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Goals
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Present some practical performance modelling case studies 
demonstrating:

Modelling of real-world distributed systems
Workload characterization
Model development and validation
Model analysis tools/techniques
Performance prediction and capacity planning

Discuss trade-offs in using different modelling formalisms
Queueing networks
Stochastic Petri nets



Motivation
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Modern E-Business systems gaining in size and complexity.
Quality of service requirements of crucial importance!

Hard to estimate the size and capacity of the deployment 
environment needed to meet Service Level Agreements (SLAs).

Deployers faced with questions such as the following:

- Does the system scale? Are there potential bottlenecks?

- What is the maximum load, the system is able to handle?

- What would be the avg. response time, throughput and 
utilization under the expected workload?



Roadmap

Case Study 1: Modeling a realistic e-business system by means 
of queueing networks solved using analytical methods.

Case Study 2: Modeling a small e-business application by means 
of queueing Petri nets solved using structured analysis methods.

Case Study 3: Modeling a large representative e-business system 
by means of queueing Petri nets solved using simulation 
techniques.
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Sizing and Capacity Planning
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Approaches to Performance Prediction

Educated Guess
+ Quick, easy and cheap.
- Very inaccurate and risky.

Performance Modelling
+ Cheaper and quicker than load-testing. 

Could be applied at the design stage.
- Accuracy depends on model representativeness.

Load Testing (brute force)
+ Accurate. Helps to identify bottlenecks and 

fine-tune system prior to production.
- Expensive and time-consuming. 

Assumes system availability for testing.
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Space of Performance Models
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Case Study 1: SPECjAppServer2002 (SjAS02)

Will study a deployment of SPECjAppServer2002

Industry standard application server benchmark

Measures performance and scalability of J2EE app. servers

Heavy-duty synthetic B2B e-commerce workload

More info at http://www.spec.org/osg/jAppServer/

Case study taken from “Performance Modeling and Evaluation of Large-
Scale J2EE Applications” by S. Kounev and A. Buchmann, Proceedings 
of the 29th International CMG Conference, 2003. 
http://www.dvs.tu-darmstadt.de/publications/pdf/03-cmg-SPECjAS02_QN.pdf
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OSG Java Subcommittee
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MANUFACTURING DOMAIN

Planned Lines
Large Order Line

Parts Widgets

- Create Large Order
- Schedule Work Order
- Update Work Order
- Complete Work Order

CUSTOMER DOMAIN
Order Entry Application

- Place Order
- Change Order
- Get Order Status
- Get Customer Status

Create Large Order

CORPORATE DOMAIN
Customer, Supplier and

Parts Information

- Register Customer
- Determine Discount
- Check Credit

SUPPLIER DOMAIN

- Select Supplier
- Send Purchase Order
- Deliver Purchase Order

Purchase
Parts Deliver

Parts
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SPECjAppServer Business Domains



Benchmark Components:

1. EJBs – J2EE application deployed on the 
System Under Test (SUT)

2. Supplier Emulator – web application simulating
external suppliers 

3. Driver – Java application simulating clients interacting 
with the system

RDBMS used for persistence

Throughput is function of chosen Transaction Injection Rate

Performance metric is TOPS = Total Ops Per Second
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SPECjAppServer Application Design
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SPECjAppServer2002 Components



How many WLSs are needed to guarantee adequate 
performance under the expected workload?

For a given number of WLSs, what would be the average 
trans. response time, throughput and server utilization?

Will the capacity of the DBS suffice to handle the load? 

Deployed SPECjAppServer2002 in:
- Cluster of WebLogic Servers (WLS) as a J2EE container
- Using a single Database Server (DBS) for persistence

Interested in knowing:
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Goals of the Case Study



Performance Prediction

Performance Modelling

Performance ModelValidation and Calibration

Workload Characterization

Workload Model

Testing and Measurement

IT Infrastructure Characterization

IT Infrastructure
Model

RESOURCE MODEL
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Capacity Planning Methodology (Menasce et al.)



Database Server

...

  Oracle 9i Database Server
    Hosting the SPECjAS DB
    2 x AMD XP 2000+ CPUs
    2 GB RAM, SuSE Linux 8

  WebLogic Server 7 Cluster
     Each node equipped with:
     AMD XP 2000+ CPU
     1 GB RAM, SuSE Linux 8

100 Mbit
LAN

Client PC

Supplier Emulator

   Supplier Emulator Machine
      WebLogic Server 7
      2 x AMD XP2000+ CPUs
      2 GB RAM, SuSE Linux 8

   Client Emulator Machine
     Running SPECjAS Driver
     AMD XP 1700+ CPU
     1GB RAM, RedHat Linux 8
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IT Infrastructure Characterization



Goal: To describe the system workload in a qualitative and
quantitative manner:

1. Describe the types of requests that are processed by the 
system (called request classes).

2. Identify the hardware and software resources used by each 
request class.

3. Measure the total amount of service time (called service 
demand) for each request class at each resource.

4. Specify number of requests of each class that the system will 
be exposed to (called workload intensity).
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Workload Characterization



We identify the following five request classes:

Order Entry Application
1. NewOrder (NO) – places a new order in the system
2. ChangeOrder (CO) – modifies an existing order
3. OrderStatus (OS) – retrieves the status of a given order
4. CustStatus (CS) – lists all orders of a given customer

Manufacturing Application
5. WorkOrder (WO) – the unit of work at the production lines
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Workload Characterization – Step 1



We identify the following resources:

1. The CPU of a WebLogic Server (WLS-CPU) 
2. The Local Area Network (LAN)
3. The CPUs of the database server (DBS-CPU)
4. The disk drives of the database server (DBS-I/O)

We ignore network service demands, since over a 
100 Mbit LAN all communication times were negligible. 
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Workload Characterization – Step 2
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Workload Characterization – Step 3



Workload intensity is usually specified in one of two ways:
Average request arrival rates (open QNs)
Average number of requests in the system (closed QNs)

In our study, we quantify workload intensity by specifying:

The number of concurrent order entry clients

The average customer think time – Customer Think Time

Number of planned production lines in the Mfg domain

Average time production lines wait after processing a 
WorkOrder before starting a new one – Mfg Think Time

© S. Kounev                                                      20 

Workload Characterization – Step 4



We model each processing resource using a queue:
• The CPUs of the N WLSs in the cluster – N PS queues A1…AN

• The two CPUs of the DBS – 2 PS queues B1 and B2

• The disk drive of the DBS – 1 FCFS queue D

We model the client using a delay resource C
- Delay of order requests at this queue = Customer Think Time
- Delay of WorkOrder requests at this queue = Mfg Think Time

Each WorkOrder is delayed at the virtual production line stations during
processing. To model this we introduce an additional delay resource L.
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Building a Performance Model
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Formal Queue Definitions (Kendall's Notation)
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1-p3

p3

Simplified QN Model of the System



1. Number of order entry clients of each type –
NewOrder, ChangeOrder, OrderStatus and CustStatus.

2. Average think time of order entry clients –
Customer Think Time.

3. Number of planned production lines generating                
WorkOrder requests.

4. Average time production lines wait after processing a WorkOrder
before starting a new one – Mfg Think Time.

5. Service demands of the 5 request classes at queues Ai, Bk and D 
(as measured during workload characterization).
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Model Input Parameters



We will analyze several different instances of the model for different 
workload intensities – low, moderate and heavy:

In each case we will apply the model for different number of 
application servers – from 1 to 9. We will first consider the case 
without large order lines in the Mfg domain.
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Scenarios that we will study



We have a closed non-product-form queueing network
model with five request classes to analyze.

We employed the PEPSY-QNS tool from the University of 
Erlangen-Nuernberg. For more information see:
http://www4.informatik.uni-erlangen.de/Projects/PEPSY/en/pepsy.html

Available free of charge for non-commercial use

Supports a wide range of solution methods (over 30)

Offers both exact and approximate methods
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G. Bolch and M. Kirschnick. “The Performance Evaluation and Prediction System for Queueing Networks –
PEPSY-QNS”. TR-I4-94-18, University of Erlangen-Nuremberg, Germany, 1994.

Model Analysis and Validation
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Java Modelling Tools – JMT  (http://jmt.sourceforge.net/)
JSIMgraph - Queueing network models simulator with graphical user interface

JSIMwiz - Queueing network models simulator with wizard-based user interface

JMVA - Mean Value Analysis of queueing network models

JABA - Asymptotic Analysis of queueing network models

SHARPE (http://www.ee.duke.edu/~kst/software_packages.html
C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi. “Reliability and Performability Modeling Using 

SHARPE 2000”. In Computer Performance Evaluation / TOOLS 2000, Schaumburg, IL, USA, 
pages 345–349, 2000. See http://www.ee.duke.edu/~kst/.

Daniel Menasce’s MS Excel Workbooks: 
http://cs.gmu.edu/~menasce/webbook/index.html

http://cs.gmu.edu/~menasce/ebook/index.html

http://cs.gmu.edu/~menasce/webservices/index.html

http://cs.gmu.edu/~menasce/perfbyd/

Other Queueing Network Analysis Tools
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OMNeT++ (http://www.omnetpp.org/)
Varga. “The OMNeT++ Discrete Event Simulation System”. In Proceedings of the European Simulation 

Multiconference (ESM'2001). June 6-9, 2001. Prague, Czech Republic. Can be used to simulate 
queueing networks, see http://www.omnetpp.org/doc/queueing-tutorial.pdf

QNAT (http://poisson.ecse.rpi.edu/~hema/qnat/)
H. T. Kaur, D. Manjunath, and S. K. Bose. “The Queuing Network Analysis Tool (QNAT)”. In 

Proceedings of the 8th International Symposium on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems, CA, USA, vol. 8, pages 341–347, 2000.

RAQS (http://www.okstate.edu/cocim/raqs/)
M. Kamath, S. Sivaramakrishnan, and G. Shirhatti. “RAQS: A software package to support instruction 

and research in queueing systems”. In Proceedings of the 4th Industrial Engineering Research 
Conference, IIE, Norcross, GA., pages 944–953, 1995.

Other Queueing Network Analysis Tools



We have 130 concurrent clients and 50 planned production lines.
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Scenario 1 (Low Load) with 1 AS
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Scenario 1 (Low Load) with 2 AS



• Response time results much less accurate than 
throughput and utilization results:

- Running a transaction mix vs. single transaction

- Additional delays from software contention 

• The lower the service demand the higher the response 
time error (e.g. WorkOrder vs. CustStatus)
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Scenario 1 (Low Load) Observations



We have 260 concurrent clients and 100 planned production lines.

© S. Kounev                                                      33 

Scenario 2 (Moderate Load) with 3 and 6 AS



We have 350 concurrent clients and 200 production lines. 
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Scenario 3 (Heavy Load) with 4 and 6 AS



• Large order (LO) lines activated upon arrival of large orders in 
the customer domain. Each large order generates a separate 
work order.

• Since LO lines are triggered by NewOrder transactions we can 
integrate the load they produce into the service demands of 
NewOrder requests.

• We measure NewOrder’s service demand with the LOs enabled.   
The additional load impacts the service demands of NewOrder
requests. The latter no longer have the same semantics.
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Scenarios with Large Order Lines
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Scenarios with Large Order Lines (2)
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Summarized Utilization Results



Conclusions From Case Study

Studied a realistic J2EE application and showed how to build a 
performance model and use it for capacity planning.

Model was extremely accurate in predicting transaction throughput 
and CPU utilization and less accurate for transaction response time. 

Ignoring the scenarios with large orders, the average modelling error 
for throughput was 2%, for utilization 6% and for response time 18%. 

Two problems encountered:

Poor model expressiveness: no way to accurately model 
asynchronous processing and software contention.

Problem solving large non-product form QNs analytically.
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DISK

CPU1

CPU2 SERVICE STATION 2

SERVICE STATION 1

Arriving
Requests Waiting

Area

Servers

p1

p2

Departing
Requests

PROS: Very powerful for modelling hardware contention and scheduling
strategies. Many efficient analysis techniques available.

CONS: Not suitable for modelling blocking, synchronization,
simultaneous resource possession and software contention in
general. Although Extended QNs provide some limited support 
for the above, they are very restrictive and inaccurate.

- QN: Set of interconnected queues
- Queue = waiting area and servers
- Scheduling strategies(FCFS,PS,...)
- Single-class vs. multi-class
- Open, closed or mixed
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PROS vs. CONS of Queueing Networks (QNs)



t1
t2

p1 p2

p3 p4

t1
t2

p1 p2

p3 p4
a). b).

PROS: Suitable both for qualitative and quantitative analysis. 
Lend themselves very well to modelling blocking, synchronization,
simultaneous resource possession and software contention. 

CONS: No direct means for modelling scheduling strategies. Not as many
algorithms/tools for efficient quantitative analysis are available as
for Queueing Networks.

- PN: places, tokens and transitions.
marking, transition enabling/firing

- CPNs: allow tokens of different colors
and transition modes

- GSPNs: allow timed transitions
- CGSPNs: CPNs + GSPNs
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PROS vs. CONS of Petri Nets (PNs)



QUEUE DEPOSITORY

- Introduced by Falko Bause in 1993.
- Combine Queueing Networks and Petri Nets
- Allow integration of queues into places of PNs
- Ordinary vs. Queueing Places
- Queueing Place = Queue + Depository

PROS: 

Combine the modelling power and expressiveness of QNs and PNs.

Easy to model synchronization, simultaneous resource possession,
asynchronous processing and software contention.

Allow the integration of hardware and software aspects.
CONS: 

Analysis suffers the state space explosion problem.
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Queueing Petri Nets (QPNs = QNs + PNs)



ACTUAL
POPULATION

INPUT OUTPUT

USER SPECIFIED
PART OF THE

SUBNET
GRAPHICAL NOTATION

FOR SUBNET PLACE

- Allow hierarchical model specification
- Subnet Place: contains a nested QPN
- Structured analysis methods alleviate the state space explosion problem

and enable larger models to be analyzed.

Analysis Tools for HQPNs

The HQPN-Tool from the
University of Dortmund. 
Supports a number of structured
analysis methods. 
Available free of charge for 
non-commercial use.
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Hierarchical Queueing Petri Nets (HQPNs)



QPME (http://www.dvs.tu-darmstadt.de/staff/skounev/QPME)

S. Kounev, C. Dutz and A. Buchmann“. QPME - Queueing Petri Net Modeling 
Environment”. Proceedings of the 3rd International Conference on Quantitative 
Evaluation of SysTems (QEST-2006), Riverside, USA, September 11-14,                
September 2006.

TimeNET (http://pdv.cs.tu-berlin.de/~timenet/)

Zimmermann, J. Freiheit, R. German, and G. Hommel. “Petri Net Modelling and 
Performability Evaluation with TimeNET 3.0”. In Proceedings of the 11th International 
Conference on Modelling Techniques and Tools for Computer Performance 
Evaluation (TOOLS’2000), Schaumburg, Illinois, USA, LNCS 1786, pages 188–202, 
March 2000.

Möbius (http://www.mobius.uiuc.edu/)

T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and W. Sanders.                
“The Möbius Modeling Environment: Recent Developments”. In Proceedings of the 
1st International Conference on Quantitative Evaluation of Systems (QEST 2004), 
Enschede, The Netherlands, pages 328–329, Sept. 2004.
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Stochastic Petri Net Analysis Tools



SPNP (http://www.ee.duke.edu/~kst/software_packages.html)

C. Hirel, B. Tuffin, and K. Trivedi. “SPNP: Stochastic Petri Nets”. Version 6.0. In B. 
Haverkort, H. Bohnenkamp, and C. Smith, editors, Computer performance evaluation: 
Modelling tools and techniques; 11th International Conference; TOOLS 2000, 
Schaumburg, Illinois, USA, LNCS 1786. Springer Verlag, 2000.

GreatSPN (http://www.di.unito.it/greatspn/index.html)

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor 
and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation,                   
24(1-2):47–68, Nov. 1995.

Petri Nets Tool Database

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
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Stochastic Petri Net Analysis Tools (2)



Oracle 9i DBS
Load Balancer

WLS 1

...

  Oracle 9i (9.0.1) Database Server
   Hosting the SPECjAppServer DB
   1,7 GHz AMD XP CPU, 1 GB RAM
   Running on Red Hat Linux 7.2

  WebLogic Server 7.0 Cluster
   Each node equipped with:
   AMD XP 2000+ CPU, 1 GB RAM
   Running on SuSE Linux 8.0

LAN

WLS 2

WLS N

Internet
Client 2

Client K

Client 1

...

Case study taken from “Performance Modeling of Distributed E-Business Applications using Queueing Petri Nets”. S. Kounev and 
A. Buchmann. Proc. of the 2003 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).  
http://www.dvs1.informatik.tu-darmstadt.de/publications/pdf/03-ispass-QPNs.pdf

Case Study 2: Cust. App. of SPECjAppServer



We are interested in finding answers to the following questions:

What level of performance does the system provide under load?
Average response time, throughput and utilization = ?
Are there potential system bottlenecks? 
How many application servers would be needed to guarantee 
adequate performance?

Need also optimal values for the following configuration parameters:

Number of threads in WebLogic (WLS) thread pools
Number of connections in WLS database connection pools
Number of processes of the Oracle server instance
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Capacity Planning Issues



1. Describe the types of requests (request classes) that arrive at 
the system: NewOrder, ChangeOrder, OrderStatus, CustStatus.

2. Identify the hardware and software resources used by each 
request class: HW: WLS-CPU, Network, DBS-CPU, DBS-Disk,      
SW: WLS Thread, DB Connection, DBS Process. 

3. Measure the total service time (service demand) of each request 
class at each processing resource:
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Workload Characterization



WLS-CPU DBS-PQ DBS-CPU DBS-I/O

DBS-Process-Pool

Client

Database Server

t1 t2 t3 t4 t5

WLS-Thread-Pool

DB-Conn-Poolx
x

x x x x x x x

c

x

c

t t
t

t t

p
p p

c
c c

x
x

p p
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First Cut System Model



WLS-CPU DBS

t1 t2 t5

DB-Conn-Pool

Client

WLS-Thread-Pool

t
t t

x
x

x x

c
c c

t t

x x x x

c c

We isolate the database server and model it using a separate QPN, 
represented by subnet place „DBS“ above.

The above QPN is called High-Level QPN (HLQPN) of our 
hierarchical model.
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Hierarchical System Model: High-Level QPN



DBS-PQ DBS-CPU DBS-I/O

DBS-Process-Pool

t3 t4

Actual Population

Input Output

tinput toutput
x x x x

x

x

x

x

x

p
p p

x

p
p

The nested DBS subnet of our HQPN - called Low-Level QPN (LLQPN).

Places Input, Output and Actual Population are standard for each subnet.
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Hierarchical System Model: Low-Level QPN



Through analysis of the underlying Markov Chain, we can obtain for each 
place, queue and depository its average token population N and  
utilization U in steady state. 

From the „Flow-In=Flow-Out“ Principle Places Client, WLS-CPU,    
DBS-PQ, DBS-CPU and DBS-I/O have the same request throughput X.

For the rest of places, queues and depositories, we get:

The total end-to-end request response time is then:

Applying Little‘s Law to place Client, we get:
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Model Analysis



Single request class – the NewOrder TX
80 concurrent clients with avg. client think time of 200ms
60 WLS Threads, 40 JDBC Connections, 30 Oracle processes

Analysis Results

Modelling Error
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Scenario 1: Single Request Class



Analysis Results

Modelling Error

More contention for threads, but less contention for CPU time.

In both cases, we can reduce the number of DB connections and 
DBS processes, since they are not effectively utilized.
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Scenario 1a: Same, but only with 40 Threads



Two request classes – NewOrder and ChangeOrder
Some simplifications needed to avoid explosion of the Markov Chain
Assume that there are plenty of JDBC connections and DBS processes
Drop places DB-Conn-Pool and DBS-Process-Pool
20 clients: 10 NewOrder and 10 ChangeOrder, Avg. think time = 1 sec
Only 10 WLS Threads
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Scenario 2: Multiple Request Classes



t2_1

t5

CLIENT
DBS

WLS 1

WLS 2

WLS n

WLS (n-1)

t2_2

t2_(n-1)

t2_n

t1_1

t1_2

t1_(n-1)

t1_n

x
x

x

x

x

x

x x

x x

x x

x x

x

x

x

x

x

x

We modify the HLQPN to include multiple WLS places
30 NewOrder clients with avg. think time of 1 sec
No contention for JDBC connections, DBS processes and WLS threads
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Scenario 3: Multiple Application Servers
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Scenario 3: Modelling Error



QPN models enable us to integrate both hardware and 
software aspects of system behavior in the same model.

Combining the expressiveness of Queueing Networks and   
Petri Nets, QPNs are not just powerful as a specification 
mechanism, but are also very powerful as a performance 
analysis and prediction tool.

Improved solution methods and software tools for QPNs
needed to enable larger models to be analyzed. 
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Conclusions from Case Study



SimQPN – Simulator for QPNs

Tool and methodology for analyzing QPNs using simulation.

Provides a scalable simulation engine optimized for QPNs.

Circumvents the state-space explosion problem.

Can be used to analyze models of realistic size and complexity.

Extremely light-weight and fast.

Portable across platforms.

Validated in a number of realistic scenarios.

• “SimQPN - a tool and methodology for analyzing queueing Petri net 
models by means of simulation”,                                                     
Performance Evaluation, Vol. 63, No. 4-5, pp. 364-394, May 2006.
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Case Study 3: SPECjAppServer2004

Corporate
Domain

Customer
Domain

Dealer
Domain

Dealers

Suppliers Manufacturing
Domain

Supplier
Domain
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SPECjAppServer2004 Business Domains

MANUFACTURING DOMAIN

Planned Lines
Large Order Line

Parts Vehicles

- Create Large Order
- Schedule Work Order
- Update Work Order
- Complete Work Order

CUSTOMER DOMAIN
Order Entry Application

- Place Order
- Get Order Status
- Get Customer Status
- Cancel Order

CORPORATE DOMAIN
Customer, Supplier and

Parts Information

- Register Customer
- Determine Discount
- Check Credit

SUPPLIER DOMAIN

- Select Supplier
- Send Purchase Order
- Deliver Purchase Order

Purchase
Parts Deliver

Parts



SPECjAppServer2004 Application Design

Benchmark Components:

1. EJBs – J2EE application deployed on the 
System Under Test (SUT)

2. Supplier Emulator – web application emulating
external suppliers 

3. Driver – Java application emulating clients interacting 
with the system and driving production lines

• RDBMS used for persistence

• Asynchronous-messaging used for inter-domain communication

• Throughput is function of chosen Transaction Injection Rate

• Performance metric is JOPS = JAppServerOpsPerSecond
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SPECjAppServer2004 Application Design (2)

Web Container

Supplier 
Emulator

Emulator 
Servlet

Driver

Client JVM

HTTP / RMI

HTTP

HTTP

EJB X

BuyerSes

J2EE AppServer

EJB Y

ReceiverSes

EJB Z

SUT
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Sample Deployment Environment (IBM)
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Sample Deployment Environment (Sun)
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Sample Deployment Environment (Sun)
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Performance Modelling Methodology

1. Establish performance modelling objectives.

2. Characterize the system in its current state.

3. Characterize the workload.

4. Develop a performance model.

5. Validate, refine and/or calibrate the model.

6. Use model to predict system performance.

7. Analyze results and address modelling objectives.

S. Kounev. “Performance Modeling and Evaluation of Distributed 

Component-Based Systems using Queueing Petri Nets”. IEEE 

Transactions on Software Engineering, Vol. 32, No. 7, pp. 486-502, 2006. 
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Deployment Environment
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1. Establish Modelling Objectives

Normal Conditions: 72 concurrent dealer clients (40 Browse, 16 Purchase, 
16 Manage) and 50 planned production lines in the mfg domain.

Peak Conditions: 152 concurrent dealer clients (100 Browse, 26 Purchase, 
26 Manage) and 100 planned production lines in the mfg domain.

Goals:

• Predict system performance under normal operating conditions with  
4 and 6 application servers.

• Predict how much system performance would improve if the load 
balancer is upgraded with a slightly faster CPU.

• Study the scalability of the system as the workload increases and 
additional application server nodes are added.

• Determine which servers would be most utilized under heavy load 
and investigate if they are potential bottlenecks.
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2. Characterize the System
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3. Characterize the Workload

1.  Basic Components: Dealer Transactions and Work Orders.

3.  Inter-Component Interactions:

2.  Workload Classes: Browse, Purchase, Manage, WorkOrder and LgrOrder.
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C    =  Client

LB  =  Load Balancer

DB  =  Database

AS  =  App. Server



3. Characterize the Workload (2)

Describe the processing steps (subtransactions).



3. Characterize the Workload (3)

Workload Service Demand Parameters (ms)
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3. Characterize the Workload (4)
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4. Develop a Performance Model
Queueing Petri Net
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5. Validate [Refine, Calibrate]

Assume 2 AS nodes available.

Two Specific Validation Scenarios:

1: 20 B, 10 P, 10 M, 30 PL

2: 40 B, 20 P, 30 M, 50 PL

Max. Modelling Error:

• For Throughput:     8.1%

• For Utilization:      10.2%

• For Resp. Times:  12.9%

Note: Validation process iterative!
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6. Predict System Performance
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6. Predict System Performance (2)
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6. Predict System Performance (3)

150 Browse Clients                       200 Browse Clients
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6. Predict System Performance (4)

79



6. Predict System Performance (4)

Sc.3: 300 B, 30 P, 30 M, 120 PL Max Error 16.8%

Sc.4: 270 B, 90 P, 60 M, 120 PL Max Error 15.2%
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7. Analyze Results & Address Objectives

0 20 40 60 80 100

4AS / NORMAL

6AS / NORMAL

6AS / PEAK / ORIG. LB

6AS / PEAK / UPG.  LB

8AS / HEAVY 1

8AS / HEAVY 2

8AS / HEAVY 3

8AS / HEAVY 4

LB-C    AS-C    DB-C
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Benefits of using QPNs

1. QPN models allow the integration of hardware and software 

aspects of system behavior.

2. Using QPNs, DCS can be modeled accurately.

3. The knowledge of the structure and behavior of QPNs can be 

exploited for efficient simulation using SimQPN.

4. QPNs can be used to combine qualitative and quantitative 

system analysis.

5. QPN models have an intuitive graphical representation 

facilitating model development.
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Summary & Conclusions from Case Study

Presented a systematic approach for performance prediction.

Studied a representative application and predicted its 

performance under realistic load conditions.

Model predictions were validated against measurements on the 

real system. The modelling error did not exceed 21.2%!

QPN models can be exploited for accurate performance 

prediction in realistic scenarios.

Proposed methodology provides a powerful tool for sizing and 

capacity planning.
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Links to Further Related Tools
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OMNeT++
See http://www.omnetpp.org/

Public-source, component-based, modular and open-architecture simulation environment with 
strong GUI support and an embeddable simulation kernel.

DesmoJ
http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-J/index.html

A framework for discrete-event modelling and simulation

A Collection of Modelling and Simulation Resources
See http://www.idsia.ch/~andrea/simtools.html

JMeter
See http://jakarta.apache.org/jmeter/

Java-based tool for load testing client-server applications.

Faban benchmark harness and driver framework
See http://faban.sunsource.net/

List of open-source testing tools
See http://www.opensourcetesting.org


