
Digital Electronics
Part I – Combinational and

Sequential Logic

Dr. I. J. Wassell

Introduction

Aims

• To familiarise students with
– Combinational logic circuits

– Sequential logic circuits

– How digital logic gates are built using
transistors

– Design and build of digital logic systems

Course Structure

• 11 Lectures

• Hardware Labs
– 6 Workshops

– 7 sessions, each one 3h, alternate weeks

– Thu. 10.00 or 2.00 start, beginning week 3

– In Cockroft 4 (New Museum Site)

– In groups of 2

Objectives

• At the end of the course you should
– Be able to design and construct simple

digital electronic systems

– Be able to understand and apply Boolean
logic and algebra – a core competence in
Computer Science

– Be able to understand and build state
machines

Books
• Lots of books on digital electronics, e.g.,

– D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,’ Morgan Kaufmann,
2007.

– R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

– J. P. Hayes, ‘Introduction to Digital Logic
Design,’ Addison-Wesley, 1993.

• Electronics in general (inc. digital)
– P. Horowitz and W. Hill, ‘The Art of Electronics,’

CUP, 1989.

Other Points

• This course is a prerequisite for
– ECAD (Part IB)
– VLSI Design (Part II)

• Keep up with lab work and get it ticked.
• Have a go at supervision questions plus

any others your supervisor sets.
• Remember to try questions from past

papers

Semiconductors to Computers

• Increasing levels of complexity
– Transistors built from semiconductors
– Logic gates built from transistors
– Logic functions built from gates
– Flip-flops built from logic
– Counters and sequencers from flip-flops
– Microprocessors from sequencers
– Computers from microprocessors

Semiconductors to Computers

• Increasing levels of abstraction:
– Physics
– Transistors
– Gates
– Logic
– Microprogramming (Computer Design Course)
– Assembler (Computer Design Course)
– Programming Languages (Compilers Course)
– Applications

Combinational Logic

Introduction to Logic Gates

• We will introduce Boolean algebra and
logic gates

• Logic gates are the building blocks of
digital circuits

Logic Variables

• Different names for the same thing
– Logic variables
– Binary variables
– Boolean variables

• Can only take on 2 values, e.g.,
– TRUE or False
– ON or OFF
– 1 or 0

Logic Variables

• In electronic circuits the two values can
be represented by e.g.,
– High voltage for a 1

– Low voltage for a 0

• Note that since only 2 voltage levels are
used, the circuits have greater immunity
to electrical noise

Uses of Simple Logic

• Example – Heating Boiler
– If chimney is not blocked and the house is cold

and the pilot light is lit, then open the main fuel
valve to start boiler.

b = chimney blocked
c = house is cold
p = pilot light lit
v = open fuel valve

– So in terms of a logical (Boolean) expression
v = (NOT b) AND c AND p

Logic Gates

• Basic logic circuits with one or more
inputs and one output are known as
gates

• Gates are used as the building blocks in
the design of more complex digital logic
circuits

Representing Logic Functions

• There are several ways of representing
logic functions:
– Symbols to represent the gates

– Truth tables

– Boolean algebra

• We will now describe commonly used
gates

NOT Gate

Symbol

a y

Truth-table
a y

0 1
1 0

Boolean
ay 

• A NOT gate is also called an ‘inverter’

• y is only TRUE if a is FALSE

• Circle (or ‘bubble’) on the output of a gate
implies that it as an inverting (or
complemented) output

AND Gate

Symbol Truth-table Boolean

bay .
a y
b

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

• y is only TRUE only if a is TRUE and b is
TRUE

• In Boolean algebra AND is represented by
a dot .

OR Gate

Symbol

a y

Truth-table Boolean

bay 

b

a y

0

1

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (or
both)

• In Boolean algebra OR is represented by
a plus sign 

EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean

bay a y

0

0

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (but
not both)

• In Boolean algebra XOR is represented by
an sign 

a y
b

NOT AND (NAND) Gate

Symbol

a y

Truth-table Boolean

bay .
b

a y

0

0

1
1

b

0
0
1

1
0 1

1 1

• y is TRUE if a is FALSE or b is FALSE (or
both)

• y is FALSE only if a is TRUE and b is
TRUE

NOT OR (NOR) Gate

Symbol

a y

Truth-table Boolean

bay 
b

a y

0

0

1
1

b

0
0
1

0
0 0

1 1

• y is TRUE only if a is FALSE and b is
FALSE

• y is FALSE if a is TRUE or b is TRUE (or
both)

Boiler Example

• If chimney is not blocked and the house is
cold and the pilot light is lit, then open the
main fuel valve to start boiler.

b = chimney blocked c = house is cold

p = pilot light lit v = open fuel valve

pcbv ..

b
c
p

Boolean Algebra
• In this section we will introduce the laws

of Boolean Algebra
• We will then see how it can be used to

design combinational logic circuits
• Combinational logic circuits do not have

an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

• Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.

Boolean Algebra

OR AND
aa  0
aaa 

11a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g.,
).().(.. dcbadcba 

Boolean Algebra

• Commutation

• Association

• Distribution

• Absorption

abba 
abba .. 

)()(cbacba 
)..()..(cbacba 

 ).().().(cabacba
NEW).).(()..( cabacba 

NEW).(acaa 
NEW).(acaa 

Boolean Algebra - Examples

Show
babaa .).(

bababaaabaa ..0..).(

Show
babaa ).(

bababaaabaa ).(1)).(().(

Boolean Algebra

• A useful technique is to expand each
term until it includes one instance of each
variable (or its compliment). It may be
possible to simplify the expression by
cancelling terms in this expanded form
e.g., to prove the absorption rule:

abaa  .

aabbabababababa  1.).(.....

Boolean Algebra - Example

Simplify
zyxzxzyyx 

zyxzyxzyxzyxzyxzyxzyx 
zyxzyxzyxzyx 

).(.).(. xxzyzzyx 
1..1.. zyyx 

zyyx .. 

DeMorgan’s Theorem
 ... cbacba 

 ...  cbacba

 ... cbacba 
 ...  cbacba

• In a simple expression like (or)
simply change all operators from OR to
AND (or vice versa), complement each
term (put a bar over it) and then
complement the whole expression, i.e.,

cba  cba ..

DeMorgan’s Theorem

• For 2 variables we can show
and using a truth table.

baba .
baba .

0
1
0

0
1 0

0

0
1

0
1 1

ba a b ba. a b ba. ba 

0

1
1

1
0

1
1

0
0

0
1

1
0

0
1

0
0

1
1

1

• Extending to more variables by induction
cbacbacbacba ..)..(.)(

DeMorgan’s Examples

• Simplify).().(. cbbcbaba 

(DeMorgan) cbbcbaba 
0)b(b. ...  cbaba

n)(absorbtio .ba

DeMorgan’s Examples

• Simplify dcbadbcba .)..)..(.(
Morgan)(De .).).(.(dcbadbcba 

e)(distribut .).......(dcbadbabbacba 
)0..(.).....( bbadcbadbacba

e)(distribut dcbdcadcdbadcba 
)0....(.......  dcdbadcbdcadcba

e)(distribut ..).(dcbaba 
(DeMorgan) ..)..(dcbaba 
1)..(.  babadc

DeMorgan’s in Gates

• To implement the function we
can use AND and OR gates

dcbaf .. 

a
b

c
d

f

• However, sometimes we only wish to
use NAND or NOR gates, since they
are usually simpler and faster

DeMorgan’s in Gates

• To do this we can use ‘bubble’ logic

a
b

c
d

f

x

y

Two consecutive ‘bubble’ (or
complement) operations cancel,
i.e., no effect on logic function

See AND gates are
now NAND gates

What about this gate?
DeMorgan says yxyx .

Which is a NOT
AND (NAND) gate

So is equivalent to

DeMorgan’s in Gates

• So the previous function can be built
using 3 NAND gates
a
b

c
d

f

a
b

c
d

f

DeMorgan’s in Gates

• Similarly, applying ‘bubbles’ to the input
of an AND gate yields

x
y f

What about this gate?
DeMorgan says yxyx .

Which is a NOT OR
(NOR) gate

So is equivalent to

• Useful if trying to build using NOR gates

Logic Minimisation

• Any Boolean function can be implemented
directly using combinational logic (gates)

• However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:
– Algebraic manipulation (as seen in examples)
– Karnaugh (K) mapping (a visual approach)
– Tabular approaches (usually implemented by

computer, e.g., Quine-McCluskey)

• K mapping is the preferred technique for up to
about 5 variables

Truth Tables
• f is defined by the following truth table

x y z f minterms
0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 zyx ..

• A minterm must contain
all variables (in either
complement or
uncomplemented form)
• Note variables in a

minterm are ANDed
together (conjunction)

• One minterm for each
term of f that is TRUE

• So is a minterm but is notzyx .. zy.

Disjunctive Normal Form

• A Boolean function expressed as the
disjunction (ORing) of its minterms is said
to be in the Disjunctive Normal Form (DNF)

• A Boolean function expressed as the
ORing of ANDed variables (not necessarily
minterms) is often said to be in Sum of
Products (SOP) form, e.g.,

zyxzyxzyxzyxzyxf 

le truth tabsame thehavefunctionsNote .zyxf 

Maxterms
• A maxterm of n Boolean variables is the

disjunction (ORing) of all the variables either
in complemented or uncomplemented form.
– Referring back to the truth table for f, we can

write,

Applying De Morgan (and complementing) gives

So it can be seen that the maxterms of are
effectively the minterms of with each variable
complemented

zyxzyxzyxf 

)).().((zyxzyxzyxf 
f

f

Conjunctive Normal Form

• A Boolean function expressed as the
conjunction (ANDing) of its maxterms is said
to be in the Conjunctive Normal Form (CNF)

• A Boolean function expressed as the ANDing
of ORed variables (not necessarily maxterms)
is often said to be in Product of Sums (POS)
form, e.g.,

)).().((zyxzyxzyxf 

)).((zxyxf 

Logic Simplification

• As we have seen previously, Boolean
algebra can be used to simplify logical
expressions. This results in easier
implementation
Note: The DNF and CNF forms are not

simplified.

• However, it is often easier to use a
technique known as Karnaugh mapping

Karnaugh Maps
• Karnaugh Maps (or K-maps) are a

powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

• The K-map is a rectangular array of
cells
– Each possible state of the input variables

corresponds uniquely to one of the cells
– The corresponding output state is written in

each cell

K-maps example

x y z f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• From truth table to K-map

y z
1100 01 10

0

1

x
1 1 11

1x

z

y

Note that the logical state of the
variables follows a Gray code, i.e.,
only one of them changes at a time

The exact assignment of variables in
terms of their position on the map is
not important

K-maps example
• Having plotted the minterms, how do we

use the map to give a simplified
expression? • Group terms

• Having size equal to a power of
2, e.g., 2, 4, 8, etc.

• Large groups best since they
contain fewer variables

• Groups can wrap around edges
and corners

y z
1100 01 10

0

1

x
1 1 11

1x

z

yx zy.

So, the simplified func. is,

.zyxf  as before

K-maps – 4 variables
• K maps from Boolean expressions

– Plot ... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d
• See in a 4 variable map:

– 1 variable term occupies 8 cells
– 2 variable terms occupy 4 cells
– 3 variable terms occupy 2 cells, etc.

K-maps – 4 variables
• For example, plot

bf  .dbf 

1100 01 10

00

01

11

10

ba
dc

1

1

1

1
a

b

c

d

1100 01 10

00

01

11

10

ba
dc

1

11 11

a

b

c

d

111

K-maps – 4 variables

• Simplify, dcdcbadcbdbaf 

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

11

1

1

1

1

ba.
dc.

So, the simplified func. is,

.. dcbaf 

POS Simplification
• Note that the previous examples have

yielded simplified expressions in the
SOP form
– Suitable for implementations using AND

followed by OR gates, or only NAND gates
(using DeMorgans to transform the result –
see previous Bubble logic slides)

• However, sometimes we may wish to
get a simplified expression in POS form
– Suitable for implementations using OR

followed by AND gates, or only NOR gates

POS Simplification

• To do this we group the zeros in the map
– i.e., we simplify the complement of the function

• Then we apply DeMorgans and
complement

• Use ‘bubble’ logic if NOR only
implementation is required

POS Example
• Simplify into POS form.... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

Group
zeros

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

0 0 0 0

0 0 0

0 0 0 0

b da. ca.

.. dacabf 

POS Example
• Applying DeMorgans to

.. dacabf 

)).(.(dacabf 
)).(.(dacabf 

f

a

c

a

d

b

f

a

c

a

d

b

gives,

f

a

c

a

d

b

Expression in POS form

• Apply DeMorgans and take
complement, i.e., is now in SOP form

• Fill in zeros in table, i.e., plot

• Fill remaining cells with ones, i.e., plot

• Simplify in usual way by grouping ones
to simplify

f

f

f

f

Don’t Care Conditions
• Sometimes we do not care about the

output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don’t care conditions.

• In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.
– For example, in a K-map they are entered

as Xs

Don’t Care Conditions - Example

• Simplify the function dcadcadbaf 

With don’t care conditions, ...,...,... dcbadcbadcba

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

X 1

1

1

1

X

X

ba.
dc.

dcbaf .. 

See only need to include
Xs if they assist in making
a bigger group, otherwise
can ignore.

or, dcdaf .. 

Some Definitions
• Cover – A term is said to cover a minterm if that

minterm is part of that term

• Prime Implicant – a term that cannot be further
combined

• Essential Term – a prime implicant that covers a
minterm that no other prime implicant covers

• Covering Set – a minimum set of prime
implicants which includes all essential terms plus
any other prime implicants required to cover all
minterms

Number Representation,
Addition and Subtraction

Binary Numbers

• It is important to be able to represent
numbers in digital logic circuits
– for example, the output of a analogue to digital

converter (ADC) is an n-bit number, where n is
typically in the range from 8 to 16

• Various representations are used, e.g.,
– unsigned integers

– 2’s complement to represent negative numbers

Binary Numbers
• Binary is base 2. Each digit (known as a

bit) is either 0 or 1.

• Consider these 6-bit unsigned numbers

32
52

1 0
16

42

1 0 01

32 22 12 02
8 4 2 1 Binary

coefficients

1042

MSB LSB

32
52

0 0
16

42

1 0 11

32 22 12 02
8 4 2 1 Binary

coefficients

1011

MSB LSB

MSB – most
significant bit

LSB – least
significant bit

Unsigned Binary Numbers
• In general, an n-bit binary number,

has the decimal value,
i

n

i
ib 2

1

0

 




0121 bbbb nn 

• So we can represent positive integers from
0 to

• In computers, binary numbers are often 8
bits long – known as a byte

• A byte can represent unsigned values from
0 to 255

12 n

Unsigned Binary Numbers
• Decimal to binary conversion. Perform

successive division by 2.
– Convert into binary 1042

1remainder 02/1

0remainder 12/2

1remainder 22/5

0remainder 52/10

1remainder 102/21

0remainder 212/42








• So the answer is (reading upwards)2101010

Octal: Base 8
• We have seen base 2 uses 2 digits (0 & 1),

not surprisingly base 8 uses 8 digits : 0, 1,
2, 3, 4, 5, 6, 7.

0 25

18 08

8 1 Octal
coefficients

1042

MSB LSB

64
28

• To convert from decimal to base 8 either
use successive division, i.e.,

5remainder 08/5

2remainder 58/42




• So the answer is (reading upwards)852

Octal: Base 8

• Or alternatively, convert to binary, divide
the binary number into 3-bit groups and
work out the octal digit to represent
each group. We have shown that

210 10101042 

• So,
1 0 1 0 01

5 82
1042

MSB LSB

Hexadecimal: Base 16
• For base 16 we need 16 different digits.

Consequently we need new symbols for
the digits to represent 10-15

16102

16102

16102

C121100

B111011

A101010





16102

16102

16102

F151111

E141110

D131101





0 16A2

116 016
16 1 Hex

coefficients

1042

MSB LSB

256
216

Hex: Base 16

• To convert from decimal to base 16 use
either use successive division by 16, i.e.,

2remainder 016/2

Aremainder 216/42




• So the answer is (reading upwards)8A2

Hex: Base 16

• Or alternatively, convert to binary, divide
the binary number into 4-bit groups and
work out the hex digit to represent each
group. We have shown that

210 10101042 

• So,
1 0 1 0 01

2 16A
1042

MSB LSB

00

Hex: Base 16

• Hex is also used as a convenient way of
representing the contents of a byte (an
8 bit number), so for example 211100010

1 0 0 0 01
E 162

162E

MSB LSB

11

Negative numbers
• So far we have only been able to represent

positive numbers. For example, we have
seen an 8-bit byte can represent from 0 to
255, i.e., 28 = 256 different combinations of
bits in a byte

• If we want to represent negative numbers,
we have to give up some of the range of
positive numbers we had before
– A popular approach to do this is called 2’s

complement

2’s Complement
• For 8-bit numbers:

0 127 128 1

H0 HF7

positive negative

H80 HFF

• Note all negative numbers have the
MSB set

• The rule for changing a positive 2’s
complement number into a negative 2’s
complement number (or vice versa) is:

Complement all the bits and add 1.

2’s Complement
• What happens when we do this to an 8 bit

binary number x ?
– Invert all bits:

– Add 1:

• Note: 256 (= 100H) will not fit into an 8 bit
byte. However if we ignore the ‘overflow’ bit,
then behaves just like

• That is, we can use normal binary arithmetic
to manipulate the 2’s complement of x and it
will behave just like -x

)255(xx 
)256(xx 

x256 x0

2’s Complement Addition

00100000

11100000 7

11010000 11)0(
4

• To subtract, negate the second number, then add:

10011111

11100000 7

0)1(
7

00000000

10011111

10010000 9

2)1(
7

01000000

2’s Complement Addition

10011111

00100000 4

3)0(
7

10111111

10011111

10011111 7

14)1(
7

01001111

2’s Complement
• Note that for an n-bit number ,

the decimal equivalent of a 2’s complement
number is,

i
n

i
i

n
n bb 22

2

0

1
1  








0121 bbbb nn 

• For example, 01001111

142163264128

2121212121

22

14567

6

0

7
7




 


i

i
ibb

2’s Complement Overflow

• For example, when working with 8-bit
unsigned numbers, we can use the
‘carry’ from the 8th bit (MSB) to indicate
that the number has got too big.

• With signed numbers we deliberately
ignore any carry from the MSB,
consequently we need a new rule to
detect when a result is out of range.

2’s Complement Overflow

• The rule for detecting 2’s complement
overflow is:
– The carry into the MSB does not equal the

carry out from the MSB.

• We will now give some examples.

2’s Complement Overflow

11110000

11110000 15

30)0(
15

01111000 OK

10000000

11111110 127

128)0(
1

00000001 overflow

2’s Complement Overflow

10001111

10001111 15

30)1(
15

01000111 OK

01111111

10000001 127

127)1(
2

11111110 overflow

Binary Coded Decimal (BCD)
• Each decimal digit of a number is coded

as a 4 bit binary quantity

• It is sometimes used since it is easy to
code and decode, however it is not an
efficient way to store numbers.

1000 0100 0010 00011248 BCD10 
0100 0011 0010 00011234 BCD10 

Alphanumeric Character Codes
• ASCII: American Standard Code for

Information Exchange:
– Standard version is a 7 bit code with the

remaining bit usually set to zero
– The first 32 are ‘control codes’ originally used

for controlling modems
– The rest are upper and lower case letters,

numbers and punctuation.
– An extended version uses all 8 bits to

provide additional graphics characters

Alphanumeric Character Codes

• EBCDIC – a legacy IBM scheme, now little
used

• Unicode – a 16 bit scheme, includes
Chinese characters etc.

Binary Adding Circuits

• We will now look at how binary addition
may be implemented using combinational
logic circuits. We will consider:
– Half adder

– Full adder

– Ripple carry adder

Half Adder
• Adds together two, single bit binary

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum  ..

bacout .

Full Adder

• Adds together two, single bit binary
numbers a and b (note: with a carry input)

a

b cout

sum

cin

• Has the following truth table:

Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin




..

)..(.)...(

Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout






Full Adder
• Alternatively,

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1 babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........






• Which is similar to previous expression
except with the OR replaced by XOR

Ripple Carry Adder
• We have seen how we can implement a

logic to add two, one bit binary numbers
(inc. carry-in).

• However, in general we need to add
together two, n bit binary numbers.

• One possible solution is known as the
Ripple Carry Adder
– This is simply n, full adders cascaded

together

Ripple Carry Adder

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to
one we have implemented abs 

Combinational Logic Design

Further Considerations

Multilevel Logic

• We have seen previously how we can
minimise Boolean expressions to yield
so called ‘2-level’ logic implementations,
i.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

• Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder – see we have more than 2 gates
in cascade in the carry chain

Multilevel Logic

• Why use multilevel logic?
– Commercially available logic gates usually

only available with a restricted number of
inputs, typically, 2 or 3.

– System composition from sub-systems
reduces design complexity, e.g., a ripple
adder made from full adders

– Allows Boolean optimisation across multiple
outputs, e.g., common sub-expression
elimination

Building Larger Gates

• Building a 6-input OR gate

Common Expression Elimination

• Consider the following minimised SOP
expression:

gfecfdcfebfdbfeafdaz 

• Requires:

• Six, 3 input AND gates, one 7-input
OR gate – total 7 gates, 2-levels

• 19 literals (the total number of times
all variables appear)

• We can recursively factor out common literals

Common Expression Elimination

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz







).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-
level form:

cbax  edx  gfyxz  ..

• 4 gates, 9 literals, 3-levels

Gate Propagation Delay
• So, multilevel logic can produce reductions

in implementation complexity. What is the
downside?

• We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

• Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs – propagation delay

Gate Propagation Delay

• The cumulative delay owing to a number of
gates in cascade can increase the time
before the output of a combinational logic
circuit becomes valid

• For example, in the Ripple Carry Adder, the
sum at its output will not be valid until any
carry has ‘rippled’ through possibly every full
adder in the chain – clearly the MSB will
experience the greatest potential delay

Gate Propagation Delay
• As well as slowing down the operation of

combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

• These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

• We will now describe how we can address
these problems

Hazards

• Hazards are classified into two types,
namely, static and dynamic

• Static Hazard – The output undergoes a
momentary transition when it is
supposed to remain unchanged

• Dynamic Hazard – The output changes
more than once when it is supposed to
change just once

Timing Diagrams
• To visually represent Hazards we will use the

so called ‘timing diagram’

• This shows the logical value of a signal as a
function of time, for example the following
timing diagram shows a transition from 0 to 1
and then back again

Logic ‘0’

Time

Logic ‘1’

Timing Diagrams

• Note that the timing diagram makes a number
simplifying assumptions (to aid clarity)
compared with a diagram which accurately
shows the actual voltage against time
– The signal only has 2 levels. In reality the signal

may well look more ‘wobbly’ owing to electrical
noise pick-up etc.

– The transitions between logic levels takes place
instantaneously, in reality this will take a finite
time.

Static Hazard

Logic ‘0’

Time

Logic ‘1’

Static 1 hazard

Logic ‘0’

Time

Logic ‘1’ Static 0 hazard

Dynamic Hazard

Logic ‘0’

Time

Logic ‘1’
Dynamic hazard

Logic ‘0’

Time

Logic ‘1’
Dynamic hazard

Static 1 Hazard
x

y

z

t

u

v

w

y

t

u

v

w

This circuit implements,

yzyxw .. 
Consider the output when
and changes from 1 to 0

1 xz
y

Hazard Removal
• To remove a 1 hazard, draw the K-map

of the output concerned. Add another
term which overlaps the essential terms

• To remove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

• To remove dynamic hazards – not
covered in this course!

Removing the static 1 hazard
yzyxw .. 

y z
1100 01 10

0

1

x

1

1

1 1x

z

y

Extra term added to remove
hazard, consequently,

zxyzyxw ... 

x

y

z

w

To Speed up Ripple Carry Adder
• Abandon compositional approach to the adder

design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

• Features
– Low delay (2 gate delays)
– Need some gates with large numbers of inputs

(which are not available)
– Very complex to design and implement (imagine

the truth table!

To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not
feasible

• One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

• Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation
a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional
RCA

Fast Carry
Adder

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3

Fast Carry Generation

• We will now determine the Boolean
equations required to generate the fast
carry signals

• To do this we will consider the carry out
signal, cout, generated by a full-adder
stage (say i), which conventionally gives
rise to the carry in (cin) to the next stage,
i.e., ci+1.

Fast Carry Generation

a b sici

0 00 0

1 10 10
1 00 01

100 01
0

1 0
1 11

1
1
1

1
0

101 10
0 01 01

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated
independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 

Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac  or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 
So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112












Fast Carry Generation
Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223












and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334












Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334))..(.(

PcGc

cppppgpgpgpgc




where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG




• See it is quick to evaluate this function

Fast Carry Generation

• We could generate all the carrys within an
adder block using the previous equations

• However, in order to reduce complexity, a
suitable approach is to implement say 4-bit
adder blocks with only c4 generated using
fast generation.
– This is used as the carry-in to the next 4-bit

adder block

– Within each 4-bit adder block, conventional RCA
is used

Fast Carry Generation

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0

Other Ways to Implement
Combinational Logic

• We have seen how combinational logic
can be implemented using logic gates,
e.g., AND, OR etc.

• However, it is also possible to generate
combinational logic functions using
memory devices, e.g., Read Only
Memories (ROMs)

ROM Overview
• A ROM is a data storage device:

– Usually written into once (either at manufacture or
using a programmer)

– Read at will
– Essentially is a look-up table, where a group of

input lines (say n) is used to specify the address
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

– So, the total number of bits stored is , i.e.,
64 in the example (very small!) ROM

nm 2

ROM Example

data

x y z f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address
(decimal)

0
1
2
3
4
5
6
7

D0D1D2D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit
ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting
minterms in the appropriate
address location

No logic simplification
required

Useful if multiple Boolean
functions are to be
implemented, e.g., in this
case we can easily do up to
4, i.e., 1 for each output line

Reasonably efficient if lots of
minterms need to be
generated

ROM Implementation
• Can be quite inefficient, i.e., become large in

size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

• Devices which can overcome these problems
are known as programmable array logic (PAL)

• In PALs, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

Basic PAL Structure

Programmed by
selectively removing
connections in the AND
and OR planes –
controlled by fuses or
memory bits

f0

a

c

b

f1

f2

AND plane

OR plane

Other Memory Devices

• Non-volatile storage is offered by ROMs (and
some other memory technologies, e.g.,
FLASH), i.e., the data remains intact, even
when the power supply is removed

• Volatile storage is offered by Static Random
Access Memory (SRAM) technology
– Data can be written into and read out of the

SRAM, but is lost once power is removed

Memory Application
• Memory devices are often used in computer

systems
• The central processing unit (CPU) often

makes use of busses (a bunch of wires in
parallel) to access external memory devices

• The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

• So, more than one memory device will often
be connected to the same data bus

Bus Contention

• In this case, if the output from the data pin of
one memory was a 0 and the output from the
corresponding data pin of another memory
was a 1, the data on that line of the data bus
would be invalid

• So, how do we arrange for the data from
multiple memories to be connected to the
some bus wires?

Bus Contention

• The answer is:
– Tristate buffers (or drivers)
– Control signals

• A tristate buffer is used on the data output of
the memory devices
– In contrast to a normal buffer which is either 1

or 0 at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus – known as the ‘high impedance’
condition

Tristate Buffer

Output Enable
(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional
analogy

Control Signals
• We have already seen that the memory

devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

• Other control inputs are also provided:
– Write enable (WE). Determines whether data is

written or read (clearly not needed on a ROM)
– Chip select (CS) – determines if the chip is

activated

• Note that these signals can be active low,
depending upon the particular device

Sequential Logic

Flip-flops and Latches

Sequential Logic
• The logic circuits discussed previously

are known as combinational, in that the
output depends only on the condition of
the latest inputs

• However, we will now introduce a type
of logic where the output depends not
only on the latest inputs, but also on the
condition of earlier inputs. These circuits
are known as sequential, and implicitly
they contain memory elements

Memory Elements

• A memory stores data – usually one bit per
element

• A snapshot of the memory is called the state

• A one bit memory is often called a bistable,
i.e., it has 2 stable internal states

• Flip-flops and latches are particular
implementations of bistables

RS Latch
• An RS latch is a memory element with 2

inputs: Reset (R) and Set (S) and 2
outputs: and .Q Q

Q

Q

R

S

Q 
0

0

1
0

0
1

0
0 1

1 1

QRS comment

Q Q
1
0
0

hold
reset
set
illegal

Where is the next state
and is the current state

Q
Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• R = 1 and S = 0
– Gate 1 output in ‘always 0’ condition,

– Gate 2 in ‘complement’ condition, so

• This is the (R)eset condition

0Q

1Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 0 and R to 0
– Gate 2 remains in ‘complement’ condition,

– Gate 1 into ‘complement’ condition,

• This is the hold condition

0Q

1Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 0
– Gate 1 into ‘complement’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the (S)et condition

1Q
0Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 1
– Gate 1 in ‘always 0’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the illegal condition

0Q
0Q

RS Latch – State Transition Table
• A state transition table is an alternative

way of viewing its operation

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

• A state transition table can also be
expressed in the form of a state diagram

RS Latch – State Diagram
• A state diagram in this case has 2

states, i.e., Q=0 and Q=1

• The state diagram shows the input
conditions required to transition
between states. In this case we see that
there are 4 possible transitions

• We will consider them in turn

RS Latch – State Diagram

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

0Q 0Q
From the table we can see:

RSRSSS

RSSRSRRS

RSRSRS






)).((

..).(

...

1Q 1Q
From the table we can see:

R

SSRRSRS ).(..

RS Latch – State Diagram

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

1Q 0Q
From the table we can see:

RSSR

RSRS




).(

..

0Q 1Q
From the table we can see:

RS.

RS Latch – State Diagram

• Which gives the following state diagram:

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the

output

• We will see later that state diagrams are a
useful tool for designing sequential systems

Q

Clocks and Synchronous Circuits
• For the RS latch we have just described, we

can see that the output state changes occur
directly in response to changes in the inputs.
This is called asynchronous operation

• However, virtually all sequential circuits
currently employ the notion of synchronous
operation, that is, the output of a sequential
circuit is constrained to change only at a time
specified by a global enabling signal. This
signal is generally known as the system clock

Clocks and Synchronous Circuits

• The Clock: What is it and what is it for?
– Typically it is a square wave signal at a

particular frequency

– It imposes order on the state changes

– Allows lots of states to appear to update
simultaneously

• How can we modify an asynchronous
circuit to act synchronously, i.e., in
synchronism with a clock signal?

Transparent D Latch

• We now modify the RS Latch such that its
output state is only permitted to change when
a valid enable signal (which could be the
system clock) is present

• This is achieved by introducing a couple of
AND gates in cascade with the R and S inputs
that are controlled by an additional input
known as the enable (EN) input.

Transparent D Latch

Q

Q

R

S

D
EN

D Q

EN

Symbol

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

AND truth table• See from the AND truth table:
– if one of the inputs, say a is 0, the output

is always 0
– Output follows b input if a is 1

• The complement function ensures
that R and S can never be 1 at the
same time, i.e., illegal avoided

Transparent D Latch

Q

Q

R

S

D
EN

RS hold

Q 

01
0

1 1

QD comment

Q Q
1
0

RS reset
RS set

EN

0
X

1

• See Q follows D input provided EN=1.
If EN=0, Q maintains previous state

Master-Slave Flip-Flops

• The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent
behaviour if EN=1. It is often more simple to
design sequential circuits if the outputs
change only on the either rising (positive
going) or falling (negative going) ‘edges’ of
the clock (i.e., enable) signal

• We can achieve this kind of operation by
combining 2 transparent D latches in a so
called Master-Slave configuration

Master-Slave D Flip-Flop
Symbol

D QD Q D QD

CLK

Q

Master Slave

Qint

• To see how this works, we will use a timing diagram

• Note that both latch inputs are effectively connected
to the clock signal (admittedly one is a complement
of the other)

Master-Slave D Flip-Flop

D Q D QD

CLK

Q

Master Slave

Qint

CLK

CLK

D

intQ

Q

Note propagation delays
have been neglected in
the timing diagram

See Q changes on rising
edge of CLK

D Flip-Flops

• The Master-Slave configuration has
now been superseded by new F-F
circuits which are easier to implement
and have better performance

• When designing synchronous circuits it
is best to use truly edge triggered F-F
devices

• We will not consider the design of such
F-Fs on this course

Other Types of Flip-Flops

• Historically, other types of Flip-Flops
have been important, e.g., J-K Flip-
Flops and T-Flip-Flops

• However, J-K FFs are a lot more
complex to build than D-types and so
have fallen out of favour in modern
designs, e.g., for field programmable
gate arrays (FPGAs) and VLSI chips

Other Types of Flip-Flops

• Consequently we will only consider
synchronous circuit design using D-type
FFs

• However for completeness we will
briefly look at the truth table for J-K and
T type FFs

J-K Flip-Flop

• The J-K FF is similar in function to a
clocked RS FF, but with the illegal state
replaced with a new ‘toggle’ state

Q 
0

1
0

0
1

0
0 1

1 1

QKJ comment

Q Q
1
0

hold
reset
set
toggle

Where is the next state
and is the current state

Q
Q

Q Q

Symbol

J

K Q

Q

T Flip-Flop

• This is essentially a J-K FF with its J
and K inputs connected together and
renamed as the T input

Q 
0

1

QT comment

Q Q hold
toggle

Where is the next state
and is the current state

Q
Q

Q Q

Symbol

T

Q

Q

Asynchronous Inputs

• It is common for the FF types we have mentioned
to also have additional so called ‘asynchronous’
inputs

• They are called asynchronous since they take
effect independently of any clock or enable inputs

• Reset/Clear – force Q to 0

• Preset/Set – force Q to 1

• Often used to force a synchronous circuit into a
known state, say at start-up.

Timing

• Various timings must be satisfied if a FF
is to operate properly:
– Setup time: Is the minimum duration that

the data must be stable at the input before
the clock edge

– Hold time: Is the minimum duration that the
data must remain stable on the FF input
after the clock edge

Applications of Flip-Flops
• Counters

– A clocked sequential circuit that goes through a
predetermined sequence of states

– A commonly used counter is an n-bit binary
counter. This has n FFs and 2n states which are
passed through in the order 0, 1, 2, ….2n-1, 0, 1, .

– Uses include:
• Counting

• Producing delays of a particular duration

• Sequencers for control logic in a processor

• Divide by m counter (a divider), as used in a digital
watch

Applications of Flip-Flops

• Memories, e.g.,
– Shift register

• Parallel loading shift register : can be used for
parallel to serial conversion in serial data
communication

• Serial in, parallel out shift register: can be used
for serial to parallel conversion in a serial data
communication system.

Counters
• In most books you will see 2 basic types

of counters, namely ripple counters and
synchronous counters

• In this course we are concerned with
synchronous design principles. Ripple
counters do not follow these principles
and should generally be avoided if at all
possible. We will now look at the
problems with ripple counters

Ripple Counters
• A ripple counter can be made be cascading

together negative edge triggered T-type FFs
operating in ‘toggle’ mode, i.e., T =1

• See that the FFs are not clocked using the
same clock, i.e., this is not a synchronous
design. This gives some problems….

T

Q

Q
‘1’

CLK

T

Q

Q
‘1’

T

Q

Q
‘1’

0Q 1Q 2Q

Ripple Counters
• We will now draw a timing diagram

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0
• Problems:

See outputs do not change at the same time, i.e., synchronously.
So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting
maximum clock speed before miscounting occurs.

Ripple Counters
• If you observe the frequency of the counter

output signals you will note that each has half
the frequency, i.e., double the repetition
period of the previous one. This is why
counters are often known as dividers

• Often we wish to have a count which is not a
power of 2, e.g., for a BCD counter (0 to 9).To
do this:
– use FFs having a Reset/Clear input

– Use an AND gate to detect the count of 10 and
use its output to Reset the FFs

Synchronous Counters

• Owing to the problems identified with ripple
counters, they should not usually be used to
implement counter functions

• It is recommended that synchronous counter
designs be used

• In a synchronous design
– all the FF clock inputs are directly connected to the clock

signal and so all FF outputs change at the same time, i.e.,
synchronously

– more complex combinational logic is now needed to
generate the appropriate FF input signals (which will be
different depending upon the type of FF chosen)

Synchronous Counters

• We will now investigate the design of
synchronous counters

• We will consider the use of D-type FFs
only, although the technique can be
extended to cover other FF types.

• As an example, we will consider a 0 to 7
up-counter

Synchronous Counters
• To assist in the design of the counter we will make

use of a modified state transition table. This table
has additional columns that define the required FF
inputs (or excitation as it is known)
– Note we have used a state transition table previously

when determining the state diagram for an RS latch

• We will also make use of the so called ‘excitation
table’ for a D-type FF

• First however, we will investigate the so called
characteristic table and characteristic equation for a
D-type FF

Characteristic Table
• In general, a characteristic table for a FF

gives the next state of the output, i.e., in
terms of its current state and current inputsQ

Q

1
0

0
1

QDQ
0
0
1
1

0
1
0
1

Which gives the characteristic equation,

DQ '
i.e., the next output state is equal to the
current input value

Since is independent of
the characteristic table can
be rewritten as 1

0

QD
0
1

Q Q

Excitation Table
• The characteristic table can be modified to

give the excitation table. This table tells us
the required FF input value required to
achieve a particular next state from a given
current state

1
0

0
1

Q DQ
0
0
1
1

0
1
0
1

As with the characteristic table it can
be seen that , does not depend
upon, , however this is not
generally true for other FF types, in
which case, the excitation table is
more useful. Clearly for a D-FF,

Q
Q

'QD 

Characteristic and Excitation
Tables

• Characteristic and excitation tables can
be determined for other FF types.

• These should be used in the design
process if D-type FFs are not used

• We will now determine the modified
state transition table for the example 0
to 7 up-counter

Modified State Transition
Table

• In addition to columns representing the
current and desired next states (as in a
conventional state transition table), the
modified table has additional columns
representing the required FF inputs to
achieve the next desired FF states

Modified State Transition Table
• For a 0 to 7 counter, 3 D-type FFs are needed

Current
state

0Q1Q2Q

000

1
0

1
0

1 1

100
010

0
1

101
011

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

Next
state

FF
inputs

Note: Since (or) for a D-FF, the
required FF inputs are identical to the Next state

DQ '

The procedure is to:

Write down the desired
count sequence in the
current state columns

Write down the required
next states in the next
state columns
Fill in the FF inputs
required to give the
defined next state

'QD 

Synchronous Counter Example

• Also note that if we are using D-type FFs, it
is not necessary to explicitly write out the
FF input columns, since we know they are
identical to those for the next state

• To complete the design we now have to
determine appropriate combinational logic
circuits which will generate the required FF
inputs from the current states

• We can do this from inspection, using
Boolean algebra or using K-maps.

Synchronous Counter Example
Current
state

0Q1Q2Q

000

1
0

1
0

1 1

100
010

0
1

101
011

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

Next
state

FF
inputs

By inspection,

00 QD 
Note: FF0 is toggling

Also, 101 QQD 
Use a K-map for ,2D

1Q 0Q
1100 01 10

0

1 11

1

12Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

Synchronous Counter Example
1Q 0Q

1100 01 10
0

1 11

1

12Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So,

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D

Q

Q

CLK

0Q

0D
D

Q

Q

1Q

1D
D

Q

Q

2Q

2D

Combinati-
onal logic

0Q

0Q
1Q

1Q

2Q
2Q

Synchronous Counter

• A similar procedure can be used to design
counters having an arbitrary count sequence
– Write down the state transition table

– Determine the FF excitation (easy for D-types)

– Determine the combinational logic necessary to
generate the required FF excitation from the
current states – Note: remember to take into
account any unused counts since these can be
used as don’t care states when determining the
combinational logic circuits

Shift Register
• A shift register can be implemented

using a chain of D-type FFs

D

Q

Q

D

Q

Q

0Q 1Q 2Q

D

Q

Q

Din

CLK

• Has a serial input, Din and parallel
output Q0, Q1 and Q2.

• See data moves one position to the
right on application of clock edge

Shift Register
• Preset and Clear inputs on the FFs can

be utilised to provide a parallel data
input feature

• Data can then be clocked out through
Q2 in a serial fashion, i.e., we now have
a parallel in, serial out arrangement

• This along with the previous serial in,
parallel out shift register arrangement
can be used as the basis for a serial
data link

Serial Data Link

CLK

0Q 1Q 2Q

Parallel in
serial out

0Q 1Q 2Q

Serial in
parallel out

Serial Data

• One data bit at a time is sent across the serial
data link

• See less wires are required than for a parallel
data link

Synchronous State Machines

Synchronous State Machines

• We have seen how we can use FFs (D-types
in particular) to design synchronous counters

• We will now investigate how these principles
can be extended to the design of synchronous
state machines (of which counters are a
subset)

• We will begin with some definitions and then
introduce two popular types of machines

Definitions

• Finite State Machine (FSM) – a deterministic
machine (circuit) that produces outputs which
depend on its internal state and external inputs

• States – the set of internal memorised values,
shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the
state diagram

• Outputs – Results from the FSM

Types of State Machines

• Two types of state machines are in
general use, namely Moore machines
and Mealy machines

• In this course we will only look in detail
at FSM design using Moore machines,
although for completeness we will
briefly describe the structure of Mealy
machines

Machine Schematics

OutputsNext state
combinational

logic m

CLK

Optional
combinational

logic
D

Q

Q

m
Inputs

n

Current stateMoore
Machine

Mealy
Machine

Next state
combinational

logic
D

Q

Q

m

CLK

combinational
logicm

Inputs
n

Current state

Outputs

Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon
the timing of the inputs

• Outputs from Moore machines come directly
from clocked FFs so:
– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a
Moore machine and vice versa, though their
timing properties will be different

Moore Machine - Example

• We will design a Moore Machine to implement
a traffic light controller

• In order to visualise the problem it is often
helpful to draw the state transition diagram

• This is used to generate the state transition
table

• The state transition table is used to generate
– The next state combinational logic

– The output combinational logic (if required)

Example – Traffic Light Controller
R

R

G

AA

See we have 4 states

So in theory we could
use a minimum of 2 FFs

However, by using 3 FFs
we will see that we do not
need to use any output
combinational logic

So, we will only use 4 of
the 8 possible states

In general, state assignment is a
difficult problem and the optimum
choice is not always obvious

Example – Traffic Light Controller
By using 3 FFs (we will use
D-types), we can assign one
to each of the required
outputs (R, A, G), eliminating
the need for output logicState

010

R

R

G

AA

State
100

State
001

State
110

We now need to write down
the state transition table

We will label the FF outputs
R, A and G

Remember we do not need to
explicitly include columns for FF
excitation since if we use D-types
these are identical to the next state

Example – Traffic Light Controller
Current
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next
stateR

R

G

AA

State
100

State
001

State
110

State
010

Unused states, 000, 011, 101 and
111. Since these states will never
occur, we don’t care what output
the next state combinational logic
gives for these inputs. These don’t
care conditions can be used to
simplify the required next state
combinational logic

Example – Traffic Light Controller

Current
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next
state

Unused states, 000,
011, 101 and 111.

We now need to determine the next
state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
1100 01 10

0

1

1

1 X

AR.

R

R

G

A

X

X

X

AR.

ARARARDR  ..

Example – Traffic Light Controller

Current
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next
state

Unused states, 000,
011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .

Example – Traffic Light Controller

D

Q

Q

CLK

A

AD
D

Q

Q

R

RD
D

Q

Q

G

GD

FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in
one of the unused states
– This could potentially cause the machine to

become stuck in some unanticipated sequence of
states which never goes back to a used state

FSM Problems

• What can be done?
– Check to see if the FSM can eventually

enter a known state from any of the
unused states

– If not, add additional logic to do this, i.e.,
include unused states in the state transition
table along with a valid next state

– Alternatively use asynchronous Clear and
Preset FF inputs to set a known (used)
state at power up

Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs
if we begin in any of the unused states

• Turns out:
Start
state

Next state
logic output

000 010
011 100
101 110
111 001

Which are all
valid states

So it does
self start

Example 2

• We extend Example 1 so that the traffic
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e.,
6 in total.

• In theory, the 3 FF machine gives us the
potential for sufficient states

• However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total

Example 2

FF labels

R A G S

R

G

R

AA

State
1000

State
0010

State
1100

State
0101

R

G

State
1001

State
0011

See that new FF
toggles which
makes the next
state logic easier

As before, the first
step is to write
down the state
transition table

Example 2

FF
labels

R A G S

R

G

R

AA

State
1000

State
0010

State
1100

State
0101

R

G

State
1001

State
0011

Current
state

AR G 'G'A'R

Next
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

Clearly a lot of unused states.
When plotting k-maps to determine
the next state logic it is probably
easier to plot 0s and 1s in the map
and then mark the unused states

Example 2

We will now use k-maps to determine
the next state combinational logic

Current
state

AR G 'G'A'R

Next
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

For the R FF, we need to determine DR

1100 01 10

00

01

11

10

AR
SG

1
R

A

G

S

1

0

1
AR.

AR.

0 0

XX

XXX

XXX

XX

ARARARDR  ..

Example 2
We can plot k-maps for DA and DG

to give:

Current
state

AR G 'G'A'R

Next
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 

State Assignment
• As we have mentioned previously, state

assignment is not necessarily obvious or
straightforward
– Depends what we are trying to optimise, e.g.,

• Complexity (which also depends on the
implementation technology, e.g., FPGA, 74 series
logic chips).

– FF implementation may take less chip area than you may
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

State Assignment

• If we have m states, we need at least
FFs (or more informally, bits) to encode the
states, e.g., for 8 states we need a min of 3
FFs

• We will now present an example giving
various potential state assignments, some
using more FFs than the minimum

m2log

Example Problem

• We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is low for 3 clock edges

CLK

Output

Sequential State Assignment

• Here we simply assign the states in an
increasing natural binary count

• As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

• We can then determine the necessary
next state logic and any output logic.

Sequential State Assignment

Unused states, 101,
110 and 111.

Current
state

abc
000
100
010

abc
1
0
1

0
1
1

0
0
0

110 001

Next
state

001 000

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the
next state logic:

For FF a:
b a

1100 01 10
0

1

11

Xc X X

c

a

b

ca.

caDa .

Sequential State Assignment

Unused states, 101,
110 and 111.

Current
state

abc
000
100
010

abc
1
0
1

0
1
1

0
0
0

110 001

Next
state

001 000

For FF b:
b a

1100 01 10
0

1

1

Xc X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:
b a

1100 01 10
0

1

1

Xc X X

c

a

b

ba.

baDc .

Sliding State Assignment

Unused states, 010,
101, and 111.

Current
state

abc
000
100
110

abc
1
1
0

0
1
1

0
0
1

011 001

Next
state

001 000

For FF a:
b a

1100 01 10
0

1

11

Xc X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the
next state logic:

By inspection we can see that
we can use any of the FF
outputs as the wanted output

Sliding State Assignment

Unused states, 010,
101, and 111.

Current
state

abc
000
100
110

abc
1
1
0

0
1
1

0
0
1

011 001

Next
state

001 000

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 

Shift Register Assignment

• As the name implies, the FFs are connected
together to form a shift register. In addition,
the output from the final shift register in the
chain is connected to the input of the first
FF:
– Consequently the data continuously cycles

through the register

Shift Register Assignment

Unused states. Lots!

Current
state

a
1
0
0
0

Next
state

1

bc
10
11
01
00
00

abc
0
0
0

1
0
0

1
1
0

100
110

0
0
1
1
0

de
0
0
0
1
1

0
1
1
0
0

d e
0
0
1
1
0

Because of the shift register
configuration and also from the
state table we can see that:

eDa 
aDb 
bDc 
cDd 
dDe 

By inspection we can see that
we can use any of the FF
outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

• This is a shift register design style where only
FF at a time holds a 1

• Consequently we have 1 FF per state,
compared with for sequential assignment

• However, can result in simple fast state
machines

• Outputs are generated by ORing together
appropriate FF outputs

m2log

One Hot - Example
• We will return to the traffic signal example,

which recall has 4 states

R

R

G

AA

For 1 hot, we need 1 FF for
each state, i.e., 4 in this case

The FFs are connected to form
a shift register as in the
previous shift register example,
however in 1 hot, only 1 FF
holds a 1 at any time

We can write down the state
transition table as follows

One Hot - Example
R

R

G

AA

Unused states. Lots!

Current
state

Next
state

a

0
0
0
1

g

0
0
1
0

ra

0
1
0
0

1
0
0
0

r a
0
0
1
0

g
0
1
0
0

ar 
1
0
0
0

0
0
0
1

r

Because of the shift register configuration
and also from the state table we can see
that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 

One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G

Tripos Example
• The state diagram for a synchroniser is shown.

It has 3 states and 2 inputs, namely e and r.
The states are mapped using sequential
assignment as shown.

[s1 s0]
FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be
true if in Sync state

Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

From inspection, 1ss 

Tripos Example
Plot k-maps to determine the
next state logic

Current
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

For FF 1:

1100 01 10

00

01

11

10

01 ss
re

11s

0s

e

r

1

1

res ..0

es .1

X XX X

1

rs .1

resrsesD 0111 

Tripos Example
Plot k-maps to determine the
next state logic

Current
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

For FF 0:

1100 01 10

00

01

11

10

01 ss
re

1

1s

0s

e

r

1

1
rss .. 01

es .0

X XX X

1

rssesD ... 0100 

Tripos Example
• We will now re-implement the synchroniser

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]
FF labels

An output, s should be
true if in Sync state

From inspection, 2ss 

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current
state

re

0X
1X

'
2s

0
0

Next
state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s
0
1
1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s
1
0
0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-
hot shift structure, only 1 FF is 1 at a time, consequently it
is straightforward to write down the next state equations

Tripos Example

Current
state

re

0X
1X

'
2s

0
0

Next
state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s
0
1
1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s
1
0
0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

For FF 2:

resesresD 2212 
For FF 1:

esrsD .. 101 
For FF 0:

resresrsD 2100 

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly
necessary to write down the
state table, since the next state
equations can be obtained from
the state diagram

It can be seen that for each
state variable, the required
equation is given by terms
representing the incoming arcs
on the graph

For example, for FF 2: resesresD 2212 
Also note some simplification is possible by noting that:

1012  sss (which is equivalent to e.g.,)012 sss 

Tripos Example

• So in this example, the 1 hot is easier to
design, but it results in more hardware
compared with the sequential state
assignment design

Implementation of FSMs

• We saw previously that programmable logic
can be used to implement combinational logic
circuits, i.e., using PAL devices

• PAL style devices have been modified to
include D-type FFs to permit FSMs to be
implemented using programmable logic

• One particular style is known as Generic
Array Logic (GAL)

GAL Devices

• They are similar in concept to PALs, but
have the option to make use of a D-type flip-
flops in the OR plane (one following each OR
gate). In addition, the outputs from the D-
types are also made available to the AND
plane (in addition to the usual inputs)
– Consequently it becomes possible to build

programmable sequential logic circuits

AND plane

OR plane D
Q

Q

D
Q

Q

GAL
Device

FPGA

• Field Programmable Gate Array (FPGA)
devices are the latest type of programmable
logic

• Are a sea of programmable wiring and
function blocks controlled by bits downloaded
from memory

• Function units contain a 4-input 1 output look-
up table with an optional D-FF on the output

