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Aims

The aim of this part of the ‘Discrete Mathematics” course is to introduce
fundamental concepts and techniques in set theory in preparation for its many
applications in computer science. This course will include a series of seminars
involving problems and active student participation. The material examinable
is that of the lectures detailed below.

Lecture material

• Mathematical argument (Chapter 1; 2 lectures) Basic mathematical no-
tation and argument, including proof by contradiction, mathematical in-
duction and its variants.

• Sets and logic (Chapter 2; 3 lectures): Subsets of a fixed set as a Boolean
algebra. Venn diagrams. Propositional logic and its models. Validity,
entailment, and equivalence of boolean propositions. Truth tables. Struc-
tural induction. Simplification of boolean propositions and set expressions.
[Proofs of Lemma 2.13, Corollary 2.14, Proposition 2.15 were not lectured
and will not be examined.]

• Relations and functions (Chapter 2; 3 lectures): Product of sets. Rela-
tions, functions and partial functions. Composition and identity relations.
Injective, surjective and bijective functions. Direct and inverse image of
a set under a relation. Equivalence relations and partitions. Directed
graphs and partial orders. Size of sets, especially countability. Cantor’s
diagonal argument to show the reals are uncountable.

• Sets and constructions on sets (Chapter 3; 1.5 lectures): Russell’s para-
dox. Basic sets, comprehension, indexed sets, unions, intersections, prod-
ucts, disjoint unions, powersets. Characteristic functions. Sets of func-
tions. Lambda notation for functions. Cantor’s diagonal argument to
show power set strictly increases size.

• Introduction to inductive definitions (Chapter 4 up to and including 4.4;
1.5 lectures): Using rules to define sets. Reasoning principles: rule induc-
tion and its instances; induction on derivations briefly. Simple applica-
tions, including transitive closure of a relation. [Not Sections 5.5 and 5.6
which will not be examined.]

• Well-founded induction (Selected parts of Chapter 5; 1 lecture): Well-
founded relations and well-founded induction. Product and lexicographic
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product of well-founded relations. Applications, including to Euclid’s al-
gorithm for hcf. Informal understanding of well-founded recursion. [Sec-
tion 6.4.2, Theorem 6.12 and Section 6.5.1 were not lectured and will not
be examined.]

Objectives

On completing this course, students should be able to

• apply basic mathematical notation and arguments, including mathemati-
cal induction.

• understand and be able to use the language of set theory; prove and
disprove assertions using a variety of techniques.

• understand Boolean operations as operations on sets and formulate and
prove statements using Boolean propositions.

• define sets inductively using rules, formulate corresponding proof princi-
ples, and prove properties about inductively-defined sets.

• understand and apply the principle of well-founded induction.

For directors of studies, supervisors and students

At least four supervisions are recommended for this course. It is important that
the supervisions are held concurrently with the course to help students engage
in the course as it takes place, and participate fully in the weekly seminars.
Solutions are available to supervisors via Fiona Billingsley at the Computer
Laboratory, and model answers to the exercises of the seminars will be made
available, also to students, shortly after the relevant seminars.

A brief history of sets

A set is an unordered collection of objects, and as such a set is determined by
the objects it contains. Before the 19th century it was uncommon to think of
sets as completed objects in their own right. Mathematicians were familiar with
properties such as being a natural number, or being irrational, but it was rare to
think of say the collection of rational numbers as itself an object. (There were
exceptions. From Euclid mathematicians were used to thinking of geometric
objects such as lines and planes and spheres which we might today identify
with their sets of points.)

In the mid 19th century there was a renaissance in Logic. For thousands
of years, since the time of Aristotle and before, learned individuals had been
familiar with syllogisms as patterns of legitimate reasoning, for example:

All men are mortal. Socrates is a man. Therefore Socrates is mortal.
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But syllogisms involved descriptions of properties. The idea of pioneers such as
Boole was to assign a meaning as a set to these descriptions. For example, the
two descriptions “is a man” and “is a male homo sapiens” both describe the
same set, viz. the set of all men. It was this objectification of meaning, under-
standing properties as sets, that led to a rebirth of Logic and Mathematics in
the 19th century. Cantor took the idea of set to a revolutionary level, unveiling
its true power. By inventing a notion of size of set he was able compare dif-
ferent forms of infinity and, almost incidentally, to shortcut several traditional
mathematical arguments.

But the power of sets came at a price; it came with dangerous paradoxes.
The work of Boole and others suggested a programme exposited by Frege, and
Russell and Whitehead, to build a foundation for all of Mathematics on Logic.
Though to be more accurate, they were really reinventing Logic in the process,
and regarding it as intimately bound up with a theory of sets. The paradoxes
of set theory were a real threat to the security of the foundations. But with
a lot of worry and care the paradoxes were sidestepped, first by Russell and
Whitehead’s theory of stratified types and then more elegantly, in for exam-
ple the influential work of Zermelo and Fraenkel. The notion of set is now a
cornerstone of Mathematics.

The precise notion of proof present in the work of Russell and Whitehead laid
the scene for Gödel’s astounding result of 1931: any sound proof system able to
deal with arithmetic will necessarily be incomplete, in the sense that it will be
impossible to prove all the statements within the system which are true. Gödel’s
theorem relied on the mechanical nature of proof in order to be able to encode
proofs back into the proof system itself. After a flurry of activity, through the
work of Gödel himself, Church, Turing and others, it was realised by the mid
1930’s that Gödel’s incompleteness result rested on a fundamental notion, that
of computability. Arguably this marks the birth of Computer Science.

Motivation

Why learn Set Theory? Set Theory is an important language and tool for
reasoning. It’s a basis for Mathematics—pretty much all Mathematics can be
formalised in Set Theory. Why is Set Theory important for Computer Science?
It’s a useful tool for formalising and reasoning about computation and the ob-
jects of computation. Set Theory is indivisible from Logic where Computer
Science has its roots. It has been and is likely to continue to be a a source of
fundamental ideas in Computer Science from theory to practice; Computer Sci-
ence, being a science of the artificial, has had many of its constructs and ideas
inspired by Set Theory. The strong tradition, universality and neutrality of Set
Theory make it firm common ground on which to provide unification between
seemingly disparate areas and notations of Computer Science. Set Theory is
likely to be around long after most present-day programming languages have
faded from memory. A knowledge of Set Theory should facilitate your ability
to think abstractly. It will provide you with a foundation on which to build a
firm understanding and analysis of the new ideas in Computer Science that you
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will meet.

The art of proof

Proof is the activity of discovering and confirming truth. Proofs in mathematics
are not so far removed from coherent logical arguments of an everyday kind, of
the sort a straight-thinking lawyer or politician might apply—a Clinton, not
a Bush! A main aim of this course and its attendant seminars is to help you
harness that everyday facility to write down proofs which communicate well to
other people. Here there’s an art in getting the balance right; too much detail
and you can’t see the wood for the trees, too little and it’s hard to fill in the
gaps. The course is not about teaching you how to do formal proofs within a
formal logical system, of the kind acceptable to machine verification—that’s an
important topic in itself, and one which we will touch on peripherally.

In Italy it’s said that it requires two people to make a good salad dressing;
a generous person to add the oil and a mean person the vinegar. Constructing
proofs in mathematics is similar. Often a tolerant openness and awareness is im-
portant in discovering or understanding a proof, while a strictness and discipline
is needed in writing it down. There are many different styles of thinking, even
amongst professional mathematicians, yet they can communicate well through
the common medium of written proof. It’s important not to confuse the rigour
of a well-written-down proof with the human and very individual activity of
going about discovering it or understanding it. Too much of a straightjacket on
your thinking is likely to stymie anything but the simplest proofs. On the other
hand too little discipline, and writing down too little on the way to a proof, can
leave you uncertain and lost. When you cannot see a proof immediately (this
may happen most of the time initially), it can help to write down the assump-
tions and the goal. Often starting to write down a proof helps you discover
it. You may have already experienced this in carrying out proofs by induction.
It can happen that the induction hypothesis one starts out with isn’t strong
enough to get the induction step. But starting to do the proof even with the
‘wrong’ induction hypothesis can help you spot how to strengthen it.

Of course, there’s no better way to learn the art of proof than to do proofs,
no better way to read and understand a proof than to pause occasionally and try
to continue the proof yourself. For this reason you are very strongly encouraged
to do the exercises—most of them are placed strategically in the appropriate
place in the text. The seminars additional to the lectures will I’m sure give
further encouragement! Past Tripos questions are available from the Computer
Laboratory web pages. Another tip: it helps to read the relevant part of the
notes, even cursorily, before the lectures.

Additional reading: The more set-theory oriented books below are those of
Devlin, Nissanke and Stanat-McAllister.

Devlin, K. (2003) Sets, Functions, and Logic, An Introduction to Abstract Math-
ematics. Chapman & Hall/CRC Mathematics (3rd ed.).
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Biggs, N.L. (1989). Discrete mathematics. Oxford University Press.
Mattson, H.F. Jr (1993). Discrete mathematics. Wiley.
Nissanke, N. (1999). Introductory logic and sets for computer scientists. Addison-
Wesley.
Pólya, G. (1980). How to solve it. Penguin.
Stanat, D.F., and McAllister, D.F. (1977), Discrete Mathematics in Computer
Science.Prentice-Hall.
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Chapter 1

Mathematical argument

Basic mathematical notation and methods of argument are introduced, includ-
ing a review of the important principle of mathematical induction.

1.1 Logical notation

We shall use some informal logical notation in order to stop our mathematical
statements getting out of hand. For statements (or assertions) A and B, we
shall commonly use abbreviations like:

• A & B for (A and B), the conjunction of A and B,

• A ⇒ B for (A implies B), which means (if A then B), and so is automat-
ically true when A is false,

• A ⇐⇒ B to mean (A iff B), which abbreviates (A if and only if B), and
expresses the logical equivalence of A and B.

We shall also make statements by forming disjunctions (A or B), with the self-
evident meaning, and negations (not A), sometimes written ¬A, which is true
iff A is false. There is a tradition to write for instance 7 6< 5 instead of ¬(7 < 5),
which reflects what we generally say: “7 is not less than 5” rather than “not 7
is less than 5.”

The statements may contain variables (or unknowns, or place-holders), as in

(x ≤ 3) & (y ≤ 7)

which is true when the variables x and y over integers stand for integers less than
or equal to 3 and 7 respectively, and false otherwise. A statement like P (x, y),
which involves variables x, y, is called a predicate (or property, or relation,
or condition) and it only becomes true or false when the pair x, y stand for
particular things.

9



10 CHAPTER 1. MATHEMATICAL ARGUMENT

We use logical quantifiers ∃, read “there exists”, and ∀, read “ for all”. Then
you can read assertions like

∃x. P (x)

as abbreviating “for some x, P (x)” or “there exists x such that P (x)”, and

∀x. P (x)

as abbreviating “ for all x, P (x)” or “for any x, P (x)”. The statement

∃x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∃x∃y · · · ∃z. P (x, y, · · · , z),

and
∀x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∀x∀y · · · ∀z. P (x, y, · · · , z).

Sometimes you’ll see a range for the quantification given explicitly as in
∀x (0 < x ≤ k). P (x). Later, we often wish to specify a set X over which
a quantified variable ranges. Then one writes ∀x ∈ X. P (x)—read “for all x
in X, P (x)”— instead of ∀x. x ∈ X ⇒ P (x), and ∃x ∈ X. P (x) instead of
∃x. x ∈ X & P (x).

There is another useful notation associated with quantifiers. Occasionally
one wants to say not just that there exists some x satisfying a property P (x)
but also that x is the unique object satisfying P (x). It is traditional to write

∃!x. P (x)

as an abbreviation for

(∃x. P (x)) & (∀y, z. P (y) & P (z) ⇒ y = z)

which means that there is some x satisfying the property P (x) and also that
if any y, z both satisfy the property they are equal. This expresses that there
exists a unique x satisfying P (x).

Occasionally, and largely for abbreviation, we will write e.g., X =def E
to mean that X is defined to be E. Similarly, we will sometimes use e.g.,
P (x) ⇔def A in defining a property in terms of an expression A.

Exercise 1.1 What is the difference between ∀x.(∃y.P (x, y)) and ∃y.(∀x.P (x, y))?
[You might like to consider P (x, y) to mean “x loves y.”] 2
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1.2 Patterns of proof

There is no magic formula for discovering proofs in anything but the simplest
contexts. However often the initial understanding of a problem suggests a gen-
eral pattern of proof. Patterns of proof like those below appear frequently, often
locally as ingredients of a bigger proof, and are often amongst the first things
to try. It is perhaps best to tackle this section fairly quickly at a first reading,
and revisit it later when you have had more experience in doing proofs.

1.2.1 Chains of implications

To prove an A ⇒ B it suffices to show that starting from the assumption A one
can prove B. Often a proof of A ⇒ B factors into a chain of implications, each
one a manageable step:

A ⇒ A1

⇒ · · ·
⇒ An

⇒ B .

This really stands for

A ⇒ A1, A1 ⇒ A2, · · · , An ⇒ B .

One can just as well write “Therefore” (or “∴”) between the different lines, and
this is preferable if the assertions A1, · · · , An are large.

A logical equivalence A ⇐⇒ B stands for both A ⇒ B and B ⇒ A. One
often sees a proof of a logical equivalence A ⇐⇒ B broken down into a chain

A ⇐⇒ A1

⇐⇒ · · ·
⇐⇒ An

⇐⇒ B .

A common mistake is not to check the equivalence in the backwards direction, so
that while the implication Ai−1 to Ai is obvious enough, the reverse implication
from Ai to Ai−1 is unclear, in which case an explanation is needed, or even
untrue. Remember, while a proof of A ⇐⇒ B very often does factor into a
proof of A ⇒ B and B ⇒ A, the proof route taken in showing B ⇒ A needn’t
be the reverse of that taken in showing A ⇒ B.

1.2.2 Proof by contradiction

The method of proof by contradiction was known to the ancients and carries
the Latin name reductio ad absurdum. Sometimes the only known proof of an
assertion A is by contradiction. In a proof by contradiction, to show A, one
shows that assuming ¬A leads to a conclusion which is false. We have thus
shown ¬A is not the case, so A.
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That
√

2 is irrational was a dreadful secret known to the followers of Pythago-
ras. The proof is a proof by contradiction: Assume, with the aim of obtaining a
contradiction, that

√
2 is rational, i.e.

√
2 = a/b where a and b are integers with

no common prime factors. Then, 2b2 = a2. Therefore 2 divides a, so a = 2a0

for some integer a0. But then b2 = 2a2
0. So 2 also divides b—a contradiction.

Beware: a “beginner’s mistake” is an infatuation with proof by contradiction,
leading to its use even when a direct proof is at least as easy.

Exercise 1.2 Show for any integer m that
√

m is rational iff m is a square, i.e.
m = a2 for some integer a.1 2

Sometimes one shows A ⇒ B by proving its contrapositive ¬B ⇒ ¬A.
Showing the soundness of such an argument invokes proof by contradiction. To
see that A ⇒ B follows from the contrapositive, assume we have ¬B ⇒ ¬A.
We want to show A ⇒ B. So assume A. Now we use proof by contradiction to
deduce B as follows. Assume ¬B. Then from ¬B ⇒ ¬A we derive ¬A. But
now we have both A and ¬A—a contradiction. Hence B.

1.2.3 Argument by cases

The truth of (A1 or · · · or Ak) ⇒ C certainly requires the truth of A1 ⇒ C,
. . . , and Ak ⇒ C. Accordingly, most often a proof of (A1 or · · · or Ak) ⇒ C
breaks down into k cases, showing A1 ⇒ C, . . . , and Ak ⇒ C. An example:

Proposition For all nonnegative integers a > b the difference of squares a2−b2

does not give a remainder of 2 when divided by 4.

Proof. We observe that

a2 − b2 = (a + b)(a− b) .

Either (i) a and b are both even, (ii) a and b are both odd, or (iii) one of a,
b is even and the other odd.2 We show that in all cases a2 − b2 does not give
remainder 2 on division by 4.

Case (i): both a and b are even. In this case a2 − b2 is the product of two even
numbers so divisible by 4, giving a remainder 0 and not 2.

Case (ii): both a and b are odd. Again a2 − b2 is the product of two even
numbers so divisible by 4.

1Plato reported that the irrationality of
√

p was known for primes p up to 17, which suggests
that the ancient Greeks didn’t have the general argument. But they didn’t have the benefit
of algebra to abbreviate their proofs.

2In checking the basic facts about even and odd numbers used in this proof it’s helpful to
remember that an even number is one of the form 2k, for a nonnegative integer k, and that
an odd number has the form 2k + 1, for a nonnegative integer k.
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Case(iii): one of a and b is even and one odd. In this case both a + b and a− b
are odd numbers. Their product which equals a2 − b2 is also odd. If a2 − b2

gave remainder 2 on division by 4 it would be even—a contradiction. 2

1.2.4 Existential properties

To prove ∃x. A(x) it suffices to exhibit an object a such that A(a). Often proofs
of existentially quantified statements do have this form. We’ll see examples
where this is not the case however (as in showing the existence of transcendental
numbers). For example, sometimes one can show ∃x. A(x) by obtaining a
contradiction from its negation viz. ∀x. ¬A(x) and this need not exhibit an
explicit object a such that A(a).

Exercise 1.3 Suppose 99 passengers are assigned to one of two flights, one to
Almeria and one to Barcelona. Show one of the flights has at least 50 passengers
assigned to it. (Which flight is it?) 2

1.2.5 Universal properties

The simplest conceivable way to prove ∀x. A(x) is to let x be an arbitrary
element and then show A(x). But this only works in the easiest of cases. More
often than not the proof requires a knowledge of how the elements x are built
up, and this is captured by induction principles. The most well-known such
principle is mathematical induction, which deserves a section to itself.

1.3 Mathematical induction

We review mathematical induction and some of its applications. Mathematical
induction is an important proof technique for establishing a property holds of
all nonnegative integers 0, 1, 2, . . . , n, . . .

The principle of mathematical induction
To prove a property A(x) for all nonnegative integers x it suffices to show

• the basis A(0), and

• the induction step, that A(n) ⇒ A(n + 1), for all nonnegative integers n.

(The property A(x) is called the induction hypothesis.)

A simple example of mathematical induction:

Proposition 1.4 For all nonnegative integers n

0 + 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.
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Proof. By mathematical induction, taking as induction hypothesis the property
P (n) of a nonnegative integer n that

0 + 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

Basis: The sum of the series consisting of just 0 is clearly 0. Also 0(0+1)/2 = 0.
Hence we have established the basis of the induction P (0).

Induction step: Assume P (n) for a nonnegative integer n. Then adding (n + 1)
to both sides of the corresponding equation yields

0 + 1 + 2 + 3 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1) .

Now, by simple algebraic manipulation we derive

n(n + 1)
2

+ (n + 1) =
(n + 1)((n + 1) + 1)

2
.

Thus

0 + 1 + 2 + 3 + · · ·+ n + (n + 1) =
(n + 1)((n + 1) + 1)

2
,

and we have established P (n + 1). Therefore P (n) ⇒ P (n + 1), and we have
shown the induction step.

By mathematical induction we conclude that P (n) is true for all nonnegative
integers. 2

The proof above is perhaps overly pedantic, but it does emphasise that,
especially in the beginning, it is very important to state the induction hypothesis
clearly, and spell out the basis and induction step of proofs by mathematical
induction.

There’s another well-known way to prove Proposition 1.4 spotted by Gauss
in kindergarten. Asked to sum together all numbers from 1 to 100 he didn’t
go away—presumably the goal in setting the exercise, but replied 5, 050, having
observed that by aligning two copies of the sum, one in reverse order,

1 + 2 + · · · + 99 + 100
100 + 99 + · · · + 2 + 1

each column—and there are 100 of them—summed to 101; so that twice the
required sum is 100 · 101.

We can also use mathematical induction to establish a definition over all the
nonnegative integers.

Definition by mathematical induction
To define a function f on all nonnegative integers x it suffices to define
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• f(0), the function on 0, and

• f(n + 1) in terms of f(n), for all nonnegative integers n.

For example, the factorial function n! = 1 · 2 · · · (n− 1) · n can be defined by
the mathematical induction

0! = 1
(n + 1)! = (n + 1) · n!

.

Given a series x0, x1, . . . , xi, . . . we can define the sum

Σn
i=0xi = x0 + x1 + · · ·+ xn

by mathematical induction:

Σ0
i=0xi = x0

Σn+1
i=0 xi = (Σn

i=0xi) + xn+1 .

Exercise 1.5 The number of r combinations from n ≥ r elements

nCr =def
n!

(n− r)!r!

expresses the number of ways of choosing r things from n elements. Prove that
0C0 = 1

n+1Cr =
(n + 1)

r
· nCr−1

for all nonnegative integers r, n with r ≤ n + 1. 2

Exercise 1.6 Let a and d be real numbers. Prove by mathematical induction
that for all nonnegative integers n that

a + (a + d) + (a + 2d) + · · ·+ (a + (n− 1)d) + (a + nd) =
(n + 1)(2a + nd)

2
.

2

Exercise 1.7 Prove by mathematical induction that for all nonnegative inte-
gers n that

1 + 1/2 + 1/4 + 1/8 + · · ·+ 1/2n = 2− 1
2n

.

Let a and r be real numbers. Prove by mathematical induction that for all
nonnegative integers n that

a + a · r + a · r2 + · · ·+ a · rn =
a(1− rn+1)

1− r
.

2
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Sometimes it is inconvenient to start a mathematical induction at basis 0.
It might be easier to start at some other integer b (possibly negative).

Mathematical induction from basis b
To prove a property P (x) for all integers x ≥ b it suffices to show

• the basis P (b), and

• the induction step, that P (n) ⇒ P (n + 1), for all integers n ≥ b.

In fact this follows from ordinary mathematical induction (with basis 0) but with
its induction hypothesis modified to be P (b + x). Similarly it can sometimes
be more convenient to give a definition by induction starting from basis b an
integer different from 0.

Exercise 1.8 Write down the principle for definition by mathematical induc-
tion starting from basis an integer b. 2

Exercise 1.9 Prove n2 > 2n for all n ≥ 3. 2

Tower of Hanoi

The tower of Hanoi is a puzzle invented by E. Lucas in 1883. The puzzle starts
with a stack of discs arranged from largest on the bottom to smallest on top
placed on a peg, together with two empty pegs. The puzzle asks for a method,
comprising a sequence of moves, to transfer the stack from one peg to another,
where moves are only allowed to place smaller discs, one at a time, on top of
larger discs. We describe a method, in fact optimal, which requires 2n−1 moves,
starting from a stack of n discs.

Write T (n) for the number of moves the method requires starting from a
stack of n discs. When n = 0 it suffices to make no moves, and T (0) = 0.
Consider starting from a stack of n + 1 discs. Leaving the largest disc unmoved
we can use the method for n discs to transfer the stack of n smaller discs to
another peg—this requires T (n) moves. Now we can move the largest disc to
the remaining empty peg—this requires 1 move. Using the method for n discs
again we can put the stack of n smaller discs back on top of the largest disc—
this requires a further T (n) moves. We have succeeded in transferring the stack
of n + 1 discs to another peg. In total the method uses

T (n) + 1 + T (n) = 2 · T (n) + 1

moves to transfer n + 1 discs to a new peg. Hence,

T (0) = 0
T (n + 1) = 2 · T (n) + 1

.

Exercise 1.10 Prove by mathematical induction that T (n) = 2n − 1 for all
nonnegative integers n. 2
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Course-of-values induction

A difficulty with induction proofs is finding an appropriate induction hypothesis.
Often the property, say B(x), one is originally interested in showing holds for
all x isn’t strong enough for the induction step to go through; it needs to be
strengthened to A(x), so A(x) ⇒ B(x), to get a suitable induction hypothesis.
Devising the induction hypothesis from the original goal and what’s needed to
carry through the induction step often requires insight.

One way to strengthen a hypothesis A(x) is to assume it holds for all non-
negative numbers below or equal to x, i.e.

∀k (0 ≤ k ≤ x). A(k) .

This strengthening occurs naturally when carrying out an induction step where
the property of interest A(x + 1) may depend not just on A(x) but also on
A(k) at several previous values k. With this strengthened induction hypothesis,
mathematical induction becomes: To prove a property A(x) for all nonnegative
numbers x it suffices to show

• the basis ∀k (0 ≤ k ≤ 0). A(k), and

• the induction step, that

[∀k (0 ≤ k ≤ n). A(k)] ⇒ [∀k (0 ≤ k ≤ n + 1). A(k)] ,

for all nonnegative integers n.

Tidying up, we obtain the principle of course-of-values induction (sometimes
called ‘strong’ or ‘complete’ induction).

Course-of-values induction
To prove a property A(x) for all nonnegative integers x it suffices to show that

• [∀k (0 ≤ k < n). A(k)] ⇒ A(n),

for all nonnegative integers n.

In other words, according to course-of-values induction to prove the property
A(x) for all nonnegative integers x, it suffices to prove the property holds at n
from the assumption that property holds over the ‘course of values’ 0, 1, . . . ,
n− 1 below a nonnegative integer n, i.e.that A(n) follows from A(0), A(1), . . . ,
and A(n − 1). Notice that when n = 0 the course of values below 0 is empty,
and it is not unusual that the case n = 0 has to be considered separately.

There is an accompanying method to define a function on all the nonneg-
ative integers by course-of-values induction: To define an operation f on all
nonnegative integers n it suffices to define

• f(n), the function on n, in terms of the results f(k) of the function on k
for 0 ≤ k < n.
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Definition by course-of-values induction is used directly in recurrence rela-
tions such as that for defining the Fibonacci numbers. The Fibonacci numbers
0, 1, 1, 2, 3, 5, 8, 13, . . . are given by the clauses

fib(0) = 0, fib(1) = 1, fib(n) = fib(n− 1) + fib(n− 2) for n > 1 ,

in which the nth Fibonacci number is defined in terms of the two preceding
numbers.

Just as with mathematical induction it is sometimes more convenient to start
a course-of-values induction at an integer other than 0.

Course-of-values induction from integer b
To prove a property A(x) for all nonnegative integers x ≥ b it suffices to show
that

• [∀k (b ≤ k < n). A(k)] ⇒ A(n),

for all nonnegative numbers n.

This principle follows from course-of-values induction (starting at 0) but
with induction modified to A(x+ b). There’s an analogous definition by course-
of-values induction from integer b.

Exercise 1.11 There are five equally-spaced stepping stones in a straight line
across a river. The distance d from the banks to the nearest stone is the same
as that between the stones. You can hop distance d or jump 2d. So for example
you could go from one river bank to the other in 6 hops. Alternatively you might
first jump, then hop, then jump, then hop. How many distinct ways could you
cross the river (you always hop or jump forwards)?

Describe how many distinct ways you could cross a river with n similarly
spaced stepping stones. 2

Exercise 1.12 Let

ϕ =
1 +

√
5

2
—called the golden ratio. Show that both ϕ and −1/ϕ satisfy the equation

x2 = x + 1 .

Deduce that they both satisfy

xn = xn−1 + xn−2 .

Using this fact, prove by course-of-values induction that the nth Fibonacci num-
ber,

fib(n) =
ϕn − (−1/ϕ)n

√
5

.

[Consider the cases n = 0, n = 1 and n > 1 separately.] 2
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Exercise 1.13 (i) Prove by course-of-values induction (from 2) that every in-
teger n ≥ 2 can be written as a product of prime numbers. (ii) Prove by
course-of-values induction that every integer n ≥ 2 can be written uniquely as a
product of prime numbers in ascending order. [A product of primes in ascending
order is a product pr1

1 · · · prk

k where p1, · · · , pk are primes such that p1 < · · · < pk

and r1, · · · , rk are positive integers.] 2

Why does the principle of mathematical induction hold? On what key fea-
ture of the nonnegative integers does mathematical induction depend? Suppose
that not all nonnegative integers satisfy some property A(x). The key feature
of the nonnegative integers is that amongst all the nonnegative integers that fail
the property A(x) there is a smallest l. If l = 0, then ¬A(0). Otherwise, if l 6= 0,
then l = n+1 for some nonnegative integer n for which A(n) yet ¬A(n+1). So
either the basis or the induction step in the principle of mathematical induction
would fail if A(x) failed to hold for all nonnegative integers x.

There are many structures other than the nonnegative integers for which
if a property does not hold everywhere then it fails to hold at some ‘smallest’
element. These structures also possess induction principles analogous to mathe-
matical induction. But describing the structures, and their induction principles
(examples of well-founded induction to be studied later), would be very hard
without the language and concepts of set theory. (Well-founded induction plays
an essential part in establishing the termination of programs.)

Additional exercises:

Exercise 1.14 (i) Prove that 7 divides 24n+2 + 32n+1 for all nonnegative inte-
gers n. (ii) Prove that 13 divides 3n+1 + 42n−1 for all integers ≥ 1. 2

Exercise 1.15 Prove by mathematical induction that

12 + 22 + 32 + · · ·+ n2 =
1
6
n(n + 1)(2n + 1)

for all integers n ≥ 1.
2

Exercise 1.16 A triomino is an L-shaped pattern made from three square tiles.
A 2n × 2n chessboard, with squares the same size as the tiles, has an arbitrary
square painted purple. Prove that the chessboard can be covered with triomi-
noes so that only the purple square is exposed.
[Use mathematical induction: basis n = 1; the inductive step requires you to
find four similar but smaller problems.]

2
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Chapter 2

Sets and Logic

This chapter introduces sets. In it we study the structure on subsets of a set,
operations on subsets, the relations of inclusion and equality on sets, and the
close connection with propositional logic.

2.1 Sets

A set (or class) is an (unordered) collection of objects, called its elements or
members. We write a ∈ X when a is an element of the set X. We read a ∈ X
as “a is a member of X” or “a is an element of X” or “a belongs to X”, or in
some contexts as just “a in X”. Sometimes we write e.g. {a, b, c, · · ·} for the set
of elements a, b, c, · · ·. Some important sets:

∅ the empty set with no elements, sometimes written { }. (Contrast the
empty set ∅ with the set {∅} which is a singleton set in the sense that it
has a single element, viz. the empty set.)

N the set of natural numbers {1, 2, 3, · · ·}.

N0 the set of natural numbers with zero {0, 1, 2, 3, · · ·}. (This set is often
called ω.)

Z the set of integers, both positive and negative, with zero.

Q the set of rational numbers.

R the set of real numbers.

In computer science we are often concerned with sets of strings of symbols
from some alphabet, for example the set of strings accepted by a particular
automaton.

A set X is said to be a subset of a set Y , written X ⊆ Y , iff every element
of X is an element of Y , i.e.

X ⊆ Y ⇐⇒ ∀z ∈ X. z ∈ Y.

21
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Synonymously, then we also say that X is included in Y .
A set is determined solely by its elements in the sense that two sets are equal

iff they have the same elements. So, sets X and Y are equal, written X = Y , iff
every element of A is a element of B and vice versa. This furnishes a method
for showing two sets X and Y are equal and, of course, is equivalent to showing
X ⊆ Y and Y ⊆ X.

Sets and properties

Sometimes a set is determined by a property, in the sense that the set has as
elements precisely those which satisfy the property. Then we write

X = {x | P (x)},

meaning the set X has as elements precisely all those x for which the property
P (x) is true. If X is a set and P (x) is a property, we can form the set

{x ∈ X | P (x)}

which is another way of writing

{x | x ∈ X & P (x)}.

This is the subset of X consisting of all elements x of X which satisfy P (x).
When we write {a1, · · · , an} we can understand this as the set

{x | x = a1 or · · · or x = an} .

Exercise 2.1 This question is about strings built from the symbols a’s and b’s.
For example aab, ababaaa, etc. are strings, as is the empty string ε.

(i) Describe the set of strings x which satisfy

ax = xa .

Justify your answer.

(ii) Describe the set of strings x which satisfy

ax = xb .

Justify your answer. 2

2.2 Set laws

2.2.1 The Boolean algebra of sets

Assume a set U . Subsets of U support operations closely related to those of
logic. The key operations are

Union A ∪B = {x | x ∈ A or x ∈ B}
Intersection A ∩B = {x | x ∈ A & x ∈ B}
Complement Ac = {x ∈ U | x /∈ A} .
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Notice that the complement operation makes sense only with respect to an
understood ‘universe’ U . A well-known operation on sets is that of set difference
A \B defined to be {a ∈ A | a /∈ B}; in the case where A and B are subsets of
U set difference A\B = A∩Bc. Two sets A and B are said to be disjoint when
A ∩B = ∅, so they have no elements in common.

Exercise 2.2 Let A = {1, 3, 5} and B = {2, 3}. Write down explicit sets for:

(i) A ∪B and A ∩B.

(ii) A \B and B \A.

(iii) (A ∪B) \B and (A \B) ∪B. 2

The operations ∪ and ∩ are reminiscent of sum and multiplication on num-
bers, though they don’t satisfy quite the same laws, e.g. we have A ∪ A = A
generally while a + a = a only when a is zero. Just as the operations sum and
multiplication on numbers form an algebra so do the above operations on sub-
sets of U . The algebra on sets and its relation to logical reasoning were laid bare
by George Boole (1815-1864) in his “Laws of thought,” and are summarised be-
low. The laws take the form of algebraic identities between set expressions. (An
algebra with operations ∪,∩, and (−)c satisfying these laws is called a Boolean
algebra.) Notice the laws A∪∅ = A and A∩U = A saying that ∅ and U behave
as units with respect to the operations of union and intersection respectively.

The Boolean identities for sets: Letting A, B, C range over subsets of U ,

Associativity A ∪ (B ∪ C) = (A ∪B) ∪ C A ∩ (B ∩ C) = (A ∩B) ∩ C

Commutativity A ∪B = B ∪A A ∩B = B ∩A

Idempotence A ∪A = A A ∩A = A

Empty set A ∪ ∅ = A A ∩ ∅ = ∅

Universal set A ∪ U = U A ∩ U = A

Distributivity A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Absorption A ∪ (A ∩B) = A A ∩ (A ∪B) = A

Complements A ∪Ac = U A ∩Ac = ∅

(Ac)c = A

De Morgan’s laws (A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc .
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To show such algebraic identities between set expressions, one shows that
an element of the set on the left is an element of the set on the right, and vice
versa. For instance suppose the task is to prove

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

for all sets A,B, C. We derive

x ∈ A ∩ (B ∪ C) ⇐⇒ x ∈ A and (x ∈ B ∪ C)
⇐⇒ x ∈ A and (x ∈ B or x ∈ C)
⇐⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
⇐⇒ x ∈ A ∩B or x ∈ A ∩ C

⇐⇒ x ∈ (A ∩B) ∪ (A ∩ C) .

The ‘dual’ of the identity is

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .

To prove this we can ‘dualize’ the proof just given by interchanging the symbols
∪,∩ and the words ‘or’ and ‘and.’ There is a duality principle for sets, according
to which any identity involving the operations ∪,∩ remains valid if the symbols
∪,∩ are interchanged throughout. We can also prove the dual of identities
directly, just from the laws of sets, making especial use of the De Morgan laws.
For example, once we know

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

for all sets A,B,C we can derive its dual in the following way. First deduce
that

Ac ∩ (Bc ∪ Cc) = (Ac ∩Bc) ∪ (Ac ∩ Cc) ,

for sets A,B, C. Complementing both sides we obtain

(Ac ∩ (Bc ∪ Cc))c = ((Ac ∩Bc) ∪ (Ac ∩ Cc))c .

Now argue by De Morgan’s laws and laws for complements that the left-hand-
side is

(Ac ∩ (Bc ∪ Cc))c = (Ac)c ∪ ((Bc)c ∩ (Cc)c)
= A ∪ (B ∩ C) ,

while the right-hand-side is

((Ac ∩Bc) ∪ (Ac ∩ Cc))c = (Ac ∩Bc)c ∩ (Ac ∩ Cc)c

= ((Ac)c ∪ (Bc)c) ∩ ((Ac)c ∪ (Cc)c)
= (A ∪B) ∩ (A ∪ C) .

We have deduced the dual identity

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .
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Exercise 2.3 Prove the remaining set identities above. 2

The set identities allow deductions like those of school algebra. For example,
we can derive

U c = ∅ ∅c = U .

To derive the former, using the Universal-set and Complements laws:

U c = U c ∩ U = ∅ ,

Then by Complements on this identity we obtain ∅c = U .
Using the Distributive laws and De Morgan laws with the Idempotence and

Complements laws we can derive standard forms for set expressions. Any set
expression built up from basic sets can be transformed to a union of intersections
of basic sets and their complements, or alternatively as an intersection of unions
of basic sets and their complements, e.g.:

· · · ∪ (Ac
1 ∩A2 ∩ · · · ∩Ak) ∪ · · ·

· · · ∩ (Ac
1 ∪A2 ∪ · · · ∪Ak) ∩ · · ·

The method is to first use the De Morgan laws to push all occurrences of the
complement operation inwards so it acts just on basic sets; then use the Distribu-
tive laws to bring unions (or alternatively intersections) to the top level. With
the help of the Idempotence and Complements laws we can remove redundant
occurrences of basic sets. The standard forms for set expressions reappear in
propositional logic as disjunctive and conjunctive normal forms for propositions.

Exercise 2.4 Using the set laws transform (A ∩ B)c ∩ (A ∪ C) to a standard
form as a union of intersections. 2

The Boolean identities hold no matter how we interpret the basic symbols
as sets. In fact, any identity, true for all interpretations of the basic symbols as
sets, can be deduced from Boole’s identities using the laws you would expect of
equality; in this sense the Boolean identities listed above are complete.

Although the Boolean identities concern the equality of sets, they can also
be used to establish the inclusion of sets because of the following facts.

Proposition 2.5 Let A and B be sets. Then,

A ⊆ B ⇐⇒ A ∩B = A .

Proof. “only if”: Suppose A ⊆ B. We have A ∩ B ⊆ A directly from the
definition of intersection. To show equality we need the converse inclusion. Let
x ∈ A. Then x ∈ B as well, by supposition. Therefore x ∈ A ∩ B. Hence,
A ⊆ A ∩B. “if”: Suppose A ∩B = A. Then A = A ∩B ⊆ B. 2

Exercise 2.6 Let A and B be sets. Prove A ⊆ B ⇐⇒ A ∪B = B. 2
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Proposition 2.7 Let A,B ⊆ U . Then,

A ⊆ B ⇐⇒ Ac ∪B = U .

Proof. Let A,B ⊆ U . Then,

A ⊆ B ⇐⇒ ∀x ∈ U. x ∈ A ⇒ x ∈ B

⇐⇒ ∀x ∈ U. x /∈ A or x ∈ B

⇐⇒ ∀x ∈ U. x ∈ Ac ∪B

⇐⇒ Ac ∪B = U .

2

Exercise 2.8 Let A,B ⊆ U . Prove that A ⊆ B ⇐⇒ A ∩Bc = ∅. 2

2.2.2 Venn diagrams

When an expression describing a set is small it can be viewed pictorially as a
Venn diagram1 in which sets are represented as regions in the plane. In each
diagram below the outer rectangle represents the universe U and the circles the
sets A,B,C.

1After John Venn (1834-1923).
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Exercise 2.9 Describe the set A ∪B ∪ C as a union of 7 disjoint sets (i.e., so
each pair of sets has empty intersection). 2

Exercise 2.10 In a college of 100 students, 35 play football, 36 row and 24
play tiddlywinks. 13 play football and row, 2 play football and tiddlywinks but
never row, 12 row and play tiddlywinks, while 4 practice all three activities.
How many students participate in none of the activities of football, rowing and
tiddlywinks? 2
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2.2.3 Boolean algebra and properties

A property P (x) where x ∈ U determines a subset of U , its extension, the set
{x ∈ U | P (x)}. For instance U might be the set of integers Z, when a suitable
property could be “x is zero” or “ x is a prime number”; the extension of the
first property is the singleton set {0}, while the extension of the second is the
set of primes. In many computer science applications U is a set of program
states and then properties can specify the values stored in certain locations: for
example “state x has value 3 in location Y and 5 in location Z.” Alternatively
U might consist of all the inhabitants of a country when properties of interest
could be those of a census, specifying for example sex, age, household.

Logical operations on properties are paralleled by Boolean operations on
their extensions as sets:

Property Its extension as a set
P (x) {x ∈ U | P (x)}
Q(x) & R(x) {x ∈ U | Q(x)} ∩ {x ∈ U | R(x)}
Q(x) or R(x) {x ∈ U | Q(x)} ∪ {x ∈ U | R(x)}
¬P (x) {x ∈ U | P (x)}c

Q(x) ⇒ R(x) {x ∈ U | Q(x)}c ∪ {x ∈ U | R(x)}

We can think of the meaning (or semantics) of a property as being the set which
is its extension. Then logical operations on properties correspond to Boolean
operations on sets. Two properties being equivalent corresponds to them having
the same extension. The relation of entailment between properties corresponds
to the relation of inclusion between sets. We can reason about properties by
reasoning about sets.

2.3 Propositional logic

Much of the power of Boolean algebra of sets derives from its close connection
with logic. In this section we start to make reasoning itself an object of study.
We show how to view propositions as sets. This provides a a link between set
theory and logic, and explains why the Boolean laws of sets that we have seen
coincide with the laws of propositional logic. It will justify the transfer of laws
and calculations on sets to laws and calculations on logic, and vice versa.

2.3.1 Boolean propositions

The first step is to present the syntax of Boolean propositions:

A, B, ... ::= a, b, c, · · · | T | F | A ∧ B | A ∨ B | ¬A

By which we mean a proposition, which we will typically call A, B, · · ·, is ei-
ther a propositional variable from among a, b, c · · · ∈ Var, a set of propositional
variables, the proposition true T or the proposition false F, or built up using
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the logical operations of conjunction ∧, disjunction ∨ or negation ¬. We de-
fine implication A ⇒ B to stand for ¬A ∨ B, and logical equivalence A ⇔ B as
(A⇒ B) ∧ (B⇒ A). To avoid excessive brackets in writing Boolean propositions
we adopt the usual convention that the operation ¬ binds more tightly than the
two other operations ∧ and ∨, so that ¬A ∨ B means (¬A) ∨ B.

Boolean propositions are ubiquitous in science and everyday life. They are
an unavoidable ingredient of almost all precise discourse, and of course of math-
ematics and computer science. They most often stand for simple assertions
we might make about the world, once we have fixed the meaning of the basic
propositional variables. For example, we might take the propositional variables
to mean basic propositions such as

“It′s raining”, “It′s sunny”, “Dave wears sunglasses”,
“Lucy carries an umbrella”, . . .

which would allow us to describe more complex situations with Boolean propo-
sitions, such as

“It′s sunny∧ Dave wears sunglasses∧¬(Lucy carries an umbrella)”.

But, for example, Boolean propositions can also be used to stand for Boolean
circuits built from and-, or- and not-gates. Then the propositional variables
correspond to input wires which can be at high or low voltages, by convention
understood as true T and false F. For example,j

j
jj Q

Q
QQ

�
�

��
##

��

Q
Q

QQ

b

a

c

∨
¬

∨

∧

is a Boolean circuit representing the Boolean proposition (¬a ∨ b) ∧ (a ∨ c);
giving particular high (T) or low (F) voltages to the input wires a, b, c on the
left, determines, as we move from left to right, a particular value of high (T) or
low (F) on the output wire, at the extreme right.

We can evaluate a Boolean proposition to a truth value once we are given
an assignment of truth values to its propositional variables. A traditional way
to do this is via the method of truth tables—see Section 2.3.4.

We often want to know when one Boolean proposition is equivalent to an-
other. In particular we might want to know when one Boolean circuit can be
replaced by another, presumably simpler one. Fortunately the laws for equiva-
lence of Boolean propositions coincide with the set laws we have just seen once
we read T as the universal set, F as the empty set, ∧ as intersection, ∨ as union
and ¬ as complementation. But why is this so? The key to the answer is to
regard propositions as implicitly describing properties of situations, or states of
the world, and as we’ve seen properties can be regarded as sets.
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2.3.2 Models

To link the set laws with logic, we show how to interpret Boolean propositions
as sets. The idea is to think of a proposition as denoting the set of states, or
situations, or worlds, or individuals, of which the proposition is true. The states
might literally be states in a computer, but the range of propositional logic is
much more general and it applies to any collection of situations, individuals or
things of which the properties of interest are either true or false. For this reason
we allow interpretations to be very general, as formalised through the notion of
model.

A model M for Boolean propositions consists of a set UM, of states, called
the universe of M, together with an interpretation [[A]]M of propositions A as
subsets of UM which satisfies

[[T]]M = UM

[[F]]M = ∅
[[A ∧ B]]M = [[A]]M ∩ [[B]]M
[[A ∨ B]]M = [[A]]M ∪ [[B]]M

[[¬A]]M = [[A]]M
c

.

The idea is that [[A]]M is the set of states satisfying A, or put another way, the
set of states which make A true. All states satisfy T so [[T]]M is UM, the set
of all states. No state should satisfy F so it is interpreted as the empty set of
states. A clause above expresses that the set of states which satisfy A ∧ B is
the same as the set of states which satisfy A and which also satisfy B. So that
clause constrains the interpretation of A∧B to mean what it should mean. There
are no clauses to constrain the interpretation [[b]]M of propositional variables b;
the interpretation [[b]]M picks out the set of states which satisfy b, and in this
sense it fixes the meaning of b. The following Venn diagrams illustrate [[A ∨ B]]M,
[[A ∧ B]]M and [[¬A]]M:
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[[A ∨ B]]M

UM

[[A]]M [[B]]M
•
[[A ∧ B]]M

[[A]]M

[[¬A]]M

UM UM

There are many examples of models.

Example: One model S close to home is to take the universe US as the set of
students in a class and to let propositional variables a, b, c, · · · stand for specific
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properties such as “Being a student of Emmanuel College”, “Having a driving licence”,
“Being nineteen”, etc.. We achieve this in the model by having

[[a]]S = {x ∈ US | x is an Emmanuel student} ,

[[b]]S = {x ∈ US | x has a driving licence} ,

[[c]]S = {x ∈ US | x is nineteen} , etc.

Then, for instance, [[a ∧ ¬b]]S would be the set of students in the class from
Emmanuel who don’t have driving licences. 2

Example: We briefly sketch another example of a model, H, which is useful
in the verification of hardware.2 (The model will reappear in another guise as
the model TA, based on truth assignments, in Section 2.3.3.) Take the universe
UH to be the set of assignments of ‘high’ or ‘low’ voltages to connection points
on a wiring board for simple circuits. Let the connection points be labelled
a, b, c, · · · so an assignment would specify a voltage Vc ∈ {‘high’, ‘low’} for each
connection point c. Interpret propositional variables a, b, c · · · as standing for
assertions “a is high′′, “b is high”, etc.. We achieve this in the model by taking
the interpretation so that for propositional variable b, for instance, [[b]]H is the
set of all assignments V for which Vb = ‘high’.

The relevance of this model for hardware verification is that basic hardware
can be represented by propositions. For example, the positive pole of a battery
connected to b would be represented as b, while earthing b would be represented
as ¬b. A wire between a and b would ensure that the two connections were
either both ‘high’ or both ‘low’, so be represented by a⇔ b. A transistor with
gate g and connections s and d would impose the condition g ⇒ (s ⇔ d),
because when the gate is ‘high’ the transistor behaves as a wire between s and
d. A more complicated circuit would be represented by the conjunction of the
propositions representing its components. Another operation on circuits is that
of ‘hiding,’ in which a specified connection is hidden in the sense that it can no
longer be directly connected to. If a circuit is represented by the proposition A
and the connection b is hidden, the behaviour resulting from hiding is usually
represented by the proposition A[T/b] ∨ A[F/b], got by taking the disjunction of
the results of instantiating b to T and to F in A. But here the model begins to
reveal its limitations; through hiding, a wire could become isolated from any
source or earth, in which case it can be physically unrealistic to describe it as
being either ‘high’ or ‘low.’ 2

Example: A simple representation of a computer state (or store) is in terms of
assignments of values to locations. Assume the locations have names X, Y, Z, · · ·
and have integer contents. The set of states consists of all assignments of integers
to locations. In this case it is sensible for the propositional variables of a model to
stand for particular basic assertions about the contents of locations; for example,
that “X = 3”, which would pick out the set of states for which the location X
had contents 3, or that “X = Y + Z”, which would pick out the set of states at

2See e.g. the Part II CS courses ‘Specification and Verification I, II.’



32 CHAPTER 2. SETS AND LOGIC

which the contents of location X equalled the contents of Y plus the contents
of Z. (The business of program verification often amounts to showing that if a
program starts in state satisfying a particular proposition A, then after successful
execution it ends in a state satisfying another particular proposition B.) 2

Validity and entailment

Using models we can make precise when a proposition is valid (i.e., always true)
and when one proposition entails or is equivalent to another.

Definition: For a proposition A, say A is valid in M iff [[A]]M = UM. That A is
valid in M means A is true at all states of M.
For propositions A and B, say A entails B in M iff [[A]]M ⊆ [[B]]M. That A entails
B in M means that any state satisfying A also satisfies B. Whenever A is true so
is B. The following Venn diagram illustrates A entails B in M:
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�[[A]]M [[B]]M

We’ll say a proposition is valid iff it is valid in all models. For a proposition
A, it’s traditional to write

|= A

to mean A is valid. (In propositional logic we are interested in when a proposition
is always true in all models, and this is caught by validity.)

Let A and B be propositions. We’ll say that A entails B, written

A |= B ,

iff A entails B in all models. We will say A and B are equivalent, and write

A = B ,

when A |= B and B |= A; in this case, [[A]]M = [[B]]M in all models M.

Recall a proposition A ⇒ B is an abbreviation for ¬A ∨ B. Whereas an
implication is a proposition, entailment is a relation between propositions. There
is a subtle connection between entailment and implication:

A entails B in a model M iff A⇒ B is valid in M.

This is because

[[A]]M ⊆ [[B]]M ⇐⇒ [[A]]M
c ∪ [[B]]M = UM ,

by simple set theory (see Proposition 2.7, or draw a Venn diagram). The left-
hand-side expresses that A entails B in the model. The right-hand-side expresses
that A⇒ B is valid in M, i.e. [[A⇒ B]]M = UM. It follows that:
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Proposition 2.11 For Boolean propositions A, B,

A |= B iff |= (A⇒ B) .

An analogous result holds for equivalence:

Corollary 2.12 For Boolean propositions A, B,

A = B iff |= (A⇔ B) .

Proof.

A = B iff A |= B and B |= A

iff |= (A⇒ B) and |= (B⇒ A),by Proposition 2.11,

iff |= (A⇒ B) ∧ (B⇒ A) (Why?), i.e. |= (A⇔ B) .

To answer ‘Why?’ above, notice that generally, for propositions C and D,

(|= C and |= D) iff [[C]]M = UM and [[D]]M = UM , for all models M,

iff [[C ∧ D]]M = UM , for all models M,

iff |= C ∧D .

2

2.3.3 Truth assignments

It’s probably not hard to convince yourself that whether a state in a model
satisfies a proposition is determined solely by whether the propositional variables
are true or false there (and in fact we’ll prove this soon). This suggests a model
based on states consisting purely of truth assignments, and leads us to review
the method of truth tables.

It is intended that a truth assignment should associate a unique truth value
T (for true) and F (for false) to each propositional variable a, b, c, · · · ∈ Var. So
we define a truth assignment to be a set of propositional variables tagged by
their associated truth values. An example of a truth assignment is the set

{aT, bF, cT, · · ·} ,

where we tag a by T to show it is assigned true and b by F to show that it
is assigned false—we cannot have e.g. both aT and aF in the truth assignment
because the truth value assigned to a propositional variable has to be unique.3

3Later you’ll see that in effect a truth assignment is a set-theoretic function from Var to
the set {T, F}, but we don’t have that technology to hand just yet.
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Let UTA be the set consisting of all truth assignments (an example of a set
of sets!). We build a model TA with universe UTA by defining:

[[a]]TA = {t ∈ UTA | aT ∈ t}
[[T]]TA = UTA

[[F]]TA = ∅
[[A ∧ B]]TA = [[A]]TA ∩ [[B]]TA
[[A ∨ B]]TA = [[A]]TA ∪ [[B]]TA

[[¬A]]TA = [[A]]TA
c

.

The idea is that [[A]]TA is the set of truth assignments which make A true, which
is the reason why the clause for propositional variables takes the form it does.
The definition above is an example of a definition by structural induction. We
define an operation, that of [[A]]TA on propositions A, by

• first defining the operation on the atomic expressions, specifying [[a]]TA, for
propositional variables a, and [[T]]TA and [[F]]TA, and

• then specifying the operation on a compound expression in terms of the
operation on immediate subexpressions, e.g. [[A ∨ B]]TA in terms of [[A]]TA
and [[B]]TA.

The model TA based on truth assignments has a privileged position amongst
models. A proposition A is valid in all models iff A is valid in the particular model
TA; a proposition A entails a proposition B iff A entails B in the particular model
TA. This will follow from the next lemma. Its proof is an example of proof by
structural induction. Notice the pattern. We prove a property (the induction
hypothesis, IH) holds of all propositions by showing

• IH holds of all atomic expressions (propositional variables, T, F), and

• that IH holds of compound expressions (for instance A ∧ B) follows from
IH holding of immediate subexpressions (in this instance A and B).

Lemma 2.13 Let A be a proposition. Then, |= A, i.e. A is valid in all models,
iff A is valid in the model TA of truth assignments.

Proof.
“only if”: obvious.
“if”: LetM be a model of propositional logic with set of states UM. For u ∈ UM,
define the truth assignment t(u) by

t(u) = {aT | a ∈ Var & u ∈ [[a]]M} ∪ {aF | a ∈ Var & u /∈ [[a]]M} ,

which assigns T to propositional variable a if u ∈ [[a]]M, and assigns F otherwise.
We show, by structural induction on propositions A, that

∀u. u ∈ [[A]]M iff t(u) ∈ [[A]]TA , (IH)
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for all propositions A. (The statement IH is the induction hypothesis.) The
proof splits into cases according to the syntactic form of A. (We use ≡ for the
relation of syntactic identity.)

A ≡ a, a propositional variable. By the definition of t(u),

u ∈ [[a]]M ⇐⇒ aT ∈ t(u)
⇐⇒ t(u) ∈ [[a]]TA .

Hence the induction hypothesis IH holds for propositional variables.

A ≡ T: In this case IH holds because both u ∈ [[T]]M and t(u) ∈ [[T]]TA for all
u ∈ UM.

A ≡ F: In this case IH holds because both u 6∈ [[T]]M and t(u) 6∈ [[T]]TA for all
u ∈ UM.

A ≡ B ∧ C. In this case the task is to show that IH holds for B and for C implies
IH holds for B ∧ C. Assume that IH holds for B and C. Then,

u ∈ [[B ∧ C]]M ⇐⇒ u ∈ [[B]]M and u ∈ [[C]]M, as M is a model,
⇐⇒ t(u) ∈ [[B]]TA and t(u) ∈ [[C]]TA, by the induction hypothesis,
⇐⇒ t(u) ∈ [[B ∧ C]]TA, as TA is a model.

A ≡ B ∨ C. Similarly we argue

u ∈ [[B ∨ C]]M ⇐⇒ u ∈ [[B]]M or u ∈ [[C]]M, as M is a model,
⇐⇒ t(u) ∈ [[B]]TA or t(u) ∈ [[C]]TA, by the induction hypothesis,
⇐⇒ t(u) ∈ [[B ∨ C]]TA, as TA is a model.

A ≡ ¬B. We argue

u ∈ [[¬B]]M ⇐⇒ u /∈ [[B]]M, as M is a model,
⇐⇒ t(u) /∈ [[B]]TA, by the induction hypothesis.

By structural induction we conclude that the induction hypothesis holds
for all propositions A. We deduce that if [[A]]TA = UTA, the set of all truth
assignments, then [[A]]M = UM for any model M, and hence A is valid. 2

Corollary 2.14 For all propositions A and B,

A |= B iff [[A]]TA ⊆ [[B]]TA .

Proof. “only if”: Suppose A entails B, Then A entails B in any model, and so
in particular in the model TA, i.e. [[A]]TA ⊆ [[B]]TA. “if”: Suppose [[A]]TA ⊆ [[B]]TA.
Then

[[A⇒ B]]TA = [[A]]TA
c ∪ [[B]]TA = UTA . (Why?)

This means A ⇒ B is valid in TA. Therefore |= A ⇒ B by Lemma 2.13. Hence,
A |= B by Proposition 2.11. 2
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2.3.4 Truth tables

Lemma 2.13 explains the widespread applicability of a calculational method
that you may already know. A way to check a proposition is valid, so true in
any conceivable model in any conceivable state, is via the well-known method
of truth tables.

A truth table explains the truth value assigned to a compound proposition
(such as A∨B) in terms of the truth values assigned to its constituent propositions
(A and B). This table explains the basic logical connectives:

A B ¬A A ∧ B A ∨ B A⇒ B A⇔ B
F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

Remark: A slight digression. Sometimes students balk at the truth table for
implication. An implication A ⇒ B is true whenever A is false. This can be at
variance with common usage, as often in everyday speech when we say that A
implies B (or more usually, if A then B) we mean that A has some relevance for,
or causal influence on, B. This everyday usage is clearly not that caught by the
understanding of implication illustrated in the truth table. According to the
truth table

The moon is made of cheese implies I′m a professor

is true regardless of whether or not I’m a professor. The implication we use,
that of the truth table, is sometimes called material implication to distinguish
it from the more sophisticated usages in natural language. 2

One builds truth tables for a more complicated proposition out of truth
tables for its subpropositions in a column-by-column manner. For example, the
truth table for (a ∧ b) ∨ ¬a, built out of propositional variables a and b, takes
the form:4

a b ¬a a ∧ b (a ∧ b) ∨ ¬a
F F T F T
F T T F T
T F F F F
T T F T T

If c were another propositional variable we could expand the truth table with
truth assignments to c without affecting the resulting truth value for (a∧b)∨¬a.
In this way one can expand a truth table for any proposition so that each row
of the table corresponds to a truth assignment to all the propositional variables.
The truth table built for a proposition A specifies those truth assignments (its

4Truth tables can get very big. The CS Part IB course ‘Logic and Proof’ presents more
efficient ways to evaluate the truth value of propositions, methods which take more care-
ful account of the possible sharing of subpropositions, and can exploit the order in which
subpropositions are evaluated to truth values.
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rows) that result in the proposition A being true. This is just another way to
describe [[A]]TA, the set of truth assignments that make A true. The proposition
A is valid iff it is true for all truth assignments. We see this in its truth table
through A being assigned T in every row. Such a proposition is traditionally
called a tautology.

Proposition 2.15 A proposition A is valid iff it is a tautology.

Proof. We show by structural induction on A that for all propositions A,

∀t ∈ UTA. t ∈ [[A]]TA ⇐⇒ the truth table at row t gives T for A , (IH)

taking (IH) to be the induction hypothesis. Once this is shown, it follows that
A is valid (i.e. t ∈ [[A]]TA for all truth assignments t by Lemma 2.13) iff A is a
tautology (i.e. the truth table gives T for A at all rows t).

To carry out the proof by structural induction we need to show: for any
proposition A, if IH holds for the immediate subpropositions of A, then IH holds
for A. The proof falls into cases according to the form of A.

A ≡ a, a propositional variable. In this case,

t ∈ [[a]]TA ⇐⇒ aT ∈ t

⇐⇒ the truth table at t gives T for a.

A ≡ B ∧ C.

t ∈ [[B ∧ C]]TA ⇐⇒ t ∈ [[B]]TA and t ∈ [[C]]TA
⇐⇒ the truth table at t gives T for B and T for C, by IH,
⇐⇒ the truth table at t gives T for B ∧ C.

A ≡ B ∨ C.

t ∈ [[B ∨ C]]TA ⇐⇒ t ∈ [[B]]TA or t ∈ [[C]]TA
⇐⇒ the truth table at t gives T for B or for C, by IH,
⇐⇒ the truth table at t gives T for B ∨ C.

A ≡ ¬B.
t ∈ [[¬B]]TA ⇐⇒ t /∈ [[B]]TA

⇐⇒ the truth table at t does not give T for B, by IH,
⇐⇒ the truth table at t gives F for B
⇐⇒ the truth table at t gives T for ¬B.

2

Proposition 2.15 links facts about sets (validity in any model) to facts about
the evaluation of propositions to truth values (truth tables). From “if”, when-
ever we interpret a tautology in a model it will denote the universe of the model.
From “only if”, any proposition which always denotes the universe in any model
has to be a tautology.
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2.3.5 Methods

We can use truth tables to show an entailment A |= B, or an equivalence A = B.
Recall Proposition 2.11, that

A |= B iff |= A⇒ B .

So, by Proposition 2.15, one way to show A |= B is to show that (A ⇒ B) is a
tautology. But this amounts to showing that in any row (so truth assignment)
where A gives T so does B—B may give T on more rows than A. Conversely, if
A |= B, then any truth assignment making A true will make B true—a fact which
transfers to their truth tables. For example, you can easily check that the truth
tables for A ∨ B and ¬(¬A ∧ ¬B) are the same; hence A ∨ B = ¬(¬A ∧ ¬B). (In
fact, we could have been even more parsimonious in the syntax of propositions,
and taken A ∨ B to be an abbreviation for ¬(¬A ∧ ¬B).)

Truth tables are one way to establish the equivalence A = B of propositions
A and B: check that the truth tables for A and B yield the same truth values
on corresponding rows. But propositions stand for sets in any model so we can
also use the identities of Boolean algebra to simplify propositions, treating con-
junctions as intersections, disjunctions as unions and negations as complements.
For example, from the De Morgan and Complement laws

¬(a ∧ ¬b) = ¬a ∨ ¬¬b
= ¬a ∨ b .

As here we can make use of the fact that equivalence is substitutive in the
following sense. Once we know two propositions B and B′ are equivalent, if we
have another proposition C in which B occurs we can replace some or all of its
occurrences by B′ and obtain an equivalent proposition C′. One way to see this
is by considering the truth table of C—the eventual truth value obtained will be
unaffected if B′ stands in place of B, provided B = B′. This means that we can
handle equivalence just as the equality of school algebra. (Exercise 2.25 guides
you through a proof of the property of substitutivity of equivalence.)

Generally, using the set identities any proposition can be transformed to
disjunctive form as a disjunction of conjunctions of propositional variables and
their negations, or alternatively to conjunctive form as a conjunction of disjunc-
tions of propositional variables and their negations, e.g.:

· · · ∨ (¬a1 ∧ a2 ∧ · · · ∧ ak) ∨ · · ·
· · · ∧ (¬a1 ∨ a2 ∨ · · · ∨ ak) ∧ · · ·

With the help of the Idempotence and Complement laws we can remove redun-
dant occurrences of propositional variables to obtain normal forms (unique up
to reordering), respectively disjunctive and conjunctive normal forms for propo-
sitions. The equivalence of two propositions can be checked by comparing their
normal forms. The normal forms play a central role in theorem proving.

Exercise 2.16 Using the set laws express ¬(a∨b)∨(a∧c) in conjunctive form.
2
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Exercise 2.17 Do this exercise without using Proposition 2.15.
(i) Using the method of truth tables show (¬B⇒ ¬A) = (A⇒ B). Deduce

(¬B⇒ ¬A) ⇔ (A⇒ B)

is a tautology.
(ii) Show in any model M that

[[¬B⇒ ¬A]]M = [[A⇒ B]]M ;

deduce
|= [(¬B⇒ ¬A) ⇔ (A⇒ B)] .

Parts (i) and (ii) give two methods for demonstrating entailments and tau-
tologies linked by Proposition 2.15 . Method (ii) might look long-winded. How-
ever in practice one can drop the [[−]]M brackets, think of propositions as sets
and use Venn diagrams or the set identities to simplify set expressions (just as
we did above in simplifying ¬(a ∧ ¬b)). 2

Exercise 2.18

(i) Show that A⇔ B = (A ∧ B) ∨ (¬A ∧ ¬B).

(ii) Show that A ⇔ (B ⇔ C) = (A ⇔ B) ⇔ C.
[The analogous result does not hold when ⇔ is replaced by ⇒—why not?]

(iii) Show that ¬(B ⇔ C) = ((¬B) ⇔ C).

2

Exercise 2.19 Sheffer’s stroke is not an affliction but a logical operation A|B
out of which all the usual logical operations can be derived. It is defined by the
following truth table:

A B A|B
F F T
F T T
T F T
T T F

Check that A|B = ¬(A ∧ B) by showing that they have the same truth table.
Describe how to define the operations of negation, conjunction and disjunction
out of Sheffer’s stroke. 2

Exercise 2.20 Verify that Peirce’s law, ((A⇒ B) ⇒ A) ⇒ A, is a tautology. 2

Exercise 2.21 Simplify the Boolean proposition

¬(¬(a ∧ ¬(a ∧ b)) ∧ ¬(¬(a ∧ b) ∧ b)) .

2
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Exercise 2.22 Simplify [(a ⇒ b) ∨ (a ⇒ d)] ⇒ (b ∨ d) to the proposition
a ∨ b ∨ d. 2

Exercise 2.23 Consider the argument: “If Anna can cancan or Kant can’t
cant, then Greville will cavil vilely. If Greville will cavil vilely, Will will want.
But Will won’t want. Therefore Kant can cant.” By writing the statement in
quotes as a proposition in terms of four propositional variables and simplifying,
show that it is a tautology and hence that the argument holds. 2

Exercise 2.24 Define the length of a Boolean proposition by structural induc-
tion as follows:

|a| = 1, |T| = 1, |F| = 1,

|A ∧ B| = |A|+ |B|+ 1,

|A ∨ B| = |A|+ |B|+ 1, |¬A| = |A|+ 1 .

Define a translation which eliminates disjunction from Boolean expressions by
the following structural induction:

tr(a) = a, tr(T) = T, tr(F) = F,

tr(A ∧ B) = tr(A) ∧ tr(B),
tr(A ∨ B) = ¬(¬tr(A) ∧ ¬tr(B)), tr(¬A) = ¬tr(A) .

Prove by structural induction on Boolean propositions that

|tr(A)| ≤ 3|A| − 1 ,

for all Boolean propositions A. 2

Exercise 2.25 Define a Boolean propositional context to be given by

C, C′, ... ::= a, b, c, · · · | T | F | [ ] | C ∧ C′ | C ∨ C′ | ¬C

where a, b, c · · · ∈ Var. So a context is like a Boolean proposition but possibly
with several occurrences of a ‘hole’ [ ], into which a Boolean proposition can be
substituted. Define the substitution C[B] of a proposition B into a context C by
structural induction on contexts as follows:

a[B] = a, T[B] = T, F[B] = F, [ ][B] = B,

(C ∧ C′)[B] = C[B] ∧ C′[B], (C ∨ C′)[B] = C[B] ∨ C′[B],
¬C[B] = ¬(C[B]) .

Prove by structural induction on contexts that, for all contexts C,

if B and B′ are propositions for which B = B′, then C[B] = C[B′].

2



Chapter 3

Relations and functions

In this chapter we study how to relate, possibly different, sets through the set-
theoretic definitions of relation and function. We will rely on the product of sets
as the central construction for connecting sets. We are led to consider sets with
extra structure, and the cardinality of sets, in particular the important notion
of countability.

3.1 Ordered pairs and products

Given two elements a, b we can form their ordered pair (a, b). Two ordered pairs
are equal iff their first components are equal and their second components are
equal too, i.e.

(a, b) = (a′, b′) ⇐⇒ a = a′ & b = b′ .

There is also the concept of unordered pair of elements a, b—this is just the set
{a, b}. We’ll only rarely use unordered pairs so “pair” alone will mean ordered
pair.

Often you’ll see the ordered pair (a, b) defined to be the set {{a}, {a, b}}—
this is one particular way of coding the idea of ordered pair as a set. (See
Exercise 3.2 below. Apart from this exercise we’ll never again consider how
ordered pairs are implemented.)

For sets X and Y , their product is the set

X × Y = {(a, b) | a ∈ X & b ∈ Y },

the set of all ordered pairs of elements with the first from X and the second
from Y .

We can use the product construction on sets several times. A ternary product
of sets X×Y ×Z, consisting of triples (x, y, z), can be understood as X×(Y ×Z),
and so on. In the case where all the sets in a product are the same, as in X×X
we often write the product as X2, with X×X×X written as X3, and generally
a product X × · · · × X, the product of n copies of X, as Xn. Such products

41
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are familiar from coordinate geometry: a point on a line can be identified with
a real number in R, the set of real numbers; the points on the plane can be
identified with elements of the product R × R, which we can also write as R2;
three-dimensional space with R3, and so on.

Exercise 3.1 Prove

(i) A× (B ∪ C) = (A×B) ∪ (A× C)

(ii) A× (B ∩ C) = (A×B) ∩ (A× C)

(iii) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

(iv) (A×B)∪ (C×D) ⊆ (A∪C)× (B ∪D) [Show the converse inclusion does
not hold in general.]

2

Exercise 3.2 Show that a set {{a}, {a, b}} behaves as an ordered pair should,
i.e.

{{a}, {a, b}} = {{a′}, {a′, b′}} ⇐⇒ a = a′ & b = b′ .

[This is trickier than you might at first think. Consider the two cases a = b and
a 6= b.] 2

3.2 Relations and functions

A binary relation between X and Y is a subset R ⊆ X×Y —so a subset of pairs
in the relation. We shall often write xRy for (x, y) ∈ R.

Let R ⊆ X × Y . Write R−1 for the converse, or inverse, relation R−1 =
{(y, x) | (x, y) ∈ R}; so R−1 ⊆ Y ×X with yR−1x iff xRy.

A partial function from X to Y is a relation f ⊆ X × Y for which

∀x, y, y′. (x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′.

We use the notation f(x) = y when there is a y such that (x, y) ∈ f and then
say f(x) is defined, and otherwise say f(x) is undefined; the set

{x ∈ X | f(x) is defined}

is called the domain of definition of the partial function f . Sometimes we write
f : x 7→ y, or just x 7→ y when f is understood, for y = f(x). Occasionally one
sees just fx, without the brackets, for f(x).

A (total) function from X to Y is a partial function from X to Y such that
for all x ∈ X there is some y ∈ Y such that f(x) = y. Although total functions
are a special kind of partial function it is traditional to understand something
described as simply a function to be a total function, so we always say explicitly
when a function is partial.
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To stress the fact that we are thinking of a function f from X to Y as
taking an element of X and yielding an element of Y we generally write it as
f : X → Y . To indicate a partial function f from X to Y we write f : X ⇀ Y .
For both functions and partial functions from X to Y , the set X is called the
domain of the function and Y the codomain of the function.

Note that individual relations and functions are also sets. This fact deter-
mines equality between relations, and equality between functions; they are equal
iff they consist of the same set of pairs. We can reword this fact in the case of
functions and partial functions.

Proposition 3.3

(i) Let R,R′ ⊆ X × Y . Then,

R = R′ iff ∀x ∈ X, y ∈ Y. xRy ⇐⇒ xR′y .

(ii) Let f, f ′ : X → Y . Then,

f = f ′ iff ∀x ∈ X. f(x) = f ′(x) .

(iii) Let f, f ′ : X ⇀ Y . Then,

f = f ′ iff ∀x ∈ X. (f(x) is defined ⇒ f ′(x) is defined & f(x) = f ′(x)) &
(f ′(x) is defined ⇒ f(x) is defined & f(x) = f ′(x)) .

So, to investigate whether two functions with the same domain and codomain
are equal it suffices to show that they give the same results when applied to an
arbitrary common argument.

Exercise 3.4 If A has k elements and B has m elements, how many relations
are there between A and B? 2

Exercise 3.5 Let R and S be relations between A and B. Show that, if R ⊆ S,
then R−1 ⊆ S−1. Prove that (R∩S)−1 = R−1∩S−1 and (R∪S)−1 = R−1∪S−1.

2

Exercise 3.6 If A and B are finite sets with m and n elements respectively,
how many functions and how many partial functions are there from A to B? 2

3.2.1 Composing relations and functions

We compose relations, and so partial and total functions, R between X and Y
and S between Y and Z by defining their composition, a relation between X
and Z, by

S ◦R =def {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R & (y, z) ∈ S} .

Let R ⊆ X × Y , S ⊆ Y ×Z and T ⊆ Z ×W . It should not be hard to convince
yourself that

T ◦ (S ◦R) = (T ◦ S) ◦R

i.e. composition is associative.
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Exercise 3.7 Let A = {1, 2, 3, 4}, B = {a, b, c, d} and C = {x, y, z}. Let
R = {(1, a), (2, d), (3, a), (3, b), (3, d)} and S = {(b, x), (b, z), (c, y), (d, z)}. What
is their composition S ◦R? 2

Exercise 3.8 Show that the composition of relations is associative. 2

Each set X is associated with an identity relation idX where idX = {(x, x) | x ∈ X}.
It is easy to see that for any relation R between X and Y

R ◦ idX = idY ◦R = R

—so the identity relation does indeed behave like an identity with respect to
composition. Note that the identity relation is a function.

For functions f : X → Y and g : Y → Z their composition is also a function
g◦f : X → Z (check!). Similarly, the composition of partial functions f : X ⇀ Y
and g : Y ⇀ Z is a partial function g ◦ f : X ⇀ Z (check!).

We say a function f : X → Y is injective (or 1-1) iff

∀x, x′ ∈ X. f(x) = f(x′) ⇒ x = x′ .

In other words, taking the contrapositive of this implication, distinct elements of
X go to distinct elements of Y . An injective function is often called an injection.

We say a function f : X → Y is surjective (or onto) iff

∀y ∈ Y ∃x ∈ X. y = f(x) .

A surjective function is often called an surjection.
A function f : X → Y is bijective iff it is both injective and surjective.

Bijective functions f : X → Y are called bijections; the sets X and Y are said
to be in 1-1 correspondence, or bijective correspondence.

A function f : X → Y has an inverse function g : Y → X iff g(f(x)) = x for
all x ∈ X, and f(g(y)) = y for all y ∈ Y . Notice the symmetry: f has inverse g
means g has inverse f , and vice versa.

Lemma 3.9 A function f : X → Y is bijective iff it has an inverse function.

Proof.
‘if”: Suppose f : X → Y has an inverse g : Y → X. Let x, x′ ∈ X and suppose
f(x) = f(x′). Then

x = g(f(x)) = g(f(x′)) = x′ .

Hence f is injective. Let y ∈ Y . Then f(g(y)) = y. Hence f is surjective. It
follows that f is bijective.
“only if”: Assume f : X → Y is bijective. Define the relation g ⊆ Y × X by
g = f−1, the converse relation of f , so (y, x) ∈ g ⇐⇒ f(x) = y.

Suppose (y, x), (y, x′) ∈ g. Then, f(x) = y and f(x) = y′, so y = y′. Given
y ∈ Y there is x ∈ X such that f(x) = y as f is surjective, making (y, x) ∈ g.
This shows that g is a function g : Y → X which moreover satisfies

g(y) = x ⇐⇒ f(x) = y . (†)
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We now deduce that g is injective. Suppose g(y) = g(y′), where y, y′ ∈ Y .
Letting x = g(y) = g(y′) we see from (†) that both f(x) = y and f(x) = y′,
whence y = y′.

If g(f(x)) = x′ then f(x′) = f(x) by (†), so x = x′, as f is injective. If
f(g(y)) = y′ then g(y′) = g(y) by (†), so y = y′, as g is injective. This shows
that g is an inverse to f . 2

Suppose f : X → Y has an inverse g : Y → X. Then g has f as its inverse.
So by Lemma 3.9, both f and g are bijective. It is traditional to write f−1 for
the inverse of a function f .

Exercise 3.10 Show that the composition of injective/surjective/bijective func-
tions is respectively injective/surjective/bijective. 2

Exercise 3.11 Let D be the set {x ∈ R | x > 1}. Define a binary relation
g ⊆ D ×D by taking

(u, v) ∈ g iff
1
u

+
1
v

= 1 .

(i) Express v as a formula in u for (u, v) ∈ g. Deduce that g is a function
g : D → D.

(ii) Define an inverse function to g and prove that it has the desired properties.
Deduce that g : D → D is a bijection.

[The formula 1
u + 1

v = 1 expresses the relation between the distance of an object
u and the distance of its image v from a lens with focal length 1.] 2

3.2.2 Direct and inverse image of a relation

We extend relations, and thus partial and total functions, R ⊆ X × Y to an
operation acting on subsets by taking

R A = {y ∈ Y | ∃x ∈ A. (x, y) ∈ R}

for A ⊆ X. The set R A is called the direct image of A under R. We define

R−1B = {x ∈ X | ∃y ∈ B. (x, y) ∈ R}

for B ⊆ Y . The set R−1B is called the inverse image of B under R; note that it
is the same set as the direct image of the set B under the converse, or inverse,
relation R−1. Of course, the same notions of direct and inverse image also apply
in the special cases where the relation is a partial function or function.

Exercise 3.12 Suppose f : X → Y is a function. Show f−1 preserves the
Boolean operations of union, intersection and complement, i.e. for all B,C ⊆ Y ,

f−1(B ∪ C) = (f−1B) ∪ (f−1C) , f−1∅ = ∅ ,

f−1(B ∩ C) = (f−1B) ∩ (f−1C) , f−1Y = X ,

f−1(Bc) = (f−1B)c .
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What analogous properties hold of the direct image under f? Suppose now
f : X ⇀ Y is a partial function. Describe how to modify the above identities
to make them hold in this case. Which identities will hold if f is assumed only
to be a relation? 2

3.3 Relations as structure

Often in mathematics and computer science we are not so much concerned with
bare sets, but rather with sets that possess some extra structure. We consider
three important examples, directed graphs, equivalence relations and partial
orders. These all arise as a special kind of relation R ⊆ X × Y , where in
particular the sets X and Y are the same; then, we often describe R as being a
relation on the set X.

3.3.1 Directed graphs

One of the simplest examples of sets with structure is that of directed graphs.

Definition: A directed graph (or digraph) is a set X on which there is a relation
R ⊆ X×X and so is described by (X, R). The elements of X are called vertices
(or nodes) and the elements of R directed edges (or arcs).

Finite directed graphs (i.e. those with a finite set of vertices) have a natural
diagrammatic representation in which vertices are drawn as nodes and directed
edges as arcs between them. Here, for example, is the diagram of the directed
graph with vertices {a, b, c, d} and directed edges {(a, c), (b, c), (a, a)}:

a•88

��

•b

~~||
||

||
||

c• •d

Directed graphs are ubiquitous in computer science. They appear both as repre-
sentations of data-types, expressing relations between objects, and of processes,
expressing the possible transitions between states.

3.3.2 Equivalence relations

One often encounters relations that behave like a form of equality or equivalence,
captured in the definition of equivalence relation.

An equivalence relation is a relation R ⊆ X ×X on a set X which is

• reflexive: ∀x ∈ X. xRx,

• symmetric: ∀x, y ∈ X. xRy ⇒ yRx and

• transitive: ∀x, y, z ∈ X. xRy & yRz ⇒ xRz.
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If R is an equivalence relation on X then the (R-)equivalence class of an
element x ∈ X is the subset {x}R =def {y ∈ X | yRx}.

An equivalence relation on a set X determines a partition of X. A partition
of a set X is a set P of non-empty subsets of X for which each element x of X
belongs to one and only one member of P . In other words, a partition P of X
is a collection of nonempty, disjoint subsets of X such that each element x of X
belongs to a member of P .

Theorem 3.13 Let R be an equivalence relation on a set X. The set X/R =def

{{x}R | x ∈ X} of equivalence classes with respect to R is a partition of the set
X. Moreover, {x}R = {y}R iff xRy for all x, y ∈ X.

Proof. Let x ∈ X. Then as R is reflexive, x ∈ {x}R. So every member of X/R

is nonempty and each element of X belongs to a member of X/R. For X/R to
be a partition we also require that its members are disjoint. However, we will
show

(1) {x}R ∩ {y}R 6= ∅ ⇒ xRy , and
(2) xRy ⇒ {x}R = {y}R ,

from which {x}R∩{y}R 6= ∅ ⇒ {x}R = {y}R follows, for any elements x, y ∈ X.

(1) Suppose {x}R ∩{y}R 6= ∅. Then there is some z ∈ {x}R ∩{y}R. Hence zRx
and zRy. Then xRz and zRy, as R is symmetric. As R is transitive we obtain
xRy.

(2) Suppose xRy. Let w ∈ {x}R. Then wRx and xRy, so wRy by transitivity
of R. Thus w ∈ {y}R. This shows {x}R ⊆ {y}R. Because R is symmetric we
have yRx and so by a similar argument we also obtain {y}R ⊆ {x}R. Hence
{x}R = {y}R.

If {x}R = {y}R, then certainly x ∈ {x}R ∩ {y}R, so xRy by (1). Combining
with (2) we see that {x}R = {y}R iff xRy for all x, y ∈ X. 2

There is a simple converse to Theorem 3.13:

Proposition 3.14 Let P be a partition of a set X. The relation R on X,
defined by

xRy ⇐⇒ ∃p ∈ P. x ∈ p & y ∈ p ,

is an equivalence relation on the set X with X/R = P .

Exercise 3.15 Provide the proof to Proposition 3.14. 2

Exercise 3.16 Let A = {1, 2, 3}. List all the partitions of A. How many
equivalence relations are there on A? How many relations are there on A? 2
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Exercise 3.17 Let ∼=⊆ S × S be a relation on a set of sets S such that A ∼= B
iff the sets A and B in S are in bijective correspondence. Show that ∼= is an
equivalence relation. 2

Exercise 3.18 Let k ∈ N. Show that congruence modulo k is an equivalence
relation on Z. [Recall a ≡ b (mod k) iff ∃n ∈ Z. (a− b) = n.k.] 2

Exercise 3.19 Let R and S be equivalence relations on sets A and B respec-
tively. Let p : A → A/R and q : B → B/S be the obvious functions from
elements to their equivalence classes. Suppose f : A → B is a function. Show
that the following two statements are equivalent:

(i) ∃g : A/R → B/S. g ◦ p = q ◦ f ;

(ii) ∀a, a′ ∈ A. aRa′ ⇒ f(a)Sf(a′) . 2

Exercise 3.20 Suppose (P,−→) is a directed graph. A bisimulation on P is a
relation R ⊆ P × P such that whenever p R q then

• ∀p′ ∈ P. p −→ p′ ⇒ ∃q′ ∈ P. q −→ q′ & p′R q′, and

• ∀q′ ∈ P. q −→ q′ ⇒ ∃p′ ∈ P. p −→ p′ & p′R q′.

Define the bisimilarity relation ∼ on P by taking p ∼ q iff p R q, for some
bisimulation R on P .

Show the following:

(i) the identity relation idP is a bisimulation on P ;

(ii) if R is a bisimulation on P then its converse relation R−1 is a bisimulation
on P ;

(iii) if relations R and S are bisimulations on P , then their composition S ◦R
is a bisimulation on P .

Deduce that the bisimilarity relation ∼ is an equivalence relation on P . Show
that ∼ is itself a bisimulation on P . 2

3.3.3 Partial orders

A very important example of sets with structure is that of sets equipped with
a relation ordering elements (perhaps with respect to some characteristic like
size).

Definition: A partial order (p.o.) is a set P on which there is a binary relation
≤, so described by (P,≤), which is:

(i) reflexive: ∀p ∈ P. p ≤ p
(ii) transitive: ∀p, q, r ∈ P. p ≤ q & q ≤ r ⇒ p ≤ r
(iii) antisymmetric: ∀p, q ∈ P. p ≤ q & q ≤ p ⇒ p = q.
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A total order is a partial order (P,≤) in which every pair of elements are
comparable in the sense that

p ≤ q or q ≤ p

for all p, q ∈ P . If we relax the definition of partial order and do not insist on
(iii) antisymmetry, and only retain (i) reflexivity and (ii) transitivity, we have
defined a preorder on a set.

Example: Let P be a set consisting of subsets of a set S. Then P with the
subset relation, (P,⊆), is a partial order. 2

Finite partial orders can be drawn as very special directed graphs. Taking
the economy of not drawing unnecessary arcs, viz. the identity arcs and those
that follow from transitivity, one obtains the Hasse diagram of a finite partial
order.

Exercise 3.21 Draw the Hasse diagram of the partial order (P,⊆) where P
consists of all subsets of {a, b, c}. 2

Often the partial order itself supports extra structure. For example, in a
partial order (P,≤), we often consider the least upper bound (lub, or supremum,
or join) of a subset of P . Let X ⊆ P . An element p such that (∀x ∈ X. x ≤ p)
is called an upper bound of the subset X. Accordingly, a least upper bound of X
is an element u ∈ P which is both an upper bound, i.e.

∀x ∈ X. x ≤ u ,

and the least such, i.e. for all p ∈ P ,

(∀x ∈ X. x ≤ p) ⇒ u ≤ p .

Note that if a least upper bound of a set exists it has to be unique; any two
least upper bounds u1 and u2 have to satisfy both u1 ≤ u2 and u2 ≤ u1, and
hence be equal. When it exists the least upper bound of a subset X is written
as

∨
X. Note that if

∨
∅ exists it is the least element in P , because then all p

in P are upper bounds of ∅ so ∨
∅ ≤ p .

In a dual way, an element p such that (∀x ∈ X. p ≤ x) is called a lower bound
of a subset X ⊆ P . The greatest lower bound (glb, infimum or meet) of a subset
X ⊆ P . is an element l ∈ P which is a lower bound of X and such that for all
p ∈ P ,

(∀x ∈ X. p ≤ x) ⇒ p ≤ l .

A greatest lower bound of a subset X is unique if it exists, and is written as∧
X. Note that if

∧
∅ exists it is the greatest element in P , because then for

all p ∈ P ,
p ≤

∧
∅ .

A partial order need not have all lubs and glbs. When it has lubs and glbs of
all subsets it is called a complete lattice.
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Example: Let P be a set consisting of all subsets of a set S. (In other words
P is the powerset of S—see the next chapter.) Then P with the subset relation,
(P,⊆), is a partial order with all lubs and glbs—lubs are given by unions and
glbs by intersections. 2

Exercise 3.22 Let (N,≤) be the set of natural numbers with the relation m ≤
n meaning m divides n. Show (N,≤) is a partial order with lubs and glbs of all
pairs. What are these lubs and glbs in more traditional terms? If N is replaced
by Z, does the divides relation still yield a partial order? 2

Exercise 3.23 Show that if a partial order has all lubs, then it necessarily also
has all glbs and vice versa. 2

Exercise 3.24 Let (P,.) be a preorder. Define the relation ' on P by

p ' q iff p . q & q . p .

Show ' is an equivalence relation. Define (P/',≤) to comprise the set P/' of
'-equivalence classes on which

x ≤ y iff ∃p, q. x = {p}' & y = {q}' & p . q .

Show (P/',≤) is a partial order. [The partial order (P/',≤) is often written
(P/', . /') and called the quotient of the preorder (P,.).] 2

3.4 Size of sets

A useful way to compare sets is through an idea of their size. Write A ∼= B
to mean there is bijective correspondence between sets A and B. The relation
A ∼= B satisfies the properties of an equivalence relation on sets. Two sets in
the relation ∼= are said to have the same size or cardinality.1

3.4.1 Countability

In computation we are particularly concerned with sets whose size does not
exceed that of the set of natural numbers N, sets which are said to be countable
because they can be paired off, in the manner of counting, with initial segments
of the natural numbers, or possibly even the whole of the natural numbers.
Here’s the definition.

A set A is finite iff there is a bijection from the set {m ∈ N | m ≤ n} to A
for some n ∈ N0; in other words, A is empty or in 1-1 correspondence with a
set {1, 2, · · · , n}. We say a set is infinite iff it is not finite. A set A is countable
iff it is finite or there is a bijection

f : N → A .

1In fact Russell and Whitehead’s definition of the cardinal numbers, including the natural
numbers, was as ∼=-equivalence classes.



3.4. SIZE OF SETS 51

For example, the sets of natural numbers N, of integers Z, of rational numbers
Q and real numbers R are all infinite. The set N is countable, as are Z and Q,
while R is not countable—we’ll see this shortly.

Lemma 3.25 Any subset of natural numbers is countable.

Proof. Let A be a subset of N. Define a partial function f : N ⇀ A by taking

• f(1) to be the least number in A if A is nonempty and undefined otherwise,
and

• f(n + 1), where n ∈ N, to be the least number in A which is larger than
f(n) if f(n) is defined and there is a member of A larger that f(n); and
to be undefined otherwise.

This definition of f is an example of definition by mathematical induction: we
first define the basis of the definition by induction, f(1), and then the induction
step of the definition by induction, defining f(n + 1) in terms of f(n).

From the definition of f it is clear that if f(n+1) is defined, then so is f(n)
and f(n) < f(n+1), for all n ∈ N. It follows that if n < n′ and f(n′) is defined,
then f(n) is defined and f(n) < f(n′). Hence

D = {n ∈ N | f(n) is defined}

is either N, or of the form {n ∈ N | n ≤ m}, a finite initial segment of the natural
numbers. Furthermore f : D → A is injective as two distinct elements of D will
be strictly ordered so have distinct images under f .

To show f is also surjective, suppose otherwise. Then there would be a least
a ∈ A not in the image fD. The element a cannot be the least element of A
because this least element is f(1), clearly in fD. So there must be a largest
element a′ of A such that a′ < a. Because a′ < a there is n ∈ D such that
f(n) = a′. But then f(n + 1) = a—contradiction. 2

Corollary 3.26 A set B is countable iff there is a bijection g : A → B from
A ⊆ N.

Proof. “only if”: follows directly from the definition of countability. “if”: By
Lemma 3.25 a subset A ⊆ N is countable so there is a bijection f : D → A where
D is a finite initial segment or the whole of N. The composition g ◦ f : D → B
is a bijection establishing the countability of B. 2

In establishing countability of a set we do not need to be so demanding as
Corollary 3.26; an injection from the set into the natural numbers suffices:

Lemma 3.27 A set B is countable iff there is an injection f : B → N.

Proof. “only if”: Assuming B is countable there is a bijection g : A → B from
A ⊆ N by Corollary 3.26. The function g has an inverse function g−1 : B → A,
by Lemma 3.9. Let j;A → N be the inclusion function. Then f = j ◦g−1 : B →
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N is an injection, being the composition of two injections. “if”: An injection
f : B → N becomes a bijection f : B → f B because f regarded as a function
from B to the direct image f B is clearly both injective and surjective. Now its
inverse f−1 : f B → B is a bijection from f B ⊆ N. Hence by Corollary 3.26
the set B is countable. 2

So, a set is countable iff there is an injection from it into the natural numbers.
We could instead have taken this as our definition of countability. Though
our current definition has the advantage of being more customary and directly
related to our intuitions about counting. As we will see, the following fact,
a slight relaxation of Lemma 3.27, is often useful in establishing that a set is
countable.

Lemma 3.28 A set B is countable iff there is an injection f : B → A into a
set A which is countable.

Proof. “only if”: If B is countable, then there is an injection f : B → N by
Lemma 3.27, and N is countable. “if”: Suppose f : B → A is an injection and
the set A is countable. Then, by Lemma 3.27, there is an injection h : A → N.
It follows that the composition g = h ◦ f : B → N is an injection. So, again by
Lemma 3.27, the set B is countable. 2

Notice that if B ⊆ A then there is an inclusion function from B to A taking
b ∈ B to b ∈ A—the inclusion function is clearly injective. So Lemma 3.28
specialises to say a set B is countable iff it is included in a countable set A.

Lemma 3.29 The set N× N is countable.

Proof. The function f : N× N → N defined by

f(m,n) = 2m × 3n

is an injection into a countable set. By Lemma 3.28, N× N is countable. 2

Corollary 3.30 The set of positive rational numbers Q+ is countable.

Proof. Any positive rational q can be written uniquely as a fraction mq/nq

where mq and nq are natural numbers with no common factor. Define a function
f : Q+ → N×N by taking f(q) = (mq, nq). Then f is an injection—two different
rationals determine different fractions. So Q+ is countable by Lemma 3.28. 2

Corollary 3.31 If A and B are countable sets, then so is their product A×B.

Proof. Assume sets A and B are countable. Then there are injections fA :
A → N and fB : B → N, by Lemma 3.28. We can combine them into an
lnjection f : A×B → N× N by defining f(a, b) = (fA(a), fB(b)). We spell out
the easy check that f is an injection, which uses standard properties of pairs
and that fA and fB are injections. Let (a, b) and (a′, b′) be pairs in A× B for
which f(a, b) = f(a′, b′). We obtain (fA(a), fB(b)) = (fA(a′), fB(b′)). Whence,
fA(a) = fA(a′) and fB(b) = fB(b′). So a = a′ and b = b′ by the injectivity of
fA and fB . Thus (a, b) = (a′, b′). 2
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We have seen unions, like A1 ∪ A2 ∪ · · · ∪ Ak, of finitely sets A1, · · · , Ak.
Imagine now that we are given an infinite sequence of sets A1, A2, A3, · · · , An, · · ·
indexed by the natural numbers. We can also form their union; we might write
that union as

A1 ∪A2 ∪A3 ∪ · · ·An ∪ · · ·

though this perhaps makes the union seem more mysterious than it is, because
it suggests wrongly a form of limiting process like those in real or complex
analysis. A better way to write the union of the sequence of sets is as⋃

n∈N
An =def {x | ∃n ∈ N. x ∈ An} ,

which exposes how innocent this union of countably many sets really is. The
next lemma shows that if each of the sets An is countable then so is their
union. The lemma is often expressed as: a countable union of countable sets is
countable.

Lemma 3.32 Suppose A1, A2, · · · , An, · · · are all countable sets. Their union⋃
n∈N An is countable.

Proof. Write A for the set
⋃

n∈N An. By Lemma 3.27, for each n there is an
injection fn : An → N. Define an injection h : A → N×N as follows. For x ∈ A,
let nx be the least number for which x ∈ Anx

, and take

h(x) = (nx, fnx
(x)) .

We check that h is an injection: Suppose h(x) = h(y) for x, y ∈ A. Then
nx = ny so x, y ∈ Anx

and fnx
(x) = fnx

(y). But fnx
is injective, so x = y.

Hence A is countable by Lemmas 3.28 and 3.29. 2

Notice thay the above lemma also applies to finite unions, because the An’s
could all be the empty set from some point on.

Exercise 3.33 Prove that the set Z of integers and the set Q of all rational
numbers are countable. [Both proofs involve the same idea.] 2

Exercise 3.34 Show that the set of all finite subsets of N is countable. 2

Exercise 3.35 Show that Q×Q is countable. Deduce that any set of disjoint
discs (i.e. circular areas which may or may not include their perimeter) in the
plane R × R is countable. Is the same true if “discs” is replaced by “circles”
(i.e. just the perimeters of the circles)? 2

Exercise 3.36 Show that a nonempty set A is countable iff there is a surjection
f : N → A. 2



54 CHAPTER 3. RELATIONS AND FUNCTIONS

3.4.2 Uncountability

Not all sets are countable. One of the notable mathematical accomplishments of
the 19th century was Georg Cantor’s proof that the set of real numbers R is un-
countable, i.e. not countable. This opened up new ways to prove the existence
of certain kinds of real numbers. His second, simpler proof of the uncount-
ability of R used a diagonal argument, a style of argument which reappears in
showing the undecidability of the halting problem, is implicit in the proof of
Gödel’s incompleteness theorem, and can sometimes be used in establishing the
hierarchies of complexity theory.

Theorem 3.37 The set of real numbers R is uncountable.

Proof. The proof is by contradiction. Assume that R is countable. Then by
Lemma 3.28, the interval (0, 1] = {r ∈ R | 0 < r ≤ 1} ⊆ R will also be a count-
able set. Each number in (0, 1] is represented uniquely by a non-terminating
decimal expansion; for example 0.13 is represented by the non-terminating dec-
imal 0.12999 · · ·. The set (0, 1] is clearly infinite (any finite set of reals would
contain a least element, which (0, 1] clearly does not). So (0, 1] being countable
implies there is a bijection f : N → (0, 1]. Write

f(n) = 0.dn
1dn

2dn
3 · · · dn

i · · ·

to describe the non-terminating decimal expansion of the nth real in the enu-
meration given by f . We’ll produce a number r in (0, 1] which can’t be in the
enumeration, so yielding a contradiction. Define the number’s decimal expan-
sion to be

0.r1r2r3 · · · ri · · ·

where

ri =
{

1 if di
i 6= 1,

2 if di
i = 1 .

Clearly r ∈ (0, 1]. Thus there is some natural number k such that f(k) =
r. Hence by the uniqueness of the decimal expansions ri = dk

i for all i. In
particular,

rk = dk
k .

But, from the definition of rk, we have that rk = 1 if dk
k 6= 1, and rk = 2 if

dk
k = 1. In either case, rk 6= dk

k—a contradiction.
We conclude that the original assumption, that R is countable, is false. 2
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To see why it is called a diagonal argument, imagine writing the enumera-
tions as an array:

f(1) = 0. d1
1 d1

2 d1
3 · · · d1

i · · ·

f(2) = 0. d2
1 d2

2 d2
3 · · · d2

i · · ·

f(3) = 0. d3
1 d3

2 d3
3 · · · d3

i · · ·
...

...
...

...
...

...
...

...
f(n) = 0. dn

1 dn
2 dn

3 · · · dn
i · · ·

...
...

...
...

...
...

...
...

The decimal expansion of the real r which plays a key role in Cantor’s argument
is defined by running down the diagonal of the array changing 1’s to 2’s and non-
1’s to 1’s. In this way the decimal expansion can never be in the enumeration;
no matter which row one considers, the decimal expansion of r will differ on the
diagonal.

Notice that Cantor’s theorem establishes the existence of irrational num-
bers, in fact shows that the set of irrational numbers is uncountable, without
exhibiting a single irrational number explicitly.

Exercise 3.38 Prove that the set of irrational numbers is uncountable. 2

An analogous proof that there are uncountably many transcendental num-
bers is even more dramatic in that it is very hard to prove a number is tran-
scendental. An algebraic number is a real number x that is the solution of a
polynomial equation

a0 + a1x + a2x
2 + · · ·+ anxn = 0

where a0, a1, a2, · · · , an are integer coefficients. A real number which is not alge-
braic is called transcendental. There are only countably many such polynomial
equations2 and each has only finitely many solutions, so there are only count-
ably many algebraic numbers. But there are uncountably many reals. It follows
that there must be transcendental numbers, and indeed that the set of tran-
scendental numbers is uncountable. (Do you now know a single transcendental
number? Well, π and e are. But could you prove it? Probably not.)

Exercise 3.39 Prove that the set of transcendental numbers is uncountable.
(This uses essentially the same idea as Exercise 3.38.) 2

2A polynomial is determined by its coefficients. So polynomials with integer coefficients
are in 1-1 correspondence with tuples of integers in the set

⋃
n∈N Zn, a countable union of

countable sets, so countable.
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Investigating cardinality

By Lemma 3.28, if f : B → A is an injection and A is countable, then so is B.
So, when investigating cardinality,

• to show a set B is countable it suffices to exhibit an injection from B set
into a set A known to be countable; while

• to show a set A is uncountable it suffices to exhibit an injection from a set
B known to be uncountable into A. Because then, if A were countable, so
would B be countable—a contradiction.

Sometimes (though rarely in undergraduate courses) we need to investigate
cardinality beyond countability or its failure. Then the key tool is the Schröder-
Bernstein theorem.3 This says that two sets A and B have the same cardinality
iff there are injections f : A → B and g : B → A. The hard part of its proof
shows how to construct a bijection between A and B out of the two injections.

Exercise 3.40 By using a variation on the diagonal argument above, show that
the powerset, P(N) =def {S | S ⊆ N}, is uncountable. (See Section 4.3.2 for a
proof.) 2

Exercise 3.41 Which of the following sets are finite, which are infinite but
countable, and which are uncountable?

• {f : N → {0, 1} | ∀n ∈ N. f(n) ≤ f(n + 1)}

• {f : N → {0, 1} | ∀n ∈ N. f(2n) 6= f(2n + 1)}

• {f : N → {0, 1} | ∀n ∈ N. f(n) 6= f(n + 1)}

• {f : N → N | ∀n ∈ N. f(n) ≤ f(n + 1)}

• {f : N → N | ∀n ∈ N. f(n) ≥ f(n + 1)}

2

3Though in the ‘Discrete Maths’ syllabus in former years, the Schröder-Bernstein theorem
is no longer examinable.



Chapter 4

Constructions on sets

Forewarned by a problem first exposed by Bertrand Russell, we look to safe
methods for constructing sets.

4.1 Russell’s paradox

When set theory was being invented it was thought, first of all, that any property
P (x) determined a set

{x | P (x)} .

It came as a shock when Bertrand Russell realised that assuming the existence
of certain sets described in this way gave rise to contradictions.1

Russell’s paradox is really the demonstration that a contradiction arises from
the liberal way of constructing sets above. His argument proceeds as follows.
Consider the property

x /∈ x

a way of writing “x is not an element of x.” If we assume that properties
determine sets, just as described, we can form the set

R = {x | x /∈ x} .

Either R ∈ R or not. If so, i.e. R ∈ R, then in order for R to qualify as an
element of R, from the definition of R, we deduce R /∈ R. So we end up asserting
both something and its negation—a contradiction. If, on the other hand, R /∈ R
then from the definition of R we see R ∈ R—a contradiction again. Either
R ∈ R or R /∈ R lands us in trouble.

We need to have some way which stops us from considering a collection like
R as a set, and so as a legitimate element. In general terms, the solution is to

1The shock was not just to Russell and his collaborator Alfred North Whitehead. Gottlob
Frege received the news as his book on the foundations of mathematics via sets was being
printed—the paradox was devastating for his work. Some were delighted however. The great
mathematician Henri Poincaré is reported as gleefully saying “Logic is not barren, it’s brought
forth a paradox!”

57
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discipline the way in which sets are constructed, so that starting from certain
given sets, new sets can only be formed when they are constructed by using
particular, safe ways from old sets. We shall state those sets we assume to exist
right from the start and methods we allow for constructing new sets. Provided
these are followed we avoid trouble like Russell’s paradox and at the same time
have a rich enough world of sets to support most mathematics.2

4.2 Constructing sets

4.2.1 Basic sets

We take the existence of the empty set ∅ for granted, along with certain sets of
basic elements such as

N0 = {0, 1, 2, · · ·} .

We shall also take sets of symbols like

{“a”, “b”, “c”, “d”, “e”, · · · , “z”}

for granted, although we could, alternatively have represented them as particular
numbers for example. The equality relation on a set of symbols is that given
by syntactic identity written ≡. Two symbols are equal iff they are literally the
same.

4.2.2 Constructions

We shall take for granted certain operations on sets which enable us to construct
sets from given sets.

Comprehension

If X is a set and P (x) is a property, we can form the set

{x ∈ X | P (x)} ,

the subset of X consisting of all elements x of X which satisfy P (x).
Sometimes we’ll use a further abbreviation. Suppose e(x1, . . . , xn) is some

expression which for particular elements x1 ∈ X1, · · ·xn ∈ Xn yields a particular
element and P (x1, . . . , xn) is a property of such x1, . . . , xn. We use

{e(x1, . . . , xn) | x1 ∈ X1 & · · ·& xn ∈ Xn & P (x1, . . . , xn)}

to abbreviate

{y | ∃x1 ∈ X1, · · · , xn ∈ Xn. y = e(x1, . . . , xn)& P (x1, . . . , xn)} .

2Occasionally we consider collections which are not sets. For example, it can be useful to
consider the collection of all sets. But such a collection is not itself a set, so cannot be made
a proper element of any collection. The word ‘class’ which originally was synonymous with
‘set’ is now generally reserved for a collection which need not necessarily be a set.
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For example,
{2m + 1 | m ∈ N & m > 1}

is the set of odd numbers greater than 3.

Remark: Note a consequence of comprehension. The collection {x | x is a set }
is not itself a set. If it were then by using comprehension Russell’s collection R
would be a set, which is contradictory in the manner of Russell’s original argu-
ment. As the collection of all sets is not a set we fortunately side-step having
to consider whether it is a member of itself. 2

Powerset

We can form a set consisting of the set of all subsets of a set, the so-called
powerset:

P(X) = {Y | Y ⊆ X}.
This is the important construction for building bigger sets. We shall see shortly
that a powerset P(X) always has larger size than X.

Exercise 4.1 Let B be a fixed subset of the set A. Define the relation R on
P(A) by

(X, Y ) ∈ R ⇐⇒ X ∩B = Y ∩B .

Show that R is an equivalence relation and describe a bijection between the set
of R-equivalence classes and P(B). 2

Unordered pairs

A seemingly modest but important way to produce sets is through forming
unordered pairs. Given two objects x and y—they might be sets—we can form
the set {x, y} whose sole elements are x and y.

Indexed sets

Suppose I is a set and that for any i ∈ I there is a unique object xi, maybe a
set itself. Then

{xi | i ∈ I}
is a set. The elements xi are said to be indexed by the elements i ∈ I. Any
collection of objects indexed by a set is itself a set.

Union

As we’ve seen, the set consisting of the union of two sets has as elements those
elements which are either elements of one or the other set:

X ∪ Y = {a | a ∈ X or a ∈ Y }.

This union is an instance of a more general construction, “big union,” that we
can perform on any set of sets.
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Big union

Let X be a set of sets. Their union⋃
X = {a | ∃x ∈ X. a ∈ x}

is a set. Note that given two sets X and Y we can first form the set {X, Y }; tak-
ing its big union

⋃
{X, Y } we obtain precisely X ∪ Y . When X = {Zi | i ∈ I}

for some indexing set I we often write
⋃

X as
⋃

i∈I Zi.

The above operations are in fact enough for us to be able to define the
remaining fundamental operations on sets, viz. intersection, product, disjoint
union and set difference, operations which are useful in their own right.

Intersection

As we’ve seen, elements are in the intersection X ∩ Y , of two sets X and Y , iff
they are in both sets, i.e.

X ∩ Y = {a | a ∈ X & a ∈ Y } .

By the way, notice that one way to write X∩Y is as {a ∈ X | a ∈ Y } comprising
the subset of the set X which satisfy the property of also being in Y ; so X ∩ Y
is a set by Comprehension.

Big intersection

Let X be a nonempty collection of sets. Then⋂
X = {a | ∀x ∈ X. a ∈ x}

is a set called its intersection. Again, that such an intersection is a set follows
by Comprehension.

When X = {Zi | i ∈ I} for a nonempty indexing set I we often write
⋂

X
as

⋂
i∈I Zi.3

Product

As we’ve seen, for sets X and Y , their product is the set

X × Y = {(a, b) | a ∈ X & b ∈ Y } ,

the set of ordered pairs of elements with the first from X and the second from
Y .

More generally X1×X2×· · ·×Xn consists of the set of n-tuples (x1, x2, . . . , xn).
When all the components of a product are the same set X the n-ary product is
written as Xn. By convention X0, a zero-ary product, is generally understood
to be a singleton set consisting just of the empty tuple ().

3In a context where all sets are understood to be subsets of a given universe U the empty
intersection is taken to be U . In general though we can’t assume there is a fixed set forming
such a universe. We can’t take the collection of all sets as the universe as this is not a set.
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Exercise 4.2 Let X and Y be sets. Define the projections

π1 : X × Y → X and π2 : X × Y → Y

by taking π1(a, b) = a and π2(a, b) = b for (a, b) ∈ X × Y .
Let Z be a set and f : Z → X and g : Z → Y . Show that there is a unique

function h : Z → X × Y such that π1 ◦ h = f and π2 ◦ h = g.

X × Y
π1
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π2

##GG
GG

GG
GG

G

X Y

Z

f

ccGGGGGGGGG

h

OO�
�
�
�
�
�
� g

;;wwwwwwwww

2

Disjoint union

Frequently we want to join sets together but, in a way which, unlike union, does
not identify the same element when it comes from different sets. We do this by
making copies of the elements so that when they are copies from different sets
they are forced to be distinct:

X1 ]X2 ] · · · ]Xn = ({1} ×X1) ∪ ({2} ×X2) ∪ · · · ∪ ({n} ×Xn).

In particular, for X ]Y the copies ({1}×X) and ({2}×Y ) have to be disjoint,
in the sense that

({1} ×X) ∩ ({2} × Y ) = ∅,
because any common element would be a pair with first element both equal to
1 and 2, clearly impossible.

Exercise 4.3 Let X and Y be sets. Define the injections

inj1 : X → X ] Y and inj2 : Y → X ] Y

by taking inj1(a) = (1, a) for a ∈ X, and inj2(b) = (2, b) for b ∈ Y .
Let Z be a set and f : X → Z and g : Y → Z. Show that there is a unique

function h : X ] Y → Z such that h ◦ inj1 = f and h ◦ inj2 = g.

X ] Y

h
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�
�
�
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X

f
##GGGGGGGGG

inj1

;;wwwwwwwww
Y

inj2
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2
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Set difference

We can subtract one set Y from another X, an operation which removes all
elements from X which are also in Y .

X \ Y = {x | x ∈ X & x /∈ Y } .

4.2.3 Axioms of set theory

The constructions we have described include most of the assumptions made
in more axiomatic treatments of set theory based on the work of Zermelo and
Frænkel. To spell out the connection, the existence of the set of natural numbers,
powersets, unordered pairs, big unions and sets of indexed objects correspond to
the axioms of infinity, powerset, pairing, union and replacement respectively; we
have adopted the axiom of comprehension directly, and the axiom of extension-
ality amounts to saying a set is determined by its elements. For completeness
we mention two remaining axioms, the axiom of foundation and the axiom of
choice, which are generally assumed of sets. While sensible and safe axioms to
assume of sets, they do not in fact follow from the constructions we have given
so far.

The axiom of foundation

A set is built-up starting from basic sets by using the constructions described.
We remark that a property of sets, called the axiom of foundation, follows from
our informal understanding of sets and how we can construct them. Consider
an element b1 of a set b0. It is either a basic element, like an integer or a symbol,
or it is a set. If b1 is a set then it must have been constructed from sets which
have themselves been constructed earlier. Intuitively, we expect any chain of
memberships

· · · bn ∈ · · · ∈ b1 ∈ b0

to end in some bn which is some basic element or the empty set. The statement
that any such descending chain of memberships must be finite is called the
axiom of foundation, and is an assumption generally made in set theory. Notice
the axiom implies that no set X can be a member of itself as, if this were so,
we’d get the infinite descending chain

· · ·X ∈ · · · ∈ X ∈ X

—a contradiction.

General products and the axiom of choice

Occasionally it is important to have a general form of product in which instead
of pairs with first and second coordinates, or finite tuples, we have tuples where
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the coordinates correspond to indices in a general set I. Let Xi be a set for
each element i in a set I. By definition the general product∏

i∈I

Xi = {f : I →
⋃
i∈I

Xi | ∀i ∈ I. f(i) ∈ Xi} .

Given f ∈
∏

i∈I Xi we can get the ith coordinate as f(i). Given xi ∈ Xi for each
i ∈ I, we can form their tuple f ∈

∏
i∈I Xi by defining f(i) = xi for all i ∈ I.

It’s not too hard to construct the set
∏

i∈I Xi out of the earlier constructions.
Is the set

∏
i∈I Xi nonempty? It has to be empty if Xi = ∅ for any i ∈ I. But

if Xi is nonempty for every i ∈ I it would seem reasonable that one could make
a function f ∈

∏
i∈I Xi by choosing some f(i) ∈ Xi for all i ∈ I. When I is a

finite set it is easy to make such a tuple, and so prove that
∏

i∈I Xi is nonempty
if each Xi is. For a while it was thought that this perfectly reasonable property
was derivable from more basic axioms even when I is infinite. However, this
turns out not to be so. Occasionally one must have recourse to the axiom of
choice which says provided each Xi is nonempty for i ∈ I, then so is the product∏

i∈I Xi.

4.3 Some consequences

4.3.1 Sets of functions

The set of all relations between sets X and Y is the set P(X × Y ). Using
comprehension it is then easy to see that

(X ⇀ Y ) = {f ∈ P(X × Y ) | f is a partial function}

is a set; that of all partial functions from X to Y . Similarly,

(X → Y ) = {f ∈ P(X × Y ) | f is a function}

is also a set; that of all total functions from X to Y . Often this set is written
Y X .

Exercise 4.4 Let A2 = {1, 2} and A3 = {a, b, c}. List the elements of the four
sets (Ai → Aj) for i, j ∈ {2, 3}. Annotate those elements which are injections,
surjections and bijections. 2

Exercise 4.5 Let X and Y be sets. Show there is a bijection between the set
of functions (X → P(Y )) and the set of relations P(X × Y ). 2

Exercise 4.6 Show explicit bijections

[(A×B) → C] ∼= [A → (B → C)] ,

[A → (B → C)] ∼= [B → (A → C)] .

2
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Exercise 4.7 Show explicit bijections

[(A ]B) → C] ∼= (A → C)× (B → C),
[A → (B × C)] ∼= (A → B)× (A → C) .

2

When investigating the behaviour of a function f ∈ (X → Y ) we apply
it to arguments. Earlier in Proposition 3.3 we saw that equality of functions
f, f ′ ∈ (X → Y ) amounts to their giving the same result on an arbitrary
argument x in X. We can treat functions as sets and so might introduce a
function by describing the property satisfied by its input-output pairs. But this
would ignore the fact that a function is most often introduced as an expression
e describing its output in Y in terms of its input x in X. For this manner of
description lambda notation (or λ-notation) is most suitable.

Lambda notation

Lambda notation provides a way to describe functions without having to name
them. Suppose f : X → Y is a function which for any element x in X gives a
value f(x) described by an expression e, probably involving x. Sometimes we
write

λx ∈ X. e

for the function f . Thus

λx ∈ X. e = {(x, e) | x ∈ X} .

So, λx ∈ X. e is an abbreviation for the set of input-output pairs determined
by the expression e. For example, λx ∈ N0. x + 1 is the successor function and
we have (λx ∈ N0. x + 1) ∈ (N0 → N0).

Characteristic functions

In set theory one starts with sets as primitive and builds functions. We built
sets of functions (X → Y ) with the help of powersets. There are alternative
foundations of mathematics which work the other way round. They start with
functions and “types” of functions (X → Y ) and identify sets with special
functions called characteristic functions to truth values. The correspondence
between sets and characteristic functions is explored in the following exercise.4

Exercise 4.8 Let X be a set. The set {T, F} consists of the truth values T and
F. Let Y ⊆ X. Define its characteristic function χY : X → {T, F} by taking

χY (x) =
{
T if x ∈ Y
F if x /∈ Y

for all x ∈ X. Show the function taking Y to χY is a bijection from P(X) to
(X → {T, F}). 2

4The seminal work on founding mathematics on functions is Alonzo Church’s higher order
logic. You can learn more on higher order logic and its automation in later courses of Mike
Gordon and Larry Paulson.
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4.3.2 Sets of unlimited size

Cantor used a diagonal argument to show that X and P(X) are never in 1-1
correspondence for any set X. This fact is intuitively clear for finite sets but
also holds for infinite sets. It implies that there is no limit to the size of sets.

Cantor’s argument is an example of proof by contradiction. Suppose a set
X is in 1-1 correspondence with its powerset P(X). Let θ : X → P(X) be the
1-1 correspondence. Form the set

Y = {x ∈ X | x /∈ θ(x)}

which is clearly a subset of X and therefore in correspondence with an element
y ∈ X. That is θ(y) = Y . Either y ∈ Y or y /∈ Y . But both possibilities are
absurd. For, if y ∈ Y then y ∈ θ(y) so y /∈ Y , while, if y /∈ Y then y /∈ θ(y) so
y ∈ Y . We conclude that our first supposition must be false, so there is no set
in 1-1 correspondence with its powerset.

Cantor’s argument is reminiscent of Russell’s paradox. But whereas the con-
tradiction in Russell’s paradox arises out of a fundamental, mistaken assumption
about how to construct sets, the contradiction in Cantor’s argument comes from
denying the fact one wishes to prove.

As a reminder of why it is called a diagonal argument, imagine we draw a
table to represent the 1-1 correspondence θ along the following lines. In the xth
row and yth column is placed T if y ∈ θ(x) and F otherwise. The set Y which
plays a key role in Cantor’s argument is defined by running down the diagonal
of the table interchanging T’s and F’s in the sense that x is put in the set iff the
xth entry along the diagonal is F.

· · · x · · · y · · ·
...

...
...

θ(x) · · · T · · · F · · ·
...

...
...

θ(y) · · · F · · · F · · ·
...

...
...

Exercise 4.9 This exercise guides you through to a proof that for any sets X
and Y , with Y containing at least two elements, there cannot be an injection
from the set of functions (X → Y ) to X.

(i) Let X be a set. Prove there is no injection f : P(X) → X.
[Hint: Consider the set W =def {f(Z) | Z ⊆ X & f(Z) /∈ Z}.]

(ii) Suppose now that a set Y has at least two distinct elements. Define an
injection k : P(X) → (X → Y ), from the powerset of X to the set of
functions from X to Y .
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(iii) Prove that there is no injection from (X → Y ) to X when the set Y
has at least two distinct elements. [Hint: Recall that the composition of
injections is an injection.]

2



Chapter 5

Inductive definitions

This chapter shows where induction principles come from. It is an introduction
to the theory of inductively-defined sets. It provides general methods for defining
sets recursively, and general induction rules to accompany inductively-defined
sets.

5.1 Sets defined by rules—examples

Often a set is described in the following way. Some clauses stipulate that certain
basic elements are to be in the set; then clauses are given stipulating further
elements of the set in terms of elements already included. Implicitly, only el-
ements produced in these stipulated ways are to be included in the set. This
gives a kind of recipe for making a set: first put in the basic elements; then,
conditional on certain elements being in, add others. Sets described in this way
are called inductively defined.

Inductively defined sets are ubiquitous, but not always presented in the
same way. To stress the commonality in their form of definition we’ll present
inductively-defined sets via rules. A rule instance comprises its premises and a
conclusion

x1, x2, · · ·
y

.

The intended interpretation is: if the premises x1, x2, · · · are in the set being
defined, then so is the conclusion y. The premises may form an empty set,
in which case the rule simply expresses that the conclusion y is in the set.
The following examples only give a limited idea of the range of applications
of inductive definitions—you’ll meet them again and again, in applications as
diverse as semantics, logic, verification, logic programming, datatypes, compiler
construction, security, probability, . . .

Example: The syntax of Boolean propositions has been described by

A, B, ... ::= a, b, c, · · · | T | F | A ∧ B | A ∨ B | ¬A

67
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where a, b, c · · · ∈ Var belong to a set of propositional variables, Var. We might
instead describe the syntax of propositions by rules of the form:

a
a ∈ Var

T F

A B

A ∧ B

A B

A ∨ B

A

¬A

Each rule gives a step in the way of building up a Boolean proposition. Some
rules say how to build propositions like A ∧ B out of propositions A and B built
earlier. Others assert that there are basic propositions like T, or a where a ∈ Var.

2

Example: The set of nonnegative integers N0 can be thought of as being gener-
ated in the following way: zero, 0, is a nonnegative integer; if n is a nonnegative
integer, then so is n + 1. We can format these clauses in the form of rules:

0
n

n + 1
, where n ∈ N0.

We can alternatively consider N0 as generated by the rules:

0
0, 1, · · · , (n− 1)

n
, where n ∈ N0.

2

Example: The set of strings Σ∗ over an alphabet of symbols Σ are defined by
these clauses: ε is a string, the empty string; if x is a string and a ∈ Σ, then
the concatenation ax is a string. Formatted as rules:

ε

x

ax
a ∈ Σ

where we insist in the side condition that only symbols from the alphabet are
used in making strings. (The set of lists over elements in Σ would be constructed
in the same way, though generally writing [] for the empty list, and a :: x for
the concatenation of a in Σ to the front of a list x.)

The rules for producing nonnegative integers exampled about assumed the
prior existence of such integers. At the dawn of thought, ‘caveman numbers’
could have been invented as strings of scratches ‘|’ generated by the rules

|
x

x|

where x stands for a string of scratches. Repeated use of the rules would lead
to

| || ||| |||| ||||| · · · .
This shows how the natural numbers can be built from scratch! 2
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Example: Here are proof rules for establishing entailments between Boolean
propositions:

Γ, A ` A

Γ ` A

Γ, ∆ ` A

Γ ` A ∆, A ` B

Γ, ∆ ` B

Γ ` T

Γ ` A

Γ, T ` A Γ, F ` A

Γ ` A Γ ` B

Γ ` A ∧ B

Γ ` A ∧ B

Γ ` A

Γ ` A ∧ B

Γ ` B

Γ ` A

Γ ` A ∨ B

Γ ` B

Γ ` A ∨ B

Γ ` A ∨ B Γ, A ` C Γ, B ` C

Γ ` C

Γ, A ` F

Γ ` ¬A
Γ ` A Γ ` ¬A

Γ ` F

Γ ` ¬¬A
Γ ` A

Above, Γ and ∆ stand for sets of propositions. A pair of the form Γ ` A where Γ
is a set of propositions and A is a proposition is called a sequent. The intention
is that when Γ ` A is derivable, then the conjunction of all the propositions in Γ
entails A For example, consider the rule

Γ ` A ∧ B

Γ ` A
.

This rule is intuitive, in that, for any model, if Γ entails the conjunction A ∧ B,
then certainly Γ entails the conjunct A. When we write Γ, ∆ we mean Γ∪ ∆, and
Γ, A means Γ∪{A}. The rules define a set of sequents Γ ` A, so essentially a set of
pairs (Γ, A) where Γ is a finite set of propositions and A is a proposition; starting
from basic sequents like Γ, A ` A or Γ ` T we get further sequents by repeatedly
applying the rules. Though it’s far from obvious, the proof rules above allow us
to derive all the entailments of propositional logic: a sequent {A1, · · · , Ak} ` A is
derivable iff A1 ∧ · · · ∧ Ak |= A. In particular the derivable sequents ` A, where
the left-hand-side of the entailment is empty, coincide with the tautologies.1

All the above proof rules are finitary—all the premises have at most size 3.
To give an idea of why it is sometimes useful to have infinitary rules, imagine
extending propositions by those of the form ∀x. A(x) where A(x) becomes a
proposition A(n) whenever any natural number n replaces the variable x. We
could then adjoin the infinitary proof rule

Γ ` A(1), · · · , Γ ` A(n), · · ·
Γ ` ∀x. A(x)

.

1You’ll learn more about such proof systems in the 2nd year CS course “Logic and proof.”
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Fortunately, there are also finitary rules to prove universal statements. There
are however logics in computer science with infinitary rules. 2

Example: The evaluation and execution of programs can be captured by rules.
As an indication we show how to express the evaluation of Boolean propositions
by rules. The evaluation proceeds in the presence of a truth assignment t giving
truth values to propositional variables. A judgement

〈A, t〉 −→ V

is read as “Boolean proposition A with truth assignment t evaluates to truth
value V,” where V is either T or F.

〈a, t〉 −→ T
aT ∈ t

〈a, t〉 −→ F
aF ∈ t

〈T, t〉 −→ T 〈F, t〉 −→ F

〈A, t〉 −→ T 〈B, t〉 −→ T

〈A ∧ B, t〉 −→ T

〈A, t〉 −→ F 〈B, t〉 −→ F

〈A ∧ B, t〉 −→ F

〈A, t〉 −→ F 〈B, t〉 −→ T

〈A ∧ B, t〉 −→ F

〈A, t〉 −→ T 〈B, t〉 −→ F

〈A ∧ B, t〉 −→ F

The reader can fill in the rules describing the evaluation of disjunctions and
negations. 2

Exercise 5.1 Write down rules to define the set of binary trees with leaves in
an alphabet Σ. 2

Exercise 5.2 Prove the soundness of the proof rules for Boolean propositions
above. That is, for any model, for each proof rule, show that if all the entail-
ments of the premises hold, then so does the entailment of the conclusion. For
example, to show the soundness of the rule

Γ ` A

Γ ` A ∨ B

requires showing
if Γ |= A, then Γ |= A ∧ B ,

where {A1, · · · , Ak} |= A means A1 ∧ · · · ∧ Ak |= A. 2
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5.2 Inductively-defined sets

We are interested in the general problem of defining a set by rules of the kind
we have seen in the examples.

In essence, an instance of a rule has the form of a pair (X/y) consisting of a
set X, the premises, and a conclusion y. In general X might be empty or even
infinite. When there is rule of the form (∅/y) we will call y an axiom. We say a
rule (X/y) is finitary when the set X is finite; then the rule will be of the form
({x1, . . . , xn}/y), possibly with empty premises.

All examples of the previous section are associated with their own set of rule
instances. For example, for strings Σ∗ the rule instances form the set

{(∅/ε)} ∪ {({x}/ax) | x ∈ Σ∗ & a ∈ Σ} ,

consisting of all instantiations of the rules used in building up strings. We gave
two forms of rules for generating the nonnegative integers N0. For the first the
set of rule instances is

{(∅/0)} ∪ {({n}/n + 1) | n ∈ N0} ,

while for the second the set is

{({0, · · · , (n− 1)}/n) | n ∈ N0} .

A set of rule instances R specifies a way to build a set. A particular rule
instance (X/y) is intended to say that if all the elements of X are in the set
then so is y. We look for the least set with this property. If it exists this should
be the set inductively defined by the rules.

Suppose we are given a set of rule instances R. We say a set Q is closed
under the rule instances R, or simply R-closed, iff for all rule instances (X/y)

X ⊆ Q ⇒ y ∈ Q .

In other words, a set is closed under the rule instances if whenever the premises
of any rule instance lie in the set so does its conclusion. In particular, an
R-closed set must contain all the axioms.

Assume a set of rule instances R. Consider the collection of all R-closed
sets:

{Q | Q is R-closed} .

This collection is nonempty as, for example, the set

{y | ∃X. (X/y) ∈ R}

is clearly R-closed. Thus we can form its intersection

IR =
⋂
{Q | Q is R-closed} .

The important fact is that IR is itself R-closed. To see this argue as follows:
Let (X/y) ∈ R. Suppose X ⊆ IR. Let Q be any R-closed subset. Then X ⊆ Q
and consequently y ∈ Q, as Q is R-closed. Hence y ∈ IR.

Summarising what we have just shown:
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Proposition 5.3 With respect to a set of rule instances R,
(i) IR is R-closed, and
(ii) if Q is an R-closed set then IR ⊆ Q.

The set IR is often described as the set inductively defined by R. Proposi-
tion 5.3 will supply us with a very useful proof principle for showing a prop-
erty holds of all the elements of IR. The earlier examples give an idea of how
widespread inductively-defined sets are.

5.3 Rule induction

Suppose we wish to show a property P (x) is true of all elements x ∈ IR, the set
inductively-defined by a set of rule instances R. The conditions (i) and (ii) in
Proposition 5.3 above furnish a method. Define the set

Q = {x ∈ IR | P (x)} .

The property P (x) is true of all x ∈ IR iff IR ⊆ Q. By condition (ii), to show
IR ⊆ Q it suffices to show that Q is R-closed. This requires that for all rule
instances (X/y) that

(∀x ∈ X. x ∈ IR & P (x)) ⇒ (y ∈ IR & P (y)) .

But IR is R-closed by (i), so this will follow precisely when

(∀x ∈ X. x ∈ IR & P (x)) ⇒ P (y) .

We have obtained an important, general proof principle.

The principle of rule induction
Let IR be inductively-defined by R. Then ∀x ∈ IR. P (x) if for all rule instances
(X/y) in R,

(∀x ∈ X. x ∈ IR & P (x)) ⇒ P (y) .

(The property P (x) is called the induction hypothesis.)

[In other words to prove ∀x ∈ IR. P (x) it suffices to show that ∀x ∈ X. P (x)
implies P (y) only for all rule instances (X/y) with X ⊆ IR.]

Notice for rule instances of the form (X/y), with X = ∅, the condition in the
statement of rule induction is equivalent to P (y). Certainly then ∀x ∈ X. x ∈
IR & P (x) is vacuously true because any x in ∅ satisfies P (x)—there are none.

Supposing the rule instances R are finitary, the statement of rule induction
amounts to the following. For rule instances R, we have ∀y ∈ IR. P (y) iff for
all axioms

y
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P (y) is true, and for all rule instances

x1, . . . , xn

y

if xk ∈ IR & P (xk) is true for all the premises, when k ranges from 1 to n, then
P (y) is true of the conclusion.

The principle of rule induction is very useful to show a property is true of
all the elements in an inductively-defined set. It has many well-known instances.

Examples: Refer to the examples of rules beginning this chapter.

Nonnegative integers N0: The rules (∅/0) and ({n}/(n + 1)), for a number
n, yield mathematical induction as a special case of rule induction.

The alternative rules (∅/0) and ({0, 1, · · · , (n− 1)}/n), for a number n, yield
course-of-values induction, the principle that says: A property P (n) holds for
all nonnegative numbers n iff for all n ∈ N0

(∀m < n. P (m)) ⇒ P (n) .

Notice what happens when n = 0. Then there are no m ∈ N0 with m < 0, so
the condition of the implication is vacuously true and the implication amounts
to P (0). You’ll recall, course-of-values induction is useful when truth of a prop-
erty at n can depend on its truth at earlier values other than just its immediate
predecessor.

Strings Σ∗: With the rules for strings over an alphabet Σ rule induction spe-
cialises to this principle: a property P (x) holds of all strings x ∈ Σ∗ iff

P (ε) and
∀a ∈ Σ, x ∈ Σ∗. P (x) ⇒ P (ax) .

(Essentially the same induction principle works for lists.)

Boolean propositions: With the rules for the syntax of Boolean propositions,
rule induction specialises to structural induction.

Proof rules for Boolean propositions: Consider now R to be the the proof
rules for entailment between Boolean propositions. Rule induction yields an
intuitive way to establish properties of all derivable judgments. To show a
property holds of all derivable judgments Γ ` A it suffices to show the property
is preserved in going from the premises to the conclusions of all the rules. With
Exercise 5.2 in hand it follows that for any derivable sequent Γ ` A we have that
Γ |= A.

Evaluation of Boolean propositions: That evaluation can be captured by
rules enables the use of rule induction in proving facts about the evaluation
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of Boolean propositions. Boolean propositions have few surprises but rule in-
duction can support proofs of properties such as agreement with truth tables,
termination and uniqueness of value. Such properties about the evaluation of
Boolean propositions can be established by showing that they are preserved in
going from premises to conclusions of rules.

Exercise 5.4 Justify the following “special principle of rule induction.” Let IR

be defined by a set of rule instances R. Let A ⊆ IR. Then ∀a ∈ A. Q(a) if for
all rule instances (X/y) in R, with X ⊆ IR and y ∈ A,

(∀x ∈ X ∩A. Q(x)) ⇒ Q(y).

[Hint: Take property P (x) to be

P (x) iff (x ∈ A ⇒ Q(x))

in the statement of rule induction.] 2

Exercise 5.5 Based on your rules for binary trees with leaves in Σ (cf. Exer-
cise 5.1), write down the corresponding principle of rule induction. 2

Exercise 5.6 The set of well-bracketed strings is the subset of strings over
symbols [ and ] defined inductively as follows:

[ ] is well-bracketed;

if x is well-bracketed, then [x] is well-bracketed;

if x and y are well-bracketed, then xy is well-bracketed.

State the principle of rule induction for well-bracketed strings. Show the number
of left brackets [ equals the number of right brackets ] in any well-bracketed
string. 2

Exercise 5.7 A simple language is defined with symbols a and b. The grammar
of this language has the rules:

• ab is a word;

• if ax is a word, then axx is a word (where x is any string of symbols);

• if abbbx is a word, then ax is a word.

(i) Is abbbbb a word? Either exhibit a derivation, or prove there isn’t one.

(ii) Is abbb a word? Either exhibit a derivation, or prove there isn’t one.

(iii) Characterise the strings which are words. Prove your characterisation is
correct.
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2

Exercise 5.8 The set S is defined to be the least subset of natural numbers N
such that:

1 ∈ S;

if n ∈ S, then 3n ∈ S;

if n ∈ S and n > 2, then (n− 2) ∈ S.

Show that S = {m ∈ N | ∃r, s ∈ N∪ {0}. m = 3r − 2s}. Deduce that S is the
set of odd numbers. 2

5.3.1 Transitive closure of a relation

Suppose that R is a relation on a set U . Its transitive closure, written R+, is
defined to be the least relation T such that T includes R and T is transitive,
i.e.

R ⊆ T and
(a, b) ∈ T & (b, c) ∈ T ⇒ (a, c) ∈ T .

An element of R+, i.e. a pair (a, b) ∈ R+, is either in the original relation R or
put in through enforcing transitivity. This is captured by the following rules for
pairs in U × U :

(a, b)
(a, b) ∈ R

(a, b) (b, c)
(a, c)

. (1)

In other words the transitive closure R+ is inductively defined by these rules.
You may have seen another way to characterise the transitive closure of R.

Define an R-chain from a to b to consist of pairs (a1, a2), (a2, a3), · · · , (an−1, an)
in R with a = a1 and b = an. Then, (a, b) ∈ R+ iff there is an R-chain from a
to b.
To see this, let

S = {(a, b) | there is an R-chain from a to b} .

First observe that

R ⊆ S and (a, b) ∈ S & (b, c) ∈ S ⇒ (a, c) ∈ S ,

the former because pairs in R form 1-link R-chains, the latter because we can
concatenate two R-chains to get an R-chain. It follows that

R+ ⊆ S .

To show equality, we need the converse too. This follows by mathematical
induction on n ∈ N with induction hypothesis:

for all R-chains (a1, a2), (a2, a3), · · · , (an−1, an) we have (a1, an) ∈ R+ .

The basis of the induction, when n = 1, follows directly as R ⊆ R+. The
induction step uses, in addition, the transitivity of R+.
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Exercise 5.9 Show the transitive closure of a relation R is the least relation T
such that:

R ⊆ T and (a, b) ∈ R & (b, c) ∈ T ⇒ (a, c) ∈ T .

2

One way to define the reflexive, transitive closure R∗ of a relation R on a
set U is as

R∗ = idU ∪R+ .

Exercise 5.10 Let R be a relation on a set U . Show that R∗ is the least
relation that includes R and is reflexive and transitive. 2

Exercise 5.11 Let R be a relation on a set U . Define R0 = idU , the identity
relation on the set U , and R1 = R and inductively, assuming Rn is defined,
define

Rn+1 = R ◦Rn .

So, Rn is the relation R◦ · · · ◦R, obtained by taking n compositions of R. Show
the transitive closure of R is the relation

R+ =
⋃

n∈N0

Rn+1 ,

and that the transitive, reflexive closure of a relation R on X is the relation

R∗ =
⋃

n∈N0

Rn .

2

Exercise 5.12 Show (R ∪ R−1)∗ is an equivalence relation. Show that it is
the least equivalence relation including R. Show R∗ ∪ (R−1)∗ need not be an
equivalence relation. 2

Exercise 5.13 Show that the least equivalence relation containing two equiv-
alence relations R and S on the same set is (R ∪ S)+. 2

5.4 Derivation trees

Another important way to understand inductively-defined sets as generated by
rules is via the notion of a derivation tree, or derivation. An inductively-defined
set consists of precisely those elements for which there is a derivation. In this
section we’ll assume a set of rule instances R which are all finitary, though the
ideas generalise straightforwardly to infinitary rules.

We are familiar with informal examples of derivations from games, like chess,
draughts or bridge, where it’s usual to discuss a particular play of a game lead-
ing up to a winning position. In the idealised view of mathematics, as a formal
game of deriving theorems from rules, a proof is a derivation of a theorem from
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the rules of mathematics. As the example of proofs in mathematics makes clear,
derivations can have much more informative structure than the, often simpler,
things they are intended to derive; finding proofs in mathematics is highly non-
trivial because the form an assertion takes rarely determines the structure of its
possible proofs.

As a simple example here’s a derivation for the Boolean proposition ¬a ∧
(b ∨ T) using the rules of syntax for forming Boolean propositions:

a

¬a
b T

b ∨ T

¬a ∧ (b ∨ T)

It has the form of a tree with the conclusion at the root and with axioms at
the leaves. It is built by stacking rules together, matching conclusions with
premises. A more interesting derivation is the following using the proof rules of
Boolean propositions:2

A ∧ ¬A ` A ∧ ¬A
A ∧ ¬A ` A

A ∧ ¬A ` A ∧ ¬A
A ∧ ¬A ` ¬A

A ∧ ¬A ` F

` ¬(A ∧ ¬A)

The example of proofs makes clear that, in general, there need not be a unique
derivation associated with a particular conclusion.

Exercise 5.14 Identify the proof rules used in building the above derivation of
` ¬(A ∧ ¬A). Derive the sequents:

(i) ¬A ∧ ¬B ` ¬(A ∨ B),

(i) ¬(A ∨ B) ` ¬A ∧ ¬B, [Hard]

(iii) ` A ∨ ¬A. [Hard]

2

These examples show how rules determine derivations. The idea is that
rules lift to rules generating derivations; we build a new derivation by stacking
derivations on top of matching premises of a rule. A derivation of an element y
takes the form of a tree which is either an instance of an axiom

y

or of the form
...

x1
, . . . ,

...
xn

y

2As is coventional for such proofs we don’t write the set brackets for the set on the left of
a sequent and write nothing for the empty set.
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which includes derivations of x1, . . . , xn, the premises of a rule with conclusion

y. In such a derivation we think of
...

x1
, · · · ,

...
xn

as subderivations of the larger

derivation of y.
In set notation, an R-derivation of y is either a rule

(∅/y)

or a pair
({d1, · · · , dn}/y)

where ({x1, · · · , xn}/y) is a rule and d1 is an R-derivation of x1, . . . , and dn is
an R-derivation of xn.

As the formulation makes clear, the set of all R-derivations is inductively-
defined. In this case rule induction specialises to another useful proof principle.

Induction on derivations
Let P (d) be a property of R-derivations d. Then, P (d) holds for all R-derivations
d iff for all rule instances ({x1, · · · , xn}/y) in R and R-derivations d1 of x1, . . . ,
and dn of xn,

P (d1) & · · · & P (dn) ⇒ P ({d1, · · · , dn}/y) .

(As usual, the property P (d) is called the induction hypothesis.)

In practice it is easier to apply induction on derivations than its rather formal
statement might suggest. A proof by induction on derivations splits into cases
according to the last rule in the derivation. In each case, it is required to show
that a derivation

...
x1

, . . . ,
...

xn

y

inherits a desired property from its subderivations
...

x1
, · · · ,

...
xn

. Induction on

derivations is illustrated in the proof of the following fundamental result.

Theorem 5.15 An element y ∈ IR iff there is an R-derivation of y.

Proof.
‘only if ’: Consider the set

D = {y | there is an R-derivation of y} .

The set D is R-closed as given any rule (X/y) and derivations for all its premises
X we can construct a derivation of y. Thus IR ⊆ D.
’if ’: A simple induction on derivations shows that y ∈ IR for any derivation of
y. The argument: Take as induction hypothesis the property that holds of a
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derivation of y precisely when y ∈ IR. Consider any rule ({x1, · · · , xn}/y) and
derivations d1 of x1, . . . , and dn of xn for which x1 ∈ IR, . . . , and xn ∈ IR.
Then, as IR is R-closed, y ∈ IR. 2

It can sometimes be easier to attach a property to a derivation, which encodes
the whole history of how an element came to be in an inductively-defined set,
than to an element standing alone. If the rules are such that the conclusions
determine the rules uniquely there is no advantage (or disadvantage) in using
induction on derivations over straight rule induction.

Exercise 5.16 Go through this section generalising the definition of derivation
and the results to the situation where the rules are not necessarily finitary. 2

5.5 Least fixed points

Given a set of rule instances R, we defined IR as the intersection of all R-closed
sets. In a sense this is a way of restricting sets to obtain IR. It perhaps doesn’t
match our first intuitions about how rules generate a set: start from the axioms
and repeatedly apply the rules and only put something in the set if it can be
derived in this way. There are alternative generative ways to construct the
set IR inductively defined by rules with instances R. The first leads us to an
understanding of inductively-defined sets as least fixed points.

Assume a set of rule instances R. Given a set B, then

R̂(B) = {y | ∃X ⊆ B. (X/y) ∈ R}

is a set. Intuitively, the set R̂(B) is got by applying the rule instances R to the
set B. The rule instances R determines an operation R̂ on sets: given a set B
it results in a set R̂(B). Use of the operation R̂ gives another way of saying a
set is R-closed, one that follows directly from the definitions.

Proposition 5.17 A set B is R-closed iff R̂(B) ⊆ B.

The operation R̂ provides a way of building up the set IR which we will
describe when the rule instances R are finitary. The operation R̂ is monotonic
in the sense that

A ⊆ B ⇒ R̂(A) ⊆ R̂(B) .

If we repeatedly apply R̂ to the empty set ∅ we obtain a sequence of sets:

A0 = R̂0(∅) = ∅ ,

A1 = R̂1(∅) = R̂(∅) ,

A2 = R̂(R̂(∅)) = R̂2(∅) ,

...

An = R̂n(∅) ,

...
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The set A1 consists of all the axioms, and in general the set An+1 is all things
which immediately follow by rule instances which have premises in An. Clearly
∅ ⊆ R̂(∅), i.e. A0 ⊆ A1. By the monotonicity of R̂ we obtain R̂(A0) ⊆ R̂(A1),
i.e. A1 ⊆ A2. Similarly we obtain A2 ⊆ A3 etc.. Thus the sequence forms a
chain

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · .

Taking A =
⋃

n∈N0
An, we have:

Theorem 5.18 Provided the rule instances R are finitary,

(i) A is R-closed,

(ii) R̂(A) = A,

(iii) A is the least R-closed set.

Proof.
(i) Suppose (X/y) ∈ R with X ⊆ A. Recall A =

⋃
n An is the union of an

increasing chain of sets. As X is a finite set there is some n such that X ⊆ An.
(The set X is either empty, whence X ⊆ A0, or of the form {x1, . . . , xk}. In
the latter case, we have x1 ∈ An1 , · · · , xk ∈ Ank

for some n1, . . . , nk. Tak-
ing n bigger than all of n1, . . . , nk we must have X ⊆ An as the sequence
A0, A1, . . . , An, . . . is increasing.) As X ⊆ An we obtain y ∈ R̂(An) = An+1.
Hence y ∈

⋃
n An = A. Thus A is closed under R.

(ii) By Proposition 5.17, since the set A is R-closed, we know that R̂(A) ⊆ A.
We require the converse inclusion. Suppose y ∈ A. Then y ∈ An for some n > 0.
Thus y ∈ R̂(An−1). This means there is some (X/y) ∈ R with X ⊆ An−1. But
An−1 ⊆ A so X ⊆ A with (X/y) ∈ R, giving y ∈ R̂(A). We have established
the required converse inclusion, A ⊆ R̂(A). Hence R̂(A) = A.

(iii) We need to show that if B is another R-closed set then A ⊆ B. Suppose B

is closed under R. Then R̂(B) ⊆ B. We show by mathematical induction that
for all n ∈ N0

An ⊆ B .

The basis of the induction A0 ⊆ B is obviously true as A0 = ∅. To show the
induction step, assume An ⊆ B. Then

An+1 = R̂(An) ⊆ R̂(B) ⊆ B ,

using the facts that R̂ is monotonic and that B is R-closed. 2

Notice the essential part played in the proof of (i) by the fact that the rules
are finitary.This restriction is needed—see the remark concluding this section.

Now (ii) in Theorem 5.18 says precisely that IR is a fixed point of R̂. More-
over, (iii) implies that IR is the least fixed point of R̂, i.e.

R̂(B) = B ⇒ IR ⊆ B ,
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because if any other set B is a fixed point it is closed under R, so IR ⊆ B by
Proposition 5.3. The set IR, defined by the rule instances R, is the least fixed
point, written fix (R̂), obtained by the construction

fix (R̂) =def

⋃
n∈N0

R̂n(∅) .

Exercise 5.19 Let U be a set. A function ϕ : P(U) → P(U) is continuous iff
ϕ is monotonic, i.e. for all subsets S, S′ of U ,

S ⊆ S′ ⇒ ϕ(S) ⊆ ϕ(S′)

and, for any increasing chain of subsets of U S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · ·,

ϕ(
⋃

n∈N0

Sn) =
⋃

n∈N0

ϕ(Sn) .

Let R be a set of finitary rule instances of which all the conclusions lie in
U . Show that the function R̂ : P(U) → P(U) is continuous. Show that any
continuous function f : P(U) → P(U) has a least fixed point. 2

Remark: There is a generalisation of Theorem 5.18 in which it is not required
that the rules are finitary. But this involves having more than the N0 approx-
imations A0, A1, · · · , An, · · ·, and ‘mysterious’ ordinals like ω + 1, ω + 2, · · · to
continue counting beyond N0 = ω, so is outside the scope of this course. 2

5.6 Tarski’s fixed point theorem

Let U be a set. Then its powerset P(U) forms a partial order in which the order
is that of inclusion ⊆. We examine general conditions under which functions
ϕ : P(U) → P(U) have canonical fixed points.

We provide a proof of Tarski’s fixed point theorem, specialised to powersets.
This concerns fixed points of functions ϕ : P(U) → P(U) which are monotonic,
i.e. such that

S ⊆ S′ ⇒ ϕ(S) ⊆ ϕ(S′) ,

for S, S′ ∈ P(U). Such monotonic functions have least (=minimum) and great-
est (=maximum) fixed points.

Theorem 5.20 (Tarski’s theorem for minimum fixed points)
Let P(U) be a powerset. Let ϕ : P(U) → P(U) be a monotonic function. Define

m =
⋂
{S ⊆ U | ϕ(S) ⊆ S}.

Then m is a fixed point of ϕ and the least prefixed point of ϕ, i.e. if ϕ(S) ⊆ S
then m ⊆ S. (When ϕ(S) ⊆ S the set S is called a prefixed point of ϕ.)
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Proof. Write X = {S ⊆ U | ϕ(S) ⊆ S}. As above, define m =
⋂

X. Let
S ∈ X. Certainly m ⊆ S. Hence ϕ(m) ⊆ ϕ(S) by the monotonicity of ϕ.
But ϕ(S) ⊆ S because S ∈ X. So ϕ(m) ⊆ S for any S ∈ X. It follows that
ϕ(m) ⊆

⋂
X = m. This makes m a prefixed point and, from its definition, it

is clearly the least one. As ϕ(m) ⊆ m we obtain ϕ(ϕ(m)) ⊆ ϕ(m) from the
monotonicity of ϕ. This ensures ϕ(m) ∈ X which entails m ⊆ ϕ(m). Thus
ϕ(m) = m. We conclude that m is indeed a fixed point and is the least prefixed
point of ϕ. 2

The proof of Tarski’s theorem for minimum fixed points only makes use of
the partial-order properties of the ⊆ relation on P(U) and in particular that
there is an intersection operation

⋂
. (In fact, Tarski’s theorem applies equally

well to a complete lattice with an abstract partial order and greatest lower
bound.) Replacing the roles of the order ⊆ and intersection

⋂
by the converse

relation ⊇ and union
⋃

we obtain a proof of the dual result for maximum fixed
points.

Theorem 5.21 (Tarski’s theorem for maximum fixed points)
Let P(U) be a powerset. Let ϕ : P(U) → P(U) be a monotonic function. Define

M =
⋃
{S ⊆ U | S ⊆ ϕ(S)}.

Then M is a fixed point of ϕ and the greatest postfixed point of ϕ, i.e. if
S ⊆ ϕ(S) then S ⊆ M . (When S ⊆ ϕ(S) the set S is called a postfixed point
of ϕ.)

Notation: The minimum fixed point is traditionally written µX.ϕ(X) , and the
maximum fixed point as νX.ϕ(X). Minimum and maximum fixed points are
very important in verification, in particular in model checking—the automatic
verification that a process satisfies a property.

Tarski’s theorem for minimum fixed points provides another way to under-
stand sets inductively defined by rules. Assuming that all the rule instances
R have conclusions in the set U , we can turn R into a monotonic function
R̂ : P(U) → P(U), where for S ∈ P(U)

R̂(S) = {y | ∃X ⊆ S. (X/y) ∈ R} .

Prefixed points of R̂ coincide with R-closed subsets of U and the least fixed
point of ϕR with the set IR inductively defined by the rule instances R.

Sets defined as maximum fixed points are often called coinductively defined
sets.

Exercise 5.22 Supply a direct proof of Tarski’s theorem (Theorem 5.21 above)
for maximum fixed points. 2
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Exercise 5.23 Refer to Exercise 3.20 which defines the bisimilarity relation ∼
for a directed graph (P,−→). Define

ϕ : P(P × P ) → P(P × P )

—so ϕ is a function from relations on P to relations on P—by:

p ϕ(R) q iff

• ∀p′ ∈ P. p −→ p′ ⇒ ∃q′ ∈ P. q −→ q′ & p′R q′, and

• ∀q′ ∈ P. q −→ q′ ⇒ ∃p′ ∈ P. p −→ p′ & p′R q′.

Show that ϕ is monotonic, has postfixed points precisely the bisimulations on
P , and that the bisimilarity relation ∼ coincides with its maximum fixed point.

2

Exercise 5.24 Let ϕ : P(N) → P(N) be the function given by

ϕ(U) = {3n/2 | n ∈ U & n is even} ∪ {n | n ∈ U & n is odd} .

(i) Show ϕ is monotonic with respect to ⊆.

(ii) Suppose that U ⊆ ϕ(U), i.e. U is a postfixed point of ϕ. Show that

n ∈ U & n is even ⇒ 2n/3 ∈ U .

Deduce that all members of U are odd. [Hint: Assume there is an even
member of U , so a least even member of U , to derive a contradiction.]

(iii) Deduce that the maximum fixed point of ϕ is the set of all odd numbers.

(iv) Characterise the prefixed points of ϕ. What is the minimum fixed point
of ϕ?

2



84 CHAPTER 5. INDUCTIVE DEFINITIONS



Chapter 6

Well-founded induction

This chapter introduces the powerful general proof principle of well-founded in-
duction and its associated method of definition called well-founded recursion.
They are based on the concept of a well-founded relation. Well-founded induc-
tion has many applications but is especially important for defining and proving
properties of terminating programs.

6.1 Well-founded relations

Mathematical and structural induction are special cases of a general and power-
ful proof principle called well-founded induction. In essence structural induction
works because breaking down an expression into subexpressions cannot go on
forever, eventually it must lead to atomic expressions which cannot be broken
down any further. If a property fails to hold of any expression then it must fail
on some minimal expression which when it is broken down yields subexpres-
sions, all of which satisfy the property. This observation justifies the principle
of structural induction: to show a property holds of all expressions it is suffi-
cient to show that property holds of an arbitrary expression if it holds of all its
subexpressions. Similarly with the natural numbers, if a property fails to hold
of all natural numbers then there has to be a smallest natural number at which
it fails. The essential feature shared by both the subexpression relation and the
predecessor relation on natural numbers is that they do not give rise to infinite
descending chains. This is the feature required of a relation if it is to support
well-founded induction.

Definition: A well-founded relation is a binary relation ≺ on a set A such that
there are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. When a ≺ b
we say a is a predecessor of b.

Note a well-founded relation is necessarily irreflexive i.e., for no a do we
have a ≺ a, as otherwise there would be the infinite descending chain · · · ≺ a ≺

85
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· · · ≺ a ≺ a. We shall generally write � for the reflexive closure of the relation
≺, i.e.

a � b ⇐⇒ a = b or a ≺ b.

(A relation ≺ for which � is a total order is traditionally called a well-order.)
Sometimes one sees an alternative definition of well-founded relation, in

terms of minimal elements.

Proposition 6.1 Let ≺ be a binary relation on a set A. The relation ≺ is
well-founded iff any nonempty subset Q of A has a minimal element, i.e. an
element m such that

m ∈ Q & ∀b ≺ m. b /∈ Q.

Proof.
“if”: Suppose every nonempty subset of A has a minimal element. If · · · ≺ ai ≺
· · · ≺ a1 ≺ a0 were an infinite descending chain then the set Q = {ai | i ∈ N0}
would be nonempty without a minimal element, a contradiction. Hence ≺ is
well-founded.
“only if”: To see this, suppose Q is a nonempty subset of A. Construct a
chain of elements as follows. Take a0 to be any element of Q. Inductively,
assume a chain of elements an ≺ · · · ≺ a0 has been constructed inside Q. Either
there is some b ≺ an such that b ∈ Q or there is not. If not , then stop
the construction. Otherwise take an+1 = b. As ≺ is well-founded the chain
· · · ≺ ai ≺ · · · ≺ a1 ≺ a0 cannot be infinite. Hence it is finite, of the form
an ≺ · · · ≺ a0 with ∀b ≺ an. b /∈ Q. Take the required minimal element m to be
an. 2

Exercise 6.2 Let ≺ be a well-founded relation on a set B. Prove

(i) its transitive closure ≺+ is also well-founded,

(ii) its reflexive, transitive closure ≺∗ is a partial order.

2

6.2 Well-founded induction

Well-founded relations support an important proof principle.

The principle of well-founded induction
Let ≺ be a well founded relation on a set A. To show ∀a ∈ A. P (a) it suffices
to prove that for all a ∈ A

[∀b ≺ a. P (b)] ⇒ P (a) .

The principle reduces showing that a property (the induction hypothesis) holds
globally to showing that the property is preserved locally by the well founded
relation.
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We now prove the principle. The proof rests on the observation, Proposi-
tion 6.1, that any nonempty subset Q of a set A with a well-founded relation
≺ has a minimal element. To justify the principle, we assume ∀a ∈ A. ([∀b ≺
a. P (b)] ⇒ P (a)) and produce a contradiction by supposing ¬P (a) for some
a ∈ A. Then, as we have observed, there must be a minimal element m of the
set {a ∈ A | ¬P (a)}. But then ¬P (m) and yet ∀b ≺ m. P (b), which contradicts
the assumption.

Example: If we take the relation ≺ to be the predecessor relation

n ≺ m iff m = n + 1

on the non-negative integers the principle of well-founded induction specialises
to mathematical induction. 2

Example: If we take ≺ to be the “strictly less than” relation < on the non-
negative integers, the principle specialises to course-of-values induction: To show
P (n) for all nonnegative integers n, it suffices to show

(∀m < n. P (m)) ⇒ P (n)

for all nonnegative integers n. 2

Example: If we take ≺ to be the relation between expressions such that a ≺
b holds iff a is an immediate subexpression of b we obtain the principle of
structural induction as a special case of well-founded induction. 2

Proposition 6.1 provides an alternative to proofs by the principle of well-
founded induction. Suppose A is a well-founded set. Instead of using well-
founded induction to show every element of A satisfies a property, we can con-
sider the subset of A for which the property fails, i.e. the subset Q of coun-
terexamples. By Proposition 6.1, to show Q is ∅ it is sufficient to show that
Q cannot have a minimal element. This is done by obtaining a contradiction
from the assumption that there is a minimal element in Q. Whether to use this
approach or the principle of well-founded induction is largely a matter of taste,
though sometimes, depending on the problem, one approach can be more direct
than the other.

A special instance of Proposition 6.1 is well-known to be equivalent to math-
ematical induction. It is the principle that every nonempty subset of natural
numbers has a least element.

Exercise 6.3 For a suitable well-founded relation on strings, use the “no coun-
terexample” approach described above to show there is no string u which satisfies
au = ub for two distinct symbols a and b. 2

Well-founded induction is the most important principle in proving the ter-
mination of programs. Uncertainties about termination arise because of loops
or recursions in a program. If it can be shown that execution of a loop or re-
cursion in a program decreases the value in a well-founded set then execution
must eventually terminate.
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6.3 Building well-founded relations

Applying the principle of well-founded induction often depends on a judicious
choice of well-founded relation.

6.3.1 Fundamental well-founded relations

We have already made use of well-founded relations like that of proper subex-
pression on syntactic sets, or < on natural numbers. More generally, in Sec-
tion 5.4 we saw that any set inductively-defined by rule instances R was asso-
ciated with a set of R-derivations. The subderivation relation is a well-founded
relation on R-derivations—see Exercise 6.4 below. In many cases each element
of an inductively-defined set IR has a unique derivation (e.g. the case for N0 and
simple syntax, such as that of Boolean propositions). Then the well-founded
relation on R-derivations transfers directly to a well-founded relation on IR.

Exercise 6.4 Let R be a collection of finitary rule instances. For R-derivations
d, d′ define

d′ ≺ d iff ∃D, y. d = (D/y) & d′ ∈ D .

By using induction on derivations with a suitable induction hypothesis, show ≺
is well-founded. 2

Here are some ways to construct further well-founded relations. Recall that
we use x � y to mean (x ≺ y or x = y).

6.3.2 Transitive closure

If ≺ is well-founded relation on A, then so is its transitive closure ≺+. Clearly
any infinite descending chain

· · · ≺+ an ≺+ · · · ≺+ a1 ≺+ a0

with respect to ≺+ would induce an infinite descending chain with respect to
≺. (This was part of an earlier exercise!)

6.3.3 Product

If ≺1 is well-founded on A1 and ≺2 is well-founded on A2 then taking

(a1, a2) � (a′1, a
′
2) ⇔def a1 �1 a′1 and a2 �2 a′2

determines a relation ≺= (� \idA1×A2) in A1 ×A2 called the product relation:

Proposition 6.5 The product relation of well-founded relations is well-founded.
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Proof. Suppose ≺1 is well-founded on A1 and ≺2 is well-founded on A2.
Assume their product relation ≺ is not well-founded, i.e. that there is an infinite
descending chain

· · · ≺ (xn, yn) ≺ · · · ≺ (x1, y1) ≺ (x0, y0) .

But then, from the definition of the product relation ≺, either

· · · ≺1 xnk
≺1 · · · ≺1 xn1 ≺1 xn0

or
· · · ≺2 ynk

≺2 · · · ≺2 yn1 ≺2 yn0 ,

which contradicts the well-foundedness of ≺1 and ≺2. 2

We’ll see applications of the product of well-founded relations in the next
chapter. However product relations are not as generally applicable as those
produced by lexicographic products.

6.3.4 Lexicographic products

Let ≺1 be well-founded on A1 and ≺2 be well-founded on A2. Define their
lexicographic product by

(a1, a2) ≺lex (a′1, a
′
2) iff a1 ≺1 a′1 or (a1 = a′1 & a2 ≺2 a′2) .

Proposition 6.6 The lexicographic product of well-founded relations is well-
founded.

Proof. Suppose ≺1 is well-founded on A1 and ≺2 is well-founded on A2.
Assume their lexicographic product ≺lex is not well-founded, i.e. that there is
an infinite descending chain

· · · ≺ (xn, yn) ≺ · · · ≺ (x1, y1) ≺ (x0, y0) .

From the definition of the lexicographic relation ≺lex

· · · �1 xn �1 · · · �1 x1 �1 x0 .

But ≺1 is well-founded so from some stage on, say m ≥ n, this chain is constant.
But then from the definition of the lexicographic relation ≺,

· · · ≺2 yn+i ≺2 · · · ≺2 yn+1 ≺2 yn ,

which contradicts the well-foundedness of ≺2. 2

Exercise 6.7 Let ≺ be a well-founded relation on a set X such that � is a
total order. Show it need not necessarily make the set

{x ∈ X | x ≺ y}

finite for all y ∈ X.
[Recall a total order is a partial order ≤ such that x ≤ y or y ≤ x for all its
elements x, y. Hint: Consider the lexicographic product of < and < on N0×N0.]

2
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6.3.5 Inverse image

Let f : A → B be a function and ≺B a well-founded relation on B. Then ≺A is
well-founded on A where

a ≺A a′ ⇔def f(a) ≺B f(a′)

for a, a′ ∈ A.

Exercise 6.8 Show the inverse image of a well-founded relation is a well-
founded relation. 2

6.4 Applications

6.4.1 Euclid’s algorithm for hcf

We can use well-founded induction to show the correctness of Euclid’s algorithm
for calculating the highest common factor (hcf) of a pair of natural numbers.1

One way to formulate Euclid’s algorithm is through a reduction relation −→E

on N× N defined as follows:

(m,n) −→E (m,n−m) if m < n ,

(m,n) −→E (m− n, n) if n < m .

So (m,n) reduces to (m,n −m) if m < n and to (m − n, n) if n < m. Notice
there is no reduction when m = n; in this case the reduction terminates.

It is easy to check that the following properties hold for the hcf of natural
numbers:

Proposition 6.9

(a) hcf(m,n) = hcf(m,n−m) if m < n,

(b) hcf(m,n) = hcf(m− n, n) if n < m,

(c) hcf(m,m) = m.

Proof. The highest common factor of natural numbers m and n, hcf(m,n), is
characterised by:

(i) hcf(m,n) divides m and n;

(ii) if k divides m and n, then k divides hcf(m,n).

1Another name for highest common factor is greatest common divisor (gcd).
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In all cases the proof proceeds by showing any divisor of the left is also a divisor
of the right and vice versa; two natural numbers with the same divisors must
be equal. As an example we show (a) hcf(m,n) = hcf(m,n − m) assuming
m < n. Suppose k divides the lhs hcf(m,n). Then k certainly divides m and
n by (i), and so divides m and n −m. Thus k divides the rhs hcf(m,n −m)
by (ii). Suppose now that k divides the rhs hcf(m,n −m). Then k divides m
and n −m by (i). It follows that k divides m and n, and so the lhs hcf(m,n)
by (ii). 2

Euclid’s reduction terminates with the hcf of the natural numbers it starts
with:

Theorem 6.10 For all m,n ∈ N,

(m,n) −→∗
E (hcf(m,n), hcf(m,n)) .

Proof. Let ≺⊆ N× N be the well-founded relation constructed as the product
of < and < on N. Take

P (m,n) ⇔def (m,n) −→∗
E (hcf(m,n), hcf(m,n))

as the induction hypothesis. We prove P (m,n) for all m,n ∈ N by well-founded
induction.

Let (m,n) ∈ N × N. Assume P (m′, n′) for all (m′, n′) ≺ (m,n). Consider
the cases:

Case m < n. In this case (m,n) −→E (m,n−m) and because P (m,n−m) by
the induction hypothesis,

(m,n−m) −→∗
E (hcf(m,n−m), hcf(m,n−m)) .

Hence
(m,n) −→∗

E (hcf(m,n−m), hcf(m,n−m)) ,

by the properties of the reflexive transitive closure −→∗
E . Also hcf(m,n) =

hcf(m,n−m). Thus P (m,n) in this case.

Case n < m. This case is very similar.

Case m = n. In this case
(m,n) −→∗

E (m,n)

as −→∗
E is reflexive. Also hcf(m,n) = m = n. Thus P (m,n) in this case.

In all possible cases for (m,n) we can derive P (m,n) from the assumption
that P (m′, n′) holds for all ≺-predecessors (m′, n′). Hence by well-founded
induction we have established P (m,n) for all m,n ∈ N. 2
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6.4.2 Eulerian graphs

Well-founded induction is a proof principle of widespread applicability. Here’s an
example of its use in graph theory. A graph is a pair (V,E) consisting of a set of
vertices V and a set of edges E—an edge between vertices v and v′ is represented
as an unordered pair {v, v′}. A graph is connected iff any two vertices v, v′ are
connected by a path of edges {v0, v1}, {v1, v2}, · · · , {vn−1, vn} where v = v0 and
vn = v′. A circuit of a graph consists of a path {v0, v1}, {v1, v2}, · · · , {vn−1, vn}
for which v0 = vn. A circuit is Eulerian iff it visits each edge exactly once.
When does a finite connected graph have a Eulerian circuit? The answer to this
question, the theorem below, is due to the great mathematician Leonhard Euler
(1707-1783). Reputedly he was asked by the townspeople of Königsberg whether
it was possible to go for a walk in the town so as to cross each of its numerous
bridges exactly once (Was it? See the figure and Theorem 6.11 below).
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Theorem 6.11 A finite connected graph has an Eulerian circuit iff every vertex
has even degree, i.e. has an even number of edges connected to it.

Proof.
“only if”: Consider a finite connected graph. Assume it has an Eulerian circuit.
Because the graph is connected, each vertex must appear at least once in the
circuit (why?). Each occurrence of a vertex in the Eulerian circuit is accompa-
nied by a pair of distinct edges—one going into the vertex and one going out.
All edges appear precisely once in the Eulerian circuit, so each vertex has even
degree.
“if”: For finite connected graphs G1 = (V1, E1) and G2 = (V2, E2), define

G1 � G2 ⇐⇒ V1 ⊆ V2 & E1 ⊆ E2 .

The relation ≺ between finite connected graphs is an example of the product of
two well-founded relations, so is itself well-founded. We shall use well-founded
induction to establish the following property of all finite connected graphs:

if each vertex has even degree, then the graph has an Eulerian circuit.

We take the above as our induction hypothesis.
Let G be a finite connected graph in which each vertex has even degree.

Assume that for all graphs G′ with G′ ≺ G if each vertex of G′ has even degree,
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then G′ has an Eulerian circuit. That is, we assume the induction hypothesis
for all G′ ≺ G.

We first find a circuit C in the graph. Starting at some vertex (it doesn’t
matter which) form a maximal path along edges in which no edge appears more
than once. Because the graph is finite such a path must contain a loop, the
circuit C. Any occurrence of a vertex in C is accompanied by a pair of distinct
edges—one ingoing and one outgoing. Remove all the edges of C from the graph
G. This will result in one or more connected components G′, where all vertices
of G′ have even degree and G′ ≺ G. Hence, each such connected component
has an Eulerian circuit. Linking these into C we obtain an Eulerian circuit for
G. 2

6.4.3 Ackermann’s function

Ackermann’s function provides a counterexample to the conjecture that all com-
putable functions are primitive recursive—it grows way too fast.2 As a recursive
program Ackermann’s function looks like:

A(x, y) = if x = 0 then y + 1 else
if y = 0 then A(x− 1, 1) else

A(x− 1, A(x, y − 1))

But the fact that it can be written as a program leaves open the possibility of
nontermination, that Ackermann’s function is undefined for some input x, y ∈
N0. However:

Theorem 6.12 There is a unique function ack : N0 × N0 → N0 such that

ack(m,n) =


n + 1 if m = 0
ack(m− 1, 1) if m 6= 0, n = 0
ack(m− 1, ack(m,n− 1)) otherwise

for all m,n ∈ N0.

Proof. (See the next section for an alternative, simpler proof which uses the
powerful principle of well-founded recursion.)

We first show that there is a partial function ack : N0×N0 ⇀ N0 satisfying the
equation

ack(m,n) =


n + 1 if m = 0
ack(m− 1, 1) if m > 0, n = 0 & ack(m− 1, 1) is defined
ack(m− 1, ack(m,n− 1)) if m,n > 0 & ack(m,n− 1) and

ack(m− 1, ack(m,n− 1)) are both defined,

for all m,n ∈ N0. Consider the following rules which capture the evaluation of
Ackermann’s function to a final value:

2Computable and primitive recursive functions are central topics in the second-year CS
course on “Computability.”
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(0, n) ⇓ n + 1

(m− 1, 1) ⇓ k
(m, 0) ⇓ k

(m > 0)

(m,n− 1) ⇓ l (m− 1, l) ⇓ k
(m,n) ⇓ k

(m,n > 0)

The relation ⇓ ⊆ (N0 × N0) × N0, inductively defined by the rules, is a par-
tial function. This can be shown by rule induction with induction hypothesis
P (m,n, k) defined by

P (m,n, k) ⇔def ∀k′ ∈ N0. (m,n) ⇓ k′ ⇒ k = k′ .

Define
ack(m,n) = k ⇔def (m,n) ⇓ k .

The closure of ⇓ under the rules ensures that ack satisfies the equation above
for all m,n ∈ N0.

Now we can show that the partial function ack is in fact total. That
ack(m,n) is defined for all m,n ∈ N0 is proved by well-founded induction on
(m,n) ordered lexicographically. The induction hypothesis is

D(m,n) ⇔def ack(m,n) is defined.

This shows the existence of a function ack : N0 × N0 → N0 satisfying the
equation stated in the theorem.

To show uniqueness assume that ack′ : N0 × N0 → N0 satisfies the same
equation for all m,n ∈ N0. We can show ack = ack′. This is proved by well-
founded induction on (m,n) ordered lexicographically with induction hypothesis

U(m,n) ⇔def ack(m,n) = ack′(m,n) .

2

In practice a program to calculate Ackermann’s function won’t terminate in
a reasonable time on any machine for all but the smallest values.

Exercise 6.13 Complete the proof of Theorem 6.12 by filling in the details
in: the proof by rule induction that the relation ⇓ is a partial function; the
proofs of the existence and uniqueness of Ackermann’s function by well-founded
induction. 2

6.5 Well-founded recursion

Earlier in the course we have used both definition by structural induction (e.g. in
defining the model of truth assignments in Section 2.3) and definition by induc-
tion (e.g. in the proof of Lemma 3.25). Such definitions are a form of recursive
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definition: the result of a function on an argument is defined in terms of the
results of the same function on strictly smaller arguments. For example, we can
define the length of Boolean propositions by the following clauses:

length(a) = 1 ,

length(T) = 1 , length(F) = 1 ,

length(A ∧ B) = 1 + length(A) + length(B) ,

length(A ∨ B) = 1 + length(A) + length(B) ,

length(¬A) = 1 + length(A) .

A well-known example from mathematics is that of the Fibonacci numbers
0, 1, 1, 2, 3, 5, 8, 13, · · ·, which we visited in Section 1.3. They are given by a
recurrence relation

fib(0) = 0, fib(1) = 1, fib(n) = fib(n− 1) + fib(n− 2) for n > 1 ,

in which the nth Fibonacci number is defined in terms of the two preceding
numbers.

In a similar way we are entitled to define functions on an arbitrary well-
founded set. Suppose B is a set with a well-founded relation ≺. Definition by
well-founded induction, traditionally called well-founded recursion, allows the
definition of a function f from B by specifying its value f(b) at an arbitrary b
in B in terms of f(b′) for b′ ≺ b. In more detail:

Definition by well-founded recursion
Suppose B is a set with a well-founded relation ≺. Suppose C is a set and
F (b, c1, · · · , ck, · · ·) is an expression such that

∀b ∈ B, c1, · · · , ck, · · · ∈ C. F (b, c1, · · · , ck, · · ·) ∈ C .

Then, a recursive definition of the form, for all b ∈ B,

f(b) = F (b, f(b1), · · · , f(bk), · · ·) ,

where b1 ≺ b, · · · , bk ≺ b, · · ·, determines a unique total function f : B → C
(i.e., there is a unique f : B → C which satisfies the recursive definition).

You can check that definitions by mathematical induction, structural in-
duction, and, in particular of the Fibonacci numbers fit the general scheme of
definition by well-founded recursion.3

Well-founded recursion and induction constitute a general method often ap-
propriate when functions are intended to be total. For example, it immediately
follows from well-founded recursion that that there is a unique total function
on the nonnegative integers such that

ack(m,n) =


n + 1 if m = 0 ,
ack(m− 1, 1) if m 6= 0, n = 0 ,
ack(m− 1, ack(m,n− 1)) otherwise ,

3The non-examinable proof justifying well-founded recursion is presented in Section 6.5.1.
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for all m,n ∈ N0; observe that the value of ack at the pair (m,n) is defined in
terms of its values at the lexicographically smaller pairs (m−1, 1) and (m,n−1).
In fact, a great many recursive programs are written so that some measure
within a well-founded set decreases as they are evaluated.

Not all recursive definitions are well-founded; it’s a fact of life that programs
may fail to terminate, and so in general determine partial functions from input to
output. The techniques of semantics, domain theory (where least fixed points
play a central role—see Sections 5.6, 5.5) or operational semantics (based on
inductive definitions—see e.g. the proof of Theorem 6.12) apply in this broader
situation.4

Exercise 6.14 Show the relation ≺, where

n ≺ m ⇔ m < n ≤ 101,

for n, m ∈ N0, is well-founded.
The 91 function of McCarthy f : N0 → N0 is defined by well-founded recur-

sion as follows:

f(x) =
{

x− 10 if x > 100 ,
f(f(x + 11)) otherwise ,

for all x ∈ N0. Explain why this is a definition by well-founded recursion. Show
by well-founded induction with respect to ≺ that

f(x) =
{

x− 10 if x > 100 ,
91 otherwise ,

for all x ∈ N0. 2

6.5.1 The proof of well-founded recursion

We need a little notation to justify well-founded recursion precisely and gener-
ally. Assume B is a set with a well-founded relation ≺. Each element b in B
has a set of predecessors

≺−1 {b} = {b′ ∈ B | b′ ≺ b} .

For any B′ ⊆ B, a function f : B → C to a set C, restricts to a function
f � B′ : B′ → C by taking

f � B′ = {(b, f(b)) | b ∈ B′} .

A very general form of definition by well-founded recursion is justified by
the following powerful theorem:

Theorem 6.15 (Well-founded recursion)
Let ≺ be a well-founded relation on a set B. Let C be a set. Suppose F (x, p) ∈ C,
for all x ∈ B and functions p :≺−1 {x} → C. Then there is a unique function
f : B → C such that

∀x ∈ B. f(x) = F (x, f �≺−1 {x}) . (∗)
4Cf. the Part IB course ‘Semantics’ and the Part II course ‘Denotational Semantics.’
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Proof. Define an approximant to be a partial function g : B ⇀ C such that for
all x ∈ B, if g(x) is defined then

(∀z ≺ x. g(z) is defined) and g(x) = F (x, g �≺−1 {x}) .

The proof has two parts. We first show an agreement property. For any two
approximants g, h,

if g(x) is defined & h(x) is defined, then g(x) = h(x) ,

for any x ∈ B. The agreement property, A(x), is proved to hold for all x ∈ B
by well-founded induction on ≺. For x ∈ B, assume A(z) for every z ≺ x. We
require A(x). Assume that g(x) and h(x) are both defined. If z ≺ x, then

g(z) is defined & h(z) is defined

as g and h are approximants. As A(z) we obtain

g(z) = h(z) .

Hence
g � ≺−1{x} = h � ≺−1{x} .

It now follows that

g(x) = F (x, g �≺−1 {x}) = F (x, h �≺−1 {x}) = h(x) ,

again using the fact that g and h are approximants. Thus A(x).
It follows that there can be at most one function f satisfying (∗). We now

show that there exists such a function. We build the function by taking the
union of a set of approximants fx : ≺∗−1{x} → C, for x ∈ B. To show suitable
functions exist we prove the following property E(x) holds for all x ∈ B by
well-founded induction on ≺ :

there exists an approximant fx : ≺∗−1{x} → C

—note the approximant is necessarily unique by the agreement property.
Let x ∈ B. Suppose ∀z ≺ x. E(z). Then

h =
⋃
{fz | z ≺ x}

is a function, being the union of approximants which agree when defined on a
common argument. Taking

fx = h ∪ {(x, F (x, h))}

gives an approximant fx : ≺∗−1{x} → C. This completes the well-founded
induction, yielding ∀x ∈ B. E(x).

Now we take f =
⋃

x∈B fx. By the agreement property, this yields f : B →
C, and moreover f is the unique function satisfying (∗). 2


