QoS services and application-level service interfaces

IP “service”

- IP datagram service:
 - datagrams are subject to loss, delay, jitter, mis-ordering
 - Performance: no guarantees
- Integrated Services:
 - new QoS service-levels
- Differentiated Services:
 - class of service (CoS)
 - User/application may need to signal network
 - User/application may need to signal other parts of application

Questions

- Can we do better than best-effort?
- What support do real-time flows need in the network?
- What support can we provide in the network?
- QoS for many-to-many communication?
- Application-level interfaces?
- Signalling

INTSERV
Questions

- What support do we need from the network to give QoS capability to the Transport layer?
- How can we control congestion in the network?
- How can we support legacy network protocols over the Internet?

Integrated services

- Need:
 1. service-levels
 2. service interface – signalling protocol
 3. admission control
 4. scheduling and queue management in routers
- Scenario:
 - application defines service-level
 - tells network using signalling
 - network applies admission control, checks if reservation is possible
 - routers allocate and control resource in order to honour request

INTSERV

- Requirements for Integrated Services based on IP
- QoS service-levels:
 - current service: best-effort
 - controlled-load service (RFC2211)
 - guaranteed service (RFC2212)
 - other services possible (RFC2215, RFC2216)
- Signalling protocol:
 - RSVP (RFC2205, RFC2210)

INTSERV service templates

- Describe service semantics
- Specifies how packets with a given service should be treated by network elements along the path
- General set of parameters
 - <service_name>.<parameter_name>
 - both in the range [1, 254]
- TSpec: allowed traffic pattern
- RSpec: service request specification
Some INTSERV definitions

- Token bucket (rate, bucket-size):
 - token bucket filter: total data sent \(\leq (r + b) \)
- Admission control:
 - check before allowing a new reservation
- Policing:
 - check TSpec is adhered to
 - packet handling may change if TSpec violated (e.g. degrade service-level, drop, mark, etc.)
- Characterisation parameters: local and composed

Token bucket (recap)

Token bucket

- Three parameters:
 - \(b \): bucket size [B]
 - \(r \): bucket rate [B/s or b/s]
 - \(p \): peak rate [B/s or b/s]
- Bucket fills with tokens at rate \(r \), starts full
- Tokens allow transmission
- Burst allowed at rate \(p \):
 - data sent \(< r t + b \)
 - (Also \(m \) and \(M \))

General INTSERV parameters

- NON_IS_HOP (flag): no QoS support
- NUMBER_OF_IS_HOPS: QoS-aware hop count
- AVAILABLE_PATH_BANDWIDTH
- MINIMUM_PATH_LATENCY
- PATH_MTU
- TOKEN_BUCKET_TSPEC:
 - \(r \) (rate), \(b \) (bucket size), \(p \) (peak rate)
 - \(m \) (minimum policed unit), \(M \) (maximum packet size)

Controlled-load service

- Best-effort under unloaded conditions:
 - probabilistic guarantee
- Invocation parameters:
 - TSpec: TOKEN_BUCKET_TSPEC
 - RSpec: none
- Admission control:
 - Class-Based Queuing (CBQ), priority and best-effort
- Policing:
 - not defined (e.g. treat as best-effort)
Guaranteed service [1]

- Assured data rate with bounded-delay
 - deterministic guarantee
 - no guarantees on jitter
- Invocation parameters:
 - TSpec: TOKEN_BUCKET_TSPEC
 - RSpec: R (rate), S (delay slack term, μs)
- Admission control:
 - Weighted Fair Queuing (WFQ)
- Policing:
 - drop, degrade to best-effort, reshape (delay)

Guaranteed Service [2]

- End-to-end delay bound:
 - maximum delay
 - based on fluid flow model
 - fluid flow model needs error terms for IP packets
- Error terms:
 - C [B]: packet serialisation
 - D [μs]: transmission through node
- Composed values:
 - C_{SUM} and D_{SUM}

\[
\begin{align*}
\text{delay} &= \frac{(b-M)(p-R)}{R(p-r)} + \frac{(M + C_{SUM})}{R} + D_{SUM} \quad p > R \geq r \\
\text{delay} &= \frac{(M + C_{SUM})}{R} + D_{SUM} \quad R \geq p \geq r
\end{align*}
\]

INTSERV: RSVP [1]

- Provides signalling:
 - user-to-network
 - network-to-network
- Traffic information – FlowSpec:
 - TSpec
 - sent through network
 - AdSpec (optional)
- Receiver confirms reservation:
 - uni-directional reservation
INTSERV: RSVP [2]

- Two-pass, with soft-state:
 - sender: Path message
 - NEs hold soft-state until Resv, PathTear or time-out
 - receiver(s): Resv message - TSpec (+RSpec)
 - sender: PathTear
 - receiver(s): ResvTear
 - soft-state refreshed using Path and Resv
- Composed QoS params:
 - AdSpec for path

Reservation types and merging

- FilterSpec: style of reservation
 - Fixed-filter (FF):
 - FilterSpec required
 - distinct sender reservation
 - explicit sender selection
 - Wildcard-filter (WF):
 - FilterSpec not required
 - shared sender reservation
 - wildcard sender selection
- Shared-explicit (SE):
 - FilterSpec required
 - shared sender reservation
 - explicit sender selection
- Merging reservation info:
 - merging allows aggregation of reservation information
 - merging not possible across styles
 - merging possible for reservations of the same style – use maximum

Reservations about reservations

- Two-pass – one reservation may “block” another:
 - PathErr and ResvErr
- Need to hold a lot of soft-state for each receiver
- Extra traffic due to soft-state refreshes
- Heterogeneity limitations:
 - same service-level
- Router failure:
 - QoS degrades to best-effort, need to re-negotiate QoS
- Applications and routers need to be RSVP aware:
 - legacy applications
 - Charging

DIFFSERV
DIFFSERV

- Differentiated services:
 - tiered service-levels
 - service model (RFC2475)
 - simple packet markings (RFC2474)
- Packets marked by network, not by application:
 - will support legacy applications
- Simpler to implement than INTSERV:
 - can be introduced onto current networks

Service Level Agreements

- Not (necessarily) per-flow:
 - aggregate treatment of packets from a “source”
- Service classes:
 - Premium (low delay) - EF (RFC2598)
 - Assured (high data rate, low loss) - AF (RFC2597)
- Service level agreement (SLA):
 - service level specification (SLS)
 - policy between user and provider - policing at ingress
 - service provided by network (end-system unaware)

Scope of DIFFSERV

DIFFSERV classification [1]

- Packet marking:
 - IPv4 ToS byte or IPv6 traffic-class byte
 - DS byte
- Traffic classifiers:
 - multi-field (MF): DS byte + other header fields
 - behaviour aggregate (BA): DS field only
 - DS codepoint: values for the DS byte
- Aggregate per-hop behaviour (PHB):
 - aggregate treatment within network
DIFFSERV classification [2]

- IPv4 header
 - version
 - type of service
 - total length
 - identification
 - flags
 - fragment offset
 - time to live
 - protocol
 - header checksum
 - source address
 - destination address

- IPv6 header
 - version
 - 0
 - 8
 - 16
 - 24
 - 31
 - next
 - header
 - traffic class
 - source address
 - flow label
 - hop limit
 - destination address

DIFFSERV and ECN bits

- 0 1 2 3 4 5 6 7

DIFFSERV codepoint (DSCP)

DIFFSERV PHBs

- Specify rate/delay in SLS
- **Expedited Forwarding (EF)** (RFC2598):
 - virtual leased line (VLL) service
 - data rate specified in SLS
 - low delay, low jitter, low loss
- **Assured Forwarding (AF)** (RFC2597):
 - 4 classes (1-4)
 - 3 levels of drop precedence per class (1-3)
 - AF11 - “best”, AF43 - “worst”

DIFFSERV traffic conditioning

- Traffic conditioners:
 - meter
 - marker
 - shaper/dropper
- Metering of traffic:
 - in-profile
 - out-of profile
- Re-marking:
 - new DS codepoint
- Shape/drop packets

DIFFSERV service invocation

- At subscription:
 - per user/user-group/site/customer
 - multi-field, policy-based
- Within organisation:
 - per application/user/user-group
 - use ad hoc tools or network management system
 - behaviour aggregate or multi-field possible
- Dynamically using RSVP: IETF work in progress
Problems with DIFFSERV

- No standard for SLAs:
 - same DS codepoints could be used for different services by different providers
 - different providers using the same PHBs may have different behaviour
 - need end-to-end/edge-to-edge semantics
- Lack of symmetry:
 - protocols such as TCP (ideally) require symmetric QoS
- Multicast:
 - support for multi-party, symmetric communication?

INTSERV and DIFFSERV [1]

- Complimentary:
 - DIFFSERV: aggregate, per customer/user/user-group/application
 - INTSERV: per flow
- For example:
 - INTSERV reservations within DIFFSERV flows (work in progress)

INTSERV and DIFFSERV [2]

<table>
<thead>
<tr>
<th>INTSERV</th>
<th>DIFFSERV</th>
</tr>
</thead>
<tbody>
<tr>
<td>signalling</td>
<td>from application</td>
</tr>
<tr>
<td>granularity</td>
<td>flow</td>
</tr>
<tr>
<td>mechanism</td>
<td>destination address, protocol and port number</td>
</tr>
<tr>
<td>scope</td>
<td>end-to-end</td>
</tr>
<tr>
<td></td>
<td>network management, application</td>
</tr>
<tr>
<td></td>
<td>flow, source, site (aggregate flows)</td>
</tr>
<tr>
<td></td>
<td>packet class (other mechanisms possible)</td>
</tr>
<tr>
<td></td>
<td>between networks, end-to-end</td>
</tr>
</tbody>
</table>

RTP
UDP
- Connectionless, unreliable, unordered, datagram service
- No error control
- No flow control
- No congestion control
- Port numbers
- Must be used for real-time data:
 - TCP automatic congestion control and flow control behaviour is unsuitable

RTP
- RFC1889: general message format
 - specific formats for media types in other RFCs
- Carried in UDP packets:
 - application must implement reliability (if required)
 - supports multicast and point-to-point
- RTCP - Real Time Control Protocol:
 - application-level information (simple signalling)
- **RTP and RTCP provide no QoS guarantees:**
 - QoS mechanisms are separate

RTP header information
- V: 2-bits, version number (=2)
- P: 1-bit, indicates padding
- X: 1-bit, indicates extension header present
- CC: 4-bits, number of CSRCs (CSRC count)
- M: 1-bit, profile specific marker (defined elsewhere)
- PT: 7-bits, payload type, profile specific (defined elsewhere)
- SSRC: synchronisation source
- CSRC: contributing source
- timestamp has profile/flow-specific units

RTCP - Real time Control Protocol
- Provides feedback to senders/receivers
- QoS info for flow:
 - packet info: loss, delay, jitter
 - end-system info: user info
 - application-specific or flow-specific info
- RTCP message types:
 - RR and SR: Receiver Report and Sender Report
 - SDES: Source DEScription
 - BYE: leave a RTP session
 - APP: application-specific
SR and RR messages

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>PT=SR</td>
<td>length</td>
<td></td>
</tr>
<tr>
<td>SSRC of sender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP timestamp, hi-word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP timestamp, lo-word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP timestamp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sender’s packet count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sender’s octet count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRC1 (SSRC of source 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frac. lost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cum. no. of pkts lost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ext. highest seq. n. recvd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inter-arrival jitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>last SR NTP timestamp (part)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delay since last SR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

multiple instances of this report block possible in a single report

SDES

- Source DEScription: all ASCII strings
- Information types from RFC1889:
 - CNAME: canonical identifier (mandatory)
 - NAME: name of user
 - EMAIL: address user
 - PHONE: number for user
 - LOC: location of user, application specific
 - TOOL: name of application/tool
 - NOTE: transient messages from user
 - PRIV: application-specific/experimental use

BYE and APP

- BYE - leave RTP session:
 - SSRC (or SSRC and CSRC list if mixer)
 - reason for leaving
- APP - application-specific packets:
 - SSRC (or SSRC and CSRC list if mixer)
 - ASCII string for name of element
 - application-specific data

Application-level signalling
User-to-network

- Telco network:
 - common channel signalling (CCS)
 - separate data path and signalling path
 - equipment designed to handle data and signalling separate
- IP:
 - RSVP carried in IP packets along data path
 - scaling issues (RFC2208)
 - need aggregated signalling towards the core (use INTSERV with DIFFSERV?)

User-to-user signalling

- Call/session set-up
- Capabilities exchange
- Directory services
- PBX-like facilities
- Application-level signalling supported by network
- MMUSIC IETF WG:
 - application architecture
 - SDP
 - SIP (now has its own WG)
- H.323:
 - umbrella document for existing standards
 - uses ITU and IETF standards
 - currently more mature than MMUSIC work
 - wide support available (e.g., Microsoft NetMeeting)
 - IMTC: www.imtc.org

Summary

- Need QoS mechanisms for IP
- Per flow:
 - INTSERV
 - RSVP
 - does not scale well, hard to provision
- Customer/provider services:
 - DIFFSERV
 - still maturing
- Support for application: RTP and signalling