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Introduction



Aims

• To familiarise students with
– Combinational logic circuits

– Sequential logic circuits

– How digital logic gates are built using 
transistors 

– Design and build of digital logic systems



Course Structure

• 11 Lectures

• Hardware Labs
– 6 Workshops

– 7 sessions, each one 3h, alternate weeks

– Thu. 10.00 or 2.00 start, beginning week 3

– In Cockroft 4 (New Museum Site)

– In groups of 2



Objectives

• At the end of the course you should
– Be able to design and construct simple 

digital electronic systems

– Be able to understand and apply Boolean 
logic and algebra – a core competence in 
Computer Science

– Be able to understand and build state 
machines



Books
• Lots of books on digital electronics, e.g.,

– D. M. Harris and S. L. Harris, ‘Digital Design 
and Computer Architecture,’ Morgan Kaufmann, 
2007.

– R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

– J. P. Hayes, ‘Introduction to Digital Logic 
Design,’ Addison-Wesley, 1993.

• Electronics in general (inc. digital)
– P. Horowitz and W. Hill, ‘The Art of Electronics,’

CUP, 1989.



Other Points

• This course is a prerequisite for
– ECAD (Part IB)
– VLSI Design (Part II)

• Keep up with lab work and get it ticked.
• Have a go at supervision questions plus 

any others your supervisor sets.
• Remember to try questions from past 

papers



Semiconductors to Computers

• Increasing levels of complexity
– Transistors built from semiconductors
– Logic gates built from transistors
– Logic functions built from gates
– Flip-flops built from logic
– Counters and sequencers from flip-flops
– Microprocessors from sequencers
– Computers from microprocessors



Semiconductors to Computers

• Increasing levels of abstraction:
– Physics
– Transistors
– Gates
– Logic
– Microprogramming (Computer Design Course)
– Assembler (Computer Design Course)
– Programming Languages (Compilers Course)
– Applications



Combinational Logic



Introduction to Logic Gates

• We will introduce Boolean algebra and 
logic gates

• Logic gates are the building blocks of 
digital circuits



Logic Variables

• Different names for the same thing
– Logic variables
– Binary variables
– Boolean variables

• Can only take on 2 values, e.g.,
– TRUE or False
– ON or OFF
– 1 or 0



Logic Variables

• In electronic circuits the two values can 
be represented by e.g.,
– High voltage for a 1

– Low voltage for a 0

• Note that since only 2 voltage levels are 
used, the circuits have greater immunity 
to electrical noise



Uses of Simple Logic

• Example – Heating Boiler
– If chimney is not blocked and the house is cold 

and the pilot light is lit, then open the main fuel 
valve to start boiler.

b = chimney blocked
c = house is cold
p = pilot light lit
v = open fuel valve

– So in terms of a logical (Boolean) expression
v = (NOT b) AND c AND p



Logic Gates

• Basic logic circuits with one or more 
inputs and one output are known as 
gates

• Gates are used as the building blocks in 
the design of more complex digital logic 
circuits



Representing Logic Functions

• There are several ways of representing 
logic functions:
– Symbols to represent the gates

– Truth tables

– Boolean algebra

• We will now describe commonly used 
gates



NOT Gate

Symbol

a y

Truth-table
a y

0 1
1 0

Boolean 
ay 

• A NOT gate is also called an ‘inverter’

• y is only TRUE if a is FALSE

• Circle (or ‘bubble’) on the output of a gate 
implies that it as an inverting (or 
complemented) output



AND Gate

Symbol Truth-table Boolean 

bay .
a y
b

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

• y is only TRUE only if a is TRUE and b is 
TRUE

• In Boolean algebra AND is represented by 
a dot  .



OR Gate

Symbol

a y

Truth-table Boolean 

bay 

b

a y

0

1

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (or 
both)

• In Boolean algebra OR is represented by 
a plus sign  



EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean 

bay a y

0

0

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (but 
not both)

• In Boolean algebra XOR is represented by 
an     sign   

a y
b



NOT AND (NAND) Gate

Symbol

a y

Truth-table Boolean 

bay .
b

a y

0

0

1
1

b

0
0
1

1
0 1

1 1

• y is TRUE if a is FALSE or b is FALSE (or 
both)

• y is FALSE only if a is TRUE and b is 
TRUE



NOT OR (NOR) Gate

Symbol

a y

Truth-table Boolean 

bay 
b

a y

0

0

1
1

b

0
0
1

0
0 0

1 1

• y is TRUE only if a is FALSE and b is 
FALSE

• y is FALSE if a is TRUE or b is TRUE (or 
both)



Boiler Example

• If chimney is not blocked and the house is 
cold and the pilot light is lit, then open the 
main fuel valve to start boiler.

b = chimney blocked c = house is cold

p = pilot light lit v = open fuel valve

pcbv ..

b
c
p



Boolean Algebra
• In this section we will introduce the laws 

of Boolean Algebra
• We will then see how it can be used to 

design combinational logic circuits
• Combinational logic circuits do not have 

an internal stored state, i.e., they have 
no memory. Consequently the output is 
solely a function of the current inputs. 

• Later, we will study circuits having a 
stored internal state, i.e., sequential 
logic circuits.



Boolean Algebra

OR AND
aa  0
aaa 

11a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g.,
).().(.. dcbadcba 



Boolean Algebra

• Commutation

• Association

• Distribution

• Absorption

abba 
abba .. 

)()( cbacba 
)..()..( cbacba 

  ).().().( cabacba
NEW      ).).(()..(  cabacba 

NEW      ).( acaa 
NEW      ).( acaa 



Boolean Algebra - Examples

Show
babaa .).( 

bababaaabaa ..0..).( 

Show
babaa  ).(

bababaaabaa  ).(1)).(().(



Boolean Algebra

• A useful technique is to expand each 
term until it includes one instance of each 
variable (or its compliment). It may be 
possible to simplify the expression by 
cancelling terms in this expanded form
e.g., to prove the absorption rule:

abaa  .

aabbabababababa  1.).(.....



Boolean Algebra - Example

Simplify
zyxzxzyyx ..... 

zyxzyxzyxzyxzyxzyxzyx .............. 
zyxzyxzyxzyx ........ 

).(.).(. xxzyzzyx 
1..1.. zyyx 

zyyx .. 



DeMorgan’s Theorem
   ...  cbacba 

     ...  cbacba

   ...  cbacba 
     ...  cbacba

• In a simple expression like            (or       ) 
simply change all operators from OR to 
AND (or vice versa), complement each 
term (put a bar over it) and then 
complement the whole expression, i.e.,

cba  cba ..



DeMorgan’s Theorem

• For 2 variables we can show                 
and                using a truth table.

baba .
baba .

0
1
0

0
1 0

0

0
1

0
1 1

ba a b ba. a b ba. ba 

0

1
1

1
0

1
1

0
0

0
1

1
0

0
1

0
0

1
1

1

• Extending to more variables by induction
cbacbacbacba ..)..(.)( 



DeMorgan’s Examples

• Simplify ).().(. cbbcbaba 

(DeMorgan)     ..... cbbcbaba 
0)b(b.     ...  cbaba

n)(absorbtio     .ba



DeMorgan’s Examples

• Simplify dcbadbcba .)..)..(.( 
Morgan)(De       .).).(.( dcbadbcba 

e)(distribut       .).......( dcbadbabbacba 
)0..(       .).....(  bbadcbadbacba

e)(distribut       ........... dcbdcadcdbadcba 
)0....(       .......  dcdbadcbdcadcba

e)(distribut      ..).( dcbaba 
(DeMorgan)      ..)..( dcbaba 
1)..(      .  babadc



DeMorgan’s in Gates

• To implement the function                  we 
can use AND and OR gates

dcbaf .. 

a
b

c
d

f

• However, sometimes we only wish to 
use NAND or NOR gates, since they 
are usually simpler and faster



DeMorgan’s in Gates

• To do this we can use ‘bubble’ logic

a
b

c
d

f

x

y

Two consecutive ‘bubble’ (or 
complement) operations cancel, 
i.e., no effect on logic function

See AND gates are 
now NAND gates

What about this gate? 
DeMorgan says  yxyx .

Which is a NOT 
AND (NAND) gate

So is  equivalent to



DeMorgan’s in Gates

• So the previous function can be built 
using 3 NAND gates
a
b

c
d

f

a
b

c
d

f



DeMorgan’s in Gates

• Similarly, applying ‘bubbles’ to the input 
of an AND gate yields

x
y f

What about this gate? 
DeMorgan says  yxyx .

Which is a NOT OR 
(NOR) gate

So is  equivalent to

• Useful if trying to build using NOR gates



Logic Minimisation

• Any Boolean function can be implemented 
directly using combinational logic (gates)

• However, simplifying the Boolean function will 
enable the number of gates required to be 
reduced. Techniques available include:
– Algebraic manipulation (as seen in examples)
– Karnaugh (K) mapping (a visual approach)
– Tabular approaches (usually implemented by 

computer, e.g., Quine-McCluskey)

• K mapping is the preferred technique for up to 
about 5 variables



Truth Tables
• f is defined by the following truth table

x y z f minterms
0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 zyx ..

• A minterm must contain 
all variables (in either 
complement or 
uncomplemented form)
• Note variables in a 

minterm are ANDed 
together (conjunction)

• One minterm for each 
term of f that is TRUE

• So         is a minterm but      is notzyx .. zy.



Disjunctive Normal Form

• A Boolean function expressed as the 
disjunction (ORing) of its minterms is said 
to be in the Disjunctive Normal Form (DNF)

• A Boolean function expressed as the 
ORing of ANDed variables (not necessarily 
minterms) is often said to be in Sum of 
Products (SOP) form, e.g.,

zyxzyxzyxzyxzyxf .......... 

le truth tabsame thehavefunctionsNote     .zyxf 



Maxterms
• A maxterm of n Boolean variables is the 

disjunction (ORing) of all the variables either 
in complemented or uncomplemented form.
– Referring back to the truth table for f, we can 

write,

Applying De Morgan (and complementing) gives

So it can be seen that the maxterms of    are 
effectively the minterms of     with each variable 
complemented

zyxzyxzyxf ...... 

)).().(( zyxzyxzyxf 
f

f



Conjunctive Normal Form

• A Boolean function expressed as the 
conjunction (ANDing) of its maxterms is said 
to be in the Conjunctive Normal Form (CNF)

• A Boolean function expressed as the ANDing 
of ORed variables (not necessarily maxterms) 
is often said to be in Product of Sums (POS) 
form, e.g.,

)).().(( zyxzyxzyxf 

)).(( zxyxf 



Logic Simplification

• As we have seen previously, Boolean 
algebra can be used to simplify logical 
expressions. This results in easier 
implementation
Note: The DNF and CNF forms are not 

simplified.

• However, it is often easier to use a 
technique known as Karnaugh mapping



Karnaugh Maps
• Karnaugh Maps (or K-maps) are a 

powerful visual tool for carrying out 
simplification and manipulation of logical 
expressions having up to 5 variables

• The K-map is a rectangular array of 
cells
– Each possible state of the input variables 

corresponds uniquely to one of the cells
– The corresponding output state is written in 

each cell



K-maps example

x y z f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• From truth table to K-map

y z
1100 01 10

0

1

x
1 1 11

1x

z

y

Note that the logical state of the 
variables follows a Gray code, i.e., 
only one of them changes at a time

The exact assignment of variables in 
terms of their position on the map is 
not important



K-maps example
• Having plotted the minterms, how do we 

use the map to give a simplified 
expression? • Group terms

• Having size equal to a power of 
2, e.g., 2, 4, 8, etc.

• Large groups best since they 
contain fewer variables

• Groups can wrap around edges 
and corners

y z
1100 01 10

0

1

x
1 1 11

1x

z

yx zy.

So, the simplified func. is,

.zyxf  as before



K-maps – 4 variables
• K maps from Boolean expressions

– Plot   ... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d
• See in a 4 variable map:

– 1 variable term occupies 8 cells
– 2 variable terms occupy 4 cells
– 3 variable terms occupy 2 cells, etc.



K-maps – 4 variables
• For example, plot

bf  .dbf 

1100 01 10

00

01

11

10

ba
dc

1

1

1

1
a

b

c

d

1100 01 10

00

01

11

10

ba
dc

1

11 11

a

b

c

d

111



K-maps – 4 variables

• Simplify, ........ dcdcbadcbdbaf 

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

11

1

1

1

1

ba.
dc.

So, the simplified func. is,

.. dcbaf 



POS Simplification
• Note that the previous examples have 

yielded simplified expressions in the 
SOP form
– Suitable for implementations using AND 

followed by OR gates, or only NAND gates 
(using DeMorgans to transform the result –
see previous Bubble logic slides)

• However, sometimes we may wish to 
get a simplified expression in POS form
– Suitable for implementations using OR 

followed by AND gates, or only NOR gates



POS Simplification

• To do this we group the zeros in the map
– i.e., we simplify the complement of the function

• Then we apply DeMorgans and 
complement

• Use ‘bubble’ logic if NOR only 
implementation is required



POS Example
• Simplify                       into POS form.... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

Group 
zeros

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

0 0 0 0

0 0 0

0 0 0 0

b da. ca.

.. dacabf 



POS Example
• Applying DeMorgans to 

.. dacabf 

)).(.( dacabf 
)).(.( dacabf 

f

a

c

a

d

b

f

a

c

a

d

b

gives,

f

a

c

a

d

b



Expression in POS form

• Apply DeMorgans and take 
complement, i.e.,    is now in SOP form

• Fill in zeros in table, i.e., plot

• Fill remaining cells with ones, i.e., plot 

• Simplify in usual way by grouping ones 
to simplify 

f

f

f

f



Don’t Care Conditions
• Sometimes we do not care about the 

output value of a combinational logic 
circuit, i.e., if certain input combinations 
can never occur, then these are known 
as don’t care conditions.

• In any simplification they may be treated 
as 0 or 1, depending upon which gives 
the simplest result.
– For example, in a K-map they are entered 

as Xs



Don’t Care Conditions - Example

• Simplify the function ...... dcadcadbaf 

With don’t care conditions, ...,...,... dcbadcbadcba

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

X 1

1

1

1

X

X

ba.
dc.

dcbaf .. 

See only need to include 
Xs if they assist in making 
a bigger group, otherwise 
can ignore.

or, dcdaf .. 



Some Definitions
• Cover – A term is said to cover a minterm if that 

minterm is part of that term

• Prime Implicant – a term that cannot be further 
combined

• Essential Term – a prime implicant that covers a 
minterm that no other prime implicant covers

• Covering Set – a minimum set of prime 
implicants which includes all essential terms plus 
any other prime implicants required to cover all 
minterms



Number Representation, 
Addition and Subtraction



Binary Numbers

• It is important to be able to represent 
numbers in digital logic circuits
– for example, the output of a analogue to digital 

converter (ADC) is an n-bit number, where n is 
typically in the range from 8 to 16

• Various representations are used, e.g.,
– unsigned integers

– 2’s complement to represent negative numbers



Binary Numbers
• Binary is base 2. Each digit (known as a 

bit) is either 0 or 1.

• Consider these 6-bit unsigned numbers

32
52

1 0
16

42

1 0 01

32 22 12 02
8 4 2 1 Binary 

coefficients

1042

MSB LSB

32
52

0 0
16

42

1 0 11

32 22 12 02
8 4 2 1 Binary 

coefficients

1011

MSB LSB

MSB – most 
significant bit

LSB – least 
significant bit



Unsigned Binary Numbers
• In general, an n-bit binary number,     

has the decimal value,
i

n

i
ib 2

1

0

 




0121 bbbb nn 

• So we can represent positive integers from 
0 to 

• In computers, binary numbers are often 8 
bits long – known as a byte

• A byte can represent unsigned values from 
0 to 255

12 n



Unsigned Binary Numbers
• Decimal to binary conversion. Perform 

successive division by 2.
– Convert        into binary 1042

1remainder       02/1

0remainder       12/2

1remainder       22/5

0remainder      52/10

1remainder    102/21

0remainder    212/42








• So the answer is                (reading upwards)2101010



Octal: Base 8
• We have seen base 2 uses 2 digits (0 & 1), 

not surprisingly base 8 uses 8 digits : 0, 1, 
2, 3, 4, 5, 6, 7.

0 25

18 08

8 1 Octal 
coefficients

1042

MSB LSB

64
28

• To convert from decimal to base 8 either 
use successive division, i.e.,

5remainder      08/5

2remainder    58/42




• So the answer is         (reading upwards)852



Octal: Base 8

• Or alternatively, convert to binary, divide 
the binary number into 3-bit groups and 
work out the octal digit to represent 
each group. We have shown that

210 10101042 

• So,
1 0 1 0 01

5 82
1042

MSB LSB



Hexadecimal: Base 16
• For base 16 we need 16 different digits. 

Consequently we need new symbols for 
the digits to represent 10-15

16102

16102

16102

C121100

B111011

A101010





16102

16102

16102

F151111

E141110

D131101





0 16A2

116 016
16 1 Hex 

coefficients

1042

MSB LSB

256
216



Hex: Base 16

• To convert from decimal to base 16 use 
either use successive division by 16, i.e.,

2remainder      016/2

Aremainder    216/42




• So the answer is         (reading upwards)8A2



Hex: Base 16

• Or alternatively, convert to binary, divide 
the binary number into 4-bit groups and 
work out the hex digit to represent each 
group. We have shown that

210 10101042 

• So,
1 0 1 0 01

2 16A
1042

MSB LSB

00



Hex: Base 16

• Hex is also used as a convenient way of 
representing the contents of a byte (an 
8 bit number), so for example 211100010

1 0 0 0 01
E 162

162E

MSB LSB

11



Negative numbers
• So far we have only been able to represent 

positive numbers. For example, we have 
seen an 8-bit byte can represent from 0 to 
255, i.e., 28 = 256 different combinations of 
bits in a byte

• If we want to represent negative numbers, 
we have to give up some of the range of 
positive numbers we had before
– A popular approach to do this is called 2’s 

complement



2’s Complement
• For 8-bit numbers:

0 127 128 1

H0 HF7

positive negative

H80 HFF

• Note all negative numbers have the 
MSB set

• The rule for changing a positive 2’s 
complement number into a negative 2’s 
complement number (or vice versa) is: 

Complement all the bits and add 1.



2’s Complement
• What happens when we do this to an 8 bit 

binary number x ?
– Invert all bits:

– Add 1:

• Note: 256 (= 100H) will not fit into an 8 bit 
byte. However if we ignore the ‘overflow’ bit, 
then           behaves just like

• That is, we can use normal binary arithmetic 
to manipulate the 2’s complement of x and it 
will behave just like -x

)255( xx 
)256( xx 

x256 x0



2’s Complement Addition

00100000

11100000 7

11010000 11)0(
4

• To subtract, negate the second number, then add:

10011111

11100000 7

0)1(
7

00000000

10011111

10010000 9

2)1(
7

01000000



2’s Complement Addition

10011111

00100000 4

3)0(
7

10111111

10011111

10011111 7

14)1(
7

01001111



2’s Complement
• Note that for an n-bit number                    , 

the decimal equivalent of a 2’s complement 
number is,

i
n

i
i

n
n bb 22

2

0

1
1  








0121 bbbb nn 

• For example, 01001111

142163264128

2121212121

22

14567

6

0

7
7




 


i

i
ibb



2’s Complement Overflow

• For example, when working with 8-bit 
unsigned numbers, we can use the 
‘carry’ from the 8th bit (MSB) to indicate 
that the number has got too big.

• With signed numbers we deliberately 
ignore any carry from the MSB, 
consequently we need a new rule to 
detect when a result is out of range. 



2’s Complement Overflow

• The rule for detecting 2’s complement 
overflow is:
– The carry into the MSB does not equal the 

carry out from the MSB.

• We will now give some examples.



2’s Complement Overflow

11110000

11110000 15

30)0(
15

01111000 OK

10000000

11111110 127

128)0(
1

00000001 overflow



2’s Complement Overflow

10001111

10001111 15

30)1(
15

01000111 OK

01111111

10000001 127

127)1(
2

11111110 overflow



Binary Coded Decimal (BCD)
• Each decimal digit of a number is coded 

as a 4 bit binary quantity

• It is sometimes used since it is easy to 
code and decode, however it is not an 
efficient way to store numbers.

1000  0100  0010  00011248 BCD10 
0100  0011  0010  00011234 BCD10 



Alphanumeric Character Codes
• ASCII: American Standard Code for 

Information Exchange:
– Standard version is a 7 bit code with the 

remaining bit usually set to zero
– The first 32 are ‘control codes’ originally used 

for controlling modems
– The rest are upper and lower case letters, 

numbers and punctuation.
– An extended version uses all 8 bits to 

provide additional graphics characters



Alphanumeric Character Codes

• EBCDIC – a legacy IBM scheme, now little 
used

• Unicode – a 16 bit scheme, includes 
Chinese characters etc.



Binary Adding Circuits

• We will now look at how binary addition 
may be implemented using combinational 
logic circuits. We will consider:
– Half adder

– Full adder

– Ripple carry adder



Half Adder
• Adds together two, single bit binary 

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum  ..

bacout .



Full Adder

• Adds together two, single bit binary 
numbers a and b (note: with a carry input)

a

b cout

sum

cin

• Has the following truth table:



Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin




..

)..(.)...(



Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout








Full Adder
• Alternatively,

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1 babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........






• Which is similar to previous expression 
except with the OR replaced by XOR



Ripple Carry Adder
• We have seen how we can implement a 

logic to add two, one bit binary numbers 
(inc. carry-in).

• However, in general we need to add 
together two, n bit binary numbers.

• One possible solution is known as the 
Ripple Carry Adder
– This is simply n, full adders cascaded 

together



Ripple Carry Adder

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to 
one we have implemented abs 



Combinational Logic Design

Further Considerations



Multilevel Logic

• We have seen previously how we can 
minimise Boolean expressions to yield 
so called ‘2-level’ logic implementations, 
i.e., SOP (ANDed terms ORed together) 
or POS (ORed terms ANDed together)

• Note also we have also seen an 
example of ‘multilevel’ logic, i.e., full 
adders cascaded to form a ripple carry 
adder – see we have more than 2 gates 
in cascade in the carry chain



Multilevel Logic

• Why use multilevel logic?
– Commercially available logic gates usually 

only available with a restricted number of 
inputs, typically, 2 or 3.

– System composition from sub-systems 
reduces design complexity, e.g., a ripple 
adder made from full adders

– Allows Boolean optimisation across multiple 
outputs, e.g., common sub-expression 
elimination



Building Larger Gates

• Building a 6-input OR gate



Common Expression Elimination

• Consider the following minimised SOP 
expression:

gfecfdcfebfdbfeafdaz  ............

• Requires:

• Six, 3 input AND gates, one 7-input 
OR gate – total 7 gates, 2-levels

• 19 literals (the total number of times 
all variables appear)



• We can recursively factor out common literals

Common Expression Elimination

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz







).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-
level form:

cbax  edx  gfyxz  ..

• 4 gates, 9 literals, 3-levels



Gate Propagation Delay
• So, multilevel logic can produce reductions 

in implementation complexity. What is the 
downside?

• We need to remember that the logic gates 
are implemented using electronic 
components (essentially transistors) which 
have a finite switching speed.

• Consequently, there will be a finite delay 
before the output of a gate responds to a 
change in its inputs – propagation delay



Gate Propagation Delay

• The cumulative delay owing to a number of 
gates in cascade can increase the time 
before the output of a combinational logic 
circuit becomes valid

• For example, in the Ripple Carry Adder, the 
sum at its output will not be valid until any 
carry has ‘rippled’ through possibly every full 
adder in the chain – clearly the MSB will 
experience the greatest potential delay



Gate Propagation Delay
• As well as slowing down the operation of 

combinational logic circuits, gate delay can 
also give rise to so called ‘Hazards’ at the 
output

• These Hazards manifest themselves as 
unwanted brief logic level changes (or 
glitches) at the output in response to 
changing inputs

• We will now describe how we can address 
these problems



Hazards

• Hazards are classified into two types, 
namely, static and dynamic

• Static Hazard – The output undergoes a 
momentary transition when it is 
supposed to remain unchanged

• Dynamic Hazard – The output changes 
more than once when it is supposed to 
change just once



Timing Diagrams
• To visually represent Hazards we will use the 

so called ‘timing diagram’

• This shows the logical value of a signal as a 
function of time, for example the following 
timing diagram shows a transition from 0 to 1 
and then back again

Logic ‘0’

Time

Logic ‘1’



Timing Diagrams

• Note that the timing diagram makes a number 
simplifying assumptions (to aid clarity) 
compared with a diagram which accurately 
shows the actual voltage against time
– The signal only has 2 levels. In reality the signal 

may well look more ‘wobbly’ owing to electrical 
noise pick-up etc.

– The transitions between logic levels takes place 
instantaneously, in reality this will take a finite 
time.



Static Hazard

Logic ‘0’

Time

Logic ‘1’

Static 1 hazard

Logic ‘0’

Time

Logic ‘1’ Static 0 hazard



Dynamic Hazard

Logic ‘0’

Time

Logic ‘1’
Dynamic hazard

Logic ‘0’

Time

Logic ‘1’
Dynamic hazard



Static 1 Hazard
x

y

z

t

u

v

w

y

t

u

v

w

This circuit implements,

yzyxw .. 
Consider the output when         
and    changes from 1 to 0

1 xz
y



Hazard Removal
• To remove a 1 hazard, draw the K-map 

of the output concerned. Add another 
term which overlaps the essential terms

• To remove a 0 hazard, draw the K-map 
of the complement of the output 
concerned. Add another term which 
overlaps the essential terms 
(representing the complement)

• To remove dynamic hazards – not 
covered in this course!



Removing the static 1 hazard
yzyxw .. 

y z
1100 01 10

0

1

x

1

1

1 1x

z

y

Extra term added to remove 
hazard, consequently,

zxyzyxw ... 

x

y

z

w



To Speed up Ripple Carry Adder
• Abandon compositional approach to the adder 

design, i.e., do not build the design up from 
full-adders, but instead design the adder as a 
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for 
carry out).

• Features
– Low delay (2 gate delays)
– Need some gates with large numbers of inputs 

(which are not available)
– Very complex to design and implement (imagine 

the truth table!



To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not 
feasible

• One possible approach is to make use 
of the full-adder blocks, but to generate 
the carry signals independently, using 
fast carry generation logic

• Now we do not have to wait for the carry 
signals to ripple from full-adder to full-
adder before output becomes valid



Fast Carry Generation
a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional 
RCA

Fast Carry 
Adder

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3



Fast Carry Generation

• We will now determine the Boolean 
equations required to generate the fast 
carry signals

• To do this we will consider the carry out 
signal, cout, generated by a full-adder 
stage (say i), which conventionally gives 
rise to the carry in (cin) to the next stage, 
i.e., ci+1.



Fast Carry Generation

a b sici

0 00 0

1 10 10
1 00 01

100 01
0

1 0
1 11

1
1
1

1
0

101 10
0 01 01

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated 
independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 



Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac  or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 
So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112














Fast Carry Generation
Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223












and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334














Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334 ....))..(.(

PcGc

cppppgpgpgpgc




where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG




• See it is quick to evaluate this function 



Fast Carry Generation

• We could generate all the carrys within an 
adder block using the previous equations

• However, in order to reduce complexity, a 
suitable approach is to implement say 4-bit 
adder blocks with only c4 generated using 
fast generation. 
– This is used as the carry-in to the next 4-bit 

adder block

– Within each 4-bit adder block, conventional RCA 
is used



Fast Carry Generation

a0 b0c0

a b
cout

sum
cin

s0

a b
cout

sum
cin

s1

a b
cout

sum
cin

s2

a b
cout

sum
cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0



Other Ways to Implement 
Combinational Logic

• We have seen how combinational logic 
can be implemented using logic gates, 
e.g., AND, OR etc.

• However, it is also possible to generate 
combinational logic functions using 
memory devices, e.g., Read Only 
Memories (ROMs)



ROM Overview
• A ROM is a data storage device:

– Usually written into once (either at manufacture or 
using a programmer)

– Read at will
– Essentially is a look-up table, where a group of 

input lines (say n) is used to specify the address 
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16 
possible locations. If m = 4, then each location 
can store a 4-bit word

– So, the total number of bits stored is            , i.e., 
64 in the example (very small!) ROM

nm 2



ROM Example

data

x y z f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address 
(decimal)

0
1
2
3
4
5
6
7

D0D1D2D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit 
ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting 
minterms in the appropriate 
address location

No logic simplification 
required

Useful if multiple Boolean 
functions are to be 
implemented, e.g., in this 
case we can easily do up to 
4, i.e., 1 for each output line

Reasonably efficient if lots of 
minterms need to be 
generated



ROM Implementation
• Can be quite inefficient, i.e., become large in 

size with only a few non-zero entries, if the 
number of minterms in the function to be 
implemented is quite small

• Devices which can overcome these problems 
are known as programmable array logic (PAL)

• In PALs, only the required minterms are 
generated using a separate AND plane. The 
outputs from this plane are ORed together in 
a separate OR plane to produce the final 
output



Basic PAL Structure

Programmed by 
selectively removing 
connections in the AND 
and OR planes –
controlled by fuses or 
memory bits

f0

a

c

b

f1

f2

AND plane

OR plane



Other Memory Devices

• Non-volatile storage is offered by ROMs (and 
some other memory technologies, e.g., 
FLASH), i.e., the data remains intact, even 
when the power supply is removed

• Volatile storage is offered by Static Random 
Access Memory (SRAM) technology
– Data can be written into and read out of the 

SRAM, but is lost once power is removed



Memory Application
• Memory devices are often used in computer 

systems
• The central processing unit (CPU) often 

makes use of busses (a bunch of wires in 
parallel) to access external memory devices

• The address bus is used to specify the 
memory location that is being read or written 
and the data bus conveys the data too and 
from that location

• So, more than one memory device will often 
be connected to the same data bus



Bus Contention

• In this case, if the output from the data pin of 
one memory was a 0 and the output from the 
corresponding data pin of another memory 
was a 1, the data on that line of the data bus 
would be invalid 

• So, how do we arrange for the data from 
multiple memories to be connected to the 
some bus wires?



Bus Contention

• The answer is:
– Tristate buffers (or drivers)
– Control signals

• A tristate buffer is used on the data output of 
the memory devices
– In contrast to a normal buffer which is either 1 

or 0 at its output, a tristate buffer can be 
electrically disconnected from the bus wire, i.e., 
it will have no effect on any other data currently 
on the bus – known as the ‘high impedance’
condition



Tristate Buffer

Output Enable 
(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional 
analogy



Control Signals
• We have already seen that the memory 

devices have an additional control input (OE) 
that determines whether the output buffers are 
enabled.

• Other control inputs are also provided:
– Write enable (WE). Determines whether data is 

written or read (clearly not needed on a ROM)
– Chip select (CS) – determines if the chip is 

activated

• Note that these signals can be active low, 
depending upon the particular device



Sequential Logic

Flip-flops and Latches



Sequential Logic
• The logic circuits discussed previously 

are known as combinational, in that the 
output depends only on the condition of 
the latest inputs

• However, we will now introduce a type 
of logic where the output depends not 
only on the latest inputs, but also on the 
condition of earlier inputs. These circuits 
are known as sequential, and implicitly 
they contain memory elements



Memory Elements

• A memory stores data – usually one bit per 
element

• A snapshot of the memory is called the state

• A one bit memory is often called a bistable, 
i.e., it has 2 stable internal states

• Flip-flops and latches are particular 
implementations of bistables



RS Latch
• An RS latch is a memory element with 2 

inputs: Reset (R) and Set (S) and 2 
outputs:    and    .Q Q

Q

Q

R

S

Q 
0

0

1
0

0
1

0
0 1

1 1

QRS comment

Q Q
1
0
0

hold
reset
set
illegal

Where      is the next state 
and       is the current state

Q
Q



RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• R = 1 and S = 0
– Gate 1 output in ‘always 0’ condition, 

– Gate 2 in ‘complement’ condition, so

• This is the (R)eset condition   

0Q

1Q



RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 0 and R to 0 
– Gate 2 remains in ‘complement’ condition, 

– Gate 1 into ‘complement’ condition,

• This is the hold condition   

0Q

1Q



RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 0 
– Gate 1 into ‘complement’ condition,

– Gate 2 in ‘always 0’ condition, 

• This is the (S)et condition   

1Q
0Q



RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 1 
– Gate 1 in ‘always 0’ condition,

– Gate 2 in ‘always 0’ condition, 

• This is the illegal condition   

0Q
0Q



RS Latch – State Transition Table
• A state transition table is an alternative 

way of viewing its operation

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

• A state transition table can also be 
expressed in the form of a state diagram



RS Latch – State Diagram
• A state diagram in this case has 2 

states, i.e., Q=0 and Q=1

• The state diagram shows the input 
conditions required to transition 
between states. In this case we see that 
there are 4 possible transitions

• We will consider them in turn



RS Latch – State Diagram

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

0Q 0Q
From the table we can see:

RSRSSS

RSSRSRRS

RSRSRS






)).((

..).(

...

1Q 1Q
From the table we can see:

R

SSRRSRS  ).(..



RS Latch – State Diagram

1
0

0
1

QRS comment

hold
reset
set
illegal

1
0

0

0
0
1
1
0
0
1
1 1

Q
0
0
0
0
1
1
1
1

0
0
1
0
1
0
1
0

hold
reset
set
illegal

1Q 0Q
From the table we can see:

RSSR

RSRS




).(

..

0Q 1Q
From the table we can see:

RS.



RS Latch – State Diagram

• Which gives the following state diagram:

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the      

output

• We will see later that state diagrams are a 
useful tool for designing sequential systems

Q



Clocks and Synchronous Circuits
• For the RS latch we have just described, we 

can see that the output state changes occur 
directly in response to changes in the inputs. 
This is called asynchronous operation

• However, virtually all sequential circuits 
currently employ the notion of synchronous
operation, that is, the output of a sequential 
circuit is constrained to change only at a time 
specified by a global enabling signal. This 
signal is generally known as the system clock



Clocks and Synchronous Circuits

• The Clock: What is it and what is it for?
– Typically it is a square wave signal at a 

particular frequency

– It imposes order on the state changes

– Allows lots of states to appear to update 
simultaneously

• How can we modify an asynchronous 
circuit to act synchronously, i.e., in 
synchronism with a clock signal?



Transparent D Latch

• We now modify the RS Latch such that its 
output state is only permitted to change when 
a valid enable signal (which could be the 
system clock) is present

• This is achieved by introducing a couple of 
AND gates in cascade with the R and S inputs 
that are controlled by an additional input 
known as the enable (EN) input.



Transparent D Latch

Q

Q

R

S

D
EN

D Q

EN

Symbol

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

AND truth table• See from the AND truth table:
– if one of the inputs, say a is 0, the output 

is always 0
– Output follows b input if a is 1

• The complement function ensures 
that R and S can never be 1 at the 
same time, i.e., illegal avoided



Transparent D Latch

Q

Q

R

S

D
EN

RS hold

Q 

01
0

1 1

QD comment

Q Q
1
0

RS reset
RS set

EN

0
X

1

• See Q follows D input provided EN=1. 
If EN=0, Q maintains previous state



Master-Slave Flip-Flops

• The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent 
behaviour if EN=1. It is often more simple to 
design sequential circuits if the outputs 
change only on the either rising (positive 
going) or falling (negative going) ‘edges’ of 
the clock (i.e., enable) signal

• We can achieve this kind of operation by 
combining 2 transparent D latches in a so 
called Master-Slave configuration



Master-Slave D Flip-Flop
Symbol

D QD Q D QD

CLK

Q

Master Slave

Qint

• To see how this works, we will use a timing diagram

• Note that both latch inputs are effectively connected 
to the clock signal (admittedly one is a complement 
of the other)



Master-Slave D Flip-Flop

D Q D QD

CLK

Q

Master Slave

Qint

CLK

CLK

D

intQ

Q

Note propagation delays 
have been neglected in 
the timing diagram

See Q changes on rising 
edge of CLK



D Flip-Flops

• The Master-Slave configuration has 
now been superseded by new F-F 
circuits which are easier to implement 
and have better performance

• When designing synchronous circuits it 
is best to use truly edge triggered F-F 
devices

• We will not consider the design of such 
F-Fs on this course



Other Types of Flip-Flops

• Historically, other types of Flip-Flops 
have been important, e.g., J-K Flip-
Flops and T-Flip-Flops

• However, J-K FFs are a lot more 
complex to build than D-types and so 
have fallen out of favour in modern 
designs, e.g., for field programmable 
gate arrays (FPGAs) and VLSI chips



Other Types of Flip-Flops

• Consequently we will only consider 
synchronous circuit design using D-type 
FFs

• However for completeness we will 
briefly look at the truth table for J-K and 
T type FFs



J-K Flip-Flop

• The J-K FF is similar in function to a 
clocked RS FF, but with the illegal state 
replaced with a new ‘toggle’ state

Q 
0

1
0

0
1

0
0 1

1 1

QKJ comment

Q Q
1
0

hold
reset
set
toggle

Where      is the next state 
and       is the current state

Q
Q

Q Q

Symbol

J

K Q

Q



T Flip-Flop

• This is essentially a J-K FF with its J 
and K inputs connected together and 
renamed as the T input

Q 
0

1

QT comment

Q Q hold
toggle

Where      is the next state 
and       is the current state

Q
Q

Q Q

Symbol

T

Q

Q



Asynchronous Inputs

• It is common for the FF types we have mentioned 
to also have additional so called ‘asynchronous’
inputs

• They are called asynchronous since they take 
effect independently of any clock or enable inputs

• Reset/Clear – force Q to 0

• Preset/Set – force Q to 1

• Often used to force a synchronous circuit into a 
known state, say at start-up.



Timing

• Various timings must be satisfied if a FF 
is to operate properly:
– Setup time: Is the minimum duration that 

the data must be stable at the input before 
the clock edge

– Hold time: Is the minimum duration that the 
data must remain stable on the FF input 
after the clock edge



Applications of Flip-Flops
• Counters

– A clocked sequential circuit that goes through a 
predetermined sequence of states

– A commonly used counter is an n-bit binary 
counter. This has n FFs and 2n states which are 
passed through in the order 0, 1, 2, ….2n-1, 0, 1, .

– Uses include:
• Counting

• Producing delays of a particular duration

• Sequencers for control logic in a processor

• Divide by m counter (a divider), as used in a digital 
watch



Applications of Flip-Flops

• Memories, e.g.,
– Shift register

• Parallel loading shift register : can be used for 
parallel to serial conversion in serial data 
communication

• Serial in, parallel out shift register: can be used 
for serial to parallel conversion in a serial data 
communication system.



Counters
• In most books you will see 2 basic types 

of counters, namely ripple counters and 
synchronous counters

• In this course we are concerned with 
synchronous design principles. Ripple 
counters do not follow these principles 
and should generally be avoided if at all 
possible. We will now look at the 
problems with ripple counters



Ripple Counters
• A ripple counter can be made be cascading 

together negative edge triggered T-type FFs 
operating in ‘toggle’ mode, i.e., T =1

• See that the FFs are not clocked using the 
same clock, i.e., this is not a synchronous 
design. This gives some problems….

T

Q

Q
‘1’

CLK

T

Q

Q
‘1’

T

Q

Q
‘1’

0Q 1Q 2Q



Ripple Counters
• We will now draw a timing diagram

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0
• Problems:

See outputs do not change at the same time, i.e., synchronously.
So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting 
maximum clock speed before miscounting occurs.



Ripple Counters
• If you observe the frequency of the counter 

output signals you will note that each has half 
the frequency, i.e., double the repetition 
period of the previous one. This is why 
counters are often known as dividers

• Often we wish to have a count which is not a 
power of 2, e.g., for a BCD counter (0 to 9).To 
do this:
– use FFs having a Reset/Clear input

– Use an AND gate to detect the count of 10 and 
use its output to Reset the FFs



Synchronous Counters

• Owing to the problems identified with ripple 
counters, they should not usually be used to 
implement counter functions

• It is recommended that synchronous counter 
designs be used

• In a synchronous design
– all the FF clock inputs  are directly connected to the clock 

signal and so all FF outputs change at the same time, i.e., 
synchronously

– more complex combinational logic is now needed to 
generate the appropriate FF input signals (which will be 
different depending upon the type of FF chosen)



Synchronous Counters

• We will now investigate the design of 
synchronous counters

• We will consider the use of D-type FFs 
only, although the technique can be 
extended to cover other FF types.

• As an example, we will consider a 0 to 7 
up-counter



Synchronous Counters
• To assist in the design of the counter we will make 

use of a modified state transition table. This table 
has additional columns that define the required FF 
inputs (or excitation as it is known)
– Note we have used a state transition table previously 

when determining the state diagram for an RS latch

• We will also make use of the so called ‘excitation 
table’ for a D-type FF

• First however, we will investigate the so called 
characteristic table and characteristic equation for a 
D-type FF



Characteristic Table
• In general, a characteristic table for a FF 

gives the next state of the output, i.e., in 
terms of its current state    and current inputsQ

Q

1
0

0
1

QDQ
0
0
1
1

0
1
0
1

Which gives the characteristic equation,

DQ '
i.e., the next output state is equal to the 
current input value

Since      is independent of      
the characteristic table can 
be rewritten as 1

0

QD
0
1

Q Q



Excitation Table
• The characteristic table can be modified to 

give the excitation table. This table tells us 
the required FF input value required to 
achieve a particular next state from a given 
current state

1
0

0
1

Q DQ
0
0
1
1

0
1
0
1

As with the characteristic table it can 
be seen that      , does not depend 
upon,      , however this is not 
generally true for other FF types, in 
which case, the excitation table is 
more useful. Clearly for a D-FF,  

Q
Q

'QD 



Characteristic and Excitation 
Tables

• Characteristic and excitation tables can 
be determined for other FF types.

• These should be used in the design 
process if D-type FFs are not used

• We will now determine the modified 
state transition table for the example 0 
to 7 up-counter



Modified State Transition 
Table

• In addition to columns representing the 
current and desired next states (as in a 
conventional state transition table), the 
modified table has additional columns 
representing the required FF inputs to 
achieve the next desired FF states



Modified State Transition Table
• For a 0 to 7 counter, 3 D-type FFs are needed

Current 
state

0Q1Q2Q

000

1
0

1
0

1 1

100
010

0
1

101
011

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

Next 
state

FF 
inputs

Note: Since             (or              ) for a D-FF, the 
required FF inputs are identical to the Next state  

DQ '

The procedure is to:

Write down the desired 
count sequence in the 
current state columns

Write down the required 
next states in the next  
state columns
Fill in the FF inputs 
required to give the 
defined next state

'QD 



Synchronous Counter Example

• Also note that if we are using D-type FFs, it 
is not necessary to explicitly write out the 
FF input columns, since we know they are 
identical to those for the next state

• To complete the design we now have to 
determine appropriate combinational logic 
circuits which will generate the required FF 
inputs from the current states

• We can do this from inspection, using 
Boolean algebra or using K-maps.



Synchronous Counter Example
Current 
state

0Q1Q2Q

000

1
0

1
0

1 1

100
010

0
1

101
011

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

1
0
1

1
0

0

0
1
1
0
0
1
1 1

0
0
0
1
1
1
1

000

Next 
state

FF 
inputs

By inspection,

00 QD 
Note: FF0 is toggling

Also, 101 QQD 
Use a K-map for      ,2D

1Q 0Q
1100 01 10

0

1 11

1

12Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ



Synchronous Counter Example
1Q 0Q

1100 01 10
0

1 11

1

12Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So,

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D

Q

Q

CLK

0Q

0D
D

Q

Q

1Q

1D
D

Q

Q

2Q

2D

Combinati-
onal logic

0Q

0Q
1Q

1Q

2Q
2Q



Synchronous Counter

• A similar procedure can be used to design 
counters having an arbitrary count sequence
– Write down the state transition table

– Determine the FF excitation (easy for D-types)

– Determine the combinational logic necessary to 
generate the required FF excitation from the 
current states – Note: remember to take into 
account any unused counts since these can be 
used as don’t care states when determining the 
combinational logic circuits



Shift Register
• A shift register can be implemented 

using a chain of D-type FFs

D

Q

Q

D

Q

Q

0Q 1Q 2Q

D

Q

Q

Din

CLK

• Has a serial input, Din and parallel 
output Q0, Q1 and Q2.

• See data moves one position to the 
right on application of clock edge



Shift Register
• Preset and Clear inputs on the FFs can 

be utilised to provide a parallel data 
input feature

• Data can then be clocked out through 
Q2 in a serial fashion, i.e., we now have 
a parallel in, serial out arrangement

• This along with the previous serial in, 
parallel out shift register arrangement 
can be used as the basis for a serial 
data link



Serial Data Link

CLK

0Q 1Q 2Q

Parallel in 
serial out

0Q 1Q 2Q

Serial in 
parallel out

Serial Data

• One data bit at a time is sent across the serial 
data link

• See less wires are required than for a parallel 
data link



Synchronous State Machines



Synchronous State Machines

• We have seen how we can use FFs (D-types 
in particular) to design synchronous counters

• We will now investigate how these principles 
can be extended to the design of synchronous 
state machines (of which counters are a 
subset)

• We will begin with some definitions and then 
introduce two popular types of machines



Definitions

• Finite State Machine (FSM) – a deterministic 
machine (circuit) that produces outputs which 
depend on its internal state and external inputs

• States – the set of internal memorised values, 
shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the 
state diagram

• Outputs – Results from the FSM



Types of State Machines

• Two types of state machines are in 
general use, namely Moore machines 
and Mealy machines

• In this course we will only look in detail 
at FSM design using Moore machines, 
although for completeness we will 
briefly describe the structure of Mealy 
machines



Machine Schematics

OutputsNext state 
combinational 

logic m

CLK

Optional 
combinational 

logic
D

Q

Q

m
Inputs

n

Current stateMoore 
Machine

Mealy 
Machine

Next state 
combinational 

logic
D

Q

Q

m

CLK

combinational 
logicm

Inputs
n

Current state

Outputs



Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon 
the timing of the inputs

• Outputs from Moore machines come directly 
from clocked FFs so:
– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a 
Moore machine and vice versa, though their 
timing properties will be different



Moore Machine - Example

• We will design a Moore Machine to implement 
a traffic light controller

• In order to visualise the problem it is often 
helpful to draw the state transition diagram

• This is used to generate the state transition 
table

• The state transition table is used to generate
– The next state combinational logic

– The output combinational logic (if required)



Example – Traffic Light Controller
R

R

G

AA

See we have 4 states

So in theory we could 
use a minimum of 2 FFs

However, by using 3 FFs 
we will see that we do not 
need to use any output 
combinational logic

So, we will only use 4 of 
the 8 possible states

In general, state assignment is a 
difficult problem and the optimum 
choice is not always obvious



Example – Traffic Light Controller
By using 3 FFs (we will use 
D-types), we can assign one 
to each of the required 
outputs (R, A, G), eliminating 
the need for output logicState 

010

R

R

G

AA

State 
100

State 
001

State 
110

We now need to write down 
the state transition table

We will label the FF outputs 
R, A and G

Remember we do not need to 
explicitly include columns for FF 
excitation since if we use D-types 
these are identical to the next state



Example – Traffic Light Controller
Current 
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next 
stateR

R

G

AA

State 
100

State 
001

State 
110

State 
010

Unused states, 000, 011, 101 and 
111. Since these states will never 
occur, we don’t care what output 
the next state combinational logic  
gives for these inputs. These don’t 
care conditions can be used to 
simplify the required next state 
combinational logic



Example – Traffic Light Controller

Current 
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next 
state

Unused states, 000, 
011, 101 and 111.

We now need to determine the next 
state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
1100 01 10

0

1

1

1 X

AR.

R

R

G

A

X

X

X

AR.

ARARARDR  ..



Example – Traffic Light Controller

Current 
state

GAR
001

01

011
100

0

'G'A'R
0
1
0
0

1
0
1
0

1
0
0
1

Next 
state

Unused states, 000, 
011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .



Example – Traffic Light Controller

D

Q

Q

CLK

A

AD
D

Q

Q

R

RD
D

Q

Q

G

GD



FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in 
one of the unused states
– This could potentially cause the machine to 

become stuck in some unanticipated sequence of 
states which never goes back to a used state



FSM Problems

• What can be done?
– Check to see if the FSM can eventually 

enter a known state from any of the 
unused states

– If not, add additional logic to do this, i.e., 
include unused states in the state transition 
table along with a valid next state

– Alternatively use asynchronous Clear and 
Preset FF inputs to set a known (used) 
state at power up



Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs 
if we begin in any of the unused states

• Turns out:
Start 
state

Next state 
logic output

000 010
011 100
101 110
111 001

Which are all 
valid states

So it does 
self start



Example 2

• We extend Example 1 so that the traffic 
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e., 
6 in total.

• In theory, the 3 FF machine gives us the 
potential for sufficient states

• However, to make the machine combinational 
logic easier, it is more convenient to add 
another FF (labelled S), making 4 in total



Example 2

FF labels

R A G S

R

G

R

AA

State 
1000

State 
0010

State 
1100

State 
0101

R

G

State 
1001

State 
0011

See that new FF 
toggles which 
makes the next 
state logic easier

As before, the first 
step is to write 
down the state 
transition table



Example 2

FF 
labels

R A G S

R

G

R

AA

State 
1000

State 
0010

State 
1100

State 
0101

R

G

State 
1001

State 
0011

Current 
state

AR G 'G'A'R

Next 
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

Clearly a lot of unused states. 
When plotting k-maps to determine 
the next state logic it is probably 
easier to plot 0s and 1s in the map 
and then mark the unused states



Example 2

We will now use k-maps to determine 
the next state combinational logic

Current 
state

AR G 'G'A'R

Next 
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

For the R FF, we need to determine DR

1100 01 10

00

01

11

10

AR
SG

1
R

A

G

S

1

0

1
AR.

AR.

0 0

XX

XXX

XXX

XX

ARARARDR  ..



Example 2
We can plot k-maps for DA and DG

to give:

Current 
state

AR G 'G'A'R

Next 
state

S
01 0 0010

'S
1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 



State Assignment
• As we have mentioned previously, state 

assignment is not necessarily obvious or 
straightforward
– Depends what we are trying to optimise, e.g.,

• Complexity (which also depends on the 
implementation technology, e.g., FPGA,  74 series 
logic chips). 

– FF implementation may take less chip area than you may 
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual 
execution



State Assignment

• If we have m states, we need at least            
FFs (or more informally, bits) to encode the 
states, e.g., for 8 states we need a min of 3 
FFs

• We will now present an example giving 
various potential state assignments, some 
using more FFs than the minimum

m2log



Example Problem

• We wish to investigate some state 
assignment options to implement a divide by 
5 counter which gives a 1 output for 2 clock 
edges and is low for 3 clock edges

CLK

Output



Sequential State Assignment

• Here we simply assign the states in an 
increasing natural binary count

• As usual we need to write down the 
state transition table. In this case we 
need 5 states, i.e., a minimum of 3 FFs 
(or state bits). We will designate the 3 
FF outputs as c, b, and a

• We can then determine the necessary 
next state logic and any output logic.



Sequential State Assignment

Unused states, 101, 
110 and 111.

Current 
state

abc
000
100
010

abc
1
0
1

0
1
1

0
0
0

110 001

Next 
state

001 000

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the 
next state logic:

For FF a:
b a

1100 01 10
0

1

11

Xc X X

c

a

b

ca.

caDa .



Sequential State Assignment

Unused states, 101, 
110 and 111.

Current 
state

abc
000
100
010

abc
1
0
1

0
1
1

0
0
0

110 001

Next 
state

001 000

For FF b:
b a

1100 01 10
0

1

1

Xc X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:
b a

1100 01 10
0

1

1

Xc X X

c

a

b

ba.

baDc .



Sliding State Assignment

Unused states, 010, 
101, and 111.

Current 
state

abc
000
100
110

abc
1
1
0

0
1
1

0
0
1

011 001

Next 
state

001 000

For FF a:
b a

1100 01 10
0

1

11

Xc X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the 
next state logic:

By inspection we can see that 
we can use any of the FF 
outputs as the wanted output



Sliding State Assignment

Unused states, 010, 
101, and 111.

Current 
state

abc
000
100
110

abc
1
1
0

0
1
1

0
0
1

011 001

Next 
state

001 000

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 



Shift Register Assignment

• As the name implies, the FFs are connected 
together to form a shift register. In addition, 
the output from the final shift register in the 
chain is connected to the input of the first 
FF:
– Consequently the data continuously cycles 

through the register



Shift Register Assignment

Unused states. Lots!

Current 
state

a
1
0
0
0

Next 
state

1

bc
10
11
01
00
00

abc
0
0
0

1
0
0

1
1
0

100
110

0
0
1
1
0

de
0
0
0
1
1

0
1
1
0
0

d e
0
0
1
1
0

Because of the shift register 
configuration and also from the 
state table we can see that:

eDa 
aDb 
bDc 
cDd 
dDe 

By inspection we can see that 
we can use any of the FF 
outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring



One Hot State Encoding

• This is a shift register design style where only 
FF at a time holds a 1

• Consequently we have 1 FF per state, 
compared with          for sequential assignment

• However, can result in simple fast state 
machines

• Outputs are generated by ORing together 
appropriate FF outputs

m2log



One Hot - Example
• We will return to the traffic signal example, 

which recall has 4 states

R

R

G

AA

For 1 hot, we need 1 FF for 
each state, i.e., 4 in this case

The FFs are connected to form 
a shift register as in the 
previous shift register example, 
however in 1 hot, only 1 FF 
holds a 1 at any time

We can write down the state 
transition table as follows



One Hot - Example
R

R

G

AA

Unused states. Lots!

Current 
state

Next 
state

a

0
0
0
1

g

0
0
1
0

ra

0
1
0
0

1
0
0
0

r a
0
0
1
0

g
0
1
0
0

ar 
1
0
0
0

0
0
0
1

r

Because of the shift register configuration 
and also from the state table we can see 
that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 



One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G



Tripos Example
• The state diagram for a synchroniser is shown. 

It has 3 states and 2 inputs, namely e and r. 
The states are mapped using sequential 
assignment as shown. 

[s1 s0]
FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be 
true if in Sync state



Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current 
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next 
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

From inspection, 1ss 



Tripos Example
Plot k-maps to determine the 
next state logic

Current 
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next 
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

For FF 1:

1100 01 10

00

01

11

10

01 ss
re

11s

0s

e

r

1

1

res ..0

es .1

X XX X

1

rs .1

resrsesD .... 0111 



Tripos Example
Plot k-maps to determine the 
next state logic

Current 
state

re

0X
1X

'
1s

'
0s
0
1

0
0

Next 
state

0s

00
00

Input

1s

X0 10
01 0010

10

11 0110

01 0001
X0 0101

11 0101
XX XX11

For FF 0:

1100 01 10

00

01

11

10

01 ss
re

1

1s

0s

e

r

1

1
rss .. 01

es .0

X XX X

1

rssesD ... 0100 



Tripos Example
• We will now re-implement the synchroniser 

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]
FF labels

An output, s should be 
true if in Sync state

From inspection, 2ss 



Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current 
state

re

0X
1X

'
2s

0
0

Next 
state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s
0
1
1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s
1
0
0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-
hot shift structure, only 1 FF is 1 at a time, consequently it 
is straightforward to write down the next state equations



Tripos Example

Current 
state

re

0X
1X

'
2s

0
0

Next 
state

0s

1
1

Input

X0 0
01 00

0

11 10

01 00
X0 10

11 10

'
1s
0
1
1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s
1
0
0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

For FF 2:

resesresD ..... 2212 
For FF 1:

esrsD .. 101 
For FF 0:

resresrsD ..... 2100 



Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly 
necessary to write down the 
state table, since the next state 
equations can be obtained from 
the state diagram

It can be seen that for each 
state variable, the required 
equation is given by terms 
representing the incoming arcs 
on the graph

For example, for FF 2: resesresD ..... 2212 
Also note some simplification is possible by noting that: 

1012  sss (which is equivalent to e.g.,                      )012 sss 



Tripos Example

• So in this example, the 1 hot is easier to 
design, but it results in more hardware 
compared with the sequential state 
assignment design



Implementation of FSMs

• We saw previously that programmable logic 
can be used to implement combinational logic 
circuits, i.e., using PAL devices

• PAL style devices have been modified to 
include D-type FFs to permit FSMs to be 
implemented using programmable logic

• One particular style is known as Generic 
Array Logic (GAL)



GAL Devices

• They are similar in concept to PALs, but 
have the option to make use of a D-type flip-
flops in the OR plane (one following each OR 
gate). In addition, the outputs from the D-
types are also made available to the AND 
plane (in addition to the usual inputs)
– Consequently it becomes possible to build 

programmable sequential logic circuits



AND plane

OR plane D
Q

Q

D
Q

Q

GAL 
Device



FPGA

• Field Programmable Gate Array (FPGA) 
devices are the latest type of programmable 
logic

• Are a sea of programmable wiring and 
function blocks controlled by bits downloaded 
from memory

• Function units contain a 4-input 1 output look-
up table with an optional D-FF on the output


