Example

int **pp

int *pi

C and C++

3. Pointers — Structures

Alastair R. Beresford

University of Cambridge

Lent Term 2008

0x60

Bi g

Little

25

Pointers

» Computer memory is often abstracted as a sequence of bytes,
grouped into words

» Each byte has a unique address or index into this sequence

> The size of a word (and byte!) determines the size of addressable
memory in the machine

» A pointer in C is a variable which contains the memory address of
another variable (this can, itself, be a pointer)

» Pointers are declared or defined using an asterisk(*); for example:
char *pc; or int **ppi;

» The asterisk binds to the variable name, not the type definition; for
example char *pc,c;

» A pointer does not necessarily take the same amount of storage space
as the type it points to

Manipulating pointers

» The value “pointed to” by a pointer can be “retrieved” or
dereferenced by using the unary * operator; for example:
int *p = ...
int x = *p;

» The memory address of a variable is returned with the unary
ampersand (&) operator; for example
int *p = &x;

» Dereferenced pointer values can be used in normal expressions; for
example: *pi += 5; or (xpi)++

Example

1
2
3
4
5
6
7
8
9

10
11
12
13

14}

#include <stdio.h>

int main(void) {

int x=1,y=2;
int *pi;
int **ppi;

pi = &x; ppi = π

printf ("%p, %p, %d=%d=%d\n",ppi,pi,x,*pi,**ppi);
pi = &y;

printf ("%p, %p, %d=%d=%d\n",ppi,pi,y,*pi,**ppi);

return O;

Pointer arithmetic

Pointer arithmetic can be used to adjust where a pointer points; for
example, if pc points to the first element of an array, after executing
pc+=3; then pc points to the fourth element

A pointer can even be dereferenced using array notation; for example
pc[2] represents the value of the array element which is two elements
beyond the array element currently pointed to by pc

» In summary, for an array c, *(c+i)=cl[i] and c+i=&c[i]

» A pointer is a variable, but an array name is not; therefore pc=c and

pc++ are valid, but c=pc and c++ are not

Pointers and arrays

>

A C array uses consecutive memory addresses without padding to
store data

An array name (without an index) represents the memory address of
the beginning of the array; for example:

char c[10];

char *pc = c;

Pointers can be used to “index” into any element of an array; for
example:

int i[10];

int *pi = &i[5];

Example

1 #include <stdio.h>

2

3 int main(void) {

4
5
6
7
8
9

10
11

12}

char str[] = "A string.";
char *pc = str;

printf ("%c %c %c\n",str[0],*pc,pcl[3]);
pc += 2;
printf ("%c %c %c\n",*pc, pcl2], pcl5]);

return O;

25

25

Pointers as function arguments Example

» Recall that all arguments to a function are copied, i.e.
pa.ss.ediby—value; modification of the local value does not affect the > Compare supi (a,b) with swp2(&a,&b):
origina

» In the second lecture we defined functions which took an array as an

argument; for example void reverse (char s[]) 1 void swpl(int x,int y) 1 void swp2(int *px,int *py)
» Why, then, does reverse affect the values of the array after the 2 4 . 2 1 .
: :) . 3 int temp = Xx; 3 int temp = *px;
function returns (i.e. the array values haven't been copied)? R . wpx = pys
> because s is a pointer to the start of the array sy = t(;mp; 5 *py = tem;’>;
» Pointers of any type can be passed as parameters and return types of 6 F 6 F
functions
» Pointers allow a function to alter parameters passed to it
9/25 10 /25
Arrays of pointers Example
» C allows the creation of arrays of pointers; for example
int *al5]; argv: argv[0] ™ prognane\ 0
» Arrays of pointers are particularly useful with strings | L____|]
» An example is C support of command line arguments: argc: 3 argv[1] = Tirstargi0
int main(int argc, char *argv(l) { ... }» || [T T77
. . . argv([2] ™ secondar g\ 0
> In this case argv is an array of character pointers, and argc tellsthe =% "= | |
programmer the length of the array argv[3] | NULL

11/25 12/25

Multi-dimensional arrays

» Multi-dimensional arrays can be declared in C; for example:
int i[5][10];

» Values of the array can be accessed using square brackets; for
example: i[3][2]

» When passing a two dimensional array to a function, the first
dimension is not needed; for example, the following are equivalent:

void f(int i[5][10]) { ... }
void f(int i[J[10]) { ... }
void f(int (*xi)[10]) { ... }
» In arrays with higher dimensionality, all but the first dimension must
be specified
13/25
Example

1 void sort(int al[], const int len,

2 int (*compare) (int, int))
3 {

4 int i,j,tmp;

5 for(i=0;i<len-1;i++)
6 for(j=0;j<len-1-i;j++)

7 if ((*compare) (al[jl,alj+11))

8 tmp=aljl, aljl=alj+1], alj+1]=tmp;
9}

10

11 int inc(int a, int b) {

12 return a > b 7 1 : 0

13 F

15/25

Pointers to functions

» C allows the programmer to use pointers to functions
» This allows functions to be passed as arguments to functions

» For example, we may wish to parameterise a sort algorithm on
different comparison operators (e.g. lexicographically or numerically)

» If the sort routine accepts a pointer to a function, the sort routine can
call this function when deciding how to order values

14 /25
Example
1 #include <stdio.h>
2 #include "example8.h"
3
4 int main(void) {
5 int al] = {1,4,3,2,5};
6 unsigned int len = 5;
7 sort(a,len,inc); //or sort(a,len,&inc);
8
9 int *pa = a; //C99
10 printf("[");
11 while (len--)
12 printf ("%d%s",*pat+,len?" ":"");
13 printf("]J\n");
14
15 return O;
16 F
16 /25

The void * pointer

vV v.v Y

v

v

C has a “typeless” or “generic” pointer: void *p

This can be a pointer to anything

This can be useful when dealing with dynamic memory
Enables “polymorphic” code; for example:

1 sort(void *p, const unsigned int len,

2 int (*comp) (void *,void *));

However this is also a big “hole” in the type system

Therefore void * pointers should only be used where necessary

17 /25

Structure definition

To define an instance of the structure circle we write
struct circle c;

A structure can also be initialised with values:
struct circle ¢ = {12, 23, 5};

An automatic, or local, structure variable can be initialised by
function call:
struct circle ¢ = circle_init();

A structure can declared, and several instances defined in one go:
struct circle {int x; int y; unsigned int r;} a, b;

19/25

Structure declaration

vy VY v Vv Vv

v

v

A structure is a collection of one or more variables
It provides a simple method of abstraction and grouping
A structure may itself contain structures

A structure can be assigned to, as well as passed to, and returned
from functions

We declare a structure using the keyword struct

For example, to declare a structure circle we write
struct circle {int x; int y; unsigned int r;};

Once declared, a structure creates a new type

Member access

v

A structure member can be accessed using ‘.’ notation:

structname. member, for example: pt.x

» Comparison (e.g. pt1 > pt2) is undefined

» Pointers to structures may be defined; for example:

struct circle *pc

When using a pointer to a struct, member access can be achieved
with the *." operator, but can look clumsy; for example: (¥pc) .x

Alternatively, the ‘->" operator can be used; for example: pc->x

18/25

20 /25

Self-referential structures

» A structure declaration can contain a member which is a pointer

>

whose type is the structure declaration itself

This means we can build recursive data structures; for example:

1 struct tree {

int val;

struct tree *xleft;
struct tree *right;

}

1 struct link {

2 int val;

3 struct link *next;
4

}

aoBr W N

Bit fields

v

v

v

v

v Y

Bit fields allow low-level access to individual bits of a word

Useful when memory is limited, or to interact with hardware

21/25

A bit field is specified inside a struct by appending a declaration with

a colon (:) and number of bits; for example:

struct fields { int f1 : 2; int f2 : 3;};

Members are accessed in the same way as for structs and unions
A bit field member does not have an address (no & operator)

Lots of details about bit fields are implementation specific:
» word boundary overlap & alignment, assignment direction, etc.

23 /25

Unions

v

vV V. v v .Y

A union variable is a single variable which can hold one of a number
of different types

A union variable is declared using a notation similar to structures;
for example: union u { int i; float f; char c;};

The size of a union variable is the size of its largest member
The type held can change during program execution
The type retrieved must be the type most recently stored

Member access to unions is the same as for structures (‘." and ‘->")

Unions can be nested inside structures, and vice versa

Examp|e (adapted from K&R)

1 struct { /* a compiler symbol table */

2
3
4

© o N o u

10
11
12
13
14

char *name;
struct {
unsigned int
unsigned int
unsigned int

} flags;
int utype;
union {
int ival; /=*
float fval;
char *sval;

}ou;

15 } symtab[NSYM];

is_keyword : 1;
is_extern : 1;
is_static : 1;

accessed as symtab[i].u.ival */

22 /25

24 /25

Exercises

1. If p is a pointer, what does p[-2] mean? When is this legal?

2. Write a string search function with a declaration of
char *strfind(const char *s, const char *f); which returns a
pointer to first occurrence of s in £ (and NULL otherwise)

3. If pis a pointer to a structure, write some C code which uses all the
following code snippets: “++p->i", “p++->i", “kp->i", “xp->i++",
“(xp->1i)++" and “xp++->i"; describe the action of each code snippet

4. Write a program calc which evaluates a reverse Polish expression given on
the command line; for example

$ calc 2 34 + %
should print 14 (K&R Exercise 5-10)

25 /25

