
1

Digital Communications II

Error controlError control

Michaelmas Term 2007
Based on Prof. Jon Crowcroft’s notes, and thus transitively on

S. Keshav’s “An Engineering Approach to Computer Networking”

2

What you saw in DigiComms I

■ What it looks like on the wire
◆ Systematic or random noise
◆ Attenuation
◆ Signal to noise ratio

■ Error Detection and Correction
◆ Forward Error Correction (FEC)
◆ Parity
◆ Block codes
◆ CRCs

3

What you saw in DigiComms I (2)

■ Protocols
◆ Retransmit packets on NACKs or timeouts

■ Why single Automatic Repeat Request (ARQ) is poor
◆ Want to maximise traffic in transit (within the network)

■ Continuous ARQ: using a window
◆ Go back N
◆ Selective retransmission

4

CRC

■ Detects
◆ All single bit errors
◆ Almost all 2-bit errors
◆ Any odd number of errors
◆ All bursts up to M, where generator length is M

✦ Networks errors: usually burst, not randomly distributed
◆ Longer bursts with probability 2-m

2

5

Implementation

■ Hardware
◆ On-the-fly with a shift register
◆ Easy to implement with ASIC/FPGA

■ Software
◆ You saw worked examples in DigiComms I
◆ Pre-compute remainders for 16-bit words
◆ Add remainders to a running sum
◆ Needs only one lookup per 16-bit block

6

Software schemes

■ Efficiency is important
◆ Touch each data byte only once

■ CRC
■ TCP/UDP/IP

◆ All use same scheme
◆ Treat data bytes as 16-bit integers
◆ Add with end-around carry
◆ One’s complement = checksum
◆ Catches all 1-bit errors
◆ Longer errors with probability 1/65536

7

Packet errors

■ Different from bit errors
◆ Types

✦ Not just erasure, but also duplication, insertion,etc.
◆ Correction

✦ Retransmission, instead of redundancy

8

Types of packet errors

■ Loss
◆ Due to uncorrectable bit errors
◆ Buffer loss on overflow

✦ Especially with bursty traffic
• For the same load, the greater the burstiness, the

more the loss
✦ Loss rate depends on burstiness, load, and buffer size

◆ Fragmented packets can lead to error multiplication
✦ Longer the packet, more the loss

3

9

Types of packet errors (cont.)

■ Duplication
◆ Same packet received twice

✦ Usually due to retransmission
■ Insertion

◆ Packet from some other conversation received
✦ Header corruption

■ Reordering
◆ Packets received in wrong order

✦ Usually due to retransmission
✦ Some routers also reorder
✦ May be multiple routing paths

10

Packet error detection and correction

■ Detection
◆ Sequence numbers
◆ Timeouts

■ Correction
◆ Retransmission

11

Sequence numbers

■ In each header
■ Incremented for non-retransmitted packets
■ Sequence space

◆ Set of all possible sequence numbers (seq #s)
◆ For a 3-bit sequence number, space is {0,1,2,3,4,5,6,7}

12

Using sequence numbers

■ Loss
◆ Gap in sequence space allows receiver to detect loss

✦ e.g. received 0,1,2,5,6,7 => lost 3,4
◆ ACKs carry cumulative sequence number
◆ Redundant information
◆ If no ACK for a while, sender suspects loss

■ Reordering
■ Duplication
■ Insertion

◆ If the received sequence number is “very different” from what
is expected

✦ More on this later…

4

13

Sequence number size

■ Long enough so that sender does not confuse sequence
numbers on ACKs

■ E.g. sending at < 100 packets/sec (R)
◆ Wait for 200 seconds before giving up (T)
◆ Receiver may dally up to 100 seconds (A)
◆ Packet can live in the network up to 5 minutes (300s)

(maximum packet lifetime)
◆ Can get an ACK as late as 900 seconds after packet sent
◆ Sent out 900*100 = 90,000 packets
◆ If sequence space smaller, then can have confusion
◆ So, sequence number > log (90,000), at least 17 bits

■ In general 2^sequence_size > R(2 MPL + T + A)

14

Maximum Packet Lifetime (MPL)

■ How can we bound it?
■ Generation time in header

◆ Too complex!
■ Counter in header decremented per hop

◆ Crufty, but works
◆ Used in the Internet

✦ Time To Live (TTL)
◆ Assumes a maximum network diameter, and a limit on

forwarding time

15

Sequence number size (cont.)

■ If no ACKs, then size depends on two things
◆ Reordering span: how much packets can be reordered

✦ e.g. span of 128 → sequence number > 7 bits

◆ Burst loss span: how many consecutive packets. can be lost
✦ e.g. possibility of 16 consecutive lost packets →

sequence number > 4 bits

■ In practice, hope that technology becomes obsolete before
worst case hits!

16

Packet insertion

■ Receiver should be able to distinguish packets from other
connections

■ Why?
◆ Receive packets on VCI 1
◆ Connection closes
◆ New connection also with VCI 1
◆ Delayed packet arrives
◆ Could be accepted

■ Solution
◆ Flush packets on connection close
◆ Can’t do this for connectionless networks like the Internet

5

17

Packet insertion in the Internet

■ TCP/UDP packets carry source IP, destination IP, source port
number, destination port number

■ How we can have insertion?
◆ Host A opens connection to B, source port 123, destination

port 456
◆ Transport layer connection terminates
◆ New connection opens, A and B assign the same port

numbers
◆ Delayed packet from old connection arrives
◆ Insertion!

18

Solutions

■ Per-connection incarnation number
◆ Incremented for each connection from each host

✦ Takes up header space
✦ On a crash, we may repeat
✦ Need stable storage, which is expensive

■ Reassign port numbers only after 1 MPL
◆ Needs stable storage to survive crash

19

Solutions (cont.)

■ Assign port numbers serially: new connections have new ports
◆ Unix starts at 1024
◆ This fails if we wrap around within 1 MPL
◆ Also fails of computer crashes and we restart with 1024

■ Assign initial sequence numbers serially
◆ New connections may have same port, but sequence #

differs
◆ Fails on a crash

■ Wait 1 MPL after boot up (30s to 2 min)
◆ This flushes old packets from network
◆ Used in most Unix systems

20

3-way handshake

■ Standard solution, then, is
◆ Choose port numbers serially
◆ Choose initial sequence numbers from a clock
◆ Wait 1 MPL after a crash

■ Needs communicating ends to tell each other initial sequence
number

■ Easiest way is to tell this in a SYNchronize packet (TCP) that
starts a connection

■ 2-way handshake

6

21

3-way handshake

■ Problem really is that SYNs themselves are not protected with
sequence numbers

■ 3-way handshake protects against delayed SYNs

■ (Server passive opens a port e.g. 80)
■ Client active opens connection with SYN packet

◆ Client’s sequence number is ‘c’
■ Server replies with SYN-ACK – ACK=(c+1), SYN=(s)

◆ Server’s sequence number is ‘s’
■ Client sends ACK to server – ACK=(s+1).

■ Recall that TCP sequence numbers are per data byte

22

Loss detection

■ At receiver, from a gap in sequence space
◆ Send a NACK to the sender

■ At sender, by looking at cumulative ACKs, and timing out if no
ACK for a while

◆ Need to choose timeout interval

23

NACKs

■ Sounds good, but does not work well
◆ Adds extra load during times of loss:

✦ Probably not helpful if loss is from congestion!
◆ At least NACKs travel in the reverse direction…

■ If NACK is lost, receiver must retransmit it
◆ Moves timeout problem to receiver

■ So we need timeouts anyway

24

Timeouts

■ Set timer on sending a packet
■ If timer goes off, and no ACK, resend
■ How to choose timeout value?
■ Intuition: expect a reply in about one round trip time (RTT)

■ Aside: Timeouts usually preclude freeing their related resources
◆ What about faked requests?

■ SYN attack
◆ Forge an unused IP address
◆ Send a long sequence of SYN packets to server

✦ Up to four minutes’ resource allocation per SYN while
server retries its SYN-ACKs

◆ Without protection, server falls over

7

25

Timeout schemes

■ Static scheme
◆ Know RTT a priori
◆ Timer set to this value
◆ Works well when RTT changes little

■ Dynamic scheme
◆ Measure RTT
◆ Timeout is a function of measured RTTs

26

Old TCP scheme

■ RTTs are measured periodically
■ Smoothed RTT (srtt) → the exponential moving average
■ srtt = a * srtt + (1-a) * RTT
■ timeout = b * srtt
■ a = 0.9, b = 2
■ Sensitive to choice of a

◆ a = 1 → timeout = 2 * initial srtt
◆ a = 0 → no history

■ Doesn’t work too well in practice

27

New TCP scheme (Jacobson)

■ Introduce new term = mean deviation from mean (m)
■ m = | srtt - RTT |
■ sm = a * sm + (1-a) * m
■ timeout = srtt + b * sm

28

Intrinsic problems

■ Hard to choose proper timers, even with new TCP scheme
◆ What should initial value of srtt be?
◆ High variability in RTT
◆ Timeout → loss, delayed ACK, or lost ACK

✦ Hard to distinguish

■ Lesson: use timeouts rarely

8

29

Retransmissions

■ Sender detects loss on timeout
■ Which packets to retransmit?
■ We review the concept of the error control window

30

Error control window

■ Set of packets sent, but not ACKed
■ 1 2 3 4 5 6 7 8 9 (original window)
■ 1 2 3 4 5 6 7 8 9 (receive ACK for 3)
■ 1 2 3 4 5 6 7 8 9 (send 8)

■ May want to restrict max size = window size

■ Sender blocked until ACK comes back

31

Go back N retransmission

■ On a timeout, retransmit the entire error control window
■ Receiver only accepts in-order packets

◆ + Simple
◆ + No buffer at receiver
◆ - Can add to congestion
◆ - Wastes bandwidth

■ Used in some TCP implementations

32

Selective retransmission

■ Somehow find out which packets lost, then only retransmit them
■ How to find lost packets?

◆ Each ACK has a bitmap of received packets
✦ e.g. cum_ACK = 5, bitmap = 101 → received 5 and 7, but

not 6
✦ Wastes header space

◆ Sender periodically asks receiver for bitmap
◆ Fast retransmit

9

33

Fast retransmit

■ Assume cumulative ACKs
■ If sender sees repeated cumulative ACKs, packet likely lost
■ 1, 2, 3, 4, 5, 6
■ 1, 2, 3, 3, 3
■ Send cumulative_ACK + 1 = 4
■ Used in TCP

34

SMART

■ ACK carries cumulative sequence number
■ Also sequence number of packet causing ACK

◆ 1 2 3 4 5 6 7 – packets sent
◆ 1 2 3 3 3 3 – received ACK (cumulative)
◆ 1 2 3 5 6 7 – received ACK (for packet)

■ Sender creates bitmap
■ No need for timers!
■ If retransmitted packet lost, periodically check if cumulative ACK

increased.

