— Lecture 1 —

Introduction and motivation

References:

¢ Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 20083.

¢ Chapter 1 of Programming languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

¢ 2 exam questions.
¢ Course web page:

(www.cl.cam.ac.uk/Teaching/2006/ConceptsPL/)

with lecture slides and reading material.

Practicalities
¢ Lectures.

[1] Introduction and motivation.

[2] The first procedural language: FORTRAN (1954-58).

[3] The first declarative language: LISP (1958—62).

[4] Block-structured procedural languages: Algol (1958-68),
BCPL (1967), Pascal (1970), C (1971-78).

[5] Object-oriented languages — Concepts and origins:
Simula (1964—-67), Smalltalk (1971-80).

[6,7] Types, data abstraction, and modularity: C++ (1983-98),
SML (1984-97).

[8] The state of the art. Java (1996), C# (2000). (x Andrew Kennedy x)

Goals

¢ Critical thinking about programming languages.
What is a programming language!?

¢ Study programming languages.
+ Be familiar with basic language concepts.

+ Appreciate trade-offs in language design.
¢ Trace history, appreciate evolution and diversity of ideas.

¢ Be prepared for new programming methods, paradigms.

Why study programming languages? What makes a good language?

¢ To improve the ability to develop effective algorithms. Clarity, simplicity, and unity.

¢ To improve the use of familiar languages. Orthogonality.

¢ To increase the vocabulary of useful programming
constructs.

Naturalness for the application.

Support of abstraction.

¢ To allow a better choice of programming language. o
Ease of program verification.

¢ To make it easier to learn a new language. . _
Programming environments.

¢ To make it easier to design a new language.

® & & & o oo o

Portability of programs.

Influences

¢ Cost of use.
Computer capabilities.

<>

Cost of execution.

<*

Cost of program translation. Applications.

<*

Cost of program creation, testing, and use. Programming methods.

L 4

Cost of program maintenance. ,
Prog Implementation methods.

Theoretical studies.

Standardisation.

® & & & o o

Examples: Good languages designed with a specific purpose

Applications domains

Era Application Major languages Other languages
1960s | Business COBOL Assembler
Scientific FORTRAN ALGoOL, BASIC, APL
System Assembler JOVIAL, Forth
Al LISP SNOBOL
Today | Business COBOL, SQL, spreadsheet | C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal
Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,
MODULA
Al LISP, Prolog
Publishing TeX, Postcript,

Process
New paradigms

word processing
UNIX shell, TCL, Perl

Smalltalk, ML, Haskell, Java
Python, Ruby

Marvel, Esterel
Eifell, C#

in mind.

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

LISP: symbolic computation, automated reasoning

FP: functional programming, algebraic laws

BCPL: compiler writing

Simula: simulation

C: systems programming

ML: theorem proving

Smalltalk: Dynabook

Clu, ML module system: modular programming

C++: object orientation

Java: Internet applications

(Motivating application in language desig@

A specific purpose provides focus for language designers; it
helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one of the
hardest problems in programming language design: deciding
which features to leave out.

Program execution model

Good language design presents abstract machine.

¢ FORTRAN: Flat register machine; memory arranged as
linear array

LISP: cons cells, read-eval-print loop

Algol family: stack of activation records; heap storage
BCPL, C: underlying machine + abstractions

Simula: Object references

FP, ML: functions are basic control structure

® & & & o o

Smalltalk: objects and methods, communicating by
messages

¢ Java: Java virtual machine

Theoretical foundations

Examples:

¢ Formal-language theory.
¢ Automata theory.

¢ Algorithmics.

¢ A-calculus.

¢ Semantics.

¢ Formal verification.

¢ Type theory.

¢ Complexity theory.

Language standardisation
Consider: int i; i = (1 && 2) + 3 ;
Is it valid C code? If so, what’s the value of i?
How do we answer such questions!?
E Read the reference manual.
[1] Try it and see!
1] Read the ANSI C Standard.

Standardisation

¢ Proprietary standards.

¢ Consensus standards.
+ ANSI.
+ |EEE.
+ BSI.
+ 1SO.

Language-standards issues

Timeliness. When do we standardise a language?

Conformance. What does it mean for a program to adhere to
a standard and for a compiler to compile a standard?

Ambiguity and freedom to optimise — Machine
dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it
get modified?

Deprecated features.

Language standards

| 2] What does the following mean? ot w =15
int wO = 0 ;
#include <stdio.h>
main() {
int t =1 ;
int t0 = 0 ;
t0 = (t=t+1) + ++t ; int x = 1 ;

printf ("t0=%d t=Vd\n",t0,t) ; int x0 = 0 ;

x0 = ++x + ++x ;

int u =1 ;

int u0 = 0 ;

u0 = ++u + (u=u+l) ;

printf ("u0=%d u=%d\n",u0,u) ;

int y =1 ;
int yO = 0 ; Answer:
int ppy() { return ++y; } ; Linux
yo = ppyO + ppyO ; M
printf ("y0=%d y=%d\n",y0,y) ; PS

DEC Alpha
int z = 1 ; and Sun4
int z0 = 0 ;
z0 = ++z ;

z0 += ++z ;

I

printf ("z0=Yd z=%d\n",z0,z) ; }

w0 = (w=w+l1) + (w=w+1)
printf ("w0=%d w=)d\n",w0,w) ;

b

(gcc, cc)

(gce)
(cc)

(gece,ce)

)

t0=5

t0=5

t0=5

t0

5

printf ("x0=%d x=/d\n",x0,x) ;

u0=6

u0=5

u0=6

u0

5

w0=5

w0=5

w0=5

w0

5

x0=6 y0=5
x0=5 y0=5
x0=6 y0=5

x0=5 y0=5

z0=5
z0=5
z0=5

z0=5

Language standards o . .
P[_/1 DEC(p,q) means p digits with q after the decimal point.

. Type rules for DECIMAL in PL/1:
What does the following

=> DEC(MIN(1+MAX (p1-q1,p2-q2)+MAX(ql,q2),15) ,MAX (q1,q2))

mean?
— 11.666... 7 DEC(p1,ql) / DEC(p2,q2)
Overflow ? => DEC(15,15-((pl-q1)+q2))
— overtiow
— 1.666... 7

For9 + 8/3 we have:

History
DEC(1,0) + DEC(1,0)/DEC(1,0)

=> DEC(1,0) + DEC(15,15-((1-0)+0))
=> DEC(1,0) + DEC(15,14) 1956—60: FORTRAN, COBOL, LISP, Algol 60.
=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15) ,MAX(0,14))

=> DEC(15,14)

1951-55: Experimental use of expression compilers.

1961-65: APL notation, Algol 60 (revised), SNOBOL, CPL.

So the calculation is as follows 1966—70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,
Algol 68, Algol-W, BCPL.
9 + 8/3
9 + 2.66666666666666
11.66666666666666 - OVERFLOW 1976-80: Smalltalk, Ada, FORTRAN 77, ML.

1.66666666666666 — OVERFLOW disabled

1971-75: Pascal, PL/1 (Standard), C, Scheme, Prolog.

Language groups

¢ Multi-purpose languages
+ C#, Java, C++, C
+ Haskell, ML, Scheme, LISP

1981-85: Smalltalk-80, Prolog, Ada 83.
1986-90: C++, SML, Haskell.

1991-95: Ada 95, TCL, Perl. ¢ Scripting languages

1996-2000: Java. ¢+ Perl, TCL, UNIX shell
2000-05: C#, Python, Ruby. ¢ Special-purpose languages
¢+ SQL
¢ ATEX

Things to think about
¢ What makes a good language?
¢ The role of
1. motivating applications,
2. program execution,
3. theoretical foundations

in language design.

¢ Language standardisation.

