
Computation

• Motivation

The course on Regular Languages answers: 

“What is the power of deterministic finite automata as sequence recognizers?”

This course has the same general thrust:

“What sums can be done, what issues decided, by mechanical process?”

“What is the power of algorithms?”

Saying “the power of algorithms” is all very well, but it's very imprecise (like

saying “power of programs” without specifying the programming language!) . . .



It turns out that the exact details of the definition of “algorithm” don't matter,

within bounds that most people find reasonable . . . BUT

• differences of efficiency (unary vs. binary)

• a single thread of control 

Further, these “acceptable” definitions not only are equivalent, but their properties

fit with our intuitive experience of the process of computation. 

• self-embedding / self-reference (treat program as data)

• existence of universal algorithms (interpretation vs. compilation)

• there are undecidable problems! (the Halting problem) 



Examples of Models of Computation

• Turing machines 

• register machines   (Minsky/Conway)

• general recursive functions   (Gödel/Church)

•

�

-calculus   (Church)

• Type 0 grammars   (Chomsky)

• Markov algorithms

Note that restriction to fixed, finite memory is no longer a reasonable assumption −

do you believe that there is an algorithm for integer multiplication ? 

How much paper do you need?



Finite automata vs. Algorithms

Finite state automaton General algorithm

Logic FINITE FINITE

Backing store none unbounded

Action SEQUENTIAL SEQUENTIAL

Input specification via an alphabet of stimuli on backing store, in given alphabet

Output observation via an alphabet of responses from backing store, in same alphabet

Time of output at each time step specific event on termination

Causality * deterministic or non-deterministic
 

deterministic or non-deterministic

  * deterministic  the input data determines a unique computation 

non-deterministic many possible execution paths from one problem statement −

 favourable guess  or  parallel search



Logic, Formal Systems and Automated Reasoning

In the latter part of the 19  century and the early part of the 20  there was ath        th

strong movement to automate the process of mathematical proof and mathematical

discovery.  The intention was to establish axiom systems for the different branches

of mathematics, formalise the process of logical inference, and develop theorems on

an essentially solid foundation.  Ideally the inference process would be mechanical,

thus gaining the benefit of the reliability of machines, as opposed to the human

weaknesses of fallacy in logic and error in calculation (the Analytical Engine of

Charles Babbage had already been designed). 

Leading names in this activity were Frege, Whitehead & Russell, and

Hilbert.  In 1910 David Hilbert proposed 23 problems as a challenge to succeeding

generations of mathematicians.  We shall meet the Tenth at the end of this course. 



Gödel's Incompleteness Theorem 

In the 1930s the move towards the axiomatisation of mathematics got a nasty

shock with the publication of Kurt Gödel's Incompleteness Theorem.  What Gödel

showed was that no consistent finite set of axioms could be sufficient to establish

all of the intuitive truths of whole number arithmetic.  The idea of the proof is

deceptively simple; the set of axioms, the rules of inference, chains of inference and

so on, are assigned unique natural numbers (Gödel numbers) in a consistent way.

For each statement that can be expressed within the formal system, there is a

corresponding polynomial that has a solution if and only if the statement is true. 

Consider the statement “this statement cannot be proved within the formal system”.

The statement cannot be proved in a consistent system, but it is evidently true. 

No solution of the corresponding polynomial can be found within the system!



Church's �-calculus and the Recursive Functions

At the same time that Gödel was proving the Incompleteness Theorem in

Vienna, Alonzo Church at Princeton together with his students (notably Stephen

Kleene and Barkley Rosser) were investigating the precise definition of the process

of calculation.  They introduced the �-calculus, asserting that it captured the natural

intuition.  In his proof Gödel used recursive functions to construct the numbering

of statements in a formal system, and the team at Princeton were able to show the

consistency of the �-calculus, and that the two definitions had equivalent power. 

Church proposed in 1936 as a working hypothesis that A function of positive

integers is effectively calculable (if and) only if recursive.  This has become known

as Church's thesis.   For a full discussion see Church-Turing Thesis in Wikipedia

  or   http://www.seop.leeds.ac.uk/archives/fall2002/entries/church-turing/ 



Turing machines and human computation 

At the same time, Alan Turing in Cambridge (King's) was tackling essentially

the same problem from another angle.  What Turing did was to analyse the actions

of a human being when calculating, and to define an idealized computer, the Turing

machine.  Turing's Thesis is that whenever there is an effective method for

obtaining the values of a mathematical function, the function can be computed by

a Turing machine.  In Proc LMS, series 2, 42 (1936-37), 230-265, he obtained the

same essential results as Church had done in his slightly earlier paper, indeed the

final few pages 263ff. establish the formal equivalence of the two definitions. 

Church in his review of Turing's paper said that computability by a Turing

machine ... has the advantage of making the identification with effectiveness in

the ordinary ... sense evident immediately.  We first investigate Turing's definition.   



Turing machines with higher dimensional data storage

Turing's motivation was that of human calculation, and his starting point was that of a 

mathematician writing symbols at formal positions on a piece of paper.  He investigated 

the power of machines that had a 2-dimensional or higher data array instead of a linear 

tape.  On the analogy with a piece of paper, the action would be the same as for the 

linear machine that we are going to define, except that the movement of the head on

the paper D(q  s ) could be ⇑ or ⇓ in addition to L or R.  i  j,

Turing was able to show that the extra dimension did not lead to greater computing 

power, under reasonable assumptions about what it meant to extract the answer to a 

calculation from a finite array of characters on an n-dimensional grid.



Turing machines with more than one linear tape

Often calculations require more than one argument, and one way to handle this 

is to have a machine with more than one tape.  It may also be convenient to 

use different tapes for different purposes during a calculation.  At any stage of 

the calculation there is a current tape, as well as a current symbol for each tape.

Change of state and change of symbol are treated in the usual way, but the 

movement can also be to resume execution with a change of current tape.

Turing was able to show that a multi-tape machine can be simulated by a 

machine having a single tape.  

[It is however possible that using a machine with more than one tape can lead 

 to a more efficient solution.  There is a graph traversal algorithm for which 

 the space complexity is reduced from  K  to  log K  by the introduction of an 

 auxiliary tape – such issues are the business of the Complexity course.] 



Turing machines

A Turing machine (T.m.) is a Deterministic Finite Automaton that has R/W access 

to an unbounded infinite tape, on each square of which the characters of a finite 

alphabet S can be written.  The set of states Q contains an initial state q , and the 0

alphabet S a preferred character s , the blank or filler symbol.0

At the start of a computation all but a finite number of squares of the tape are 

blank.  The DFA is placed on a particular square in state q , and that square of the 0

tape becomes current.  The machine will subsequently undergo transitions which 

depend only on the current state and the symbol on the current square.

The transitions are a graphic response, which replaces the symbol on the current 

square, a change of state, and a movement of the head on the tape, either to the  

left (L), or to the right (R). 



We represent the transitions as follows:

1. a graphic response, R(t+1) = F(Q(t), S(t));

2. a change of state, Q(t+1) = G(Q(t), S(t));

3. a head movement, D(t+1) = D(Q(t), S(t))

where we use L=0 to represent movement of the head to the left on the tape, and 

R=1 to represent movement to the right. 

We can handle termination in a number of ways; either there is a particular state 

that HALTs the machine, or we may just write 

 Q(t+1) =  G(Q(t), S(t)) = HALT. 

If the computation HALTs we may replace the symbol on the current square before 

HALTing; the result is the final state of the tape.  If it does not HALT, the result is 

undefined.



Specifying Turing machine logic

A Turing machine will be defined by giving the transitions for each (state, symbol) pair: thus 

(q, s, G(q,s), F(q,s), D(q,s)).  Such an entry is often written q   s   q   s   d  , and is called ai  j  ij  ij  ij

quintuplet.  The set of all such entries for q  ∈ Q and s  ∈ S is the full quintuplet description i    j

of the Turing machine.

For HALTing combinations 

either   write q   s   HALT  [s ]  −i  j    ij

  or    omit the quintuplet for the pair (q , s ).i  j

Conventions

− numbers will often be represented in unary, i.e. 0 will be represented by the null string,

 and the natural number n by 1111 ... 1 (n times).

− blank or 0 will be used as the filler;  Y, X as replacement symbols for 0, 1;

 A, B as argument delimiters.



Action of a Turing machine 

When designing a Turing machine for a specific problem we shall almost 

always use searching states (the only exception is the reduction via a 2-register 

machine to a 2-state Turing machine).

A typical transition may therefore be written: 

((q , d ),  s )  →  ((q , d ),  s )i  i   j     ij  ij   ij

Let's suppose that the machine has just entered state (q , d ), on a square of i  i

the tape.  This state is searching, in direction d  .  The action is:i

1) move to the next square in direction d ;i 

2) replace the symbol found, s  , by s  ;j   ij

3) enter the new state, (q , d ) ;ij  ij

4) repeat from 1)  with state (q , d ) .ij  ij


