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Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function w:

E → R (assigning real values to edges)
• Weight of path p = v1 → v2 → … → vk is

• Shortest path = a path of the minimum
weight
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Some slides of this lecture are taken from 
Alon Efrat’s Introduction to algorithms. 
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Shortest-Path Problems

• Shortest-Path problems
– Single-source (single-destination). Find a

shortest path from a given source (vertex s) to
each of the vertices.

– Single-pair. Given two vertices, find a shortest
path between them. Solution to single-source
problem solves this problem efficiently, too.

– All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

Negative Weights and Cycles?

• Negative edges are OK, as long as there are no
negative weight cycles (otherwise paths with
arbitrary small “lengths” would be possible)

• Shortest-paths can have no cycles (otherwise we
could improve them by removing cycles)
– Any shortest-path in graph G can be no longer than n –

1 edges, where n is the number of vertices
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Relaxation

• For each vertex v in the graph, we maintain v.d(),
the estimate of the shortest path from s, initialized
to ∞ at the start

• Relaxing an edge (u,v) means testing whether we
can improve the shortest path to v found so far by
going through u
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Relax(u,v)

Relax (u,v,G)
if v.d() > u.d()+G.w(u,v) then
   v.setd(u.d()+G.w(u,v))
   v.setparent(u)

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, one

can simply use BFS)
• Use Q, a priority queue ADT keyed by v.d() (BFS

used FIFO queue, here we use a PQ, which is re-
organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, and

relax all edges from u
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Dijkstra’s Pseudo Code

• Input: Graph G, start vertex s

relaxing
edges

Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02    u.setd(∞)
03    u.setparent(NIL)
04 s.setd(0)
05 S ← ∅                       // Set S is used to explain the algorithm
06 Q.init(G.V())  // Q is a priority queue ADT
07 while not Q.isEmpty()
08    u ← Q.extractMin()
09    S ← S ∪ {u}
10    for each v ∈ u.adjacent() do
11       Relax(u, v, G)
12       Q.modifyKey(v)

Dijkstra’s Example
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Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02    u.setd(∞)
03    u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08    u ← Q.extractMin()
09    S ← S ∪ {u}
10    for each v ∈ u.adjacent() do
11       Relax(u, v, G)
12       Q.modifyKey(v)
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Dijkstra’s Example (2)
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Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02    u.setd(∞)
03    u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08    u ← Q.extractMin()
09    S ← S ∪ {u}
10    for each v ∈ u.adjacent() do
11       Relax(u, v, G)
12       Q.modifyKey(v)

Dijkstra’s Example (3)
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Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02    u.setd(∞)
03    u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08    u ← Q.extractMin()
09    S ← S ∪ {u}
10    for each v ∈ u.adjacent() do
11       Relax(u, v, G)
12       Q.modifyKey(v)



6

Dijkstra’s Running Time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key
• T depends on different Q implementations

Ο(V lgV + E)Ο(1) (amort.)Ο(lg V)Fibonacci heap
Ο(E lg V)Ο(lg V)Ο(lg V)binary heap
Ο(V 2)Ο(1)Ο(V)array

TotalT(Decrease-
Key)

T(Extract-
Min)

Q

Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are
negative edges:
– Intuition – we can not be greedy any more on

the assumption that the lengths of paths will
only increase in the future

• Bellman-Ford algorithm detects negative
cycles (returns false) or returns the shortest
path-tree
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Bellman-Ford Algorithm

Bellman-Ford(G,s)
01 for each vertex u ∈ G.V()
02    u.setd(∞)
03    u.setparent(NIL)
04 s.setd(0)
05 for i ← 1 to |G.V()|-1 do
06     for each edge (u,v) ∈ G.E() do
07        Relax (u,v,G)
08 for each edge (u,v) ∈ G.E() do
09     if v.d() > u.d() + G.w(u,v) then
10        return false
11 return true

Bellman-Ford Example
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Bellman-Ford Example
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• Bellman-Ford running time:
– (|V|-1)|E| + |E| = Θ(VE)
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RIP
• RIP = Routing Information Protocol

• Does not scale well, designed for small LANs

• Is a “distance vector protocol”

• Very simple, easy to configure, easy to implement

• Is most widely used routing protocol

Read the code!     http://www.quagga.net/
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RIP History
• Developed at Xerox PARC in early 1980s
• Reimplemented in Berkeley UNIX

• 1988 : Standardized in RFC 1058

• 1994 : RIP-2, RFC 1723
– Support CIDR addressing

– Authentication
• 1997 : RIPng for IPv6, RFC 2080
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RIP Routing Table
Destination Next Hop Metric

Net A
Net B
Net C, Host 3

Router 1
Direct
Router 2
Router 1Default

3

5
0

A destination is 
either a network, 
a host, or a “gateway 
of last resort”

The next hop is 
either a directly
connected network or a 
directly connected router

Measures how many
“hops away” is the 
destination 

0
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 Basic RIP Protocol
Periodically exchange list 
of destinations and metrics 
with all neighboring routers

Dest. Metric

A
B
C

3
0
5

Dest. Metric

A
E
F

1
2
0

RIP routers exchange
their entire “distance
vector” every 30 
seconds

20

 Basic RIP Protocol (cont.)

c

Neighbor N 

Is Dest. A in my RIP Table?

Receive 

Dest. Metric

A m

From Neighbor N

Dest. Metric

A m + c

Nxt Hop

N

Add

to RIP table 

Is m + c less than current 
metric for Dest. A? 

NO

Yes

YesDest. Metric

A m + c

Nxt Hop

N

Replace current entry with

in RIP table 

Is N my next hop for Dest. A and
m + c is not the current  metric? 

NO

Yes

Trust your neighbor...
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Counting to Infinity (and beyond!)

From RFC 1058

D

C

B
A

Target 
network

1

1

1

1
1

5

1,_6,D7,C7,C
1,_6,D7,C7,C
1,_6,A6,C6,C
1,_5,A5,C5,C
1,_4,A4,C4,C
1,_3,Binf3,D
1,_3, B2,D3,B
DCBA

B-D
Fails
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OSPF
• OSPF =Open Shortest Path First
• Developed to address shortcomings of RIP

– has rapid, loop-free convergence
– does not count to infinity

• Link metrics between 0 and 65,535, no limit on path metric
• Is a “link state protocol”
• Has reputation for being complex
• Scales well
• Defined in RFCs 1247 (1991), 1583 (1994), 2178 (1997), 2328 (1998).
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Link State Database
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Each Router has a database representing the entire network
that is constructed from the local knowledge at each router
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Building OSPF Routing Table

Compute locally using Link State Database! 
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Dijkstra
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That’s Easy!

Not so fast!  

RIP RFC 1058 : 33 pages

OSPF RFC 2328 : 244 pages

Much of this 
complexity is 
related to the
synchronization of
the distributed, 
replicated link state
database.
Plus network 
modeling ….

Distance Vector vs. Link State….

Hierarchical OSPF
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Area
   1

Area
   2

Area
   3

Scalability: OSPF Areas

Area 0

Area
   K...

LS database unique within an area 

Special OSPF
protocol to 
exchange routes
between areas. 
This is a “distance
vector” protocol!

• Decentralize
administration

• Reduce memory
usage per router

• Reduce bandwidth
used by flooding
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Link-state vs. vectoring

• Link state has faster convergence, but requires more
memory, CPU, and message overhead

• Vectoring requires few resources, but convergence
can be very slow.  Counting to infinity can be a
problem.

• Both protocols can induce transient forwarding
loops during convergence
– This is one of the issues addressed by Cisco’s EIGRP.


