,X43]),valid4([X14,X24,X34,X44]),
valid4([X11,X12,X21,X22]),valid4([X13,X14,X23,X24]), Boxes

valid4([X31,X32,X41,X42]),valid4([X33,X34,X43,X44]).
labeling([],[X11,X12,X13,X14,X21,X22,X23,X24,
X31,X32,X33,X34,X41,X42,X43,X44]).

48

More information on CLP

PROLOG Progamming for Artificial Intelligence,
lvan Bratko, Chapter 14

49

Prolog Supervision Work

Andrew Rice <andrew.rice@cl.cam.ac.uk>

November 5, 2007

1 Introduction

These questions form the suggested supervision work fdtribleg course. All students should attempt the
basic questions. Those questions marked with an asteesinare difficult although all students should
be able to answer them with the help of their supervisor. Qares marked with a double asterisk are
particularly challenging and are beyond the level requicegroducing a good answer in the exam.

Prolog contains a number of features and facilities not V@ the lectures such as: assert, findall and
retract. Students should limit themselves to using onlyféiaures covered in the lecture course and are
not expected to know about anything further. All questioas be successfully answered using only the
lectured features.

Students are encouraged to contact me by email with bugtssgoed solutions to double-asterisk questions.

2 Lecturel

2.1 Unification

1. Unify these two terms by hand: tree(tree(tree(1,2),ArB¢(C,tree(E,F,G))) and tree(C,tree(Z,C))
2. Explain Prolog’s behaviour when you unify a(A) with A.

3. Relate unification with ML type inference

2.2 The Zebra Puzzle

1. Implement and test the Zebra Puzzle solution

2. Explain how Clue 1 has been expressed in the zebra query

3 Lecture 2

3.1 Encoding arithmetic in Prolog
Theis operator in Prolog evaluates arithmetic expressions. @tilgn functionality can also be modelled
within Prolog’s logical framework.

Let the atom i represent the identity (1) and the compourd &) represent the successor of A. For
example 4 = s(s(s(i)))

Implement and test the following rules:

1. prim(A,B) which is true if A is a number and B is its primiévepresentation

2. plus(A,B,C) which is true if C is A+B (all with primitive ©@esentations, A and B are both ground
terms)

3. mult(A,B,C) which is true if C is A*B (all with primitive rpresentations, A and B are both ground
term)

The development of arithmetic (and general computatiamfiirst principles is considered more formally
in the Foundations of Functional Programming course.

3.2 List Operations
1. Explain the operation of the append/3 clause

append([],A A).
append([H T],A [HR]) :- append(T,AR.

2. Draw the Prolog search tree for perm([1,2,3],A).

3. Implement a clause choose(N,L,R,S) which chooses N ifesns L and puts them in R with the
remaining elementsin L leftin S

4. *What it the purpose of the following clauses:

a([HT) - a([HT,H.
a([l..).
a([H T],Prev) :- H>= Prev, a(T, H).
5. * What does the following do and how does it work?:

b(X X) :- a(X).
b(X,Y) :- a(A [HL, H2|B],X), HL > H2, a(A [H2, Hl| B], X1), b(X1,Y).

3.3 Generate and Test

The description of these problems will be given in the leetur
1. Complete the Dutch National Flag solution
2. * Complete the 8-Queens solution

3. * Generalise 8-Queens to n-Queens

4. Complete the Anagram generator. In what situations ioitnefficient to Test-and-Generate rather
than Generate-and-Test?

4 Lecture 3

4.1 Symbolic Evaluation

1. Explain what happens when you put the clauses of the syoballuator in a different order

2. Add additional clauses to the symbolic evaluator for maditon and integer division (this is the //
operator in Prolog i.e. 2 is 6//3)

4.2 Negation
State and explain Prolog’s response to the following gserie

1. X=1.

2. not(X=1).

3. not(not(X=1)).

4. not(not(not(X=1))).

In those cases where Prolog says 'yes’ your answer shouletia¢he unified result for X.

4.3 Databases

We can use facts entered into Prolog as a general databas®ifimg and querying information. This
question considers the construction of a database comggimfiormation about students, their colleges and
their grades in the various parts of the CS Tripos.

Each fact in our Prolog database corresponds to a row in @ tdllata. A table is constructed from rows
produced by facts with the same name. The initial databafsetsf is as follows:

t Nane(acr31,’ Andrew Rice’).
tName(ar b33, Al astair Beresford').

t Col | ege(acr31, 'Churchill’).
t Col | ege(arb33, ’'Robinson’).

tGade(acr31,’ A ,2.1).
t Grade(acr31,’IB,1).
tGrade(acr31,’11",1).
tGade(arb33,’ 1A ,2.1).
tGade(arb33,’1B,1).
tGade(arb33,’11',1).

As an example, this database contains a table called 'tNamigh contains two rows of two columns.
The first column is the CRSID of the individual and the secosidmn is their full name.

431 Partl

1. Add your own details to the database.
2. Add a new table tDOB which contains CRSID and DOB.

3. Alter the database such that for some users their coagetipresent (this final step is necessary for
testing your answers to the questions in Part 2)

43.2 Part2
The next task is to provide rules and show queries which imple various queries of the database. You

should answer each question with the Prolog facts and ratgsned to implement the query and also an
example invocation of these rules.

For example:

% The full name of each person in the database
qFul I Nane(A) :- tName(_, A).

% Exanpl e i nvocati on
% qgFul | Narre(A) .

Each query should return one row of the answer at a time, gules¢ rows should be returned by back-
tracking.

For the example above:
?- gFul | Name(A) .
A = 'Andrew Rice’ ;

A = "Alastair Beresford’

Yes

» The descriptions that follow provide a plain English dgstémn of the query you should implement
followed by the same query in SQL.

* SQL (Structured Query Language) is the industry standargdage used to query relational databases—
you will see more on this in the Databases course.

* The ? notation in the SQL statements derives from the usaeggoed statements in relational
databases where (for efficiency) a single statement issém atabase server and repeatedly evalu-
ated with different values replacing the ?. Interestedesttgican consult the Java PreparedStatement
documentation.

1. Full name and College attended.

SELECT name,college from tName, tCollege where tNamelersCollege.crsid

2. Full name and College attended only including entriesrevtiee user can choose a single CRSID to
include in the results.
SELECT name,college from tName, tCollege where tNamelerdiCollege.crsid and tName.crsid
=?

3. Full name and College attended or blank if the college ksiown.
SELECT name,college from tName left outer join tCollege Marhe.crsid = tCollege.crsid

4. Full name and College attended. The full name or the cekdguld be blank if either is unknown.
SELECT name,dob from tName FULL OUTER JOIN tDOB ON tNameccrstDOB.crsid

5. * Find the lowest grade where the CRSID is specified by ttee. udote that this predicate should
only return one result even when backtracking.
SELECT min(grade) from tGrade WHERE crsid = ?

6. ** Find the number of people with a First class mark
SELECT count(grade) from tGrade WHERE grade = 1
Hint: This is not the number of rows with First class marksiea tGrade table. You will need build a
list of First class CRSIDs by repeatedly querying tGradecretking if the result is already in your
list. Every time you find a new unique CRSID, increment an auglator which will form the result

7. ** Find the number of First class marks awarded to eachguer¥our output should consist of a
tuple (CRSID,NumFirsts) which iterates through all CRSWrsch have at least one First class mark
upon backtracking
SELECT crsid,count(grade) from tGrade WHERE grade=1 GRBYRrsid

5 Lecture4

5.1 Countdown Numbers Game

[

Type in the example code which finds exact solutions fraeriehtures and test it;

N

. Implement the predicate range(Min,Max,Val) which ursifi@l with Min on the first evaluation, and
then all values up to Max-1 when backtracking;

3. Get the iterative deepening version of the numbers ganleing

5.2 Graph searching
Implement search-based solutions for:

1. Missionaries and Cannibals: there are three missiosattieee cannibals and who need to cross
a river. They have one boat which can hold at most two peofleat lany point, the cannibals
outnumber the missionaries then they will eat them. Discthweprocedure for a safe crossing.

2. * Towers of Hanoi: you have N rings of increasing size anéeipegs. Initially the three rings are
stacked in order of decreasing size on the first peg. You careti@em between pegs but you must
never stack a big ring onto a smaller one. What is the sequEmoeves to move from all the rings
from the first to the the third peg.

3. *Umbrella: A group of 4 people, Andy, Brenda, Carl, & Daaajve in a car near a friend’s house,
who is having a large party. It is raining heavily, & the growups forced to park around the block
from the house because of the lack of available parking spdge to the large number of people
at the party. The group has only 1 umbrella, & agrees to shéghaving Andy, the fastest, walk
with each person into the house, & then return each time. kiéstaAndy 1 minute to walk each
way, 2 minutes for Brenda, 5 minutes for Carl, & 10 minutesDana. It thus appears that it will
take a total of 19 minutes to get everyone into the house. Mew®ana indicates that everyone
can get into the house in 17 minutes by a different method. Hdwe individuals must use the
umbrella to get to & from the house, & only 2 people can go aret{(& no funny stuff like riding
on someone’s back, throwing the umbrella, etc.). (This fuicluded with kind permission from
http://www.puzz.com/)

6 Lecture5

6.1 Sorting

Implement the following sorting algorithms in Prolog:

1. Finding the minimum element from the list and recursivayting the remainder.
2. Quicksort.

3. * Quicksort where the partitioning step divides the Istoi three groups: those items less than the
pivot, those items equal to the pivot and those items gréfaderthe pivot. Explain in what situations
this additional complexity might be desirable.

4. * Quicksort with the append removed using differenceli®ote: you don’t need to alter the parti-
tioning clauses.

5. * Mergesort

6.2 Towers of Hanoi

The Towers of Hanoi problem can be solved without requiringreefficient graph search. Discover the
algorithm required to do this from the lecture notes or thé aed implement it. Once you have a simple
list-based implementation rewrite it to use differenctslis

6.3 Dutch Flag

Earlier in the course we solved the dutch flag problem usimggete and test. A more efficient approach
is to make one pass through the initial list collecting thseparate lists (one for each colour). When you
reach the end of the initial list you append the three sepamaltection lists together and you are done.
Implement this algorithm using normal lists and then resitito use difference lists.

7 Lecture 6

7.1 Sudoku Solver

Extend the CLP-based 2x2 Sudoku solver given in the lectuae3x3 grid and test it.

7.2 Cryptarithmetic

Here is a classic example of a cryptarithmetic puzzle:

S E N D
+ M O R E
M O N E Y

The problem s to find an assignment of the numbers 0-9 (iivelp®® the letters S,E,N,D,M,O,R,E,Y such
that the arithmetic expression holds and the numeric valsigaed to each letter is unique.

We can formulate this problem in CLP as follows:

solvel([S,END,[MORE,[MONEY]) :-
Var = [S,EEND MORY],
Var in 0..9, all_different(Var),
1000+S + 100+E + 10*N + D +
1000+M + 100+*O + 10*R + E #=
10000+M + 10000 + 100*N + 10+E + Y,
| abeling([], Var).

1. Getthe example above working in your Prolog interpréterv many unique solutions are there?

2. Afurther requirement of these types of puzzle is thatélaeling digit of each number in the equation
is not zero. Extend your program to incorporate this. The GpErator for arithmetic not-equals is
#\ =. How many unique solutions remain now?

3. * Extend your program to work in an arbitrary base (rathentbase 10), the domain of your vari-
ables should change to reflect this. How many solutions optizzle above are there in base 16?

4. *Consultthe prolog documentation for the findall pretic&se this to write a predicate count(Base,N)
which unifies N with the number of solutions in base Base.

5. * Use the range/3 predicate from Lecture 4 to extend yountpredicate to try all values from 1 to
50 as the base.

6. * Plot a graph of the number of solutions against the chosese.

7.3 **Findall

The findall predicate is an extra-logical predicate for lietking and collecting the results into a list. The
implementation within Prolog is something along the linés o

findall (Tenpl at e, Goal , Sol utions) :- call(Goal),
assertz(findallsol (Tenplate)),
fail.

findal |l (Tenpl ate, Goal , Sol utions) :- collect(Solutions).

col l ect ([Tenpl ate| Rest Sol s]) :- retract(findallsol (Tenplate)),
',
col | ect (Rest Sol s) .
collect([]).

1. ** Consult the prolog documentation and work out what thewe is doing. The predicate assertz
adds a new clause to the end of the running prolog progranhanutédicate retract removes a clause
which unifies with its argument.

2. ** Develop an alternative to findall which doesn’t use exingical predicates such as assertz and
retract. This alternative will necessarily take the fornagfattern which you can apply to your clause
to find all the possible results. The algorithm for the aléeire findall proceeds as follows: maintain
a list of solutions found so far, evaluate the target clamskerapeatedly backtrack through it until it
returns a value not in your list of results, add the resulb®list and repeat.

3. ** Comment on the runtime complexity of the alternate filhdampared to the builtin version.

