

Explore some common protocols

- Much discussion of principles, but not protocol details
 - These change with time
 - Real protocols draw many things together
- Overview of real protocols
 - Standards documents are the final resort
- Three sets of protocols
 - Telephone
 - Internet
 - ATM

Telephone network protocols

	Data Plane	Control Plane (SS7)
Арр	Voice/Fax	ASE/ISDN-UP
Session		TCAP
Transport		
Network		SCCP/MTP-3
Datalink	SDH/Sonet/PDH	MTP-2
Physical	Many	MTP-1
<u>-</u>		

3

Traditional digital transmission

- Long distance trunks carry multiplexed calls
- Standard multiplexing levels
- Digital transmission hierarchy
 - DS0 is 64Kbps (a single call)

	L	JS and Ja	apan		Europ	е
Digital Signal level (i.e. multiplexing)	T class.	# calls	Rate (Mbps)	E class.	# calls	Rate (Mbps)
DS1	T1	24	1.544	E1	32	2.048
DS2	T2	96	6.312	E2	128	8.448
DS3	Т3	672	44.736	E3	512	34.368
DS4	T4	4032	274.176	E4	2048	139.264
DS5				E5	8192	565.148

4

Problems with plesiochrony

- Incompatible hierarchies around the world
- Data is spread out! Hard to extract a single call
- Cannot switch bundles of calls

<text><list-item><list-item><list-item>

Synchronous Digital Hierarchy

- All levels are synchronous requires use atomic clocks
- Justification uses pointers

Data Rate (Mbps)	SONET Name	SDH Name
51.84	OC-1	STM-0
155.52	OC-3	STM-1
466.56	OC-9	n/a
622.08	OC-12	STM-4
933.12	OC-18	n/a
1244.16	OC-24	STM-8
1866.24	OC-36	n/a
2488.32	OC-48	STM-16
9953.28	OC-192	STM-64

8

SDH

- 9 rows, 90 columns
- Each payload container (SPE) served in 125 microseconds
- One byte = 1 call (1*8*(1000/125) kbit/s = 64kbit/s)
- All overhead is in the headers
- Pointers for justification
 - If sending too fast, use a byte in the overhead, increasing sending rate
 - If sending too slow, skip a byte and move the pointer
 - $\bullet\,$ Can always locate a payload envelope, and thus a call within it \rightarrow cheaper add drop mux

- Call forwarding
- To register
 - Call special number
 - Connects to ASE (Application Service Element)
 - Authenticates user, stores forwarding number in database
- On call arrival
 - Call setup protocol checks database for forwarding number
 - If number present, reroutes call
- SS7 provides all the services necessary for communication and coordination between registry ASE, database, and call setup entity

MTP (Message Transfer Part) Header

16

	Data Plane	Control Plane
Арр	HTTP	RSVP/OSPF
Session	Sockets/Streams	
Transport	TCP/UDP	
Network	IP	IP/ICMP
Datalink	Many	Many
Physical	Many	Many

IP

- Unreliable
- Best effort
- End-to-end
- IP on everything: interconnect the world

Fields

- Port numbers (16 bits each)
- Sequence and ACK number (32 bits each)
- Header length
- Window size
 - 16 bits \rightarrow 64 Kbytes (more with scaling)
 - Receiver controls the window size
 - + If 0: sender persistence timer (window change ACK)
 - Silly window syndrome window reduces to tiny size
- Checksum
- Urgent pointer seldom used (if not counting WinNuke)
- Options
 - Max segment size, window scale, ...

25

HTTP

- Request/response stateless connections
- Protocol is simple, browser is complex (and usually buggy)
- Address space encapsulation
- Request types
 - GET, HEAD, POST
 - PUT, DELETE
 - CONNECT, TRACE, OPTIONS
- Response
 - Status
 - Headers
 - Body

HTTP's WWW success

- Representational State Transfer (REST) approach
- Initially transfer was stateless
 - Facilitates efficient caching
 - Transparent proxies
- Cookies can violate statelessness
- Observe different behaviours of the browser "back" button
- In contrast to RPC
 - Resource names are more complex
 - + E.g. URIs that include attributes
 - Fewer specific action types
 - + E.g. mostly GET, POST very different from RPC

ATM stack

	Data Plane	Control Plane
Application	UNI/PNNI	
Application	Q.2931	
Session		
Transport	SSCOP	
Network	AAL1-5	S-AAL (AAL5)
Data Link	ATM	ATM
Physical	Many	Many

26

28

AAL 3/4

- Error detection, segmentation, reassembly
- Header and trailer per EPDU and per-cell header!

Service Specific Connection Oriented Protocol (SSCOP)

- Reliable transport for signalling messages
- Functionality similar to TCP
 - Error control (described below)
 - Flow control (static window)
- Four packet types
 - Sequenced data / poll / stat / ustat
- No ACKs (!)
- Sender polls, receiver sends status
- Includes cumulative ACK and window size
- If out of order, sends unsolicited status (ustat)
- Key variable is poll interval

IP-over-ATM

- Key idea: treat ATM as a link-level technology
 - Ignore routing and QoS aspects
- Key problems
 - ATM is connection-oriented and IP is not
 - Different addressing schemes
 - ATM LAN is point-to-point while IP assumes broadcast
- Basic technologies

37

- IP encapsulation in ATM
- Resolving IP addresses to ATM addresses
- Creating an ATM-based IP subnet
- Mapping multicast groups to ATM

<text><list-item><list-item><list-item><text>

Cells in Frame (CIF)

- Solutions so far require expensive ATM host-adapter card
- Can we reuse Ethernet card?
- Encapsulate AAL5 frame in Ethernet header on point-to-point Ethernet link
- CIF-Attachment Device at other end decapsulates and injects the frame into an ATM network
- Software on end-system thinks that it has a local host adapter
- Shim between ATM stack and Ethernet driver inserts CIF header with VCI and ATM cell header
 - May need to fragment AAL5 frame
 - Can also forward partial frames
- Cheaper
 - Also gives endpoints QoS guarantees, unlike LANE

45

Holding time problem

- After resolution, open an ATM connection, and send IP packet
- When to close it?
- Locality principle
 - More packets likely
 - Hold the connection for a while to avoid next call setup
 ... but pay per-second holding time cost
- Optimal solution depends on pricing policy and packet arrival characteristics
- Measurement-based heuristic works nearly optimally
 - Create the inter-arrival time histogram
 - Expect future arrivals to conform to measured distribution
 - Close connection if expected cost exceeds expected benefit