Foundations of
functional programming

Matthew Parkinson
12 Lectures (Lent 2008)

Overview

Foundations

of CS

---- ----

Den Sem

Materials

Previous years notes are still relevant. Will get
copies printed if sufficient demand.

Caveat: What’s in the slides is what’s examinable.

Motivation

Understanding:
® simple notion of computation

Encoding:
® Representing complex features in terms of
simpler features

Functional programming in the wild:
® Visual Basic and C#have functional programming
features.



(Pure) A-calculus

M =X | (M M) | (Ax.M)

Syntax:

® x variable

® (MM) (function) application
® (Ax.M) (lambda) abstraction

World smallest programming language:
® a,pm reductions

® when are two programs equal?

® choice of evaluation strategies

Pure A-calculus is universal

Can encode:

®* Booleans

® Integers

Pairs

Disjoint sums
Lists

Recursion

within the A-calculus.

Can simulate a Turing or Register machine
(Computation Theory), so is universal.

Applied A-calculus

M:=x|MXxXM|MM]|c

Syntax:

® X variables

®* .M (lambda) abstraction
®* MM (function) application
® ¢ (constants)

Elements of c used to represent integers, and also
functions such as addition
®* Jreductions are added to deal with constants

Combinators

M:= MM |c (omitxand ix.M)
We just have c € {S, K} regains power of A-calculus.

Translation to/from lambda calculus including
almost equivalent reduction rules.



Evaluation mechanisms/facts

Eager evaluation (Call-by-value)
Lazy evaluation (Call-by-need)

Confluence “There’s always a meeting place
downstream”

Implementation Techniques

Real implementations

®* “Functional Languages”
®* Don’t do substitution, use environments instead.
® Haskell, ML, F# (, Visual Basic, C#)

SECD

Abstract machine for executing the A-calculus.

4 registers Stack, Environment, Control and Dump.

Continuations

® \-expressions restricted to always return
“O)” [continuations] can implement all A-
expressions

® Continuations can also represent many forms of
non-standard control flow, including exceptions

* call/cc



State

How can we use state and effects in a purely
functional language?

Types

This course is primarily untyped.

We will mention types only where it aids
understanding.

Pure A-calculus

Syntax

Variables: x,y,z,...

Terms:
M,N,L,... === AX.M | MN | x

We write M=N to say M and N are syntactically equal.



Free variables and permutation

We define free variables of a A-term as
* FV(M N) = FV(M) U FV(N)

* FVOX.M) = FV(M) \ {x}

* FV(x) = {x}

We define variable permutation as

® X<X*Z> = X<Z'X> =2

® X<y-z>=Xx (provided x =yandx = z)
® (WXM)<y-z> = Mx<y-z>).(M<y-z>)

®* (MN)<y-z> = (M<y-z>) (N<y-2z>)

Recap: Equivalence relations

An equivalence relation is a reflexive, symmetric and
transitive relation.

Ris an equivalence relation if
® Reflexive
VX. X R x
® Transitive
Vxyz. XRyAyRz=xRz
® Symmetric
VXxy.x Ry=y R X

Congruence and Contexts

A congruence relation is an equivalence relation, that
is preserved by placing terms under contexts.

Context (term with a single hole (*)):
C:=xC|CM|MC]|*
Context application C[M]fills hole (*) with M.

Ris a compatible relation if
® YMNC. MRN = C[M]RC[N]

R is a congruence relation if it is both an
equivalence and a compatible relation.

-equivalence

Two terms are o—-equivalent if they can be made
syntactically equal (=) by renaming bound variables

a-equivalence (=) is the least congruence
relation satisfying

® Ax. M =, Ay. M<x -y> where y & FV(Ax. M)



Intuition of X-equivalence

Consider
AX.AY. XY Z X

We can see this as
@@&E@

and hence the bound names are irrelevant

We only treat terms up to a—equivalence.

Are these alpha-equivalent?

AX.X =¢ AY.Y

AXAY.X =¢ NY.AX.Y

AXY =q AY.Y

(AX.X) (\Y.Y) =a (AY.Y) (AX.X)

AX Y. (X ZY)=aAZ.NY. (2 2Y)

X-equivalence (alternative defn)

Use Axs.M as a shorthand, where
® xS :=XxS,X | []
* MlM=M
® AXS,X.M=Axs. Ax. M
Definition
® MN]X=aMN]X
® AXS,X1.X2 =q \YS,Y1.Y2

if (xi1=xz2andy; =y,)

or (X1 # Xz and y; = y> and AXS.X2 =, AyS.Y2)

® AXS. M1 Mz =q 7\ys N1 Nz

iff Axs.M; =4 Ays.N; and Axs.M; =, Ays.N,

Capture avoiding substitution

If x € FV(M),

* M[L/x]=M

otherwise:

®* (MN)[L/x]=(M[L/x] N[L/x])

® (Ay.M)[L/X] = (Az. M<z - y>[L/X])
where z & FV(x, L, Ay.m)

® x[L/x]=L

Note: In the (Ly.M) case, we use a permutation to
pick an a-equivalent term that does not capture
variables in L.



Extra brackets

(xy)lLyl=xL
To simplify terms we will drop some brackets:
(AX.y) [X/W]=2x.y AXy. M = Ax. (Ay. M)
LMN=(LM)N
(Ax. (xy)) [L/ix] = (AX. (X Y)) AX. M N =2Ax. (M N)
AX. - Oz Some examples
(hx. y) [xiy] = (hz.x) (AX. X X) (AX. X X)Y Z = ((AX.(X X)) (AX.(X X)) Y) 2
(Y. (AX. 2)) [X W/ Z] = (LY.(MX. (X W))) AXyz.xyz = Ax.(hy.(Az. ((xy) 2)))
BNn-reduction Bn examples

AX. X NZ.Z)—pANZ.Z
We define B-reduction as: ( 12 ) Y

(AX.M)N —g M[N/x]

AX. AZ.Z) =5 (\z.
This is the workhorse of the A-calculus. (x.xy) (h2.2) =5 (h2. 2)y

We define n-reduction as: If x & FV(M), then AX. M N x —, (MN)
X.MX) »n M
This collapses trivial functions. (AX. X X) (AX. X X) =g (AX. X X) (AX. X X)

Consider (fn x=> sin x) is this the same as sin in
ML? (AXy. X) (AX.y) =p (AyX. Y)




Reduction in a context

We actually define -reduction as:
CLAAXM)N]—=g C[M[N/x]]

and n-reduction as:
C[ Ax.(Mx))] —=n C[ M ] (where x & FV(M))

where C:=Ax.C|CM|MC|* (from “Context and
Congruence” slide)

Note: to control evaluation order we can consider
different contexts.

How many reductions!?

(AX.X) (AX.X) (AX.X))
(AX.X) (AX.X) (AX.X)

(Xy.X) Z) W

(AXy.Z) (AX.X) (AX.X)) (AX.X)

AXYy. Z

Lecture 2

Normal-form (NF)

A term is in normal form if it there are no  orn
reductions that apply.

Examples in NF:
® x; ax.y;and Axy. x (AX.y)

and not in NF:
® (WxX)y; (M. X X) (AX. X X); and (AX. Y X)

B-normal-form:
® NF ::= Ax. NF | NF;
® NF,::= NF2 NF| x



Normal-forms

A term has a normal form, if it can be reduced to a
normal form:

® (Ax.xX)y has normal form y

® (Ax.yx) hasanormal formy

® (AX.x X) (Ax. x x) does not have a normal form

Note: (AX.XX) (AX.XX) is sometimes denoted Q.

Note: Some terms have normal forms and infinite
reduction sequences, e.g. (AX.y) Q.

Weak head normal form

A term is in WHNF if it cannot reduce when we
restrict the context to

C:=CM|MC|"
That is, we don’t reduce under a A.

AX. Q is a WHNF, but not a NF.

Multi-step reduction

M —*N iff

M ! N

M—, N

M =N (reflexive)

dL. M —=*L and L —* N (transitive)

The transitive and reflexive closure of § and
reduction.

Equality

We define equality on terms, =, as the least
congruence relation, that additional contains
®* a-equivalence (implicitly)

® B-reduction

® n-reduction

Sometimes expressed as M=M’ iff there exists a
sequence of forwards and backwards reductions
fromMto M’:

®* M—=*Ni*<M;—=*Ny* ... —=*N* <M’

Exercise: Show these are equivalent.



Equality properties

If (M —=*N or N—=*M), then M=N.
The converse is not true (Exercise: why?)

If L—=*MandL—*N, then M =N.
If M —=*Land N —=* L, then M =N.

Church-Rosser Theorem

Theorem: If M=N, then there exists L such that M—*L
and N—*L.

Consider (Ax.ax)((ry.by)c):
® (wx.ax)((Ay.by)c) —p a((Ay.by)c) —¢ a(bc)
® (Ax.ax)((Ay.by)c) —¢ (Ax.ax) (bc) —¢ a(bc)
Note: Underlined term is reduced.

Consequences

If M=N and N is in normal form, then M —* N.

If M=N and M and N are in normal forms, then M=,N.

Conversely, if M and N are in normal forms and are
distinct, then M=N. For example, Axy.Xx = AXy.y.

Diamond property

Key to proving Church-Rosser Theorem is

demonstrating the diamond property:

®* If M —=*N; and M —=* Ny, then there exists L such
that N; =* Land N, =* L.

Exercise: Show how this property implies the
Church-Rosser Theorem.



Proving diamond property

The diamond property does not hold for the single

step reduction:

® If M =g Ny and M —¢ Ny, then there exists L such
that Ny =g Land N, —g L.

Proving diamond property

Consider (Ax.xx) (Ia) where | =Ax.x. This has two
initial reductions:

® (AWx.xx)(la)—p (AX.Xx)a—gaa

* (xxx)(la)—p(la)(a)

Now, the second has two possible reduction
sequences:

* (lay(la)y—=pa(la)—paa

* (lay(la)y—=p(la)a—paa

Proving diamond property

Strip lemma:

® If M =g Ny and M —=* Ny, then there exists L such
that N; =* Land N, =* L

Proof: Tedious case analysis on reductions.

Note: The proof is beyond the scope of this course.

Reduction order

Consider (Ax.a) Q this has two initial reductions:
* (AWXx.a)Q—ga
* (Wx.a)Q —p(Ax.a)Q

Following first path, we have reached normal-form,
while second is potentially infinite.



Normal order reduction Other reduction orders

Perform leftmost, outermost p-reduction.
(leave n-reduction until the end)

Call-by-name:
Reduction context

*Ci=CM |-
®C:=xC | C Call-by-value:

® C:=CM|NFRC|:* ® Vi= x| Ax. M (values) s :
. typo in printout
where NF, is from p-normal-form definition. * Ci=CM [ |(AxM)C gl
* C[OXM)V]—5C[ MV/X]]

This definition is guaranteed to reach normal-
form if one exists.

Motivation

Encoding Data We want to use different datatypes in the A-

calculus.

Two possibilities:
® Add new datatypes to the language
® Encode datatypes into the language

Encoding makes program language simpler, but
less efficient.




Encoding booleans

To encode booleans we require IF, TRUE, and FALSE
such that:

IFTRUEMN=M

IFFALSEMN=N

Here, we are using = as defined earlier.

Encoding booleans

Definitions:

® TRUE=Amn. m
® FALSE=Amn. n
® IF=Abmn. bmn

TRUE and FALSE are both in normal-form, so by
Church-Rosser, we know TRUE=FALSE.

Note that, IF is not strictly necessary as
® VP. IFP=P (Exercise: show this).

Encoding booleans

Exercise: Show
® |f L=TRUE then IFLM N =M.
® |f L=FALSE then IFLM N = N.

Logical operators

We can give AND, OR and NOT operators as well:
®* AND = Axy. IF x y FALSE

® OR=Axy.IFx TRUEYy

®* NOT = Ax. IF x FALSE TRUE



Encoding pairs

Constructor:
® PAIR = Axyf. fxy

Destructors:
® FST =Ap.p TRUE
® SND = Ap.p FALSE

Properties: Vpq.
® FST(PAIRpQq)=p
®* SND(PAIRpqg)=q

Encoding sums

Constructors:
® |INL = Ax. PAIR TRUE x
®* INR = Ax. PAIR FALSE x

Destructor:
® CASE=Asfqg.IF(FSTs)(f(SNDs)) (g (SND s))

Properties:
® CASE(INLx)fg="fx
® CASE(INRx)fg=gx

Encoding sums (alternative defn)

Constructors:
® INL=Axfg.fx
®* INR=Axfg.gx

Destructors:
® CASE=\Asfg. sfg

As with booleans destructor unnecessary.
® Vp.CASEp=p

Church Numerals

Define:

®* 0=Afx.x
* 1=Mx.fx
* 2=Afx.f(fx)

* 3=Ax.f(f(fx)

* n=Ax f(.(fx)..)

That is, n takes a function and applies it n times to
its argument: n f is fn



Arithmetic

Definitions
® ADD = Amnfx. mf(nfx)

® MULT =amnfx.m(nf)x =Amnf.m(nf)
®* EXP=amnfx.nmfx =Amn.nm

Example:
ADDmn —=*Afx.mf(nfx)—=*fm(fn x)=fmn x

More arithmetic

Definitions
® SUC=anfx.f(nfx)
® |SZERO = An. n (AX.FALSE) TRUE

Properties

®* SUCh=n+1

® ISZERO 0 =TRUE

® ISZERO (n+1) = FALSE

We also require decrement/predecessor!

Building decrement

n PFN(n)
0 0,0
,nfk%
10
QHIE N I
2 W‘-&\I )I
suc\ |
3 (It\Z)
QHIC N I
SUC *\ T
4 (4,3)

Decrement and subtraction

Definitions:

® PFN =An. n (Ap. (SUC(FST P), FST P)) (PAIR 0 0)
® PRE =An.SND (PFN n)

® SUB=2mn.nPREm

Exercise: Evaluate
®* PFN5
® PREO
®* SUB46



Lists

Constructors:
® NIL = PAIR TRUE (Az.2)
® CONS = Axy. PAIR FALSE (PAIR x y)

Destructors:
® NULL=FST
® HD=ALFST(SNDI)
® TL=XAl.SND (SNDI)

Properties:
® NULLNIL=TRUE
®* HD(CONSMN)=M

Recursion

How do we actually iterate over a list?

Recursion

Fixed point combinator (Y)

We use a fixed point combinator Y to allow
recursion.

In ML, we write:
letrec f(x)=Min N
this is really
letf=Y AfAx.M)inN
and hence
(AM.N) (Y Af. Ax. M)



Defining recursive function

Consider defining a factorial function with the
following property:
FACT = An.(ISZERO n) 1 (MULT n (FACT (PRE n)))

We can define
PREFACT = Afn. (ISZERO n) 1 (MULT n (f (PRE n))

Properties

® Base case: VF. PREFACTFO0=1

® Inductive case: VF. If F behaves like factorial up
to n, then PREFACT F behaves like factorial up to
n+1;

Fixed points

Discrete Maths: x is a fixed point of f, iff f x = x

Assume, Y exists (we will define it shortly) such that
* Yf=f(Yf)

Hence, by using Y we can satisfy this property:
FACT =Y (PREFACT)

Exercise: Show FACT satisfies property on previous
slide.

General approach

If you need a term, M, such that
* M=PM
Then M = YP suffices

Example:
¢ ZEROES = CONS 0 ZEROES = (A\p.CONS 0 p) ZEROES
* ZEROES =Y (Ap.CONS 0 p)

Mutual Recursion

Consider trying to find solutions M and N to:
* M=PMN
* N=QMN

We can do this using pairs:

L =Y(\p. PAIR (P (FST p) (SND p)) (Q (FST p) (SND p)))
M=FSTL
N=SNDL

Exercise: Show this satisfies equations given above.



Y

Definition (Discovered by Haskell B. Curry):
® Y = M. (Ax. f(xx)) (Ax. f(xx))

Properties

YF= (Af. (Ax. f(xx)) (Ax. f(xx))) F

— (AX. F(xx)) (AX. F(xX))

— F (AX. F(xX)) (AX.F(xX)))

<~ F (M. (. f(xx)) (Ax. f(xx))) F) = F(YF)

There are other terms with this property:
® (AXY.XYX) (AXY.XYX)
(see wikipedia for more)

Y has no normal form

We assume:

®* M has no normal form, iff M x has no normal
form. (Exercise: prove this)

Proof of Y has no normal form:

* Yf=f(Yf) (byY property)

®* Assume Y f has a normal form N.

®* Hencef (Y f)canreducetofN,and fNisalsoa
normal form.

®* Therefore, by Church Rosser, f N =N, which is a
contradiction, so Y f cannot have a normal form.

®* Therefore, Y has no normal form.

Head normal form

How can we characterise well-behaved A-terms?

® Terms with normal forms? (Too strong, FACT
does not have normal form)

®* Terms with weak head normal form (WHNF)? (Too
weak, lots of bad terms have this, for example
AX.Q).

®* New concept: Head normal form.

HNF

A term is in head normal form, iff it looks like
AX1..Xm. Y M; ... Mg (m,k= 0)

Examples:
® x, Axy.x, Az.z((Ax.a)c),
® Af. f (x. f(xx)) (Ax. f(xx))

Non-examples:
® \wy.(\xa)y —Aiya
® Af. (. f(xx)) (AX. f(xX))



Properties

Head normal form can be reached by performing
head reduction (leftmost)

* Cu=CM|°

* C:=wmxC|C

Therefore, Q has no HNF (Exercise: prove this.)

If M N has a HNF, then so does M. Therefore, if M
has no HNF, then M N; ... Nx does not have a HNF.
Hence, M is a “totally undefined function”.

ISWIM

A-calculus as a programming language
(The next 700 programming languages [Landin 1966])

ISWIM: Syntax

From the A-calculus

® x (variable)

® Ax.M  (abstraction)

®* MN (application)

Local declarations

® letx=MinN (simple declaration)

® letfx;..xn=MinN (function declaration)

® letrecf X;..xn=Min N (recursive declaration)
and post-hoc declarations

®* Nwherex=M

ISWIM: Syntactic sugar

N where x=M = letx=MinN
letx=MinN (AX.N)M

let f x;..xn=Min N let f = Axi..xn.Min N
letrec f X;..xn =M in N let f = YOMf.AX1..Xn.M) in N

Desugaring explains syntax purely in terms of A-
calculus.



ISWIM: Constants

M:o=x|c|™M|MN

Constants c include:

®01-12-2.. (integers)

® + -x/ (arithmetic operators)
==<> (relational operators)

true false (booleans)

and or not (boolean connectives)

Reduction rules for constants: e.g.
®* +00—50

Call-by-value and IF-THEN-ELSE

ISWIM uses the call-by-value A-calculus.

Consider: IFTRUE1Q

IFETHEN MELSEN = (IFE (Ax.M) (Ax.N)) (Az.2)
where x &€ FV(M N)

Pattern matching

Has
® (M,N) (pair constructor)
® Mp1p2). M (pattern matching pairs)

Desugaring
* MpuLp2).-M = Az.(Apip2. M) (fst z) (snd 2)
where z & FV(M)

Real A-evaluator

Don’t use B and substitution

Do use environment of values, and delayed
substitution.



Environments and Closures

Consider p-reduction sequence
(AXYyX+Y)35—=(Ay3+y)5—=3+5—8.

Rather than produce (Ay.3+y) build a closure:

Clo( y , x+y , x=3)

The arguments are

® bound variable;

® function body; and

® environment.

SECD Machine

Virtual machine for ISWIM.

The SECD machine has a state consisting of four

components S, E, C and D:

® S: The “stack” is a list of values typically

operands or function arguments; it also returns

result of a function call;

E: The “environment” has the form x;=ay;...;Xn=an,

expressing that the variables xi,...,xn» have values

aj...an respectively; and

® C: The “control” is a list of commands, that is A-
terms or special tokens/instructions.

SECD Machine

® D:The “dump” is either empty (-) oris another
machine state of the form (S,E,C,D). A typical
state looks like
(51,E1,C1,(S2,E2,C....(Sn,En,Ch,-)...)
It is essentially a list of triples (S1,E1,Cy),...,(Sn,En,Cn)
and serves as the function call stack.

State transitions: constant

S c;S
E E
c;C C




State-transition: variable State-transition: function

S ;S S Clo(x,M,E);S
E;x=a;F’ E;x=a;F’ E E
x;C C Ax.M;C C
D D D D
State-transition: application State-transition: app primitive
S S f;a;S f(a); S
E E E E
M N;C N; M; app; C app; C C
D D D D




State-transition: app closure

Clo(x,M,E’);a;S
E x=a;F’
—
app; C M
D (S,E,.C,D)

State-transition: return

a a;S
E E
_
C
(S,E,.C,D) D

Final configuration

Compiled SECD machine

Inefficient as requires construction of closures.
Perform some conversions in advance:

® [cl=constc

® [ xI=varx

* [IMNI=[NI;I[MI1;app

® [Ax.M1=Closure(x,[M])

®* IM+NJ=[M];[INT;add

[ ]

More intelligent compilations for “let” and tail
recursive functions can also be constructed.



Example Recursion

The usual fixpoint combinator fails under the SECD

We can see ((Axy.x +y) 3) 5 compiles to machine: it loops forever.

® const 5; const 3; Closure(x,Co); app; app A modified one can be used:
where * Mx.f(hy. x Xy)(Ay.x XY)
® Cy=Closure(y,Cy) This is very inefficient.

® C;=varx;vary;add . .
! y Better approach to have closure with pointer to

itself.
Recursive functions (Y(Afx.M)) Implementation in ML
ng,M,fﬂ= ;E);a;S -
E x=a;f=(':lf(x,M,fj= ;E');E’ SECD machine is a small-step machine.
C M Next we will see a big-step evaluator written in ML.
D SECD




Implementation in ML Implementation in ML

datatype Expr = Name of string
| Numb of int
| Plus of Expr * Expr
| Fn of string * Expr

| Apply of Expr * Expr fun lookup (n, Defn (s,v,r)) =
if s=n then v else lookup(n,r)
datlle'/F;T ;/fél\|/;I | lookup(n, Empty) = raise oddity()

| FnVal of string * Expr * Env
and Env = Empty | Defn of string * Val * Env

Implementation in ML Exercises

fun eval (Name(s), r) = lookup(s,r)
| eval(Fn(bv,body),r) = FnVal(bv,body,r)
| eval(Apply(e,e’), r) =
case eval(e,r)
of IntVal(i) => raise oddity() How could we make it lazy?
| FnVal(bv,body,env) =>
let val arg = eval(e’,r) in
eval(body, Defn(bv,arg,env)




Combinator logic

. Syntax:
Combinators PR == S | K| PQ
Reductions:
KPQ—wP
SPQR—w(PR)(QR)
Note that the term S K does not reduce: it requires

three arguments. Combinator reductions are call
“weak reductions”.

|dentity combinator Church-Rosser

Consider the reduction of, for any P , , )
© SKKP K P (KP) P Combinators also satisfy Church-Rosser:

° _ ; s *
Hence, we define | = S K K, where | stands for '(;P_: S’Rthen exists R such that P —,* R and
identity. W




Encoding the A-calculus

Use extended syntax with variables:
® P:=S|K|PP|x

Define meta-operator on combinators A* by
® AMxx=l

* Mx.P=KP (wherexé&FV(P))

* Mx.PQ=S(*x.P) A*x.Q)

Example translation

(M*X.A*Y. ¥ X)
= A*X. S (VFy.y) (WFy.X)
Ax. (ST (K x)
S (M*X.(S 1)) (W*x.K x)
(K (S 1) (S (Wx.K) (A*X.X))
(K(SNH) S KK

wnv n

There and back again

A-calculus to SK:

* (WxM)cL = (VX (M)ey)
* (XeL=x

®* (MN)cL=M)cL (N)cr

SK to A-calculus:

* (X=X

® (K = Axy.X

® Sr=Axyz.xz(y z)
®* (PQ)=(Ph(Q)

Properties

Free variables are preserved by translation
* FV(M) =FV( (M)cL)
* FV(P) =FV( (Pn)

Supports o and p reduction:
* Wx.P)Q —w* P[Q/X]
® W*Xx.P) = A*y.P<y-x> (wherey € FV(P))



Equality on combinators

Combinators don’t have an analogue of the n-
reduction rule.
® (SK)i = (KI), but SK and Kl are both normal forms

To define equality on combinators, we take the least
congruence relation satisfying:
® weak reductions, and
® functional extensionality: If Px =Q x,thenP=Q
(where x € FV(P Q)).
SKxy = (Ky)(Kx) =y~ ly<Klxy
Therefore, SK =KI.

Properties

We get the following properties of the translation:
* (M) =M

((P))cL) =P

M=N < (M)cL=(N)cL

P-Q <« (P)=(Q)

Aside: Hilbert style proof

In Logic and Proof you covered Hilbert style proof:
* AxiomK: VAB.A — (B — A)

® Axiom S: YABC. (A—(B—C)) — (A—B) = (A—=0))
® Modus Ponens: If A—BandA, then B

Hilbert style proofs correspond to “Typed”
combinator terms:

* SK:VAB.((A—B)—(A—A)

* SKK:VA. (A—A)

Logic, Combinators and the A-calculus are carefully
intertwined. See Types course for more details.

Compiling with combinators

The translation given so far is exponential in the
number of lambda abstractions.

Add two new combinators
®* BPQR —wP(QR)
®* CPQR —=wPRQ

Exercise: Encode B and Cinto just S and K.



Advanced translation

AT X.X I

ATX.P KP  (Xx€FV(P))

ATX.Px = P (X € FV(P))

ATX.PQ = BP(ATx.Q) (X &€ FV(P) and x € FV(Q))
ATx.PQ= C(ATx.P)Q (x €FV(P) and x &€ FV(Q))
ATX.PQ = SATX.P)(ATX.Q) (X EFV(P),x € FV(Q))

(Invented by David Turner)

Example

(ATX.ATY. ¥y X)
(A™X.C (A\Ty.y) X)
(A™X.CIx)

Cl

Compared to (A*x.A*y.y x) =S (K(S 1)) (S(KK) 1)

Translation with A* is exponential, while AT is only
quadratic.

Example

ATEATX. f (X X)

ATE. B (f (A\TX.X X))

ATE. B (F (S (\TX.X) (ATX. X))
=ATE.B(f(S11))
=BB(\T.f(SI1)
=BB(C(\TE.H(S1I)
=BB(CI(SII)

Combinators as graphs

To enable lazy reduction, consider combinator
terms as graphs.

S reduction creates two pointers to the same
subterm.

Let’s consider L=
* let sqr x=mult x x in sqr 5 = (Af. f 5)(Am. mult m m)
this translates to
®* CI5(S multh

Exercise: Show this translation.



CI1l5 (Smultl) Reduction: |

|

Y
N |
NN 4 \é %

S  mult

Reduction: K Reduction: S

=




Reduction: B Reduction: C

L
VN

Recursion Comments

If 5 was actually a more complex calculation, would
only have to perform it once.

Lazy languages such as Haskell, don’t use this

/ /@ method.
Y Could we have done graphs of A-terms? No.
Substitution messes up sharing.

Example using recursion in Paulson’s notes.




Types

Simply typed A-calculus

Types
Tu=int| T =1
Syntactic convention
(T PRl SE AR (S Y|
Simplifies types of curried functions.

Type checking

We check
®* MN:7 iff 3. M:v" =1t and N: 7’
® MX.M:t—1 iff 3t if x:t then M: 7’
® n:int

Semantics course covers this more formally, and

types course next year in considerably more detail.

Type checking

AX. X :int—int

M f.fx:int— (int —int) — int

AMgx. fgx : (11 = )= (—ni)— 11— 1
AMgx. f(gXx) : (11 = )= (12—13)— 11— T

Mx.ffx):t—=1)—=1t—"1




Types help find terms

Considertype (ti—m = 1t) -2~ 1 =T

Term MfMwheref: (i —no— ) andM: -1 —1;
Therefore M =Axy . N where x:t, y:t; and N:ta.
Therefore N=fy x

Therefore Mfxy. fyx: (i n—-1n)-n—=1u—1

Polymorphism and inference

ML type system supports polymorphism:
T =0 | Vot |

Types can be inferred using unification.

Continuations

Overview

Encode evaluation order.

Encode control flow commands: for example Exit,
exceptions, and goto.

Enables backtracking algorithms easily.

Key concept:

® don’treturn, pass result to continuation. (This is
what you did with the MIPS JAL Jump And Link.)
instruction.)



Call-by-value

Definition:
1. [ x k)= k x
2. [ciuk) = kc

3. [ MM Iuk) = k (Ax,K). T MIK))

4. TMNIuk) = IMTI(Gm.[ N I (An. m (nk)))

Intuition:

® [ M ](k) means evaluate M and then pass the
result to k.

® kis what to do next.
Pairs not essential, but make the translation
simpler.

Example: CBV

[Ax.y Iv (k)
k (Mx,K*). Ty T(Kk’))
k (Mx,k™). k' y)

[ (Ax.y) z Tu(k)

= [Axy1(Am.[ z1(An. m(nk)))

[ AX.y I( Am. (An. m(n,k)) z)

(Am. (An. m(n,k)) z) (Mx,k’). k’ y)
— (An. (Mx,k"). kK’ y)) (n,k)) z

= (Mx,K'). k" y)) (z,k)

— k y

Call-by-name

Definition:
® [xIn(k)= xk
® [cInk) = kc
® [Ax.MIn(k)
® [ MN In(k)

k (Mx.k"). TMI(k’) )
[MI(Gm. m k. N I(k’),k))

Only application_different. Don’t

have to evaluate N before Eutting itinto M.

CBN and CBV

For any closed term M (FV(M) = {})

® M terminates with value v in the CBV A-calculus,
iff IMIv(Ax.x) terminates in both the CBV and CBN
A-calculus with value v.

®* M terminates with value v in the CBN A-calculus,
iff [IMIn(Ax.X) terminates in both the CBV and CBN
A-calculus with value v.



Encoding control

Consider trying to add an Exit instruction to the A-
calculus.

® Exit M — Exit (CBN and CBV)

® M Exit — Exit (Just CBV)

When we encounter Exit execution is stopped.
®* (Ax.y) Exit = Exit (CBV)
® (Mxy) Exit =y (CBN)

Encode as
* [Exitl(k)=()  (Both CBV and CBN)

Example CBV

[(Ax.y) Exit]v(k)

[AX.yIv (m. [Exit]v (An. m (n,k)))
[AX.ylv (Am. ())

(7(»)m. 0) (Mx,K"). k" y)

J/III mnm

Example CBN

[(AX.y) Exit]n(k)

[AX.yIn (Am. m (Ak’.[EXitIn(k’),k))

(Am. m (Ak’.[ExitIn(k’),k)) (AM(x,k’).y k)
(Mx,K). y k) (WK [ExitTn(k’),k)

- vk

!

Order of evaluation

With CBV we can consider two orders of evaluation:

Function first:

[MN Iwa(k) = [MIAm.[N]J(@®n. m(nk))

Argument first:

[MNTv(k) = INTGn. ITMTOm. m(nk)))



Example Example (continued)

Consider having two Exit expressions
® [ExitiT(k)=1
* [Exit,1(k)=2

[[EXit1 EXitz]vl(k)
[Exit;] (Am. [Exit2] (An. m (n,k))
1 = [Exit;1(k)

Now, we can observe the two different translations
by considering Exit; Exit:

® [Exit; Exitalvi(k) = [ExitiIva(k) (Function first)

® [Exit; Exitzlva(k) = [EXit2Iva(k) (Argument first)

[Exit; Exita]va(k)
[Exitz] (An. [Exiti] (Am. m (n,k)))
2 = [[EX'tZ]](k)

Typed translation: CBV Types guide translation

Consider types:

tu=b|t—=1| 1l
Here b is for base types of constants, L for
continuation return type.

For function translation: Assume

* k: ([t1 = v —= 1)

® MX.M:1 — 1, hence [Mly: ([t2]v —=1) =L if x:[tlv
Find N suchthatk N: L thereforeN: [ti—= Tt v

We translate: So, N = AM(x,k’). L, where L: L if
* [v—~nlv= ([ulv*([wly—1)—=1 ®* x:[tw lvand

®*[blv=b * kK:[tulv— 1
IfM:tthenAk.[MTu(k): [tlv—=1)—=1 Therefore L=[ M (k")

Sometimes, we write Tt for (t — 1) — 1 [AxM Iu(k) = k (A(x,k). T M 1(k’) )




Types guide translation

Application translation (MN): Assume
® k: ([Tz]]v—>l)
*M 1T —> T2, hence[[M ]]VZ([[11—>172]]V—>J_)—>J_
® N:t,hence[Ny:([tilv—1)— L
Find L such that [ M ]y L: L therefore L:[t;—=t.]y =L
So, L =Am. L, where L, : L if m:[vi—=tlv=[t:1v*([t2Iv —
1)—=1
Find L, such that [ N JvL,:L therefore Ly:[tilv—L
Therefore L, = An. Ly where Ls: L if n:[t1]v.
Therefore L; = m (n,k)

IMNIk) = TMI(m.INI®*n. m(nk)))

Other encodings

We can encode other control structures:

® Exceptions (2 continuations: normal and
exception)

® Breaks and continues in loops (3 continuations:
normal, break, and continue)

®* Goto, jumps and labels

® call/cc (passing continuations into programs)

® backtracking

Exercises

® Find an example that evaluates differently for
each of the three encodings, and demonstrate
this.
®* How would you perform a type call-by-name
translation?
[ti—=t2In= (T [wln)* ([t2ln — 1)) —= L

Aside: backtracking

Continuations can be a powerful way to implement
backtracking algorithms. (The following is due to
Olivier Danvy.)

Consider implementing regular expression pattern
matcher in ML:

datatype re =
Charofchar (* “c” )
| Seqofre*re (* rel;re2 *)
| Altof re *re (* rel| re2 *)
| Starofre*re (* rel* *)



Implementation

Plan: use continuations to enable backtracking:

fun
f(“c”) (a::xs) k = if a=c then (k xs) else false
| f(*c”) [1k =false
| f(rel;re2)xs k= frel xs (Ays.fre2ysk)
| f(rel|re2)xs k=(frel xs k) orelse (f re2 xs k)
| f(rel*)xs k=
(k xs) orelse (f (rel ; re1*) xs k

Exercise: execute
F((a”| @’ b “C"); *b") [, “b”, “c] (hxs. xs=[])

Example execution

“on “ " [N TP 1}

f((“a”; “a” | “a”); “a”) [“a”, “a”] (Axs. xs=[])
(a2 @) [, 2] (s, 12 s (axs xs<[])
—f (“a”; “a”) [“a”, “a”"] (Axs. f“@” xs (Axs.xs=[]))
orelse f “a” [“a”, “a”] (Axs. f “@” xs (Axs.xs=[]))
— (Axs. f“a” xs (Axs.xs=[])) []
orelse f“a” [“a”, “a”] (Axs. f“a” xs (Axs.xs=[]))
— false
orelse f“a” [“a”, “a"] (Axs. f “a” xs (Axs.xs=[]))
— f“a” ["a”, “a"] (Axs. f“a” xs (Axs.xs=[]))
— (Axs. f“a” xs (Axs.xs=[])) [“a”]
— (Axs.xs=[])[] — true

Exercise

How could you extend this to

® count the number of matches; and

¢ allow matches that don’t consume the whole
string?

Remove use of orelse by building a list of
continuations for backtracking.

Comments

Not the most efficient regular expression pattern
matching, but very concise code.

This style can implement efficient lazy pattern
matchers or unification algorithms.



State

Encoding state

Now, we can consider extending the A-calculus with
® Assighment M:=N
® Read 'M

How can we do this by encoding?

ML Program

val a=ref 1;

fun g(x) = (a:= (1a)*2; x+1)
fun h(y) = (a:= (1a)+3; y*2)
print g(1) + h(3) + !a

fun g(x,w) = (x+1,w*2)
fun h(y,w) = (y*2,w + 3)
valwo =1

val (g’,w1) = g(1,w0)
val (h’,w2) = h(3,w1)
printg’ +h’ +w2

Comments

Evaluation order made explicit (CPS transform).
Parameter used to carry state around.

We use the following encoding of state functions,
® SETsxy= Az.IF z=x THEN y ELSE s x

®* GETsx=sXx

Note that, we ignore allocation in this encoding.



CPS and State

Replaced by CBV on next slide.

(This slide is not examinable)

Definition: (This is a CBN translation.)

® [ xIn(k,s)= x(k,s)

® [clntk,s) = k(c,s)

* [AxMIn(k,s) = k (Mx.K'5). IMI(K's))§)
® [MNInk,s) = [MI(Mm,s’). m([NIk,s’")),s)

® [IMIn(ks) =M ]]((k(v,s’)..(GET 'V, s)), s)

* [[M}=NTn(k;s) = [MIOv.s) JR(O.SET s’ VIND).s)

CPS and State

Definition: (This is a CBV translation.)
® [ x1In(k,s)= k(x,s)
® [cln(k,ss) = k(c,s)
[ AXM In(k,s) = k (Mx,k’,s).IMI(k’,s")),s)
[ MN In(k,s) =
[IMI(Am,s’).INIAn,s"). m(nk,s”),s’),s)

['MIn(k,s) = [MI(N(V,s’). (k (GET s’ v, s’),s)
[ [M]:=N Tn(k,s) =

[ M I(V,S’). (INI(AMV',s™).k((),SET s”” vV’),s"),s)

Let notation

We can simplify the presentation by using let
notation:
®* [MI((Mm,s’). [ NI(A(n,s”"). m(n,k,s"),s’),s)
would be
letcps (M,s’) =[ M 1(s) in
letcps (n,s”’) =[N 1I(s’) in m(n,k,s”’)
where
letcps (M,s’)=[MI(s)inT
means
[MIAm,s’). T,s)
Note: This differs from the use of “let” in ISWIM.

Exercises

® Extend encoding with sequential composition
M:N
® Translate: [x]:=1; !X
® Translate: (A\y.z)([x]:=('x+1))
® Alter translation for CBV (assignment, application
cases need changing.)
® Redo translations above.



It’s getting complicated

Common theme, we are threading “stuff” through
the evaluation:

¢ continuations

® state

If we add new things, for example |10 and
exceptions, we will need even more parameters.

Can we abstract the idea of threading “stuff”
through evaluation?

Monad (Haskell)

Haskell provides a syntax and type system for
threading “effects” through code.

Two required operations
® return : t—>Tx
® >o=:Tt—>(t—=T1)>T7 [bind]

Option/Maybe Monad

Types
® Option=t
Definition
® Optiont= unit + t
Operations
Typo
® return:t— Optiont
return M= Some M

® >>=: Optiont — (t = Option t’) — Option 7’
Axy. case x of None => None | Some z=>y z

Example

Imagine findx and findy are of type unit — Option <

findx() >>= Ax.
findy() >>=Ay.
return (X,y)

This code is of type Option (t * ).

ML code:
case findx() of
None => None
| Some x => case findy() of None => None
| Some y => Some (x,y)



Do notation

findx() >>= Ax.
findy() >>=Ay.
return (x,y)

Haskell has syntax to make this even cleaner:

do{
X < findx();
y < findy();
return (x,y)

State monad

Types

¢ Statex

Definition

® Statet = s—s*t (sissome type for
representing state, i.e. partial functions)

Operations

® return: Tt — Statex

® >>= : Statet — (vt — State t’) — State ©’ (infix)
® set:Loc — Int — State ()

® get:Loc — State Int

[ ]

new : () — State Loc

Example: swap

Assume x and y are two locations.

do {
Z < getx;
W < gety;
sety z;
set x w

}

Haskell

Read up on Haskell if this interests you.



Where this course sits

. (Compilers\ [ FoFP | [ Semantics |
Concluding remarks
| l l

Summary

The end

“Everything” can be encoded into the A-calculus.
¢ Caveat: not concurrency!

Should we encode everything into A-calculus?




