Polynomial Verification

The problems Composite, SAT and HAM have something in common.

In each case, there is a search space of possible solutions.

- the factors of x; a truth assignment to the variables of ϕ; a list of the vertices of G.

The number of possible solutions is exponential in the length of the input.

Given a potential solution, it is easy to check whether or not it is a solution.
Verifiers

A verifier V for a language L is an algorithm such that

$$L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}$$

If V runs in time polynomial in the length of x, then we say that L is \textit{polynomially verifiable.}

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.
Non-deterministic Complexity Classes

We have already defined \(\text{TIME}(f(n)) \) and \(\text{SPACE}(f(n)) \).

\(\text{NTIME}(f(n)) \) is defined as the class of those languages \(L \) which are accepted by a non-deterministic Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length at most \(f(n) \).

\[
\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)
\]
For a language in $\text{NTIME}(f(n))$, the height of the tree is bounded by $f(n)$ when the input is of length n.
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a *nondeterministic algorithm* that accepts L:

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the deterministic algorithm V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.
Generate and Test

We can think of nondeterministic algorithms in the generate-and-test paradigm:

\[x \xrightarrow{\text{generate}} V_x \xrightarrow{\text{verify}} \]

Where the \textit{generate} component is nondeterministic and the \textit{verify} component is deterministic.
Reductions

Given two languages $L_1 \subseteq \Sigma_1^*$, and $L_2 \subseteq \Sigma_2^*$,

A *reduction* of L_1 to L_2 is a *computable* function

$$f : \Sigma_1^* \rightarrow \Sigma_2^*$$

such that for every string $x \in \Sigma_1^*$,

$$f(x) \in L_2 \text{ if, and only if, } x \in L_1$$
Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is *polynomial time reducible* to L_2.

$$L_1 \leq_P L_2$$

If f is also computable in $\text{SPACE}(\log n)$, we write

$$L_1 \leq_L L_2$$
Reductions 2

If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2, at least as far as polynomial time computation is concerned.

That is to say,

If $L_1 \leq_P L_2$ and $L_2 \in \mathbb{P}$, then $L_1 \in \mathbb{P}$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2.
Completeness

The usefulness of reductions is that they allow us to establish the relative complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language $A \in \text{NP}$, $A \leq_P L$.

A language L is NP-complete if it is in NP and it is NP-hard.