Scheduling and queue management

DigiComm I

Traditional queuing behaviour in routers

» Data transfer:
 datagrams: individual packets
* no recognition oflows
» connectionless: no signalling
« Forwarding:
» based on per-datagram, forwarding table look-ups
* no examination of “type” of traffic — npriority traffic

 Traffic patterns

DigiComm I

Questions

» How do we modify router scheduling behaviour to
support QoS?

* What are the alternatives to FCFS?

* How do we deal with congestion?

DigiComm Il

Scheduling mechanisms

DigiComm Il

Scheduling [1]

Service request at server:

* e.g. packet at router inputs

Service order:

» which service request (packet) to service first?
Scheduler:

« decides service order (based on policy/algorithm)
* manages service (output) queues

Router (network packet handling server):

* service: packet forwarding

 scheduled resource: output queues

» servicereguests. packets arriving on input lines

DigiComm I

Scheduling [2]

Simplerouter schematic
¢ Input lines:

* no input buffering
Packet classifier:

« policy-based classification
» Correct output queue:

« forwarding/routing tables
« switching fabric

« output buffer (queue)
Scheduler:

« which output queue
serviced next

forwarding /

routing
policy

forwarding /
routing
tables
—]
B
— 2 g
o - e
o switching =
& N o
— g fabric =1
ES 2
— 2 O
= KON SN
K

DigiComm I

FCFS scheduling

Null packet classifier

Packets queued to outputs in order they arrive
Do packet differentiation

No notion of flows of packets

Anytime a packet arrives, it is serviced as saon a
possible:
» FCFS is avork-conserving scheduler

DigiComm Il

Conservation law [1]

¢ FCFS is work-conserving:
< not idle if packets waiting
* Reduce delay of one flow,
increase the delay of one
or more others

« We can not givall flows
a lower delay than they
would get under FCFS

N
> /8. =C
n=1

P = Aoty

P, : meanlink utlisation

g, : meandelayduetoscheduler

C: constanfs]

A, : meanpacketrate[p/s]

M, : meanper— packetservicerate[s/p]

DigiComm Il

Conservation law [2]

Non-work-conserving schedulers

Non-work conserving
disciplines:
« can be idle even if packets
waiting
¢ allows “smoothing” of
packet flows
Do not serve packet as
soon as it arrives:
< what until packet igligible
for transmission
Eligibility:
« fixed time per router, or
« fixed time across network

v Less jitter
v Makes downstream traffic
more predictable:
 output flow is controlled
¢ less bursty traffic
v Less buffer space:
* router: output queues
¢ end-system: de-jitter buffers
% Higher end-to-end delay
% Complex in practise
e may require time
synchronisation at routers

DigiComm I

Example e Change f1:
* U,:0.1ms/p (fixed) * A :15p/s
+ Flow f1: * G:0.1s
«)\, 10pls * P10 = 1.5<107s
.+ g,:0.1ms * For 2 this means:
* P10, =107s + decreasa,?
e Flow f2: * decrease,?
« A,:10p/s * Note the trade-off for f2:
e @,:0.1ms » delay vs. throughput
* P0,=107s » Change service ratg,f):
e C=2x10's » change servicpriority
DigiComm Il
Scheduling: requirements

¢ Ease of implementation:
¢ simple-> fast
¢ high-speed networks
* low complexity/state

« implementation in hardware

» Fairness and protection:
« local fairnessmax-min

¢ local fairness> global
fairness

« protect any flow from the

(mis)behaviour of any other

» Performance bounds:

¢ per-flow bounds

¢ deterministic (guaranteed)

« statistical/probabilistic

» datarate, delay, jitter, loss
* Admission control:

* (if required)

¢ should be easy to

implement
» should be efficient in use

DigiComm Il

The max-min fair share criteria

Flows are allocated
resource in order of
increasing demand

Flows get no more than
they need

Flows which have not
been allocated as they

demand get an equal sharg

of the available resource

Weighted max-min fair
share possible

If max-min fair>
provides protection

m, =min(x,,M,) 1<n<N
n-1
c->m
— i=1
"TN-n+1
C: capacityof resourcémaximumresource)
m, : actualresourcellocationtoflow n

X, : resourcelemandy flow n,x, < x,--- < X
:resourcavailabletoflow n

M

Example:
C =10, four flow with demands of 2, 2.6, 4, 5
actual resource allocations are 2, 2.6, 2.7, 2.7

DigiComm Il

Scheduling: dimensions

 Priority levels:
* how many levels?
« higher priority queues
services first
¢ can cause starvation lower
priority queues
« Work-conserving or not:

« must decide if delayijitter
control required

« is cost of implementation of
delayijitter control in
network acceptable?

» Degree of aggregation:

« flow granularity

» per application flow?
e peruser?

¢ per end-system?
 cost vs. control

» Servicing within a queue:

* “FCFS” within queue?

» check for other parameters?
¢ added processing overhead
* queue management

DigiComm I

Simple priority queuing

* Kqueues:
e 1<ksK
* queuek + 1 has greater priority than qudue
* higher priority queues serviced first
v Very simple to implement
v" Low processing overhead
» Relative priority:
* no deterministic performance bounds
% Fairness and protection:
* not max-min fair: starvation of low priority queues

DigiComm I

Generalised processor sharing (GPS)

« Work-conserving

* Provides max-min fair
share

» Can provide weighted
max-min fair share

« Not implementable:

¢ used as a reference for
comparing other schedulers

¢ serves an infinitesimally
small amount of data from
flow i

* Visits flows round-robin

¢(n) 1<n<N

S(i,7,t) 1<isN

S(i.7.1) _ @)

S(j.7.t) i)

@(n) : weightgiven toflow n

S(i,7,t) : servicetoflow i in interval[zz,t
flow i hasanon-emptyqueue

DigiComm Il

GPS —relative and absolute fairness

« Use fairness bound to reg =500 ST
evaluate GPS emulations o) o
(GPS-like schedulers) AFB = Sg'(ir)'t) —Gg’(ir)’t)

* Relative fairness bound: S(i,7,t) : actualservicefor flow iin [7,t]

+ fairness of scheduler with G(i,7,t): GPSservicefor flow i in[z,t]
;Zsr\pl)i(l:; to other flows it is gy =min{g (D, g, K)}
9 gl = 2R
» Absolute fairness bound: ' N
. > @ik
« fairness of scheduler =

compared to GPS for the (i, k) : weightgiven toflow i atrouterk
same flow r(k) : servicerateof routerk

1<i<N flow number

1<k<K routernumber

DigiComm Il

Weighted round-robin (WRR)

Simplest attempt at GPS « Service is fair over long
Queues visited round- timescales:

robin in proportion to » must have more than one
weights assigned visit to each flow/queue

. * short-lived flows?
Different means packet :

. ¢ small weights?
Sizes:

) o * large number of flows?
« weight divided by mean
packet size for each queue

Mean packets size
unpredictable:
¢ may cause unfairness

DigiComm I

Deficit round-robin (DRR)

* DRR does not need to * Queues not served during
know mean packet size round build up “credits”:

» Each queue has deficit * only non-empty queues
counter (dc): initially zero ¢« Quantum normally set to

« Scheduler attempts to max expected packet size:
serve one quantum of data ¢ ensures one packet per

from a non-empty queue: round, per non-empty queue
« packetathead served if ~* RFB:3T/r (T = max pkt

size< quantum + dc service time, r = link rate)

dc € quantum + dc —size Works best for:

* else dc += quantum ¢ small packet size

¢ small number of flows

DigiComm I

Weighted Fair Queuing (WFQ) [1]

Based on GPS: * Round-number:
* GPS emulation to produce » execution of round by bit-
finish-number sfor packets by-bit round-robin server

in queue « finish-number calculated
« Simplification: GPS from round number
emulation serves packets ; .
bit-by-bit round-robin i qf‘i’n?:hen'jmebr:rﬁ’g
Finish-number: number of bitsin packet +
¢ the time packet would have round-number
completed service under . If gueue non-empty:
bit-by-bit) GPS ’
(bit-by-bit o + finish-number is:
« packets tagged with finish- highest current finish
number number for queue +

» smallest finish-number number of bitsin packet
across queues served first

DigiComm Il

Weighted Fair Queuing (WFQ) [2]

F(i,kt) = max{F(i,k-1t),Rt} +P(,kt) « Flow completes (empty
F(i,k,t): finish - numberfor packetk queue):
onflow i arriving at timet
P(i,k,t): sizeof packetk onflow i
arriving at timet
R(t) : round- numberat timet

» one less flow in round, so
* Rincreases more quickly
* s0, more flows complete
' i} ‘ P,k 1) ¢ Rincreases more quickly
F,(i,k,t) = max{F,(i,k -1t), R{t)} +W . etc. ...
#i): weightgiven toflow i + iterated deletion problem

. Rate of change dk(t) depends * WFQ Deeds to evalu.afé
on number of active flows (and ~ each time packet arrives or
their weights) leaves:

* AsR(t) changes, so packets will « processing overhead
be served at different rates

DigiComm Il

Weighted Fair Queuing (WFQ) [3]

Buffer drop policy:
« packet arrives at full queue

« drop packets already in queued, in order of destmgeinish-
number

Can be used for:

« best-effort queuing

« providing guaranteed data rate and deterministitte-end delay
WFQ used in “real world”
Alternatives also available:

« self-clocked fair-queuing (SCFQ)

« worst-case fair weighted fair queuing (9

DigiComm I

Class-Based Queuing

Hierarchical link sharing:

¢ link capacity is shared

« class-based allocation

« policy-based class selection
Class hierarchy:

« assign capacity/priority to

each node s 10%
* node can “borrow” any @
spare capacity from parent
« fine-grained flows possible -
Note: this is a queuing 1% RT realtime

NRT non-real-time

mechanism: requires use
of a scheduler

DigiComm I

Queue management and congestion
control

DigiComm Il

Queue management [1]

Scheduling:

» which output queue to visit

» which packet to transmit from output queue

Queue management:

 ensuring buffers are available: memory management
 organising packets within queue

 packet dropping when queueisfull

 congestion control

DigiComm Il

Queue management [2]

» Congestion:
» misbehaving sources
 source synchronisation
* routing instability
» network failure causing re-routing
 congestion could hurt many flows: aggregation
» Drop packets:
» drop “new” packets until queue clears?
» admit new packets, drop existing packets in queue?

DigiComm I

Packet dropping policies

Drop-from-tail:

« easy to implement

« delayed packets at within
gueue may “expire”

Drop-from-head:

« old packets purged first

¢ good for real time

« better for TCP

Random drop:

« fairif all sources behaving

« misbehaving sources more

heavily penalised

* Flush queue:
 drop all packets in queue
e simple
» flows should back-off
« inefficient
* Intelligent drop:

¢ based on level 4
information

* may need a lot of state
information

» should be fairer

DigiComm I

End system reaction to packet drops

* Non-real-time — TCP:
» packet drop> congestion> slow down transmission
* slow start> congestion avoidance
» network is happy!
* Real-time — UDP:
» packet drop> fill-in at receiver> ??
« application-level congestion control required
« flow data rate adaptation not be suited to audio/video?
* real-time flows may not adapg hurts adaptive flows

* Queue management could protect adaptive flows:

* smart queue management required

DigiComm Il

RED [1]

Random Early Detection:
 spot congestion before it happens
« drop packet> pre-emptive congestion signal

» source slows down

 prevents real congestion
Which packets to drop?

* monitor flows

* cost in state and processing overhead vs. overall
performance of the network

DigiComm Il

RED [2]

Probability of packet drof queue length

Queue length value — exponential average:

* smooths reaction to small bursts

» punishes sustained heavy traffic

Packets can be dropped or marked as “offending”:

» RED-aware routers more likely to drop offending
packets

Source must be adaptive:
e OK for TCP
* real-time traffic> UDP ?

DigiComm I

TCP-like adaptation for real-time flows

* Mechanisms like RED require adaptive sources
» How to indicate congestion?

» packet drop — OK for TCP

 packet drop — hurts real-time flows

» use ECN?
» Adaptation mechanisms:

* layered audio/video codecs

» TCP is unicast: real-time can be multicast

DigiComm I

Scheduling and queue management:

Discussion
e Fairness and protection: < Aggregation:
¢ queue overflow e granularity of control
« congestion feedback from e granularity of service
router: packet drop? « amount of router state
e Scalability: » lack of protection
 granularity of flow * Signalling:
* speed of operation « set-up of router state
* Flow adaptation: » inform router about a flow
« non-real time: TCP explicit congestion

« real-time? notification?

DigiComm Il

Summary

Scheduling mechanisms
» work-conserving vs. non-work-conserving

Scheduling requirements
» Scheduling dimensions
¢ Queue management

» Congestion control

DigiComm Il

