Internet Routing Protocols
 Lecture 02 Intra-domain Routing

Advanced Systems Topics

Lent Term, 2008

Timothy G. Griffin
Computer Lab
Cambridge UK

Shortest Path

- Generalize distance to weighted setting
- Digraph $G=(V, E)$ with weight function w : $E \rightarrow R$ (assigning real values to edges)
- Weight of path $p=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{\mathrm{k}}$ is

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

- Shortest path = a path of the minimum weight

Shortest-Path Problems

- Shortest-Path problems
- Single-source (single-destination). Find a shortest path from a given source (vertex s) to each of the vertices.
- Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

Negative Weights and Cycles?

- Negative edges are OK, as long as there are no negative weight cycles (otherwise paths with arbitrary small "lengths" would be possible)
- Shortest-paths can have no cycles (otherwise we could improve them by removing cycles)
- Any shortest-path in graph G can be no longer than $n-$ 1 edges, where n is the number of vertices

Relaxation

- For each vertex v in the graph, we maintain $v . \mathbf{d}()$, the estimate of the shortest path from s, initialized to ∞ at the start
- Relaxing an edge (u, v) means testing whether we can improve the shortest path to v found so far by going through u

Dijkstra's Algorithm

- Non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights $=1$, one can simply use BFS)
- Use Q, a priority queue ADT keyed by $v . \mathrm{d}()$ (BFS used FIFO queue, here we use a PQ, which is reorganized whenever some d decreases)
- Basic idea
- maintain a set S of solved vertices
- at each step select "closest" vertex u, add it to S, and relax all edges from u

Dijkstra's Pseudo Code

- Input: Graph G, start vertex s

```
Dijkstra(G,s)
    for each vertex u G G.V()
        u.setd(\infty)
        u.setparent(NIL)
    s.setd(0)
    S \leftarrow\varnothing // Set S is used to explain the algorithm
    Q.init(G.V()) // Q is a priority queue ADT
    while not Q.isEmpty()
        u}\leftarrowQ.extractMin(
        S \leftarrowS U{u}
        for each v G u.adjacent() do relaxing
            Q.modifyKey(v) edges
```


Dijkstra's Example

Dijkstra (G,s)
for each vertex $u \in G . V()$ u.setd (∞)
u.setparent (NIL)
s.setd (0)
$S \leftarrow \varnothing$
Q.init(G.V())

while not Q.isEmpty()
$u \leftarrow$ Q.extractMin()
$S \leftarrow S \cup\{u\}$
for each $v \in u . a d j a c e n t()$ do
Relax (u, v, G)
Q.modifyKey (v)

Dijkstra's Example (2)

Dijkstra(G,s)
for each vertex $u \in G . V()$
u.setd (∞)
u.setparent (NIL)
s.setd (0)
$S \leftarrow \varnothing$
Q.init(G.V())
while not Q.isEmpty()
$u \leftarrow$ Q.extractMin()
$S \leftarrow S \cup\{u\}$
for each $v \in u . a d j a c e n t()$ do
Relax (u, v, G)
Q.modifyKey (v)

Dijkstra's Example (3)

```
Dijkstra(G,s)
    for each vertex u \in G.V()
        u.setd(\infty)
        u.setparent(NIL)
    s.setd(0)
    S}\leftarrow
    Q.init(G.V())
    while not Q.isEmpty()
        u \leftarrow Q.extractMin()
        S}\leftarrowS\cup{u
        for each v }\in\mathrm{ u.adjacent() do
            Relax(u, v, G)
            Q.modifyKey(v)
```


Dijkstra's Running Time

- Extract-Min executed $|V|$ time
- Decrease-Key executed $|E|$ time
- Time $=|V| T_{\text {Extract-Min }}+|E| T_{\text {Decrease-Key }}$
- T depends on different Q implementations

Q	$\mathrm{T}($ Extract- Min)	T(Decrease- Key)	Total
array	$O(V)$	$O(1)$	$O\left(V^{2}\right)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	$O(\lg V)$	$O(1)$ (amort.)	$O(V \lg V+E)$

Bellman-Ford Algorithm

- Dijkstra's doesn't work when there are negative edges:
- Intuition - we can not be greedy any more on the assumption that the lengths of paths will only increase in the future
- Bellman-Ford algorithm detects negative cycles (returns false) or returns the shortest path-tree

Bellman-Ford Algorithm

Bellman-Ford (G, S)
01 for each vertex $u \in G . V()$
02 u.setd (∞)
03 u.setparent(NIL)
04 s.setd(0)
05 for i $\leftarrow 1$ to |G.V()|-1 do
06 for each edge (u,v) \in G.E() do
Relax (u, v, G)
for each edge $(u, v) \in G . E()$ do
if v.d() > u.d() + G.w(u,v) then
return false
return true

Bellman-Ford Example

Bellman-Ford Example

- Bellman-Ford running time:
$-(|\mathrm{V}|-1)|\mathrm{E}|+|\mathrm{E}|=\Theta(\mathrm{VE})$

RIP

- RIP = Routing Information Protocol
- Does not scale well, designed for small LANs
- Is a "distance vector protocol"
- Very simple, easy to configure, easy to implement
- Is most widely used routing protocol

Read the code! http://www.quagga.net/

RIP History

- Developed at Xerox PARC in early 1980s
- Reimplemented in Berkeley UNIX
- 1988 : Standardized in RFC 1058
- 1994 : RIP-2, RFC 1723
- Support CIDR addressing
- Authentication
- 1997 : RIPng for IPv6, RFC 2080

RIP Routing Table

Destination	Next Hop	Metric
Net A	Router 1	3
Net B	Direct	0
Net C, Host 3	Router 2	5
Default	Router 1	0

A destination is either a network, a host, or a "gateway of last resort"

The next hop is either a directly connected network or a directly connected router

Measures how many
"hops away" is the destination

Basic RIP Protocol

Periodically exchange list

Basic RIP Protocol (cont.)

Neighbor \mathbf{N}

Counting to Infinity (and beyond!)

B-DFails	A	B	C	D
	3,B	2,D	3, B	1,
	3,D	inf	3,B	1,
	4,C	4,C	4,A	1,
	5,C	5,C	5,A	1,
	6,C	6,C	6,A	1,
	7,C	7,C	6,D	1,
	7,C	7,C	6,D	1,

From RFC 1058

OSPF

- OSPF =Open Shortest Path First
- Developed to address shortcomings of RIP
- has rapid, loop-free convergence
- does not count to infinity
- Link metrics between 0 and 65,535 , no limit on path metric
- Is a "link state protocol"
- Has reputation for being complex
- Scales well
- Defined in RFCs 1247 (1991), 1583 (1994), 2178 (1997), 2328 (1998).

That's Easy!

Not so fast!
RIP RFC 1058: 33 pages
OSPF RFC 2328 : 244 pages

Much of this complexity is related to the synchronization of the distributed, replicated link state database.
Plus network modeling

Scalability: OSPF Areas

LS database unique within an area

- Decentralize administration
- Reduce memory usage per router
- Reduce bandwidth used by flooding

Special OSPF protocol to exchange routes between areas. This is a "distance vector" protocol!

Link-state vs. vectoring

- Link state has faster convergence, but requires more memory, CPU, and message overhead
- Vectoring requires few resources, but convergence can be very slow. Counting to infinity can be a problem.
- Both protocols can induce transient forwarding loops during convergence
- This is one of the issues addressed by Cisco's EIGRP.

