

Shortest-Path Problems

- Shortest-Path problems
 - Single-source (single-destination). Find a shortest path from a given source (vertex *s*) to each of the vertices.
 - **Single-pair.** Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
 - All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

Dijkstra's Algorithm

- Non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights = 1, one can simply use BFS)
- Use *Q*, a priority queue ADT keyed by *v*.**d**() (BFS used FIFO queue, here we use a PQ, which is reorganized whenever some **d** decreases)
- Basic idea
 - maintain a set *S* of solved vertices
 - at each step select "closest" vertex u, add it to S, and relax all edges from u

• Extract-Min ex	ecuted V time	e	
• Decrease-Key	executed $ E $ time	me	
• Time = $ V T_{\text{Ext}}$	$_{\rm ract-Min} + E T_{\rm D}$	ecrease-Key	
• T depends on d	lifferent O imp	lementations	
-	< 1		
-			
Q	T(Extract-	T(Decrease-	Total
Q	T(Extract- Min)	T(Decrease- Key)	Total
Q array	T(Extract- Min) O(V)	T(Decrease- Key) <i>O</i> (1)	Total $O(V^2)$
Q array binary heap	T(Extract- Min) O(V) O(lg V)	T(Decrease- Key) <i>O</i> (1) <i>O</i> (lg <i>V</i>)	$\begin{array}{ c c c }\hline Total \\\hline O(V^2) \\\hline O(E \lg V) \\\hline \end{array}$

