

Floating Point Computation

A four-lecture course

Alan Mycroft Computer Laboratory, Cambridge University

http://www.cl.cam.ac.uk/users/am/

Michaelmas 2007

Overall motto: threat minimisation

- Algorithms involving floating point (float and double in C, [misleadingly named] real in ML and Fortran) pose a significant threat to the programmer or user.
- Learn to distrust your own naïve coding of such algorithms, and, even more so, get to distrust others'.
- Start to think of ways of sanity checking (by human or machine) any floating point value arising from a computation, library or package—unless its documentation suggests an attention to detail at least that discussed here (and even then treat with suspicion).
- Just because the "computer produces a numerical answer" doesn't mean this has any relationship to the 'correct' answer.

Here be dragons!

UNIVERSITY OF

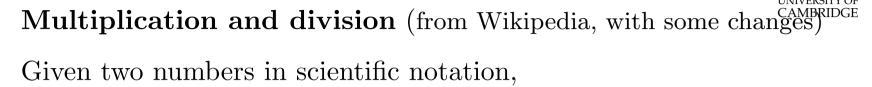
What's this course about?

- How computers represent and calculate with 'real number' values.
- What problems occur due to the values only being finite (both range and precision).
- How these problems add up until you get silly answers.
- How you can stop your programs and yourself from looking silly (and some ideas on how to determine whether existing programs have been silly).
- Chaos and ill-conditionedness.
- Knowing when to call in an expert—remember there is 50+ years of knowledge on this and you only get 4 lectures from me.

Part 1

Introduction/reminding you what you already know

Back to school


Scientific notation (from Wikipedia, the free encyclopedia)

In scientific notation, numbers are written using powers of ten in the form $a \times 10^b$ where b is an integer exponent and the coefficient a is any real number, called the significand or mantissa.

In normalised form, a is chosen such that $1 \le a < 10$. It is implicitly assumed that scientific notation should always be normalised except during calculations or when an unnormalised form is desired.

What Wikipedia should say: zero is problematic—its exponent doesn't matter and it can't be put in normalised form.

$$x_0 = a_0 \times 10^{b_0} \qquad \qquad x_1 = a_1 \times 10^{b_1}$$

Multiplication and division;

$$x_0 * x_1 = (a_0 * a_1) \times 10^{b_0 + b_1}$$
 $x_0/x_1 = (a_0/a_1) \times 10^{b_0 - b_1}$

Note that result is not guaranteed to be normalised even if inputs are: $a_0 * a_1$ may now be between 1 and 100, and a_0/a_1 may be between 0.1 and 10 (both at most one out!). E.g.

$$5.67 \times 10^{-5} * 2.34 \times 10^{2} \approx 13.3 \times 10^{-3} = 1.33 \times 10^{-2}$$

$$2.34 \times 10^2 / 5.67 \times 10^{-5} \approx 0.413 \times 10^7 = 4.13 \times 10^6$$

Addition and subtraction require the numbers to be represented using the same exponent, normally the bigger of b_0 and b_1 . W.l.o.g. $b_0 > b_1$, so write $x_1 = (a_1 * 10^{b_1-b_0}) \times b_0$ (a shift!) and add/subtract the mantissas.

$$x_0 \pm x_1 = (a_0 \pm (a_1 * 10^{b_1 - b_0})) \times 10^{b_0}$$

E.g.

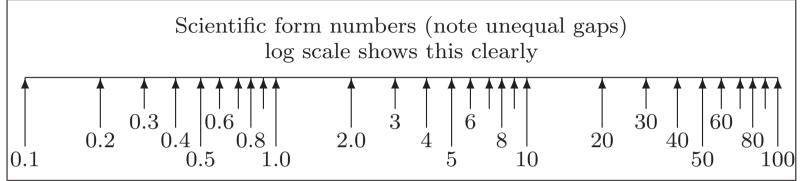
$$2.34 \times 10^{-5} + 5.67 \times 10^{-6} = 2.34 \times 10^{-5} + 0.567 \times 10^{-5} \approx 2.91 \times 10^{-5}$$

A cancellation problem we will see more of:

$$2.34 \times 10^{-5} - 2.33 \times 10^{-5} = 0.01 \times 10^{-5} = 1.00 \times 10^{-7}$$

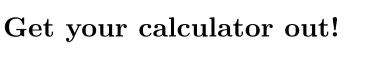
When numbers reinforce (e.g. add with same-sign inputs) new mantissa is in range [1, 20), when they cancel it is in range [0..10). After cancellation we may require several shifts to normalise.

Sex, lies and sig.figs.


When using scientific-form we often compute repeatedly keeping the same number of digits in the mantissa. In science this is often the number of digits of accuracy in the original inputs—hence the term (decimal) *significant figures* (sig.figs. or sf).

This is risky for two reasons:

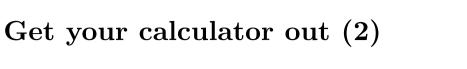
- As in the last example, there may be 3sf in the result of a computation but little accuracy left.
- 1.01×10^1 and 9.98×10^0 are quite close, and both have 3sf, but changing the lsd (least significant digit) changes the value by nearly 1% (1 part in 101) in the former and about 0.1% (1 part in 998) in the latter.



Sex, lies and sig.figs.(2)

You might prefer to say $sig.figs.(4.56) = -\log_{10} 0.01/4.56$ so that sf(1.01) and sf(101) is about 3, and sf(9.98) and sf(0.0000998) is nearly 4. (BTW, a good case can be made for 2 and 3 respectively instead.)

Exercise: with this more precise understanding of sig.figs. how do the elementary operations (+, -, *, /; operating on nominal 3sf arguments to give a nominal 3sf result) really behave?



Calculators are just floating point computers. Note that physical calculators often work in decimal, but calculator programs (e.g. xcalc) often work in binary. Many interesting examples on this course can be demonstrated on a calculator—the underlying problem is floating point computation and naïve-programmer failure to understand it rather than programming per se.

Amusing to try (computer output is red)

$$(1 + 1e20) - 1e20 = 0.000000$$
 $1 + (1e20 - 1e20) = 1.000000$

But everyone knows that (a + b) + c = a + (b + c) (associativity) in maths and hence (a + b) - d = a + (b - d) [just write d = -c]!!!

How many sig.figs. does it work to/display [example is xcalc]?

```
1 / 9 = 0.11111111

<ans> - 0.11111111 = 1.111111e-09

<ans> - 1.111111e-9 = 1.059003e-16

<ans> - 1.059e-16 = 3.420001e-22
```

Seems to indicate 16sf calculated (16 ones before junk appears) and 7/8sf displayed—note the endearing/buggy(?) habit of xcalc of displaying one fewer sf when an exponent is displayed.

Stress test it:

$$\sin 1e40 = 0.3415751$$

Does anyone believe this result? [Try your calculator/programs on it.]

Computer Representation

A computer representation must be finite. If we allocate a fixed of storage for each then we need to

- fix a size of mantissa (sig.figs.)
- fix a size for exponent (exponent range)

We also need to agree what the number means, e.g. agreeing the base used by the exponent.

Why "floating point"? Because the exponent logically determines where the decimal point is placed within (or even outside) the mantissa. This originates as an opposite of "fixed point" where a 32-bit integer might be treated as having a decimal point between (say) bits 15 and 16.

Floating point can simple be thought of simply as (a subset of all possible) values in scientific notation held in a computer.

Computer Representation (2)

Nomenclature. Given a number represented as $\beta^e \times d_0.d_1 \cdots d_{p-1}$ we call β the base (or radix) and p the precision.

Note that $(\beta = 2, p = 24)$ may be less accurate than $(\beta = 10, p = 10)$.

Now let's turn to binary representations ($\beta = 2$, as used on most modern machines, will solely be considered in this course, but note the IBM/360 series of mainframes used $\beta = 16$ which gave some entertaining but obsolete problems).

Part 2

Floating point representation

Standards

In the past every manufacturer produced their own floating point BRIDGE hardware and floating point programs gave different answers. IEEE standardisation fixed this.

There are two different IEEE standards for floating-point computation.

IEEE 754 is a binary standard that requires $\beta = 2, p = 24$ (number of mantissa bits) for single precision and p = 53 for double precision. It also specifies the precise layout of bits in a single and double precision. [Edited quote from Goldberg.]

IEEE 854 is more general and allows binary and decimal representation without fixing the bit-level format.

IEEE 754 is being revised –

http://en.wikipedia.org/wiki/IEEE_754r

IEEE 754 Floating Point Representation

Actually, I'm giving the version used on x86 (similar issues arise as in the ordering of bytes with an 32-bit integer).

Double precision: 64 bits (1+11+52), $\beta = 2$, p = 53

sign		expt	mantissa	
63	62	52	2 51	C

Single precision: 32 bits (1+8+23), $\beta = 2$, p = 24

sign	expt			mantissa	
31	30	23	22		0

Value represented is typically: $(s ? -1 : 1) * 1.mmmmmm * 2^{eeeee}$.

Note hidden bit: 24 (or 53) sig.bits, only 23 (or 52) stored!

Hidden bit and exponent representation

Advantage of base-2 ($\beta = 2$) exponent representation: all normalised numbers start with a '1', so no need to store it. (Just like base 10, there normalised numbers start 1..9, in base 2 they start 1..1.)

UNIVERSITY OF

But: what about the number zero? Need to cheat, and while we're at it we create representations for infinity too. In single precision:

exponent	exponent	value represented
(binary)	(decimal)	
00000000	0	zero if $mmmmm = 0$
		('denormalised number' otherwise)
00000001	1	$1.mmmmmm * 2^{-126}$
	• • •	• • •
01111111	127	$1.mmmmmm * 2^{-0} = 1.mmmmmm$
10000000	128	$1.mmmmmm*2^1$
	• • •	•••
11111110	254	$1.mmmmmm * 2^{127}$
11111111	255	infinity if $mmmmm = 0$ ('NaN's otherwise)

Digression (non-examinable)

IEEE define terms e_{min} , e_{max} delimiting the exponent range affection programming languages define constants like

#define FLT_MIN_EXP (-125)
#define FLT_MAX_EXP 128

whereas on the previous slide I listed the min/max exponent uses as $1.mmmmmm * 2^{-126}$ to $1.mmmmmm * 2^{127}$.

BEWARE: IEEE and ISO C write the above ranges as $0.1mmmmmm* 2^{-125}$ to $0.1mmmmmm* 2^{128}$ (so all p digits are after the decimal point) so all is consistent, but remember this if you ever want to use FLT_MIN_EXP or FLT_MAX_EXP.

I've kept to the more intuitive 1.mmmmm form in these notes.

Hidden bit and exponent representation (3)

Double precision is similar, except that the 11-bit exponent field now gives non-zero/non-infinity exponents ranging from 000 0000 0001 representing 2^{-1022} via 011 1111 1111 representing 2^0 to 111 1111 1110 representing 2^{1023} .

This representation is called "excess-127" (single) or "excess-1023" (double precision).

Why use it?

Because it means that (for positive numbers, and ignoring NaNs) floating point comparison is the same as integer comparison.

Why 127 not 128? The committee decided it gave a more symmetric number range (see next slide).

Solved exercises

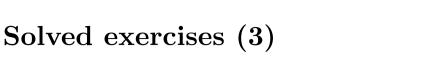
What's the smallest and biggest normalised numbers in single precision IEEE floating point?

Biggest: exponent field is 0..255, with 254 representing 2^{127} . The biggest mantissa is 1.111...111 (24 bits in total, including the implicit leading zero) so $1.111...111 \times 2^{127}$. Hence almost 2^{128} which is $2^8 * 2^{120}$ or $256 * 1024^{12}$, i.e. around $3 * 10^{38}$.

FLT_MAX from <float.h> gives 3.40282347e+38f.

Smallest? That's easy: -3.40282347e+38! OK, I meant smallest positive. I get $1.000...000 \times 2^{-126}$ which is by similar reasoning around 16×2^{-130} or 1.6×10^{-38} .

FLT_MIN from <float.h> gives 1.17549435e-38f.


Solved exercises (2)

[Not part of this course: 'denormalised numbers' can range down to $2^{-150} \approx 1.401298\text{e-}45$, but there is little accuracy at this level.]

And the precision of single precision? 2^{23} is about 10^7 , so in principle 7sf. (But remember this is for representing a single number, operations will rapidly chew away at this.)

And double precision? DBL_MAX 1.79769313486231571e+308 and DBL_MIN 2.22507385850720138e-308 with around 16sf.

How many single precision floating point numbers are there? Answer: $2 \text{ signs} * 254 \text{ exponents} * 2^{23} \text{ mantissas for normalised numbers plus 2 zeros plus 2 infinities (plus NaNs and denorms not covered in this course).$

Which values are representable *exactly* as single precision floating point numbers?

Answer: $\pm i/2^{j}$ where $0 \le i < 2^{23}$ and $-126 \le j \le 127$

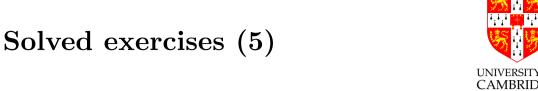
Compare: what values are exactly representable in 3sf decimal?

Answer: $i/10^{j}$ where $0 \le i < 1000$.

So you mean 0.1 is not exactly representable? Its nearest single precision IEEE number is the *recurring* 'decimal' 0x3dccccd (note round to nearest) i.e. $\boxed{0}$ 011 1101 1 $\boxed{100}$ 1100 1100 1100 1101 $\boxed{1}$. Decoded, this is $2^{-4} \times 1.1001100 \cdots 1101_2$, or

 $\frac{1}{16} \times (2^0 + 2^{-1} + 2^{-4} + 2^{-5} + \dots + 2^{-23})$. It's a geometric progression (that's what 'recurring decimal' means) so you can sum it exactly, but just from the first two terms it's clear it's approximately 1.5/16.

Solved exercises (4)



BTW, So how many times does

iterate? Might it differ if f is single/double?

NEVER count using floating point unless you really know what you're doing (and write a comment half-a-page long explaining to the 'maintenance programmer' following you why this code works and why naïve changes are likely to be risky).

See sixthcounting.c for a demo where float gets this accidentally right and double gets it accidentally wrong.

How many sig.figs. to I have to print out a single-precision float to be able to read it in again exactly?

Answer: The smallest (relative) gap is from 1.1111110 to 1.11111111, a difference of about 1 part in 2^{24} . If this of the form $1.xxx \times 10^b$ when printed in decimal then we need 9 sig.figs. (including the leading '1', i.e. 8 after the decimal point in scientific notation) as an lsb change is 1 part in 10^8 and $10^7 \le 2^{24} \le 10^8$.

But you may only need 8 sig.figs if the decimal starts with 9.xxx—see printsigfig_float.c].

Note that this is significantly more than the 7sf accuracy quoted earlier for float!

Signed zeros can make sense: if I repeatedly divide a positive manager by two until I get zero ('underflow') I might want to remember that it started positive, similarly if I repeatedly double an number until I get overflow then I want a signed infinity.

However, while differently-signed zeros compare equal, not all 'obvious' mathematical rules remain true:

```
int main() {
   double a = 0, b = -a;
   double ra = 1/a, rb = 1/b;
   if (a == b && ra != rb)
        printf("Ho hum a=%f = b=%f but 1/a=%f != 1/b=%f\n", a,b, ra,rb);
   return 0; }
Gives:
Ho hum a=0.000000 = b=-0.000000 but 1/a=inf != 1/b=-inf
```


The alternatives are to give either a wrong value, or an exception.

An infinity (or a NaN) propagates 'rationally' through a calculation and enables (e.g.) a matrix to show that it had a problem in calculating some elements, but that other elements can still be OK.

Raising an exception is likely to abort the whole matrix computation and giving wrong values is just plain dangerous.

The most common way to get a NaN is by calculating 0.0/0.0 (there's no obvious 'better' interpretation of this) and library calls like sqrt(-1) generally also return NaNs.

Part 3

Floating point operations

This is a very important slide.

IEEE basic operations (+, -, *, / are defined as follows):

Treat the operands (IEEE values) as precise, do perfect mathematical operations on them (NB the result might not be representable as an IEEE number, analogous to 7.47+7.48 in 3sf decimal). Round(*) this mathematical value to the *nearest* representable IEEE number and store this as result. In the event of a tie (e.g. the above decimal example) chose the value with an even (i.e. zero) lsb.

[This last rule is statistically fairer than the "round down 0–4, round up 5–9" which you learned in school. Don't be tempted to believe the exactly 0.50000 case is rare!]

This is a very important slide.

[(*) See next slide]

IEEE Rounding

In addition to rounding prescribed above (which is the default CAMBRIDGE behaviour) IEEE requires there to be a global flag which can be set of one of 4 values:

Unbiased which rounds to the nearest value, if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit. This mode is required to be default.

Towards zero

Towards positive infinity

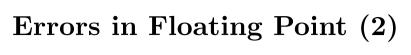
Towards negative infinity

Be very sure you know what you are doing if you set change the mode, or if you are editing someone else's code which exploits a non-default mode setting.

Other mathematical operators?

Other mathematical operators are typically implemented in libraries. Examples are sin, sqrt, log etc. It's important to ask whether implementations of these satisfy the IEEE requirements: e.g. does the sin function give the nearest floating point number to the corresponding perfect mathematical operation's result when acting on the floating point operand treated as perfect? [This would be a high-quality library.] Or is some lesser quality offered?

It's hard to do this in general, so a library (or package) is only as good as the vendor's careful explanation of what error bound the result is accurate to (remember to ask!). (For IEEE-quality routines we know the relative error is bounded by machine epsilon—see later.)



When we do a floating point computation, errors (w.r.t. perfect mathematical computation) essentially arise from two sources:

- the inexact representation of constants in the program and numbers read in as data. (Remember even 0.1 in decimal cannot be represented exactly in as an IEEE value, just like 1/3 cannot be represented exactly as a finite decimal. Exercise: write 0.1 as a (recurring) binary number)
- rounding errors produced by (in principle) every IEEE operation.

These errors build up during a computation, and we wish to be able to get a bound on them (so that we know how accurate our computation is).

It is useful to identify two ways of measuring errors. Given some value a and an approximation b of a, the

Absolute error is $\epsilon = |a - b|$

Relative error is
$$\eta = \frac{|a-b|}{|a|}$$

[http://en.wikipedia.org/wiki/Approximation_error]

Errors in Floating Point (3)

Of course, we don't normally know the exact error in a program, because if we did then we could calculate the floating point answer and add on this known error to get a mathematically perfect answer! So, when we say the "relative error is (say) 10^{-6} " we mean that the true answer lies within the range $[(1-10^{-6})v..(1+10^{-6})v]$ $x \pm \epsilon$ is often used to represent any value in the range $[x-\epsilon..x+\epsilon]$. This is the idea of "error bars" from the sciences.

Errors from +, -: these sum the absolute errors of their inputs

$$(x \pm \epsilon_x) + (y \pm \epsilon_y) = (x + y) \pm (\epsilon_x + \epsilon_y)$$

Errors from *, /: these sum the relative errors (if these are small)

$$(x(1 \pm \eta_x)) * (y(1 \pm \eta_y)) = (x * y)(1 \pm (\eta_x + \eta_y) \pm \eta_x \eta_y)$$

and we discount the $\eta_x \eta_y$ product as being negligible.

If the justifications trouble you, then ask your supervisor—you don't need to be able to reproduce them for this course.

Beware: when addition or subtraction causes partial or total cancellation the relative error of the result can be much larger than that of the operands.

Gradual loss of significance

Consider the program (see the calculator example earlier)

```
double x = 1.0/9.0;
x *= 10;
for (i=0; i<30; i++)
{    printf("%e\n", x);
    x = (x - 1) * 10;  // C treats as (x-1.0) * 10.0
}</pre>
```

Initially x has around 16sf of accuracy (IEEE double). But after every cycle round the loop it still stores 16sf, but the accuracy of the stored value reduces by 1sf per iteration. [Try it!]

This is called "gradual loss of significance" and is in practice at least as much a problem as overflow and underflow and much harder to identify.

Output

1.11111111e+00	1.1111112e+00	4.935436e + 03
1.11111111e+00	1.1111116e+00	4.934436e+04
1.11111111e+00	1.111160e+00	4.934336e+05
1.11111111e+00	1.111605e+00	4.934326e + 06
1.11111111e+00	1.116045e + 00	4.934325e + 07
1.11111111e+00	1.160454e + 00	4.934325e + 08
1.11111111e+00	$1.604544e + 00 \approx 16sf$	4.934325e + 09
1.11111111e+00	6.045436e + 00	4.934325e+10
1.11111111e+00	5.045436e + 01	4.934325e+11
1.11111111e+00	4.945436e + 02	4.934325e+12

Note that maths says every number is in the range [1,10)!

Machine Epsilon

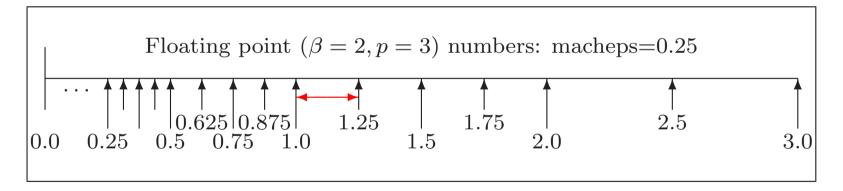
Machine epsilon is defined as the difference between 1.0 and the smallest representable number which is greater than one, i.e. 2^{-23} in single precision, and 2^{-52} in double (in both cases $\beta^{-(p-1)}$). ISO 9899 C says:

"the difference between 1 and the least value greater than 1 that is representable in the given floating point type"

For IEEE arithmetic, <float.h> defines

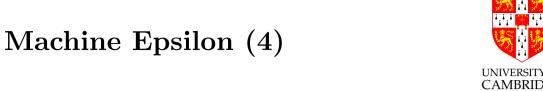
#define FLT_EPSILON

1.19209290e-7F


#define DBL_EPSILON

2.2204460492503131e-16

Machine epsilon is useful as it gives an upper bound on the relative error caused by getting the lsb of a floating point number out by one, and is therefore useful for expressing errors independent of floating point size. (The relative error caused by getting the lsb wrong by one can be up to 50% smaller than this, consider 1.5 or 1.9999.)


Some sources give an alternative (bad) definition: "the smallest number which when added to one gives a number greater than one". (with rounding-to-nearest this only needs to be slightly more than half of our machine epsilon).

Microsoft MSDN documentation (Nov 2007) gets this wrong:

```
Constant Value Meaning
FLT_EPSILON 1.192092896e-07F Smallest such that 1.0+FLT_EPSILON !=1.0
```

The value is right by the C standard, but the explanation inconsistent with it. Whoops:

```
float one = 1.0f, eps = 0.7e-7f;
printf("%.7e + %.7e = %.7e\n", one, eps, (float)(eps+one));
===>>> 1.0000000e+00 + 6.999999e-08 = 1.0000001e+00
```


Oh yes, the GNU C library documentation (Nov 2007) gets it wrong too:

FLT_EPSILON

This is the minimum positive floating point number of type float such that 1.0 + FLT EPSILON != 1.0 is true.

Again, the implemented value is right, but the explanation inconsistent with it.

Is the alternative definition 'bad'? It's sort-of justifiable as almost the maximum quantisation error in 'round-to-nearest', but the ISO standards selected "step between adjacent values" instead.

Machine Epsilon (5) – Negative Epsilon

We defined machine epsilon as the difference between 1.0 and the smallest *representable* number which is greater than one.

What about the difference between 1.0 and the greatest *representable* number which is smaller than one?

In IEEE arithmetic this is exactly 50% of machine epsilon.

Revisiting sin 1e40

The answer given by xcalc earlier is totally bogus. Why?

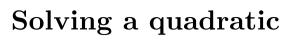
 10^{40} is stored (like all numbers) with a relative error of around machine epsilon. (Changing the lsb of the mantissa by one results in an absolute error of $10^{40} \times machine_epsilon$.) Even for double, this absolute error of representation is around 10^{24} . But the sin function cycles every 2π . So we can't even represent which of many billions of cycles of sine that 10^{40} should be in, let alone whether it has any sig.figs.!

On a decimal calculator 10^{40} is stored accurately, but I would need π to 50sf to have 10sf left when I have range-reduced 10^{40} into the range $[0, \pi/2]$. So, who *can* calculate sin 1e40? Volunteers?

Part 4

Simple maths, simple programs

Iterative programs need additional techniques, because the programs may be locally sensible, but a small representation or rounding error can slowly grows over many iterations so as to render the result useless.

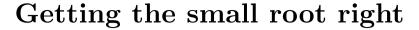

So let's first consider a program with a fixed number of operations:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Or in C:

```
double root1(double a, double b, double c)
{ return (-b + sqrt(b*b - 4*a*c))/(2*a);
double root2(double a, double b, double c)
{ return (-b - sqrt(b*b - 4*a*c))/(2*a); }
```

What could be wrong with this so-simple code?


Let's try to make sure the relative error is small.

Most operations in $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ are multiply, divide, sqrt—these add little to relative error (see earlier): unary negation is harmless too.

But there are two additions/subtractions: $b^2 - 4ac$ and $-b \pm \sqrt{(\cdots)}$.

Cancellation in the former $(b^2 \approx 4ac)$ is not too troublesome (why?), but consider what happens if $b^2 >> 4ac$. This causes the latter \pm to be problematic for one of the two roots.

Just consider b > 0 for now, then the problem root (the smaller one in magnitude) is $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$.

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}}$$

$$= \frac{-2c}{b + \sqrt{b^2 - 4ac}}$$

These are all equal in maths, but the final expression computes much more accurately (no cancellation if b > 0).

But keep the big root calculation as

$$x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Need to do a bit more (i.e. opposite) work if b < 0

Testing—quadrat_float.c

Part 5

Infinitary/limiting computations

Rounding versus Truncation Error

Many mathematical processes are infinitary, e.g. limit-taking (including differentiation, integration, infinite series), and iteration towards a solution.

There are now two logically distinct forms of error in our calculations

Rounding error the error we get by using finite arithmetic during a computation. [We've talked about this exclusively until now.]

Truncation error the error we get by stopping an infinitary process after a finite point. [This is new.]

Note the general antagonism: the finer the mathematical approximation the more operations which need to be done, and hence the worse the accumulated error. Need to compromise, or *really* clever algorithms (beyond this course).

UNIVERSITY OF

Illustration—differentiation

Suppose we have a nice civilised function f (we're not even going to look at malicious ones). By civilised I mean smooth (derivatives exist) and f(x), f'(x) and f''(x) are around 1 (i.e. between, say, 0.1 and 10 rather than 10^{15} or 10^{-15} or, even worse, 0.0). Let's suppose we want to *calculate* an approximation to f'(x) at x = 1.0 given only the code for f.

Mathematically, we define

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

So, we just calculate (f(x+h)-f(x))/h, don't we?

Well, just how do we choose h? Does it matter?

Illustration—differentiation (1a)

BTW, the Wikipedia entry

http://en.wikipedia.org/wiki/Standard_ML shows (Nov 2006) a failure to consider x being large or small without noting this fact. Even more entertainingly, it invalidly quotes the answer we derive below in spite of it not applying to the quoted algorithm (see later)!

Illustration—differentiation (2)

The maths for f'(x) says take the limit as h tends to zero. But if h is smaller than machine epsilon $(2^{-23} \text{ for float and } 2^{-52} \text{ for double})$ then, for x about 1, x + h will compute to the same value as x. So f(x+h) - f(x) will evaluate to zero!

There's a more subtle point too, if h is small then f(x+h) - f(x) will produce lots of cancelling (e.g. 1.259 - 1.257) hence a high relative error (few sig.figs. in the result).

'Rounding error.'

But if h is too big, we also lose: e.g. dx^2/dx at 1 should be 2, but taking h = 1 we get $(2^2 - 1^2)/1 = 3.0$. Again a high relative error (few sig.figs. in the result).

'Truncation error.'

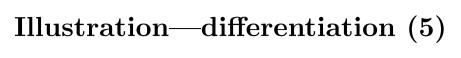
Answer: the two errors vary oppositely w.r.t. h, so compromise by making the two errors of the same order to minimise their total effect.

The truncation error can be calculated by Taylor:

$$f(x+h) = f(x) + hf'(x) + h^2f''(x)/2 + O(h^3)$$

So the truncation error in the formula is approximately hf''(x)/2 (check it yourself), i.e. about h given the assumption on f'' being around 1.

Illustration—differentiation (4)


For rounding error use Taylor again, and allow a minimal error of machine machine machine into f and get (remember we're also assuming f(x) and f'(x) is around 1, and we'll write machine for machine epsilon):

$$(f(x+h)-f(x))/h = (f(x)+hf'(x)\pm macheps-f(x))/h = 1\pm macheps/h$$

So the rounding error is macheps/h.

Equating rounding and truncation errors gives h = macheps/h, i.e. $h = \sqrt{machine_epsilon}$ (around 3.10^{-4} for single precision and 10^{-8} for double).

[See diff_float.c for a program to verify this—note the truncation error is fairly predictable, but the rounding error is "anywhere in an error-bar"]

The Standard_ML example in Wikipedia quotes an alternative form of differentiation:

$$(f(x+h) - f(x-h))/2h$$

But, applying Taylor's approximation as above to this function gives a truncation error of

$$h^2 f'''(x)/3!$$

The rounding error remains at about macheps/h. Now, equating truncation and rounding error as above means that say $h = \sqrt[3]{macheps}$ is a good choice for h.

Entertainingly, until 2007, the article mistakenly said "square root", and even more fun the OCaml article still does!

Illustration—differentiation (6)

There is a serious point in discussing the two methods of differentiation as it illustrates an important concept.

Usually when finitely approximating some limiting process there is a number like h which is small, or a number n which is large. Sometimes both logically occur (with h = 1/n)

$$\int_0^1 f(x) \approx \left(\sum_{i=1}^n f(i/n)\right) / n$$

Often there are multiple algorithms which mathematically have the same limit (see the two differentiation examples above), but which have different rates of approaching the limit (in addition to possibly different rounding error accumulation which we're not considering at the moment).

Illustration—differentiation (7)

The way in which $truncation \ error$ is affected by reducing h (of increasing n) is called the order of the algorithm (or more precisely the mathematics on which the algorithm is based).

For example, (f(x+h) - f(x))/h is a first-order method of approximating derivatives of smooth function (halving h halves the truncation error.)

On the other hand, (f(x+h) - f(x-h))/2h is a second-order method—halving h divides the truncation error by 4.

A large amount of effort over the past 50 years has been invested in finding techniques which give higher-order methods so a relatively large h can be used without incurring excessive truncation error (and incidentally, this often reduce rounding error too).

Don't assume you can outguess the experts.

UNIVERSITY OF

Various problems can be solved by summing a Taylor series, e.g.

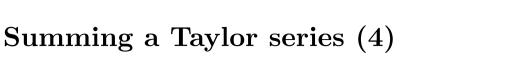
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Mathematically, this is as nice as you can get—it unconditionally converges everywhere. However, computationally things are trickier.

Summing a Taylor series (2)

Trickinesses:

- How many terms? [stopping early gives truncation error]
- Large cancelling intermediate terms can cause loss of precision [hence rounding error]
 e.g. the biggest term in sin(15) [radians] is over -334864 giving (in single precision float) a result with only 1 sig,fig.


 [See sinseries_float.c.]

Summing a Taylor series (3)

Solution:

- Do range reduction—use identities to reduce the argument to the range $[0, \pi/2]$ or even $[0, \pi/4]$. However: this might need a lot of work to make $\sin(10^{40})$ or $\sin(2^{100})$ work (since we need π to a large accuracy).
- Now we can choose a fixed number of iterations and unroll the loop (conditional branches can be slow in pipelined architectures), because we're now just evaluating a polynomial.

If we sum a series up to terms in x^n , i.e. we compute

$$\sum_{i=0}^{i=n} a_i x^i$$

then the first missing term will by in x^{n+1} (or x^{n+2} for $\sin(x)$). This will be the dominant error term (i.e. most of the truncation error), at least for small x.

However, x^{n+1} is unpleasant – it is very very small near the origin but its maximum near the ends of the input range can be thousands of times bigger.

Summing a Taylor series (5)

There's amazing (but non-examinable) technology "Chebyshev polynomials" whereby the total error is re-distributed from the edges of the input range to throughout the input range and at the same time the maximum absolute error is reduced by orders of magnitude.

Basically we merely calculate a new polynomial

$$\sum_{i=0}^{i=n} a_i' x^i$$

where a'_i is a small adjustment of a_i above. This is called 'power series economisation' because it can cut the number of terms (and hence the execution time) needed for a given Taylor series to a produce given accuracy.

Why fuss about Taylor ...

... and not (say) integration or similar?

It's a general metaphor—in four lectures I can't tell you 50 years of maths and really clever tricks (and there is comparable technology for integration, differential equations etc.!). [Remember when the CS Diploma here started in 1953 almost all of the course material would have been on such numerical programming; in earlier days this course would have been called an introduction to "Numerical Analysis".]

But I can warn you that if you need precision, or speed, or just to show your algorithm is producing a mathematically justifiable answer then you may (and will probably if the problem is non-trivial) need to consult an expert, or buy in a package with certified performance (e.g. NAGLIB, Matlab, Maple, Mathematica, REDUCE . . .).

How accurate do you want to be?

If you want to implement (say) $\sin(x)$

double sin(double x)

with the same rules as the IEEE basic operations (the result must be the nearest IEEE representable number to the the mathematical result when treating the argument as precise) then this can require a truly Herculean effort. (You'll certainly need to do much of its internal computation in higher precision than its result.)

On the other hand, if you just want a function which has *known* error properties (e.g. correct apart from the last 2 sig.figs.) and you may not mind oddities (e.g. your implementation of sine not being monotonic in the first quadrant) then the techniques here suffice.

How accurate do you want to be? (2)

Sometimes, e.g. writing a video game, profiling may show that the time taken in some floating point routine like sqrt may be slowing down the number of frames per second below what you would like, Then, and only then, you could consider alternatives, e.g. rewriting your code to avoid using sqrt or replacing calls to the system provided (perhaps accurate and slow) routine with calls to a faster but less accurate one.

How accurate do you want to be? (3)

Chris Lomont

(http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf) writes [fun, not examinable]:

"Computing reciprocal square roots is necessary in many applications, such as vector normalization in video games. Often, some loss of precision is acceptable for a large increase in speed."

He wanted to get the frame rate up in a video game and considers:

How accurate do you want to be? (4)

His testing in Visual C++.NET showed the code above to be roughly 4 times faster than the naive (float)(1.0/sqrt(x)), and the maximum relative error over all floating point numbers was 0.00175228. [Invisible in game graphics, but clearly numerically nothing to write home about.]

Moral: sometimes floating-point knowledge can rescue speed problems

Why do I use float so much ...

... and is it recommended? [No!]

I use single precision because the maths uses smaller numbers (2^{23} instead of 2^{52}) and so I can use double precision for comparison—I can also use smaller programs/numbers to exhibit the flaws *inherent* in floating point. But for most practical problems I would recommend you use double almost exclusively.

Why: smaller errors, often no or little speed penalty.

What's the exception: floating point arrays where the size matters and where (i) the accuracy lost in the storing/reloading process is manageable and analysable and (ii) the reduced exponent range is not a problem.

Notes for C users

- float is very much a second class type like char and short.
- Constants 1.1 are type double unless you ask 1.1f.
- floats are implicitly converted to doubles at various points (e.g. for 'vararg' functions like printf).
- The ISO/ANSI C standard says that a computation involving only floats may be done at type double, so f and g in float f(float x, float y) { return (x+y)+1.0f; } float g(float x, float y) { float t = (x+y); return t+1.0f; } may give different results.

So: use double rather than float whenever possible for language as well as numerical reasons. (Large arrays are really the only thing worth discussing.)

Part 6

Some statistical remarks

How do errors add up in practice?

During a computation rounding errors will accumulate, and in the worst case will often approach the error bounds we have calculated.

However, remember that IEEE rounding was carefully arranged to be statistically unbiased—so for many programs (and inputs) the errors from each operation behave more like independent random errors of mean zero and standard deviation σ .

So, often one finds a k-operations program produces errors of around $macheps.\sqrt{k}$ rather than macheps.k/2 (because independent random variables' variances sum).

BEWARE: just because the errors tend to cancel for some inputs does not mean that they will do so for all! Trust bounds rather than experiment.

Part 7

Some nastier issues

Ill-conditionedness

Consider solving

$$\begin{array}{rcl} x + 3y & = & 17 \\ 2x - y & = & 6 \end{array} \qquad \text{i.e.} \qquad \left(\begin{array}{c} 1 & 3 \\ 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 17 \\ 6 \end{array}\right)$$

Multiply first equation (or matrix row) by 2 and subtract giving

$$0x + 7y = 34 - 6$$

Hence y = 4 and (so) x = 5. Geometrically, this just means finding where the two lines given by x + 3y = 17 and 2x - y = 6 intersect. In this case things are all nice because the first line has slope 3, and the second line slope -1/2 and so they are nearly at right angles to each other.

Remember, in general, that if

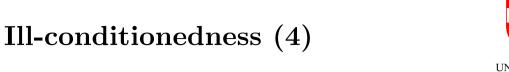
$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} p \\ q \end{array}\right)$$

Then

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} p \\ q \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

Oh, and look, there's a numerically-suspect calculation of ad - bc!

So there are problems if ad - bc is small (not absolutely small, consider $a = b = d = 10^{-10}, c = -10^{-10}$, but relatively small e.g. w.r.t. $a^2 + b^c + c^2 + d^2$). The lines then are nearly parallel.


Here's how to make a nasty case based on the Fibonacci numbers

$$f_1 = f_2 = 1$$
, $f_n = f_{n-1} + f_{n-1}$ for $n > 2$

which means that taking $a = f_n$, $b = f_{n-1}$, $c = f_{n-2}$, $d = f_{n-3}$ gives ad - bc = 1 (and this '1' only looks (absolute error) harmless, but it is nasty in relative terms). So,

$$\begin{pmatrix} 17711 & 10946 \\ 6765 & 4181 \end{pmatrix}^{-1} = \begin{pmatrix} 4181 & -10946 \\ -6765 & 17711 \end{pmatrix}$$

and this all looks so harmless, but..

Consider the harmless-looking

$$\begin{pmatrix} 1.7711 & 1.0946 \\ 0.6765 & 0.4181 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}$$

Solving we get

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 41810000 & -109460000 \\ -67650000 & 177110000 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

which no longer looks so harmless—as a change in p or q by a very small absolute error gives a huge absolute error in x and y. And a change of a,b,c or d by one in the last decimal place changes any of the numbers in its inverse by a factor of at least 2. (Consider this geometrically.)

Ill-conditionedness (5)

So, what's the message? [Definition of 'ill-conditioned']

This is not just a numerical problem (which it would be if we knew that the inputs were infinitely accurate). The problem is that the solution (x, y) is excessively dependent on small variations (these may arise from measurement error, or rounding or truncation error from previous calculations) on the values of the inputs (a,b,c,d,p) and (a,b,c,d,p) and (a,b,c,d,p) and (a,b,c,d,p) and (a,b,c,d,p) in such matrices but is a problem for many real-life situations (e.g. weather forecasting, global warming models).

A sound approach is to form, or to calculate a bound for, (partial) derivatives of the outputs w.r.t. the inputs $\frac{dx}{da}, \dots, \frac{dx}{dq}, \frac{dy}{da}, \dots, \frac{dy}{dq}$ near the point in question. [But this may not be easy!]

Ill-conditionedness (6)

E.g.

$$\frac{d}{da} \left\{ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right\} = \frac{-d}{(ad - bc)^2} \begin{pmatrix} d & -b \\ -c & a - (ad - bc)/d \end{pmatrix}$$

Note that uncertainties in the coefficients of the inverse are divided by $(ad - bc)^2$ (which is itself at additional risk from loss of significance).

The problem gets drastically worse as the size of the matrix increases (see next slide).

E.g. Matlab given a singular matrix finds (rounding error) a sparity inverse (but at least it's professional enough to note this):

$$A = 16$$
 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

>> inv(A)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.796086e-18.

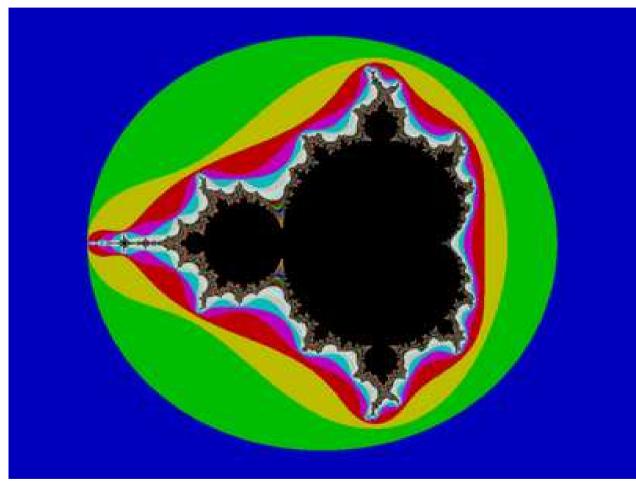
ans = 1.0e+15 *

Note the $10^{15} !!$

There's more theory around, but it's worth noting one definition: the condition number $K_f(x)$ of a function f at point x is the ratio between (small) relative changes of parameter x and corresponding relative change of f(x). High numbers mean 'ill-conditioned' in that input errors are magnified by f.

A general sanity principle for all maths routines/libraries/packages:

Substitute the answers back in the original problem and see to what extent they are a real solution. [Didn't you always get told to do this when using a calculator at school?]



Chaotic Systems [http://en.wikipedia.org/wiki/Chaos_theory] are just a nastier form of ill-conditionedness for which the computed function is highly discontinuous. Typically there are arbitrarily small input regions for which a wide range of output values occur. E.g.

- Mandelbrot set, here we count the number of iterations, $k \in [0..\infty]$, of $z_0 = 0$, $z_{n+1} = z_n^2 + c$ needed to make $|z_k| \ge 2$ for each point c in the complex plane.
- Verhulst's Logistic map $x_{n+1} = rx_n(1-x_n)$ with r=4 [See http://en.wikipedia.org/wiki/Logistic_map for why this is relevant to a population of rabbits and foxes, and for r big enough (4.0 suffices) we get chaotic behaviour. See later.]

83

Part 8

Alternative Technologies to Floating Point (which avoid doing all this analysis, but which might have other problems)

What if, for one reason or another:

- we cannot find a way to compute a good approximation to the exact answer of a problem, or
- we know an algorithm, but are unsure as to how errors propagate so that the answer may well be useless.

Alternatives:

- print(random()) [well at least it's faster than spending a long time producing the wrong answer, and it's intellectually honest.]
- interval arithmetic
- arbitrary precision arithmetic
- exact real arithmetic

Interval arithmetic

The idea here is to represent a mathematical real number value with two IEEE floating point numbers. One gives a representable number guaranteed to be lower or equal to the mathematical value, and the other greater or equal. Each constant or operation must preserve this property (e.g. $(a^L, a^U) - (b^L, b^U) = (a^L - b^U, a^U - b^L)$ and you might need to mess with IEEE rounding modes to make this work; similarly 1.0 will be represented as (1.0,1.0) but 0.1 will have distinct lower and upper limits.

This can be a neat solution. Upsides:

- naturally copes with uncertainty in input values
- IEEE arithmetic rounding modes (to +ve/-ve infinity) do much of the work.

This can be a neat solution to some problems. Downsides:

- Can be slow (but correctness is more important than speed)
- Some algorithms converge in practice (like Newton-Raphson) while the computed bounds after doing the algorithm can be spuriously far apart.
- Need a bit more work that you would expect if the range of the denominator in a division includes 0, since the output range then includes infinity (but it still can be seen as a single range).
- Conditions (like x < y) can be both true and false.

Interval arithmetic (3)

C++ fans: this is an ideal class for you to write:

```
class interval
{ interval(char *) { /* constructor... */ }
    static interval operator +(interval x, interval y) { ... };
};
```

and a bit of trickery such as #define float interval will get you started coding easily.

Some packages allow you to set the precision on a run-by-run basis E.g. use 50 sig.fig. today.

For any *fixed* precision the same problems arise as with IEEE 32- and 64-bit arithmetic, but at a different point, so it can be worth doing this for comparison.

Some packages even allow allow adaptive precision. Cf. lazy evaluation: if I need $e_1 - e_2$ to 50 sig.fig. then calculate e_1 and e_2 to 50 sig.fig. If these reinforce then all is OK, but if they cancel then calculate e_1 and e_2 to more accuracy and repeat. There's a problem here with zero though. Consider calculating

$$\sqrt{2} - \sin(\tan^{-1}(1))$$

(This problem of when an algebraic expression really is exactly zero is formally *uncomputable*—next term has lectures on computability.)

Exact Real Arithmetic

This term generally refers to better representations than digit streams (because it is impossible to print the first digit (0 or 1) of the sum $0.333333\cdots + 0.666666\cdots$ without evaluating until a digit appears in the sum which is not equal to 9).

Implementation techniques (beyond the scope of these lectures) here include:

- infinite sequences of linear maps
- continued fraction expansions; and
- infinite compositions of linear fractional transformations.

UNIVERSITY OF

Results of Verhulst's Logistic map with r = 4 (this is a chaotic CAMBRIDGE function) by Martin Plume (Edinburgh):

Iteration	Single Precision	Double Precision	Correct Result
1	0.881836	0.881836	0.881836
5	0.384327	0.384327	0.384327
10	0.313034	0.313037	0.313037
15	0.022702	0.022736	0.022736
20	<u>0.98</u> 3813	0.982892	0.982892
25	0.652837	0.757549	0.757549
30	0.934927	0.481445	0.481445
40	0.057696	<u>0.02400</u> 8	0.024009
50	0.042174	0.629402	0.625028
60	0.934518	0.757154	0.315445

Correct digits are underlined (note how quickly they disappear).

Pi to a trillion decimal places

Yasumasa Kanada (Tokyo) exploits formula

$$\pi = 48 \tan^{-1} \left(\frac{1}{49} \right) + 128 \tan^{-1} \left(\frac{1}{57} \right) - 20 \tan^{-1} \left(\frac{1}{239} \right) + 48 \tan^{-1} \left(\frac{1}{110443} \right)$$

and

$$\tan^{-1}(x) = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

and an 80,000 line program to get the current world record for π digit calculation (1.2 trillion decimal places of accuracy).

Part 9

What have we learned?

Any floating point computation should be treated with the utmost suspicion unless you can argue how accurate it is

... because ...

here be dragons!