
1

Internet Routing Protocols
Lecture 02

Intra-domain Routing

Timothy G. Griffin
 Computer Lab
 Cambridge UK

Advanced Systems Topics

Lent Term, 2008

Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function w:

E → R (assigning real values to edges)
• Weight of path p = v1 → v2 → … → vk is

• Shortest path = a path of the minimum
weight

1

1

1

() (,)
k

i i

i

w p w v v
!

+

=

="

Some slides of this lecture are taken from
Alon Efrat’s Introduction to algorithms.

2

Shortest-Path Problems

• Shortest-Path problems
– Single-source (single-destination). Find a

shortest path from a given source (vertex s) to
each of the vertices.

– Single-pair. Given two vertices, find a shortest
path between them. Solution to single-source
problem solves this problem efficiently, too.

– All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

Negative Weights and Cycles?

• Negative edges are OK, as long as there are no
negative weight cycles (otherwise paths with
arbitrary small “lengths” would be possible)

• Shortest-paths can have no cycles (otherwise we
could improve them by removing cycles)
– Any shortest-path in graph G can be no longer than n –

1 edges, where n is the number of vertices

3

Relaxation

• For each vertex v in the graph, we maintain v.d(),
the estimate of the shortest path from s, initialized
to ∞ at the start

• Relaxing an edge (u,v) means testing whether we
can improve the shortest path to v found so far by
going through u

5
u v

vu

2

2

9

5 7

Relax(u,v)

5
u v

vu

2

2

6

5 6

Relax(u,v)

Relax (u,v,G)
if v.d() > u.d()+G.w(u,v) then
 v.setd(u.d()+G.w(u,v))
 v.setparent(u)

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, one

can simply use BFS)
• Use Q, a priority queue ADT keyed by v.d() (BFS

used FIFO queue, here we use a PQ, which is re-
organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, and

relax all edges from u

4

Dijkstra’s Pseudo Code

• Input: Graph G, start vertex s

relaxing
edges

Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
03 u.setparent(NIL)
04 s.setd(0)
05 S ← ∅ // Set S is used to explain the algorithm
06 Q.init(G.V()) // Q is a priority queue ADT
07 while not Q.isEmpty()
08 u ← Q.extractMin()
09 S ← S ∪ {u}
10 for each v ∈ u.adjacent() do
11 Relax(u, v, G)
12 Q.modifyKey(v)

Dijkstra’s Example

∞ ∞

∞ ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

10 ∞

5 ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
03 u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08 u ← Q.extractMin()
09 S ← S ∪ {u}
10 for each v ∈ u.adjacent() do
11 Relax(u, v, G)
12 Q.modifyKey(v)

5

Dijkstra’s Example (2)

u v
8 14

5 7

0s

yx

10

5

1

2 3 9
4 67

2

8 13

5 7

0s

u v

yx

10

5

1

2 3 9
4 67

2

Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
03 u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08 u ← Q.extractMin()
09 S ← S ∪ {u}
10 for each v ∈ u.adjacent() do
11 Relax(u, v, G)
12 Q.modifyKey(v)

Dijkstra’s Example (3)

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
03 u.setparent(NIL)
04 s.setd(0)
05 S ← ∅
06 Q.init(G.V())
07 while not Q.isEmpty()
08 u ← Q.extractMin()
09 S ← S ∪ {u}
10 for each v ∈ u.adjacent() do
11 Relax(u, v, G)
12 Q.modifyKey(v)

6

Dijkstra’s Running Time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key
• T depends on different Q implementations

Ο(V lgV + E)Ο(1) (amort.)Ο(lg V)Fibonacci heap
Ο(E lg V)Ο(lg V)Ο(lg V)binary heap
Ο(V 2)Ο(1)Ο(V)array

TotalT(Decrease-
Key)

T(Extract-
Min)

Q

Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are
negative edges:
– Intuition – we can not be greedy any more on

the assumption that the lengths of paths will
only increase in the future

• Bellman-Ford algorithm detects negative
cycles (returns false) or returns the shortest
path-tree

7

Bellman-Ford Algorithm

Bellman-Ford(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
03 u.setparent(NIL)
04 s.setd(0)
05 for i ← 1 to |G.V()|-1 do
06 for each edge (u,v) ∈ G.E() do
07 Relax (u,v,G)
08 for each edge (u,v) ∈ G.E() do
09 if v.d() > u.d() + G.w(u,v) then
10 return false
11 return true

Bellman-Ford Example

5

∞ ∞

∞ ∞

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

6 ∞

7 ∞

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

5

6 4

7 2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

5

2 4

7 2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

5

8

Bellman-Ford Example

2 4

7 −2

0s

zy

6

7

8
-3

7
2

9

-2
xt

-4

• Bellman-Ford running time:
– (|V|-1)|E| + |E| = Θ(VE)

5

16

RIP
• RIP = Routing Information Protocol

• Does not scale well, designed for small LANs

• Is a “distance vector protocol”

• Very simple, easy to configure, easy to implement

• Is most widely used routing protocol

Read the code! http://www.quagga.net/

9

17

RIP History
• Developed at Xerox PARC in early 1980s
• Reimplemented in Berkeley UNIX

• 1988 : Standardized in RFC 1058

• 1994 : RIP-2, RFC 1723
– Support CIDR addressing

– Authentication
• 1997 : RIPng for IPv6, RFC 2080

18

RIP Routing Table
Destination Next Hop Metric

Net A
Net B
Net C, Host 3

Router 1
Direct
Router 2
Router 1Default

3

5
0

A destination is
either a network,
a host, or a “gateway
of last resort”

The next hop is
either a directly
connected network or a
directly connected router

Measures how many
“hops away” is the
destination

0

10

19

 Basic RIP Protocol
Periodically exchange list
of destinations and metrics
with all neighboring routers

Dest. Metric

A
B
C

3
0
5

Dest. Metric

A
E
F

1
2
0

RIP routers exchange
their entire “distance
vector” every 30
seconds

20

 Basic RIP Protocol (cont.)

c

Neighbor N

Is Dest. A in my RIP Table?

Receive

Dest. Metric

A m

From Neighbor N

Dest. Metric

A m + c

Nxt Hop

N

Add

to RIP table

Is m + c less than current
metric for Dest. A?

NO

Yes

YesDest. Metric

A m + c

Nxt Hop

N

Replace current entry with

in RIP table

Is N my next hop for Dest. A and
m + c is not the current metric?

NO

Yes

Trust your neighbor...

11

21

Counting to Infinity (and beyond!)

From RFC 1058

D

C

B
A

Target
network

1

1

1

1
1

5

1,_6,D7,C7,C
1,_6,D7,C7,C
1,_6,A6,C6,C
1,_5,A5,C5,C
1,_4,A4,C4,C
1,_3,Binf3,D
1,_3, B2,D3,B
DCBA

B-D
Fails

22

OSPF
• OSPF =Open Shortest Path First
• Developed to address shortcomings of RIP

– has rapid, loop-free convergence
– does not count to infinity

• Link metrics between 0 and 65,535, no limit on path metric
• Is a “link state protocol”
• Has reputation for being complex
• Scales well
• Defined in RFCs 1247 (1991), 1583 (1994), 2178 (1997), 2328 (1998).

12

23

Link State Database

A

D E

C

B
100

100 20

20

80

80

20
20 10

10

10

10

10
10

 ME

Each Router has a database representing the entire network
that is constructed from the local knowledge at each router

B

D

A

C

80100

20

24

Building OSPF Routing Table

Compute locally using Link State Database!

A

D E

C

B
100

100 20

20

80

80

20
20 10

10

10

10

10
10

 ME

50

30

20 30

Dijkstra
Dest. Nxt Hop Metric

B D 50
C D

D
D

D
E

30
20
30

13

25

That’s Easy!

Not so fast!

RIP RFC 1058 : 33 pages

OSPF RFC 2328 : 244 pages

Much of this
complexity is
related to the
synchronization of
the distributed,
replicated link state
database.
Plus network
modeling ….

Distance Vector vs. Link State….

Hierarchical OSPF

14

27

Area
 1

Area
 2

Area
 3

Scalability: OSPF Areas

Area 0

Area
 K...

LS database unique within an area

Special OSPF
protocol to
exchange routes
between areas.
This is a “distance
vector” protocol!

• Decentralize
administration

• Reduce memory
usage per router

• Reduce bandwidth
used by flooding

28

Link-state vs. vectoring

• Link state has faster convergence, but requires more
memory, CPU, and message overhead

• Vectoring requires few resources, but convergence
can be very slow. Counting to infinity can be a
problem.

• Both protocols can induce transient forwarding
loops during convergence
– This is one of the issues addressed by Cisco’s EIGRP.

