
53

Prolog can be used for parsing
context-free grammars

Here is a simple grammar:

s -> 'a' 'b'
s -> 'a' 'c'
s -> s s

Terminals: a, b
Non-terminals: s

54

Parsing by consumption

Write a predicate for each non-terminal
which consumes as much as the first list

which is necessary to match the non-
terminal and returns the remaining

elements in the second list

e.g.
s([a,b],[]), s([a,b,c,d],[c,d])

55

A Prolog program which
accepts sentences from our

grammar

c([X|T],X,T).

s(In,Out) :- c(In,a,In2), c(In2,b,Out).
s(In,Out) :- c(In,a,In2), c(In2,c,Out).
s(In,Out) :- s(In,In2), s(In2,Out).

s -> 'a' 'b'
s -> 'a' 'c'
s -> s s

56

Prolog provides a shortcut
syntax for this

s --> [a],[b].
s --> [a],[c].

s --> s,s.

This will both test and generate:
s([a,c,a,b],[]) or s(A,[]).

s -> 'a' 'b'
s -> 'a' 'c'
s -> s s

57

Building a parse tree

c([X|T],X,T).

s(ab,In,Out) :- c(In,a,In2), c(In2,b,Out).
s(ac,In,Out) :- c(In,a,In2), c(In2,c,Out).
s(t(A,B),In,Out) :- s(A,In,In2), s(B,In2,Out).

:- s(Result,[a,c,a,b,a,b],[]).

58

Building a parse tree

s(ab) --> [a],[b].
s(ac) --> [a],[c].

s(t(A,B)) --> s(A),s(B).

59

Parsing Natural Language
(back to Prolog's roots)

s --> np,vp.
np --> det,n.
vp --> v.
vp --> v,np.

n --> [cat].
n --> [dog].
v --> [eats].
det --> [the].

This is a very limited
grammar of English. Things
get complicated very
quickly – for more see the
Natural Language
Processing course next year
(Prolog is not a pre-
requisite)

60

the dog eats the cat

det noun

verb

det noun

np

np

vp

s

61

We can also handle agreement
s(N) --> np(N),vp(N).
np(N) --> det,n(N).
vp(N) --> v(N).
vp(N) --> v(N),np(_).

n(s) --> [cat].
n(s) --> [dog].
n(p) --> [cats].
v(s) --> [eats].
v(p) --> [eat].
det --> [the].

We consider only
third-person constructions

62

the cats eat the dog

det n(p)

verb(p)

det n(s)

np(p)

np(s)

vp(p)

s

63

Things get much more complicated very
quickly

Ambiguities, special cases and noise all
make this hard to scale up to a full

language

64

Closing Remarks
● Declarative programming is different to Functional or

Procedural programming

– Foundations of Computer Science & Programming in Java

● Prolog is built on logical deduction

– formal explanation in Logic & Proof

● It can provide concise implementations of algorithms such
as sorting or graph search

– Algorithms I & Algorithms II

65

Closing Remarks
● Foundations of Functional Programming (Part IB)

– Building computation from first principles

● Databases (Part 1B)

– Find out more about representing data and SQL

● Artificial Intelligence (Part 1B)

– Search, constraint programming and more

● C & C++ (Part 1B)

– Doing useful stuff in the real world

● Natural Language Processing (Part II)

– Parsing natural language

