Internet Routing Protocols Lecture 01

Advanced Systems Topics

Lent Term, 2008

Timothy G. Griffin Computer Lab Cambridge UK

IP routing is the little bit-o-smarts left in the IP network layer

- Dynamic Routing protocols are used to implement and maintain connectivity in the Internet.
- Which protocols are used?
- How do they work?
- How do they behave?
- What are some of the fundamental tradeoffs in the design space of routing protocols?

Outline

- Lecture 1 : Routing vs. Forwarding. Internet routing architecture
- Lecture 2: Intra-domain routing with "shortest paths". Link-state vs. distancevector.
- Lecture 3 : Inter-domain routing. The Border Gateway Protocol (BGP)
- Lecture 4 : BGP continued
- Lecture 5 : BGP dynamics
- Lecture 6 : BGP routing anomalies

Routers Talking to Routers (The "control plane")

- Routing computation is distributed among routers within a routing domain
- Computation of best next hop based on routing information is the most CPU/memory intensive task on a router
- Routing messages are <u>usually</u> not routed, but exchanged via layer 2 between physically adjacent routers (internal BGP and multi-hop external BGP are exceptions)

Technology of Distributed Routing

Link State

- Topology information is <u>flooded</u> within the routing domain
- Best end-to-end paths are computed locally at each router.
- Best end-to-end paths determine next-hops.
- Based on minimizing some notion of distance
- Works only if policy is <u>shared</u> and <u>uniform</u>
- Examples: OSPF, IS-IS

Vectoring

- Each router knows little about network topology
- Only best next-hops are chosen by each router for each destination network.
- Best end-to-end paths result from composition of all nexthop choices
- Does not require any notion of distance
- Does not require uniform policies at all routers
- Examples: RIP, BGP

All Hail the IP Datagram! 01234567890123456789012345678901 |Version| IHL | Service Type | Total Length Identification |Flags| Fragment Offset | | Time to Live | Protocol | Header Checksum | D Source Address Ε **Destination Address** | Padding | ... up to 65,515 octets of data ... shaded fields little-used today 1981, RFC 791

IP Forwarding Table Destination Next Hop Interface Net A Router 1 INT 7 **Direct Net B** INT 4 Net C, Host 3 INT₃ Router 2 **Net C** Router 1 INT 7 A destination is usually The next hop is A physical interface a network. May also be either a directly a host, or a "gateway of last resort" (default) connected network or a router on a directly 29 connected network

How Are Forwarding Tables Populated to implement Routing?

Statically

Administrator manually configures forwarding table entries

- + More control
- + Not restricted to destination-based forwarding
- Doesn't scale
- Slow to adapt to network failures

Dynamically

Routers exchange network reachability information using <u>ROUTING PROTOCOLS</u>. Routers use this to compute best routes

- + Can rapidly adapt to changes in network topology
- + Can be made to scale well
- Complex distributed algorithms
- Consume CPU, Bandwidth, Memory
- Debugging can be difficult
- Current protocols are destination-based

In practice: a mix of these.
Static routing mostly at the "edge"

38

Before We Go Any Further

IP ROUTING PROTOCOLS DO NOT DYNAMICALLY ROUTE AROUND NETWORK CONGESTION

- IP traffic can be very bursty
- Dynamic adjustments in routing typically operate more slowly than fluctuations in traffic load
- Dynamically adapting routing to account for traffic load can lead to wild, unstable oscillations of routing system

Next Lecture: Shortest Path Routing

This is what IS-IS, OSPF, and RIP do, more or less.

42