Knapsack

Knapsack is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given \(n \) items, each with a positive integer value \(v_i \) and weight \(w_i \).

We are also given a maximum total weight \(W \), and a minimum total value \(V \).

Can we select a subset of the items whose total weight does not exceed \(W \), and whose total value exceeds \(V \)?

Reduction

The proof that **Knapsack** is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set \(U = \{1, \ldots, 3n\} \) and a collection of 3-element subsets of \(U, S = \{S_1, \ldots, S_m\} \).

We map this to an instance of **Knapsack** with \(m \) elements each corresponding to one of the \(S_i \), and having weight and value

\[
\sum_{j \in S_i} (m + 1)^{j - 1}
\]

and set the target weight and value both to

\[
\sum_{j = 0}^{3n - 1} (m + 1)^j
\]

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set \(H \) of work periods, a set \(W \) of workers each with an associated subset of \(H \) (available periods), a set \(T \) of tasks and an assignment \(r : W \times T \to \mathbb{N} \) of required work, is there a mapping \(f : W \times T \times H \to \{0, 1\} \) which completes all tasks?

Sequencing with Deadlines

Given a set \(T \) of tasks and for each task a length \(l \in \mathbb{N} \), a release time \(r \in \mathbb{N} \) and a deadline \(d \in \mathbb{N} \), is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set \(T \) of tasks, a number \(m \in \mathbb{N} \) of processors a length \(l \in \mathbb{N} \) for each task, and an overall deadline \(D \in \mathbb{N} \), is there a multi-processor schedule which completes all tasks by the deadline?
Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It’s a single instance, does asymptotic complexity matter?
- What’s the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

Validity

We define \(\text{VAL} \)—the set of valid Boolean expressions—to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to \(\text{true} \).

\[\phi \in \text{VAL} \iff \neg \phi \notin \text{SAT} \]

By an exhaustive search algorithm similar to the one for \(\text{SAT} \), \(\text{VAL} \) is in \(\text{TIME}(n^{2^n}) \).

Is \(\text{VAL} \in \text{NP} \)?

Complementation

If we interchange accepting and rejecting states in a deterministic machine that accepts the language \(L \), we get one that accepts \(\overline{L} \).

If a language \(L \in \text{P} \), then also \(\overline{L} \in \text{P} \).

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

\(\text{co-NP} \) – the languages whose complements are in \(\text{NP} \).
Succinct Certificates

The complexity class \textbf{NP} can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x,y)\}$$

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.
2. R is *polynomially balanced*. That is, there is a polynomial p such that if $R(x,y)$ and the length of x is n, then the length of y is no more than $p(n)$.

y is a *certificate* for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a certificate would be a satisfying truth assignment.

co-NP

As $\textbf{co-NP}$ is the collection of complements of languages in \textbf{NP}, and \textbf{P} is closed under complementation, $\textbf{co-NP}$ can also be characterised as the collection of languages of the form:

$$L = \{x \mid \forall y \neg y \rightarrow R'(x,y)\}$$

NP – the collection of languages with succinct certificates of membership.

co-NP – the collection of languages with succinct certificates of disqualification.

Any of the situations is consistent with our present state of knowledge:

- $P = \textbf{NP} = \textbf{co-NP}$
- $P = \textbf{NP} \cap \textbf{co-NP} \neq \textbf{NP} \neq \textbf{co-NP}$
- $P \neq \textbf{NP} \cap \textbf{co-NP} = \textbf{NP} = \textbf{co-NP}$
- $P \neq \textbf{NP} \cap \textbf{co-NP} \neq \textbf{NP} \neq \textbf{co-NP}$