Space Complexity

We've already seen the definition SPACE(f(n)): the languages accepted by a machine which uses O(f(n)) tape cells on inputs of

length n. Counting only work space

 $\mathsf{L} = \mathsf{SPACE}(\log n)$

 $NL = NSPACE(\log n)$

Classes

 $\mathsf{PSPACE} = \bigcup_{k=1}^{\infty} \mathsf{SPACE}(n^k)$ The class of languages decidable in polynomial space. NSPACE(f(n)) is the class of languages accepted by a NPSPACE = $\bigcup_{k=1}^{\infty} \text{NSPACE}(n^k)$ *nondeterministic* Turing machine using at most f(n) work space. Also, define As we are only counting work space, it makes sense to consider bounding functions f that are less than linear. co-NL – the languages whose complements are in NL. co-NPSPACE – the languages whose complements are in NPSPACE. May 21, 2008 Anuj Dawar May 21, 2008 Complexity Theory 114 Complexity Theory Inclusions **Establishing Inclusions** We have the following inclusions: To establish the known inclusions between the main complexity classes, we prove the following. $L \subset NL \subset P \subset NP \subset PSPACE \subset NPSPACE \subset EXP$ • SPACE $(f(n)) \subset \mathsf{NSPACE}(f(n));$ • TIME $(f(n)) \subseteq \mathsf{NTIME}(f(n));$ where $\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$ • NTIME $(f(n)) \subset SPACE(f(n))$: • NSPACE $(f(n)) \subset \mathsf{TIME}(k^{\log n + f(n)});$ $L \subseteq NL \cap co-NL$ $P \subseteq NP \cap co-NP$ The first two are straightforward from definitions. $\mathsf{PSPACE} \subset \mathsf{NPSPACE} \cap \mathsf{co-NPSPACE}$ The third is an easy simulation. The last requires some more work.

115

Moreover,

Anuj Dawar

May 21, 2008

Anuj Dawar

116

Reachability

Recall the Reachability problem: given a *directed* graph G = (V, E) and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

- 1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if b is marked, accept else reject.

Anuj Dawar

May 21, 2008

Complexity Theory

118

We can use the $O(n^2)$ algorithm for Reachability to show that: NSPACE $(f(n)) \subseteq \mathsf{TIME}(k^{\log n+f(n)})$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else
 - guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

Complexity Theory

Anuj Dawar

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.

May 21, 2008

119

120

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most n (for n a power of 2):

In particular, this establishes that $\mathsf{NL}\subseteq\mathsf{P}$ and $\mathsf{NPSPACE}\subseteq\mathsf{EXP}.$

Using the $O(n^2)$ algorithm for Reachability, we get that M can be

 $c'(nc^{f(n)})^2 \sim c'c^{2(\log n + f(n))} \sim k^{(\log n + f(n))}$

simulated by a deterministic machine operating in time

Anuj Dawar

Complexity Theory

May 21, 2008

122

Anuj Dawar

May 21, 2008

 $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

1. is there a path a - x of length i/2; and

2. is there a path x - b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.