
Computer Systems Modelling
Case Studies

Samuel Kounev
Systems Research Group

University of Cambridge – Computer Laboratory

Lent Term 2008

Goals

© S. Kounev 2

Present some practical performance modelling case studies
demonstrating:

Modelling of real-world distributed systems
Workload characterization
Model development and validation
Model analysis tools/techniques
Performance prediction and capacity planning

Discuss trade-offs in using different modelling formalisms
Queueing networks
Stochastic Petri nets

Motivation

© S. Kounev 3

Modern E-Business systems gaining in size and complexity.
Quality of service requirements of crucial importance!

Hard to estimate the size and capacity of the deployment
environment needed to meet Service Level Agreements (SLAs).

Deployers faced with questions such as the following:

- Does the system scale? Are there potential bottlenecks?

- What is the maximum load, the system is able to handle?

- What would be the avg. response time, throughput and
utilization under the expected workload?

Roadmap

Case Study 1: Modeling a realistic e-business system by means
of queueing networks solved using analytical methods.

Case Study 2: Modeling a small e-business application by means
of queueing Petri nets solved using structured analysis methods.

Case Study 3: Modeling a large representative e-business system
by means of queueing Petri nets solved using simulation
techniques.

© S. Kounev 4

Sizing and Capacity Planning

INTERNET

Client 1 Client 2 Client n

CLIENT SIDE

AS 1 AS m

Load Balancers

Database Servers

Presentation
Tier

Web Servers 1..k

Business Logic
Tier

Application
Servers 1..m

Data Tier

Database Servers 1..p

Firewall

Legacy Systems

Web Routers

WS 1 WS 2 WS k

If (n = 1000)

k=? m=? p=?

so that all

SLAs

are fulfilled.

5

Approaches to Performance Prediction

Educated Guess
+ Quick, easy and cheap.
- Very inaccurate and risky.

Performance Modelling
+ Cheaper and quicker than load-testing.

Could be applied at the design stage.
- Accuracy depends on model representativeness.

Load Testing (brute force)
+ Accurate. Helps to identify bottlenecks and

fine-tune system prior to production.
- Expensive and time-consuming.

Assumes system availability for testing.

6

Space of Performance Models

7

Case Study 1: SPECjAppServer2002 (SjAS02)

Will study a deployment of SPECjAppServer2002

Industry standard application server benchmark

Measures performance and scalability of J2EE app. servers

Heavy-duty synthetic B2B e-commerce workload

More info at http://www.spec.org/osg/jAppServer/

Case study taken from “Performance Modeling and Evaluation of Large-
Scale J2EE Applications” by S. Kounev and A. Buchmann, Proceedings
of the 29th International CMG Conference, 2003.
http://www.dvs.tu-darmstadt.de/publications/pdf/03-cmg-SPECjAS02_QN.pdf

© S. Kounev 8

OSG Java Subcommittee

© S. Kounev 9

MANUFACTURING DOMAIN

Planned Lines
Large Order Line

Parts Widgets

- Create Large Order
- Schedule Work Order
- Update Work Order
- Complete Work Order

CUSTOMER DOMAIN
Order Entry Application

- Place Order
- Change Order
- Get Order Status
- Get Customer Status

Create Large Order

CORPORATE DOMAIN
Customer, Supplier and

Parts Information

- Register Customer
- Determine Discount
- Check Credit

SUPPLIER DOMAIN

- Select Supplier
- Send Purchase Order
- Deliver Purchase Order

Purchase
Parts Deliver

Parts

10

SPECjAppServer Business Domains

Benchmark Components:

1. EJBs – J2EE application deployed on the
System Under Test (SUT)

2. Supplier Emulator – web application simulating
external suppliers

3. Driver – Java application simulating clients interacting
with the system

RDBMS used for persistence

Throughput is function of chosen Transaction Injection Rate

Performance metric is TOPS = Total Ops Per Second

© S. Kounev 11

SPECjAppServer Application Design

Web Container

Supplier
Emulator

Emulator
Servlet

Driver

Client JVM

RMI

HTTP

HTTP

EJB X

BuyerSes

J2EE AppServer

EJB Y

ReceiverSes

EJB Z

SUT

© S. Kounev 12

SPECjAppServer2002 Components

How many WLSs are needed to guarantee adequate
performance under the expected workload?

For a given number of WLSs, what would be the average
trans. response time, throughput and server utilization?

Will the capacity of the DBS suffice to handle the load?

Deployed SPECjAppServer2002 in:
- Cluster of WebLogic Servers (WLS) as a J2EE container
- Using a single Database Server (DBS) for persistence

Interested in knowing:

© S. Kounev 13

Goals of the Case Study

Performance Prediction

Performance Modelling

Performance ModelValidation and Calibration

Workload Characterization

Workload Model

Testing and Measurement

IT Infrastructure Characterization

IT Infrastructure
Model

RESOURCE MODEL
14

Capacity Planning Methodology (Menasce et al.)

Database Server

...

 Oracle 9i Database Server
 Hosting the SPECjAS DB
 2 x AMD XP 2000+ CPUs
 2 GB RAM, SuSE Linux 8

 WebLogic Server 7 Cluster
 Each node equipped with:
 AMD XP 2000+ CPU
 1 GB RAM, SuSE Linux 8

100 Mbit
LAN

Client PC

Supplier Emulator

 Supplier Emulator Machine
 WebLogic Server 7
 2 x AMD XP2000+ CPUs
 2 GB RAM, SuSE Linux 8

 Client Emulator Machine
 Running SPECjAS Driver
 AMD XP 1700+ CPU
 1GB RAM, RedHat Linux 8

15

IT Infrastructure Characterization

Goal: To describe the system workload in a qualitative and
quantitative manner:

1. Describe the types of requests that are processed by the
system (called request classes).

2. Identify the hardware and software resources used by each
request class.

3. Measure the total amount of service time (called service
demand) for each request class at each resource.

4. Specify number of requests of each class that the system will
be exposed to (called workload intensity).

© S. Kounev 16

Workload Characterization

We identify the following five request classes:

Order Entry Application
1. NewOrder (NO) – places a new order in the system
2. ChangeOrder (CO) – modifies an existing order
3. OrderStatus (OS) – retrieves the status of a given order
4. CustStatus (CS) – lists all orders of a given customer

Manufacturing Application
5. WorkOrder (WO) – the unit of work at the production lines

© S. Kounev 17

Workload Characterization – Step 1

We identify the following resources:

1. The CPU of a WebLogic Server (WLS-CPU)
2. The Local Area Network (LAN)
3. The CPUs of the database server (DBS-CPU)
4. The disk drives of the database server (DBS-I/O)

We ignore network service demands, since over a
100 Mbit LAN all communication times were negligible.

© S. Kounev 18

Workload Characterization – Step 2

0 10 20 30 40 50 60 70

WorkOrder

CustStatus

OrderStatus

ChangeOrder

NewOrder

Service Demand (ms)

WLS-CPU DBS-CPU DBS-I/O

© S. Kounev 19

Workload Characterization – Step 3

Workload intensity is usually specified in one of two ways:
Average request arrival rates (open QNs)
Average number of requests in the system (closed QNs)

In our study, we quantify workload intensity by specifying:

The number of concurrent order entry clients

The average customer think time – Customer Think Time

Number of planned production lines in the Mfg domain

Average time production lines wait after processing a
WorkOrder before starting a new one – Mfg Think Time

© S. Kounev 20

Workload Characterization – Step 4

We model each processing resource using a queue:
• The CPUs of the N WLSs in the cluster – N PS queues A1…AN

• The two CPUs of the DBS – 2 PS queues B1 and B2

• The disk drive of the DBS – 1 FCFS queue D

We model the client using a delay resource C
- Delay of order requests at this queue = Customer Think Time
- Delay of WorkOrder requests at this queue = Mfg Think Time

Each WorkOrder is delayed at the virtual production line stations during
processing. To model this we introduce an additional delay resource L.

© S. Kounev 21

Building a Performance Model

B2

C

B1

A1

A2

AN-1

AN

L

D
p1

p2

p5

p6

1/2

1/2

p7

p8

1/N

1/N

1/N

1/N

Database Server

Application Server Cluster

Client

Production Line Stations

© S. Kounev 22

1-p1

1-p3

p2

1-p2

p3

Queueing Network (QN) Model of the System

© S. Kounev 23

Formal Queue Definitions (Kendall's Notation)

B2

C

B1

A1

A2

AN-1

AN

L

D

1/2

p7

p8

1/N

1/N

1/N

1/N

Database Server

Application Server
Cluster

Client

Production Line Stations

1/2

© S. Kounev 24

1-p3

p3

Simplified QN Model of the System

1. Number of order entry clients of each type –
NewOrder, ChangeOrder, OrderStatus and CustStatus.

2. Average think time of order entry clients –
Customer Think Time.

3. Number of planned production lines generating
WorkOrder requests.

4. Average time production lines wait after processing a WorkOrder
before starting a new one – Mfg Think Time.

5. Service demands of the 5 request classes at queues Ai, Bk and D
(as measured during workload characterization).

© S. Kounev 25

Model Input Parameters

We will analyze several different instances of the model for different
workload intensities – low, moderate and heavy:

In each case we will apply the model for different number of
application servers – from 1 to 9. We will first consider the case
without large order lines in the Mfg domain.

© S. Kounev 26

Scenarios that we will study

We have a closed non-product-form queueing network
model with five request classes to analyze.

We employed the PEPSY-QNS tool from the University of
Erlangen-Nuernberg. For more information see:
http://www4.informatik.uni-erlangen.de/Projects/PEPSY/en/pepsy.html

Available free of charge for non-commercial use

Supports a wide range of solution methods (over 30)

Offers both exact and approximate methods

© S. Kounev 27

G. Bolch and M. Kirschnick. “The Performance Evaluation and Prediction System for Queueing Networks –
PEPSY-QNS”. TR-I4-94-18, University of Erlangen-Nuremberg, Germany, 1994.

Model Analysis and Validation

© S. Kounev 28

Java Modelling Tools – JMT (http://jmt.sourceforge.net/)
JSIMgraph - Queueing network models simulator with graphical user interface

JSIMwiz - Queueing network models simulator with wizard-based user interface

JMVA - Mean Value Analysis of queueing network models

JABA - Asymptotic Analysis of queueing network models

SHARPE (http://www.ee.duke.edu/~kst/software_packages.html
C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi. “Reliability and Performability Modeling Using

SHARPE 2000”. In Computer Performance Evaluation / TOOLS 2000, Schaumburg, IL, USA,
pages 345–349, 2000. See http://www.ee.duke.edu/~kst/.

Daniel Menasce’s MS Excel Workbooks:
http://cs.gmu.edu/~menasce/webbook/index.html

http://cs.gmu.edu/~menasce/ebook/index.html

http://cs.gmu.edu/~menasce/webservices/index.html

http://cs.gmu.edu/~menasce/perfbyd/

Other Queueing Network Analysis Tools

© S. Kounev 29

OMNeT++ (http://www.omnetpp.org/)
Varga. “The OMNeT++ Discrete Event Simulation System”. In Proceedings of the European Simulation

Multiconference (ESM'2001). June 6-9, 2001. Prague, Czech Republic. Can be used to simulate
queueing networks, see http://www.omnetpp.org/doc/queueing-tutorial.pdf

QNAT (http://poisson.ecse.rpi.edu/~hema/qnat/)
H. T. Kaur, D. Manjunath, and S. K. Bose. “The Queuing Network Analysis Tool (QNAT)”. In

Proceedings of the 8th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, CA, USA, vol. 8, pages 341–347, 2000.

RAQS (http://www.okstate.edu/cocim/raqs/)
M. Kamath, S. Sivaramakrishnan, and G. Shirhatti. “RAQS: A software package to support instruction

and research in queueing systems”. In Proceedings of the 4th Industrial Engineering Research
Conference, IIE, Norcross, GA., pages 944–953, 1995.

Other Queueing Network Analysis Tools

We have 130 concurrent clients and 50 planned production lines.

© S. Kounev 30

Scenario 1 (Low Load) with 1 AS

© S. Kounev 31

Scenario 1 (Low Load) with 2 AS

• Response time results much less accurate than
throughput and utilization results:

- Running a transaction mix vs. single transaction

- Additional delays from software contention

• The lower the service demand the higher the response
time error (e.g. WorkOrder vs. CustStatus)

© S. Kounev 32

Scenario 1 (Low Load) Observations

We have 260 concurrent clients and 100 planned production lines.

© S. Kounev 33

Scenario 2 (Moderate Load) with 3 and 6 AS

We have 350 concurrent clients and 200 production lines.

© S. Kounev 34

Scenario 3 (Heavy Load) with 4 and 6 AS

• Large order (LO) lines activated upon arrival of large orders in
the customer domain. Each large order generates a separate
work order.

• Since LO lines are triggered by NewOrder transactions we can
integrate the load they produce into the service demands of
NewOrder requests.

• We measure NewOrder’s service demand with the LOs enabled.
The additional load impacts the service demands of NewOrder
requests. The latter no longer have the same semantics.

© S. Kounev 35

Scenarios with Large Order Lines

© S. Kounev 36

Scenarios with Large Order Lines (2)

0 20 40 60 80 100

1AS / LOW

*1AS / LOW

2AS / LOW

3AS / MODERATE

*3AS / MODERATE

6AS / MODERATE

4AS / HEAVY

6AS / HEAVY

9AS / HEAVY

*9AS / HEAVY

DATABASE CPU
WEBLOGIC CPU * WITH LARGE ORDER LINES

© S. Kounev 37

Summarized Utilization Results

Conclusions From Case Study

Studied a realistic J2EE application and showed how to build a
performance model and use it for capacity planning.

Model was extremely accurate in predicting transaction throughput
and CPU utilization and less accurate for transaction response time.

Ignoring the scenarios with large orders, the average modelling error
for throughput was 2%, for utilization 6% and for response time 18%.

Two problems encountered:

Poor model expressiveness: no way to accurately model
asynchronous processing and software contention.

Problem solving large non-product form QNs analytically.

© S. Kounev 38

DISK

CPU1

CPU2 SERVICE STATION 2

SERVICE STATION 1

Arriving
Requests Waiting

Area

Servers

p1

p2

Departing
Requests

PROS: Very powerful for modelling hardware contention and scheduling
strategies. Many efficient analysis techniques available.

CONS: Not suitable for modelling blocking, synchronization,
simultaneous resource possession and software contention in
general. Although Extended QNs provide some limited support
for the above, they are very restrictive and inaccurate.

- QN: Set of interconnected queues
- Queue = waiting area and servers
- Scheduling strategies(FCFS,PS,...)
- Single-class vs. multi-class
- Open, closed or mixed

© S. Kounev 39

PROS vs. CONS of Queueing Networks (QNs)

t1
t2

p1 p2

p3 p4

t1
t2

p1 p2

p3 p4
a). b).

PROS: Suitable both for qualitative and quantitative analysis.
Lend themselves very well to modelling blocking, synchronization,
simultaneous resource possession and software contention.

CONS: No direct means for modelling scheduling strategies. Not as many
algorithms/tools for efficient quantitative analysis are available as
for Queueing Networks.

- PN: places, tokens and transitions.
marking, transition enabling/firing

- CPNs: allow tokens of different colors
and transition modes

- GSPNs: allow timed transitions
- CGSPNs: CPNs + GSPNs

© S. Kounev 40

PROS vs. CONS of Petri Nets (PNs)

QUEUE DEPOSITORY

- Introduced by Falko Bause in 1993.
- Combine Queueing Networks and Petri Nets
- Allow integration of queues into places of PNs
- Ordinary vs. Queueing Places
- Queueing Place = Queue + Depository

PROS:

Combine the modelling power and expressiveness of QNs and PNs.

Easy to model synchronization, simultaneous resource possession,
asynchronous processing and software contention.

Allow the integration of hardware and software aspects.
CONS:

Analysis suffers the state space explosion problem.

© S. Kounev 41

Queueing Petri Nets (QPNs = QNs + PNs)

ACTUAL
POPULATION

INPUT OUTPUT

USER SPECIFIED
PART OF THE

SUBNET
GRAPHICAL NOTATION

FOR SUBNET PLACE

- Allow hierarchical model specification
- Subnet Place: contains a nested QPN
- Structured analysis methods alleviate the state space explosion problem

and enable larger models to be analyzed.

Analysis Tools for HQPNs

The HQPN-Tool from the
University of Dortmund.
Supports a number of structured
analysis methods.
Available free of charge for
non-commercial use.

© S. Kounev 42

Hierarchical Queueing Petri Nets (HQPNs)

QPME (http://www.dvs.tu-darmstadt.de/staff/skounev/QPME)

S. Kounev, C. Dutz and A. Buchmann“. QPME - Queueing Petri Net Modeling
Environment”. Proceedings of the 3rd International Conference on Quantitative
Evaluation of SysTems (QEST-2006), Riverside, USA, September 11-14,
September 2006.

TimeNET (http://pdv.cs.tu-berlin.de/~timenet/)

Zimmermann, J. Freiheit, R. German, and G. Hommel. “Petri Net Modelling and
Performability Evaluation with TimeNET 3.0”. In Proceedings of the 11th International
Conference on Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS’2000), Schaumburg, Illinois, USA, LNCS 1786, pages 188–202,
March 2000.

Möbius (http://www.mobius.uiuc.edu/)

T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and W. Sanders.
“The Möbius Modeling Environment: Recent Developments”. In Proceedings of the
1st International Conference on Quantitative Evaluation of Systems (QEST 2004),
Enschede, The Netherlands, pages 328–329, Sept. 2004.

43

Stochastic Petri Net Analysis Tools

SPNP (http://www.ee.duke.edu/~kst/software_packages.html)

C. Hirel, B. Tuffin, and K. Trivedi. “SPNP: Stochastic Petri Nets”. Version 6.0. In B.
Haverkort, H. Bohnenkamp, and C. Smith, editors, Computer performance evaluation:
Modelling tools and techniques; 11th International Conference; TOOLS 2000,
Schaumburg, Illinois, USA, LNCS 1786. Springer Verlag, 2000.

GreatSPN (http://www.di.unito.it/greatspn/index.html)

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor
and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation,
24(1-2):47–68, Nov. 1995.

Petri Nets Tool Database

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

44

Stochastic Petri Net Analysis Tools (2)

Oracle 9i DBS
Load Balancer

WLS 1

...

 Oracle 9i (9.0.1) Database Server
 Hosting the SPECjAppServer DB
 1,7 GHz AMD XP CPU, 1 GB RAM
 Running on Red Hat Linux 7.2

 WebLogic Server 7.0 Cluster
 Each node equipped with:
 AMD XP 2000+ CPU, 1 GB RAM
 Running on SuSE Linux 8.0

LAN

WLS 2

WLS N

Internet
Client 2

Client K

Client 1

...

Case study taken from “Performance Modeling of Distributed E-Business Applications using Queueing Petri Nets”. S. Kounev and
A. Buchmann. Proc. of the 2003 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
http://www.dvs1.informatik.tu-darmstadt.de/publications/pdf/03-ispass-QPNs.pdf

Case Study 2: Cust. App. of SPECjAppServer

We are interested in finding answers to the following questions:

What level of performance does the system provide under load?
Average response time, throughput and utilization = ?
Are there potential system bottlenecks?
How many application servers would be needed to guarantee
adequate performance?

Need also optimal values for the following configuration parameters:

Number of threads in WebLogic (WLS) thread pools
Number of connections in WLS database connection pools
Number of processes of the Oracle server instance

© S. Kounev 46

Capacity Planning Issues

1. Describe the types of requests (request classes) that arrive at
the system: NewOrder, ChangeOrder, OrderStatus, CustStatus.

2. Identify the hardware and software resources used by each
request class: HW: WLS-CPU, Network, DBS-CPU, DBS-Disk,
SW: WLS Thread, DB Connection, DBS Process.

3. Measure the total service time (service demand) of each request
class at each processing resource:

© S. Kounev 47

Workload Characterization

WLS-CPU DBS-PQ DBS-CPU DBS-I/O

DBS-Process-Pool

Client

Database Server

t1 t2 t3 t4 t5

WLS-Thread-Pool

DB-Conn-Poolx
x

x x x x x x x

c

x

c

t t
t

t t

p
p p

c
c c

x
x

p p

© S. Kounev 48

First Cut System Model

WLS-CPU DBS

t1 t2 t5

DB-Conn-Pool

Client

WLS-Thread-Pool

t
t t

x
x

x x

c
c c

t t

x x x x

c c

We isolate the database server and model it using a separate QPN,
represented by subnet place „DBS“ above.

The above QPN is called High-Level QPN (HLQPN) of our
hierarchical model.

© S. Kounev 49

Hierarchical System Model: High-Level QPN

DBS-PQ DBS-CPU DBS-I/O

DBS-Process-Pool

t3 t4

Actual Population

Input Output

tinput toutput
x x x x

x

x

x

x

x

p
p p

x

p
p

The nested DBS subnet of our HQPN - called Low-Level QPN (LLQPN).

Places Input, Output and Actual Population are standard for each subnet.

© S. Kounev 50

Hierarchical System Model: Low-Level QPN

Through analysis of the underlying Markov Chain, we can obtain for each
place, queue and depository its average token population N and
utilization U in steady state.

From the „Flow-In=Flow-Out“ Principle Places Client, WLS-CPU,
DBS-PQ, DBS-CPU and DBS-I/O have the same request throughput X.

For the rest of places, queues and depositories, we get:

The total end-to-end request response time is then:

Applying Little‘s Law to place Client, we get:

© S. Kounev 51

Model Analysis

Single request class – the NewOrder TX
80 concurrent clients with avg. client think time of 200ms
60 WLS Threads, 40 JDBC Connections, 30 Oracle processes

Analysis Results

Modelling Error

© S. Kounev 52

Scenario 1: Single Request Class

Analysis Results

Modelling Error

More contention for threads, but less contention for CPU time.

In both cases, we can reduce the number of DB connections and
DBS processes, since they are not effectively utilized.

53

Scenario 1a: Same, but only with 40 Threads

Two request classes – NewOrder and ChangeOrder
Some simplifications needed to avoid explosion of the Markov Chain
Assume that there are plenty of JDBC connections and DBS processes
Drop places DB-Conn-Pool and DBS-Process-Pool
20 clients: 10 NewOrder and 10 ChangeOrder, Avg. think time = 1 sec
Only 10 WLS Threads

© S. Kounev 54

Scenario 2: Multiple Request Classes

t2_1

t5

CLIENT
DBS

WLS 1

WLS 2

WLS n

WLS (n-1)

t2_2

t2_(n-1)

t2_n

t1_1

t1_2

t1_(n-1)

t1_n

x
x

x

x

x

x

x x

x x

x x

x x

x

x

x

x

x

x

We modify the HLQPN to include multiple WLS places
30 NewOrder clients with avg. think time of 1 sec
No contention for JDBC connections, DBS processes and WLS threads

© S. Kounev 55

Scenario 3: Multiple Application Servers

© S. Kounev 56

Scenario 3: Modelling Error

QPN models enable us to integrate both hardware and
software aspects of system behavior in the same model.

Combining the expressiveness of Queueing Networks and
Petri Nets, QPNs are not just powerful as a specification
mechanism, but are also very powerful as a performance
analysis and prediction tool.

Improved solution methods and software tools for QPNs
needed to enable larger models to be analyzed.

© S. Kounev 57

Conclusions from Case Study

SimQPN – Simulator for QPNs

Tool and methodology for analyzing QPNs using simulation.

Provides a scalable simulation engine optimized for QPNs.

Circumvents the state-space explosion problem.

Can be used to analyze models of realistic size and complexity.

Extremely light-weight and fast.

Portable across platforms.

Validated in a number of realistic scenarios.

• “SimQPN - a tool and methodology for analyzing queueing Petri net
models by means of simulation”,
Performance Evaluation, Vol. 63, No. 4-5, pp. 364-394, May 2006.

© S. Kounev 58

Case Study 3: SPECjAppServer2004

Corporate
Domain

Customer
Domain

Dealer
Domain

Dealers

Suppliers Manufacturing
Domain

Supplier
Domain

© S. Kounev 59

SPECjAppServer2004 Business Domains

MANUFACTURING DOMAIN

Planned Lines
Large Order Line

Parts Vehicles

- Create Large Order
- Schedule Work Order
- Update Work Order
- Complete Work Order

CUSTOMER DOMAIN
Order Entry Application

- Place Order
- Get Order Status
- Get Customer Status
- Cancel Order

CORPORATE DOMAIN
Customer, Supplier and

Parts Information

- Register Customer
- Determine Discount
- Check Credit

SUPPLIER DOMAIN

- Select Supplier
- Send Purchase Order
- Deliver Purchase Order

Purchase
Parts Deliver

Parts

SPECjAppServer2004 Application Design

Benchmark Components:

1. EJBs – J2EE application deployed on the
System Under Test (SUT)

2. Supplier Emulator – web application emulating
external suppliers

3. Driver – Java application emulating clients interacting
with the system and driving production lines

• RDBMS used for persistence

• Asynchronous-messaging used for inter-domain communication

• Throughput is function of chosen Transaction Injection Rate

• Performance metric is JOPS = JAppServerOpsPerSecond

© S. Kounev 61

SPECjAppServer2004 Application Design (2)

Web Container

Supplier
Emulator

Emulator
Servlet

Driver

Client JVM

HTTP / RMI

HTTP

HTTP

EJB X

BuyerSes

J2EE AppServer

EJB Y

ReceiverSes

EJB Z

SUT

© S. Kounev 62

Sample Deployment Environment (IBM)

© S. Kounev 63

Sample Deployment Environment (Sun)

64

Sample Deployment Environment (Sun)

65

Performance Modelling Methodology

1. Establish performance modelling objectives.

2. Characterize the system in its current state.

3. Characterize the workload.

4. Develop a performance model.

5. Validate, refine and/or calibrate the model.

6. Use model to predict system performance.

7. Analyze results and address modelling objectives.

S. Kounev. “Performance Modeling and Evaluation of Distributed

Component-Based Systems using Queueing Petri Nets”. IEEE

Transactions on Software Engineering, Vol. 32, No. 7, pp. 486-502, 2006.

© S. Kounev 66

Deployment Environment

© S. Kounev 67

1. Establish Modelling Objectives

Normal Conditions: 72 concurrent dealer clients (40 Browse, 16 Purchase,
16 Manage) and 50 planned production lines in the mfg domain.

Peak Conditions: 152 concurrent dealer clients (100 Browse, 26 Purchase,
26 Manage) and 100 planned production lines in the mfg domain.

Goals:

• Predict system performance under normal operating conditions with
4 and 6 application servers.

• Predict how much system performance would improve if the load
balancer is upgraded with a slightly faster CPU.

• Study the scalability of the system as the workload increases and
additional application server nodes are added.

• Determine which servers would be most utilized under heavy load
and investigate if they are potential bottlenecks.

© S. Kounev 68

2. Characterize the System

© S. Kounev 69

3. Characterize the Workload

1. Basic Components: Dealer Transactions and Work Orders.

3. Inter-Component Interactions:

2. Workload Classes: Browse, Purchase, Manage, WorkOrder and LgrOrder.

© S. Kounev 70

C = Client

LB = Load Balancer

DB = Database

AS = App. Server

3. Characterize the Workload (2)

Describe the processing steps (subtransactions).

3. Characterize the Workload (3)

Workload Service Demand Parameters (ms)

© S. Kounev 72

3. Characterize the Workload (4)

© S. Kounev 73

4. Develop a Performance Model
Queueing Petri Net

74

5. Validate [Refine, Calibrate]

Assume 2 AS nodes available.

Two Specific Validation Scenarios:

1: 20 B, 10 P, 10 M, 30 PL

2: 40 B, 20 P, 30 M, 50 PL

Max. Modelling Error:

• For Throughput: 8.1%

• For Utilization: 10.2%

• For Resp. Times: 12.9%

Note: Validation process iterative!

75

6. Predict System Performance

© S. Kounev 76

6. Predict System Performance (2)

© S. Kounev 77

6. Predict System Performance (3)

150 Browse Clients 200 Browse Clients

© S. Kounev 78

6. Predict System Performance (4)

79

6. Predict System Performance (4)

Sc.3: 300 B, 30 P, 30 M, 120 PL Max Error 16.8%

Sc.4: 270 B, 90 P, 60 M, 120 PL Max Error 15.2%

© S. Kounev 80

7. Analyze Results & Address Objectives

0 20 40 60 80 100

4AS / NORMAL

6AS / NORMAL

6AS / PEAK / ORIG. LB

6AS / PEAK / UPG. LB

8AS / HEAVY 1

8AS / HEAVY 2

8AS / HEAVY 3

8AS / HEAVY 4

LB-C AS-C DB-C

© S. Kounev 81

Benefits of using QPNs

1. QPN models allow the integration of hardware and software

aspects of system behavior.

2. Using QPNs, DCS can be modeled accurately.

3. The knowledge of the structure and behavior of QPNs can be

exploited for efficient simulation using SimQPN.

4. QPNs can be used to combine qualitative and quantitative

system analysis.

5. QPN models have an intuitive graphical representation

facilitating model development.

© S. Kounev 82

Summary & Conclusions from Case Study

Presented a systematic approach for performance prediction.

Studied a representative application and predicted its

performance under realistic load conditions.

Model predictions were validated against measurements on the

real system. The modelling error did not exceed 21.2%!

QPN models can be exploited for accurate performance

prediction in realistic scenarios.

Proposed methodology provides a powerful tool for sizing and

capacity planning.

© S. Kounev 83

References

“Performance Modeling of Distributed E-Business Applications using
Queueing Petri Nets”, S. Kounev and A. Buchmann. Proceedings of the
2003 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS).

“Performance Modeling and Evaluation of Large-Scale J2EE
Applications”, S. Kounev and A. Buchmann, Proceedings of the 29th
International CMG Conference on Resource Management and
Performance Evaluation of Enterprise Computing Systems, 2003.

“Performance Modeling and Evaluation of Distributed Component-Based
Systems using Queueing Petri Nets”, S. Kounev. IEEE Transactions on
Software Engineering, Vol. 32, No. 7, pp. 486-502, July 2006.

“J2EE Performance and Scalability - From Measuring to Predicting”,
S. Kounev. In Proceedings of the 2006 SPEC Benchmark Workshop,
Austin, Texas, January 23, 2006.

© S. Kounev 84

Further Reading

"Performance by Design: Computer Capacity Planning by Example“ by
D. Menascé, V.A.F. Almeida and L. W. Dowdy. Prentice Hall,
ISBN 0-13-090673-5, 2004

"Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction“ by S. Kounev,
Shaker Verlag, ISBN: 3832247130, 2005

"Scaling for E-Business: Technologies, Models, Performance, and
Capacity Planning“ by D. Menascé and V.A.F. Almeida, Prentice Hall,
ISBN 0-13-086328-9, 2000

“Capacity Planning for Web Performance: Metrics, Models and Methods“
by D. Menascé and V.A.F. Almeida, Prentice Hall, Upper Saddle River,
NJ, 1998.

© S. Kounev 85

Further Reading (2)

“Queueing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications” by G. Bolch, S. Greiner,
H. de Meer, K. Trivedi; Wiley-Interscience, 2 Edition,
ISBN: 0471565253, 2006

“Probability and Statistics with Reliability, Queuing and Computer
Science Applications” by K. S. Trivedi, John Wiley & Sons, Inc.,
Second edition, 2002.

© S. Kounev 86

Links to Further Related Tools

© S. Kounev 87

OMNeT++
See http://www.omnetpp.org/

Public-source, component-based, modular and open-architecture simulation environment with
strong GUI support and an embeddable simulation kernel.

DesmoJ
http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-J/index.html

A framework for discrete-event modelling and simulation

A Collection of Modelling and Simulation Resources
See http://www.idsia.ch/~andrea/simtools.html

JMeter
See http://jakarta.apache.org/jmeter/

Java-based tool for load testing client-server applications.

Faban benchmark harness and driver framework
See http://faban.sunsource.net/

List of open-source testing tools
See http://www.opensourcetesting.org

