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k-Colourability

A graph G = (V, E) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E,

χ(u) 6= χ(v)

This gives rise to a decision problem for each k.

2-colourability is in P.

For all k > 2, k-colourability is NP-complete.
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3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT

to 3-Colourability.

For each variable x, have two vertices x, x̄ which are connected in a

triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we

have a gadget.
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Gadget

l1

l2

l3 b

With a further edge from a to b.

Anuj Dawar May 11, 2007

Complexity Theory 71

Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph G = (V, E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.
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Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a

graph, so that every satisfying truth assignment to the expression

corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
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Travelling Salesman

Recall the travelling salesman problem

Given

• V — a set of nodes.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +

n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.
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Travelling Salesman

As with other optimisation problems, we can make a decision

problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V, c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the

cost matrix c, has cost t or less.
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Reduction

There is a simple reduction from HAM to TSP, mapping a graph

(V, E) to the triple (V, c : V × V → IN, n), where

c(u, v) =







1 if (u, v) ∈ E

2 otherwise

and n is the size of V .
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Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to

be NP-complete.

Literally hundreds of naturally arising problems have been proved

NP-complete, in areas involving network design, scheduling,

optimisation, data storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have to construct a

solution within constraints, and the most effective way appears to

be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose

significance lies in that they have been used to prove a large

number of other problems NP-complete, through reductions.
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3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X, Y and Z, and a set of triples

M ⊆ X × Y × Z, does M contain a matching?

I.e. is there a subset M ′ ⊆ M , such that each element of

X, Y and Z appears in exactly one triple of M ′?

We can show that 3DM is NP-complete by a reduction from 3SAT.
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