Keywords:
call-by-value, call-by-name, and call-by-need evaluation; lazy datatypes: sequences, streams, trees; lazy evaluation; sieve of Eratosthenes; breadth-first and depth-first traversals.

References:
◆ [MLWP, Chapter 5]

Call-by-name evaluation

To compute the value of \(F(E) \), first compute the value of the expression \(F \) to obtain a function value, say \(f \). Then compute the value of the expression obtained by substituting the expression \(E \) for the formal parameter of the function \(f \) into its body.

\[
\text{Call-by-name evaluation}\\
\begin{align*}
\text{To compute the value of } F(E), \text{ first compute the value of the expression } F \text{ to obtain a function value, say } f. \text{ Then compute the value of the expression obtained by substituting the expression } E \text{ for the formal parameter of the function } f \text{ into its body.}
\end{align*}
\]

NB: Call-by-need is similar, but duplicated expressions are only evaluated once. (Haskell is the most widely used call-by-need purely-functional programming language.)

Example: Consider the following function definitions.

\[
\text{fun pred n} \\
\quad = \text{if } n = 0 \text{ then } [] \\
\quad \text{else n :: pred(n-1)} ; \\
\text{fun lsum([] , l) = 0} \\
\quad | \text{lsum(h::t , l) = h + lsum(t , l)} ;
\]

\[
\text{val pred = fn : int -> int list} \\
\text{val lsum = fn : int list * 'a -> int}
\]

1. Call-by-value evaluation.

\[
\begin{align*}
\text{lsum(pred(2) , pred(10000))} \\
\text{pred(2) } & \sim 2 : : \text{pred(1)} \sim 2 : : 1 : : \text{pred(0) } \sim 2 : : 1 : : [] \\
\text{pred(10000) } & \sim 10000 : : \text{pred(9999) } \sim \ldots \\
& \sim 10000 : : 9999 : : \ldots : 1 : : [] \\
& \sim 2 + \text{lsum(1 : : [] , 10000 : : 9999 : : \ldots : 1 : : [])} \\
& \sim 2 + (1 + \text{lsum([] , 10000 : : 9999 : : \ldots : 1 : : [])}) \\
& \sim 2 + (1 + 0) \\
& \sim 2 + 1 \\
& \sim 3
\end{align*}
\]
2. Call-by-name evaluation.

\[
\begin{align*}
&\text{1sum(pred(2) , pred(10000))} \\
&\sim \text{pred(2)} \leadsto 2 : \text{pred(2-1)} \\
&\sim 2 + \text{1sum(pred(2-1) , pred(10000))} \\
&\sim \text{pred(2-1)} \leadsto 1 : \text{pred(1-1)} \\
&\sim 2 + (1 + \text{1sum(pred(1-1) , pred(10000))}) \\
&\sim \text{pred(1-1)} \leadsto [] \\
&\sim 2 + (1 + 0) \\
&\sim 2 + 1 \\
&\sim 3
\end{align*}
\]

Lazy datatypes

Lazy datatypes are one of the most celebrated features of functional programming. The elements of a lazy datatype are not evaluated until their values are required. Thus a lazy datatype may have infinite values, of which we may view any finite part but never the whole.

In a call-by-value functional language, like ML, we implement lazy datatypes by explicitly delaying evaluation. Indeed, to delay the evaluation of an expression \(E\), we can use the nameless function \(\text{fn()} \Rightarrow E\) instead, and we force the evaluation of this expression by the function application \((\text{fn()} \Rightarrow E)()\).

Lazy evaluation in ML

Example: Consider the following function definitions in ML.

\[
\begin{align*}
\text{fun seqpred n} &= \text{if n = 0 then nil } \\
&\quad \text{else cons(n , fn() \Rightarrow seqpred(n-1)) } \\
\text{fun seqlsum(nil , l)} &= 0 \\
&\text{| seqlsum(cons(h,t) , l)} \\
&\quad = h + \text{seqlsum(t() , l) } \\
\text{val seqpred = fn : int \rightarrow int seq} \\
\text{val seqlsum = fn : int seq \rightarrow 'a \rightarrow int}
\end{align*}
\]

Evaluate \(\text{seqlsum(seqpred(2) , seqpred(10000))}\) and compare the process with the call-by-name evaluation of \(\text{1sum(pred(2) , pred(10000))}\)!
Sequence manipulation

datatype
'a seq = nil | cons of 'a * (unit -> 'a seq);

1. Head, tail, and null testing.

 exception Empty ;
 fun seqhd nil = raise Empty
 | seqhd(cons(h,t)) = h ;
 fun seqtl nil = raise Empty
 | seqtl(cons(h,t)) = t() ;
 fun seqnull nil = true
 | seqnull _ = false ;
 val seqhd = fn : 'a seq -> 'a
 val seqtl = fn : 'a seq -> 'a seq
 val seqnull = fn : 'a seq -> bool

2. Constant sequences.

 fun Kseq x = cons(x , fn() => Kseq x) ;
 val Kseq = fn : 'a -> 'a seq

3. Traces.

 fun trace f s
 = case s of
 NONE => nil
 | SOME x => cons(x , fn() => trace f (f x)) ;
 fun from n = trace (fn x => SOME(x+1)) (SOME n);
 val trace = fn :
 ('a->'a option)->'a option->'a seq
 val from = fn : int -> int seq

4. Sequence display.

 exception Negative ;
 fun display n s
 = if n < 0 then raise Negative
 else if n = 0 then []
 else (seqhd s) :: display (n-1) (seqtl s) ;
 val display = fn : int -> 'a seq -> 'a list

5. Append and shuffle.

 fun seqappend(nil , s) = s
 | seqappend(s , t)
 = cons(seqhd s ,
 fn() => seqappend(seqtl s , t)) ;
 val seqappend = fn : 'a seq * 'a seq -> 'a seq

6. Functionals: filter, map, fold.

 fun seqfilter P nil = nil
 | seqfilter P s
 = let val h = seqhd s in
 if P h
 then cons(h , fn() => seqfilter P (seqtl s))
 else seqfilter P (seqtl s)
 end ;
 val seqfilter = fn : ('a->bool)->'a seq -> 'a seq
fun seqmap f nil = nil
 | seqmap f s
 = cons(f(seqhd s) ,
 fn() => seqmap f (seqtl s)) ;
val seqmap = fn : ('a -> 'b) -> 'a seq -> 'b seq
fun seqnfold n f x s
 = if n < 0 then raise Negative
 else if n = 0 then x
 else if seqnull s then raise Empty
 else seqnfold (n-1) f (f(seqhd s, x)) (seqtl s) ;
val seqnfold = fn :
 int -> ('a * 'b -> 'b) -> 'b -> 'a seq -> 'b

fun filter P s
 = let
 fun auxfilter s
 = let
 val h = head s
 in
 P h
 if cons(fn() => (h , auxfilter(tail s)))
 else auxfilter(tail s)
 end
 in
 auxfilter s
 end ;
val filter = fn : ('a -> bool) -> 'a stream -> 'a stream

Generating the prime numbers

Streams

datatype 'a stream = cons of unit -> 'a * 'a stream ;

fun head (cons f)
 = let val (h, _) = f() in h end ;
fun tail (cons f)
 = let val (_, t) = f() in t end ;
val head = fn : 'a stream -> 'a
val tail = fn : 'a stream -> 'a stream

Sieve of Eratosthenes (I)

fun sieve s
 = let
 val h = head s
 val sift = filter (fn n => n mod h <> 0) ;
 in
 cons(fn() => (h , sieve(sift(tail s))))
 end ;
val sieve = fn : int stream -> int stream
fun from n = cons(fn () => (n , from(n+1))) ;
val primes = sieve(from 2) ;
val from = fn : int -> int stream
val primes = cons fn : int stream
Infinite-tree manipulation

datatype

'ta infFBtree

= W of 'a * (unit -> 'a infFBtree list) ;

1. Computation trees.

fun CT f s

= W(s , fn() => map (CT f) (f s)) ;

val CT = fn : ('a -> 'a list) -> 'a -> 'a infFBtree

2. Breadth-first traversal.

fun BFseq [] = nil
 | BFseq(W(x,F):: T)

 = cons(x , fn() => BFseq(T @ F())) ;

val BFseq = fn : 'a infFBtree list -> 'a seq

3. Depth-first traversal.

fun DFseq [] = nil
 | DFseq(W(x,F)::T)

 = cons(x , fn() => DFseq(F() @ T)) ;

val DFseq = fn : 'a infFBtree list -> 'a seq

Sieve of Eratosthenes (II)

fun sieve s

= case head s of
 NONE => cons(fn() => (NONE , sieve(tail s)))
 | SOME h

 => let fun sweep s = itsweep s 1

 and itsweep s n

 = cons(fn() =>

 if n = h then (NONE , sweep (tail s))
 else (head s , itsweep (tail s) (n+1))

)

 in

 cons(fn() => (SOME h , sieve(sweep (tail s))))

 end ;

val sieve = fn : int option stream -> int option stream