= k! UNIVERSITY OF

Computer Laboratory

Computer Systems Modelling
Case Studies

Samuel Kounev
Systems Research Group
University of Cambridge — Computer Laboratory

» Present some practical performance modelling case studies

demonstrating:

Modelling of real-world distributed systems
Workload characterization

Model development and validation

Model analysis tools/techniques

Performance prediction and capacity planning

» Discuss trade-offs in using different modelling formalisms

Queueing networks
Stochastic Petri nets

© S. Kounev

' '.:i

Motivation

Modern E-Business systems gaining in size and complexity.
Quality of service requirements of crucial importance!

Hard to estimate the size and capacity of the deployment
environment needed to meet Service Level Agreements (SLAS).

Deployers faced with questions such as the following:

- Does the system scale? Are there potential bottlenecks?
- What is the maximum load, the system is able to handle?

- What would be the avg. response time, throughput and
utilization under the expected workload?

© S. Kounev

I‘-‘J ﬁ ..“l

Motivation (2)

» Problem: How to predict system performance under a
given workload?

» Will look at the different approaches to this problem,
discussing the difficulties when applying them to
large real-world systems.

» Wil study real-world e-business systems of a realistic
complexity and show how performance models can be
exploited for capacity planning.

© S. Kounev

» Case Study 1: Modeling a realistic e-business system by means
of queueing networks solved using analytical methods.

» Case Study 2: Modeling a small e-business application by means
of queueing Petri nets solved using structured analysis methods.

» Case Study 3: Modeling a large representative state-of-the-art
e-business system by means of queueing Petri nets solved using

e

simulation techniques.

© S. Kounev

\\
(MT\E‘@

\J

22 Sizing and Capacity Planning
Client 1 Client 2 Client n
°c CLIENT SIDE
/

=1]

.‘-'_'-
Firewall
—’,7‘\\\\

Web Routers =

7
’
j ‘)

Presentation
Tier

Web Servers 1..k

WS 1 TLWS2 WS &
“a \j a
Load Balagcers Business Logic
) g T Tier
= AL]
s c o o -
~ —— o Application
AS 1 “AS m Servers 1..m
E) 'S },/ o
o — Data Tier
== Liiy— | S
T o, SN
Legacy Systems Database Servers Database Servers 1..p

If (n = 1000)
kK=? m=? p=?
so that all
SLASs

are fulfilled.

o b

Approaches to Performance Prediction

Educated Guess
+ Quick, easy and cheap.
- Very inaccurate and risky.

Load Testing (brute force)
+ Accurate. Helps to identify bottlenecks and
fine-tune system prior to production.
- Expensive and time-consuming.
Assumes system availability for testing.

Performance Modelling 4

+ Cheaper and quicker than load-testing. ‘
Could be applied at the design stage.

- Accuracy depends on model representativeness.

|‘-‘l ﬁ i."‘I
g b

Space of Performance Models

Discrete-Time
Markov Chains

Markov Chain

Models
Continuous-Time
[Analytical Markov Chains
Models
| | Semi-Markov
Models
] Product-Form
Queueing Netwarks
Non-Product-Form
Queueing Networks
L Queueing
Network Models
|| Extended Queueing
Performance | | Metworks
Models
Layered Queueing
Networks
Generalized
Stochastic Petri Nets
— Petri Net Models
Queueing Petri Nets
| Simulation

Models

« b

Case Study 1: SPECjJAppServer2002 (SJAS02)

Will study a deployment of SPECjAppServer2002
Industry standard application server benchmark
Measures performance and scalability of J2EE app. servers

Heavy-duty synthetic B2B e-commerce workload

V. V V V V

More info at http://www.spec.org/osg/jAppServer/

» Case study taken from “Performance Modeling and Evaluation of Large-
Scale J2EE Applications” by S. Kounev and A. Buchmann, Proceedings
of the 29th International CMG Conference, 2003.

http://www.dvsl.informatik.tu-darmstadt.de/publications/pdf/03-cmg-SPECJAS02_QN.pdf

© S. Kounev 9

b Ee
I‘l‘lﬁlil‘r

OSG Java Subcommittee

|
/

—tr]
spec
o ———— a&% TECHNISCHE
ﬁ (/=) UNIVERSITAT
ﬂ ¢/ DARMSTADT
invent

2

NOYBASE oo,

Borland oORACLE Zbea

=7 FABRIC7"

L - %
**Boss @& PRAMATI @:%%Sun
o9 o ~HT microsystems

© S. Kounev 10

e
I‘-‘J ﬁ ..“.
N '.:i

SPECjAppServer Business Domains

CUSTOMER DOMAIN
Order Entry Application

Place Order

A

Change Order
Get Order Status
Get Customer Status

Create Large Order

MANUFACTURING DOMAIN

Planned Lines

Parts
$ Large Order Line

I$Widgets

Create Large Order
Schedule Work Order
Update Work Order
Complete Work Order

A 4

CORPORATE DOMAIN

Customer, Supplier and
Parts Information

- Register Customer
- Determine Discount
- Check Credit

A

A 4

SUPPLIER DOMAIN

A

Parts
- Select Supplier

- Send Purchase Order
- Deliver Purchase Order

11

« b

SPECjAppServer Application Design

Benchmark Components:

1. EJBs — J2EE application deployed on the
System Under Test (SUT)
2. Supplier Emulator — web application simulating

external suppliers
3. Driver — Java application simulating clients interacting

with the system

» RDBMS used for persistence

» Throughput is function of chosen Transaction Injection Rate

» Performance metric is TOPS = Total Ops Per Second

© S. Kounev 12

« b

SPECjAppServer2002 Components

Driver

Cl

lient JVM

A

RMI

A 4

SUT

@ ReceiverSes

Couyerses >

J2EE AppServer

Supplier
Emulator

HTTP

[

HTTP

Emulator
Servlet

Web Container

© S. Kounev

13

I‘-‘J ﬁ ..“l

Goals of the Case Study

Deployed SPECjAppServer2002 in:
- Cluster of WebLogic Servers (WLS) as a J2EE container

- Using a single Database Server (DBS) for persistence

Interested in knowing:

» How many WLSs are needed to guarantee adequate
performance under the expected workload?

» For a given number of WLSs, what would be the average
trans. response time, throughput and server utilization?

» Wil the capacity of the DBS suffice to handle the load?

© S. Kounev 14

Capacity Planning Methodology (Menasce et al.)

/ [IT Infrastructure Characterizationh

|

IT Infrastructure
Model

|

[Testing and Measurement }—{ Workload Characterization }

'
Workload Model

|

[Performance Modelling]

|
[Validation and Calibration }—* Performance Model

'

\\ [Performance Prediction } /

RESOURCE MODEL

15

IT Infrastructure Characterization

4 N
WebLogic Server 7 Cluster Supplier Emulator Machine
Each node equipped with: WebLogic Server 7
AMD XP 2000+ CPU 2 X AMD XP2000+ CPUs
1 GB RAM, SuSE Linux 8 2 GB RAM, SuUSE Linux 8
_ / _ J
i
\ \ -
100 Mbit = =
LAN Supplier Emulator
= 3 1
|
Client PC = Database Server
I / N

Client Emulator Machine
Running SPECJAS Driver
AMD XP 1700+ CPU
1GB RAM, RedHat Linux 8

KOracIe Oi Database Server

9 2 GB RAM, SUSE Linux 8

Hosting the SPECJAS DB
2 x AMD XP 2000+ CPUs

16

« b

Workload Characterization

Goal: To describe the system workload in a qualitative and
guantitative manner:

1. Describe the types of requests that are processed by the
system (called request classes).

2. ldentify the hardware and software resources used by each
request class.

3. Measure the total amount of service time (called service
demand) for each request class at each resource.

4. Specify the number of requests of each class that the system
will be exposed to (called workload intensity).

© S. Kounev 17

@ Workload Characterization — Step 1

We identify the following five request classes:

Order Entry Application

NewOrder (NO) — places a new order in the system
ChangeOrder (CO) — modifies an existing order
OrderStatus (OS) — retrieves the status of a given order
CustStatus (CS) — lists all orders of a given customer

> W e

Manufacturing Application
5. WorkOrder (WO) — the unit of work at the production lines

© S. Kounev 18

@ Workload Characterization — Step 2

We identify the following resources:

The CPU of a WebLogic Server (WLS-CPU)

The Local Area Network (LAN)

The CPUs of the database server (DBS-CPU)
The disk drives of the database server (DBS-1/0)

A

We ignore network service demands, since over a
100 Mbit LAN all communication times were negligible.

© S. Kounev 19

bed bed
I‘l‘lﬁlll‘l

Workload Characterization — Step 3

BWLS-CPU [DBS-CPU mEDBS-I/O

NewOrder _jj

ChangeOrder I 1
OrderStatus [1

CustStatus []

WorkOrder — B

0 10 20 30 40 50 60 70

Service Demand (ms)

© S. Kounev 20

' ' -

Workload Characterization — Step 4

Workload intensity is usually specified in one of two ways:
» Average request arrival rates (open QNS)
» Average number of requests in the system (closed QNSs)

In our study, we quantify workload intensity by specifying:

» The number of concurrent order entry clients

» The average customer think time — Customer Think Time
» Number of planned production lines in the Mfg domain
>

Average time production lines wait after processing a
WorkOrder before starting a new one — Mfg Think Time

© S. Kounev

21

Building a Performance Model

We model each processing resource using a queue:
e« The CPUs of the N WLSs in the cluster — N PS queues A;...Ay
 The two CPUs of the DBS — 2 PS queues B, and B,
 The disk drive of the DBS — 1 FCFS queue D

We model the client using a delay resource C
- Delay of order requests at this queue = Customer Think Time
- Delay of WorkOrder requests at this queue = Mfg Think Time

Each WorkOrder is delayed at the virtual production line stations during
processing. To model this we introduce an additional delay resource L.

© S. Kounev 22

I‘-‘J ﬁ ..“l
e 'jf

Queueing Network (QN) Model of the System

Production Line Stations
C P3 Application Server Cluster

. .1-p 3 /A/

1/N

Database Server

[
»

1/N

o O,
Client “ N 2—'5;:/? 1-p,

A

1/N

© S. Kounev 23

w5 Formal Queue Definitions (Kendall's Notation)

Queue Type Description

A1, Axn || G/M/1/PS WLS CPUs

By, B G/M/1/PS DBS CPUs

D G/M/1/FCFS | DBS Disk Subsystem
C G/M/oo/IS Client Machine

L G/M/oo/IS Prod. Line Stations

© S. Kounev

24

% b

Simplified QN Model of the System

Production Line Stations Application Server

P, Cluster
p 1'p3 /
1/N
_ Database Server
1/N

1L O JEELS,) T
—>(:)—.. c = ._.@_

Client E't' i | el
1/N
—~

© S. Kounev

Model Input Parameters

Number of order entry clients of each type —
NewOQOrder, ChangeOrder, OrderStatus and CustStatus.

Average think time of order entry clients —
Customer Think Time.

Number of planned production lines generating
WorkOrder requests.

Average time production lines wait after processing a WorkOrder
before starting a new one — Mfg Think Time.

Service demands of the 5 request classes at queues A;, B, and D
(as measured during workload characterization).

© S. Kounev 26

I‘-‘J ﬁ ..“l
Ne '.:i

Scenarios that we will study

We will analyze several different instances of the model for different
workload intensities — low, moderate and heavy:

Parameter Low Moderate || Heavy
NewOrder Clients 30 50 100
ChangeOrder Clients 10 40 50
OrderStatus Clients 50 100 150
CustStatus Clients 40 70 50
Planned Lines 50 100 200
Customer Think Time || 2 sec || 2 sec 3 sec
Mfg Think Time 3 sec || 3sec 5 sec

In each case we will apply the model for different number of
application servers — from 1 to 9. We will first consider the case
without large order lines in the Mfg domain.

© S. Kounev

Model Analysis and Validation

We have a closed non-product-form queueing network
model with five request classes to analyze.

We employed the PEPSY-QNS tool from the University of
Erlangen-Nuernberg. For more information see:
http://www4.informatik.uni-erlangen.de/Projects/PEPSY/en/pepsy.html

» Available free of charge for non-commercial use

» Supports a wide range of solution methods (over 30)

» Offers both exact and approximate methods

G. Bolch and M. Kirschnick. “The Performance Evaluation and Prediction System for Queueing Networks —
PEPSY-QNS”. TR-14-94-18, University of Erlangen-Nuremberg, Germany, 1994,

© S. Kounev 28

« b

Other Queueing Network Analysis Tools

> SHARPE (http://www.ee.duke.edu/~kst/software_packages.html)

C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi. “Reliability and Performability Modeling Using
SHARPE 2000”. In Computer Performance Evaluation / TOOLS 2000, Schaumburg, IL, USA,
pages 345-349, 2000.See http://www.ee.duke.edu/~kst/.

> QNAT (http://poisson.ecse.rpi.edu/~hemal/qnat/)

H. T. Kaur, D. Manjunath, and S. K. Bose. “The Queuing Network Analysis Tool (QNAT)". In
Proceedings of the 8th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, CA, USA, vol. 8, pages 341-347, 2000.

> RAQS (http://www.okstate.edu/cocim/raqs/)

M. Kamath, S. Sivaramakrishnan, and G. Shirhatti. “RAQS: A software package to support instruction
and research in queueing systems”. In Proceedings of the 4th Industrial Engineering Research
Conference, IIE, Norcross, GA., pages 944-953, 1995.

> Daniel Menasce’s MS Excel Workbooks:

- http://cs.gmu.edu/~menasce/webbook/index.html
- http://cs.gmu.edu/~menasce/ebook/index.html
. http://cs.gmu.edu/~menasce/webservices/index.html

- http://cs.gmu.edu/~menasce/perfbyd/

© S. Kounev

29

@3 Scenario 1 (Low Load) with 1 AS

We have 130 concurrent clients and 50 planned production lines.

1 Application Server
METRIC Model | Measured Error
NewOrder Throughput 14.59 14.37
ChangeOrder Throughput 4.85 4.76
OrderStatus Throughput 24.84 24.76
CustStatus Throughput 19.89 19.85
WorkOrder Throughput 12.11 12.19
NewOrder Response Time 56ms 68ms
ChangeOrder Response Time 58ms 67ms
OrderStatus Response Time 12ms 16ms
CustStatus Response Time 11ms 17ms
WorkOrder Response Time 1127ms 1141ms
WebLogic Server CPU Utilization 66% 70%
Database Server CPU Utilization 36% 40%

© S. Kounev

30

Scenario 1 (Low Load) with 2 AS

2 Application Servers

METRIC Model | Measured Error
NewOrder Throughput 14.72 14.49 1.6%
ChangeOrder Throughput 4.90 4.82 1.7%
OrderStatus Throughput 24.89 24 .88 0.0%
CustStatus Throughput 19.92 19.99 0.4%
WorkOrder Throughput 12.20 12.02 1.5%
NewOrder Response Time 37ms 47ms | 21.3%
ChangeOrder Response Time 38ms 46ms | 17.4%
OrderStatus Response Time 8ms 10ms | 20.0%
CustStatus Response Time ms 10ms | 30.0%
WorkOrder Response Time 1092ms 1103ms 1.0%
WebLogic Server CPU Utilization 33% 37% | 10.8%
Database Server CPU Utilization 36% 38% 5.2%

© S. Kounev

I‘-‘J ﬁ '..“l
« b

Scenario 1 (Low Load) Observations

 Response time results much less accurate than
throughput and utilization results:

- Running a transaction mix vs. single transaction

- Additional delays from software contention

 The lower the service demand the higher the response
time error (e.g. WorkOrder vs. CustStatus)

© S. Kounev

32

&5 Scenario 2 (Moderate Load) with 3 and 6 AS

We have 260 concurrent clients and 100 planned production lines.

3 WebLogic Servers

6 WebLogic Servers

METRIC Model | Measured | Error Model | Measured | Error
XnNo 24.21 24.08 0.5% 24.29 24.01 1.2%
Xco 19.36 18.77 3.1% 19.43 19.32 0.6%
Xos 49.63 49.48 0.3% 49.66 49.01 1.3%
Xcs 34.77 34.24 1.5% 34.80 34.58 0.6%
Xwo 23.95 23.99 0.2% 24.02 24.03 0.0%
Ryo 65ms 7hms | 13.3% Hh&8ms 68ms | 14.7%
Rco 66ms 73ms 9.6% H8ms 70ms | 17.1%
Ros 15ms 20ms | 25.0% 13ms 18ms | 27.8%
Rec s 13ms 20ms | 35.0% 11ms 17ms | 35.3%
Rwo 1175ms 1164ms 0.9% 1163ms 1162ms 0.0%
Uwrs 46% 49% 6.1% 23% 25% 8.0%
UpBs 74% 76% 2.6% 73% 78% 6.4%

© S. Kounev

I‘-‘J ﬁ '..“l
« b

Scenario 3 (Heavy Load) with 4 and 6 AS

We have 350 concurrent clients and 200 production lines.

4 WebLogic Servers 6 WebLogic Servers
METRIC Model Msrd. Error Model Msrd. Error
Xno 32.19 32.29 | 0.3% 32.22 32.66 | 1.3%
Xco 16.10 15.96 0.9% 16.11 16.19 0.5%
Xos 49.59 48.92 1.4% 49.60 49.21 0.8%
Xcs 16.55 16.25 1.8% 16.55 16.24 1.9%
Xwo 31.69 31.64 0.2% 31.72 32.08 1.1%
Ryo 106ms O8ms 8.2% 103ms 94ms 9.6%
Reco 106ms 102ms 3.9% 102ms O8ms 4.1%
Ros 25ms 30ms | 16.7% 24ms 27Tms | 11.1%
Rcs 21ms 3lms | 32.3% 20ms 27ms | 25.9%
Rwo 1310 | 1260ms 4.0% || 1305ms | 1251ms 4.3%
Uwrs 40% 42% 4.8% 26% 29% | 10.3%
UpBs 7% 89% 2.2% 88% 91% 3.3%
© S. Kounev 34

.ﬁ‘ ili ..‘

Scenario 3 (Heavy Load) with 9 AS

9 WebLogic Servers
METRIC Model | Msrd. Error
XnNo 32.24 | 32.48 0.7%
Xco 16.12 16.18 0.4%
Xos 49.61 49.28 0.7%
Xcs 16.55 16.46 0.5%
Xwo 31.73 | 32.30 1.8%
Uwrs 18% 20% 10.0%
UpbBs 88% 91% 3.3%

For models of this size the available algorithms do not
produce reliable results for response time.

© S. Kounev

35

« b

Scenarios with Large Order Lines

« Large order (LO) lines activated upon arrival of large orders in
the customer domain. Each large order generates a separate
work order.

« Since LO lines are triggered by NewOrder transactions we can
Integrate the load they produce into the service demands of
NewOrder requests.

« We measure NewOrder’s service demand with the LOs enabled.
The additional load impacts the service demands of NewOrder
requests. The latter no longer have the same semantics.

© S. Kounev

36

.ﬁ‘ ili ..‘

Scenarios with Large Order Lines (2)

Low / 1 WLS

Moderate / 3 WLS

Heavy / 9 WLS

METRIC

Model

Error

Model

Error

Model

Error

Xco 4.79 6.4% 19.09 3.5% 15.31 4.5%
Xos 24.77 2.9% 49.46 2.3% 48.96 3.1%
Xcs 19.83 2.4% 34.67 2.1% 16.37 1.9%
Xwo 11.96 5.7% 23.43 2.6% 29.19 1.2%
Rco 86ms | 60.7% O5ms 34.5% - -
Ros 18ms | 71.0% 22ms 55.1% - -
Rcs 16ms | 74.6% 19ms 59.6% - -

1179ms | 16.1% || 1268ms 5.0% - -

A

Uwis 80% | 0.0% 53% 1.9% || 20% | 0.0%
UpBs 43% | 2.4% 84% 2.4% 96% 1.0%

© S. Kounev

37

I‘-‘J ﬁ '..A‘|
« b

Summarized Utilization Results

*QAS /| HEAVY _

OAS / HEAVY —

6AS / HEAVY —

*3AS / MODERATE |
DAS [LOW | —
*1AS / LOW |

1AS / LOW

0 20 40 60 80 100

B DATABASE CPU
OWEBLOGIC CPU *WITH LARGE ORDER LINES

© S. Kounev

38

Conclusions From Case Study

Studied a realistic J2EE application and showed how to build a
performance model and use it for capacity planning.

Model was extremely accurate in predicting transaction throughput
and CPU utilization and less accurate for transaction response time.

Ignoring the scenarios with large orders, the average modelling error
for throughput was 2%, for utilization 6% and for response time 18%.

Two problems encountered:

= Poor model expressiveness: no way to accurately model
asynchronous processing and software contention.

= Problem solving large non-product form QNs analytically.

© S. Kounev

39

- QN: Set of interconnected queues]

- Queue = walting area and servers e

- Scheduling strategies(FCFS,PS,...) 3 i JT[H LN _
_ _ Arriving | P, ! !
- Single-class vs. multi-class Requests; Waiting |]
_ | Area | SERVICE STATION 2
- Open, closed or mixed i < :
ervers _
_____________________________ Departing
v Requests

SERVICE STATION 1

PROS: Very powerful for modelling hardware contention and scheduling
strategies. Many efficient analysis techniques available.

CONS: Not suitable for modelling blocking, synchronization,
simultaneous resource possession and software contention in
general. Although Extended QNs provide some limited support
for the above, they are very restrictive and inaccurate.

© S. Kounev 40

PN: places, tokens and transitions.
marking, transition enabling/firing
CPNs: allow tokens of different colors
and transition modes

GSPNs: allow timed transitions
CGSPNs: CPNs + GSPNs

PROS: Suitable both for qualitative and quantitative analysis.
Lend themselves very well to modelling blocking, synchronization,
simultaneous resource possession and software contention.

CONS: No direct means for modelling scheduling strategies. Not as many
algorithms/tools for efficient quantitative analysis are available as
for Queueing Networks.

© S. Kounev 41

I‘-‘J ﬁ '..“l
% b

Queueing Petri Nets (QPNs = QNs + PNs)

Introduced by Falko Bause in 1993.
Combine Queueing Networks and Petri Nets

O

QUEUE DEPOSITORY

Allow integration of queues into places of PNs =

Ordinary vs. Queueing Places
Queueing Place = Queue + Depository

PROS:

» Combine the modelling power and expressiveness of QNs and PNs.

» Easy to model synchronization, simultaneous resource possession,
asynchronous processing and software contention.

» Allow the integration of hardware and software aspects.
CONS:
» Analysis suffers the state space explosion problem.

© S. Kounev 42

Hierarchical Queueing Petri Nets (HQPNSs)

- Allow hierarchical model specification
- Subnet Place: contains a nested QPN

- Structured analysis methods alleviate the state space explosion problem
and enable larger models to be analyzed.

Analysis Tools for HOPNSs ACTUAL
POPULATION

The HQPN-Tool from the
University of Dortmund.
Supports a number of structured
analysis methods.

Available free of charge for “USER SPECIFIED

PART OF THE

non-commercial use. SUBNET

GRAPHICAL NOTATION |
FOR SUBNET PLACE |

© S. Kounev 43

« b

Stochastic Petri Net Analysis Tools

> QPME (http://www.dvsl.informatik.tu-darmstadt.de/staff/skounev/QPME)

S. Kounev, C. Dutz and A. Buchmann®. QPME - Queueing Petri Net Modeling Environment”.
Proceedings of the 3rd International Conference on Quantitative Evaluation of SysTems (QEST-
2006), Riverside, USA, September 11-14, September 2006.

> TimeNET (http://pdv.cs.tu-berlin.de/~timenet/)

A. Zimmermann, J. Freiheit, R. German, and G. Hommel. “Petri Net Modelling and Performability
Evaluation with TimeNET 3.0”. In Proceedings of the 11th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS’2000), Schaumburg, lllinois,
USA, LNCS 1786, pages 188-202, Mar. 2000.

> Mdobius (http://www.mobius.uiuc.edu/)

T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and W. Sanders. “The M"obius
Modeling Environment: Recent Developments”. In Proceedings of the 1st International Conference
on Quantitative Evaluation of Systems (QEST 2004), Enschede, The Netherlands, pages 328—
329, Sept. 2004.

> SPNP (http://www.ee.duke.edu/~kst/software_packages.html)

C. Hirel, B. Tuffin, and K. Trivedi. “SPNP: Stochastic Petri Nets”. Version 6.0. In B. Haverkort, H.
Bohnenkamp, and C. Smith, editors, Computer performance evaluation: Modelling tools and
techniques; 11th International Conference; TOOLS 2000, Schaumburg, lllinois, USA, LNCS 1786.
Springer Verlag, 2000.

> GreatSPN (http://www.di.unito.it/greatspn/index.html)

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets. Performance Evaluation, 24(1-2):47—68, Nov. 1995.

44

5 Case Study 2: Cust. App. of SPECjAppServer

e

LAN

Load Balancer

Oracle 91 DBS

Client K

WeblLogic Server 7.0 Cluster Oracle 9i (9.0.1) Database Server
Each node equipped with: Hosting the SPECjAppServer DB
AMD XP 2000+ CPU, 1 GB RAM 1,7 GHz AMD XP CPU, 1 GB RAM

Running on SUSE Linux 8.0 Running on Red Hat Linux 7.2

Case study taken from “Performance Modeling of Distributed E-Business Applications using Queueing Petri Nets”. S. Kounev and
A. Buchmann. Proc. of the 2003 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
http://www.dvs1l.informatik.tu-darmstadt.de/publications/pdf/03-ispass-QPNs.pdf

I‘-‘J ﬁ ..“l

Capacity Planning Issues

We are interested in finding answers to the following guestions:

» What level of performance does the system provide under load?
Average response time, throughput and utilization = ?
Are there potential system bottlenecks?

How many application servers would be needed to guarantee
adequate performance?

YV V VY

Need also optimal values for the following configuration parameters:

» Number of threads in WebLogic (WLS) thread pools
» Number of connections in WLS database connection pools
» Number of processes of the Oracle server instance

© S. Kounev

46

Workload Characterization

Describe the types of requests (request classes) that arrive at
the system: NewOQOrder, ChangeOrder, OrderStatus, CustStatus.

|dentify the hardware and software resources used by each
request class: HW: WLS-CPU, Network, DBS-CPU, DBS-Disk,
SW: WLS Thread, DB Connection, DBS Process.

Measure the total service time (service demand) of each request
class at each processing resource:

TX-Type WLS-CPU | DBS-CPU | DBS-I/0
NewOrder T0ms 53ms 12ms
ChangeOrder 26ms 16ms 6ms
OrderStatus Tms 4ms Oms
CustomerStatus 10ms bms Oms

© S. Kounev 47

t
t tt t

WLS-Thread-Pool

Database Server

DBS-I/O

WLS-CPU DBS-PQ DBS-CPU

DB-Conn-Pool

Client

© S. Kounev

48

Client

We isolate the database server and model it using a separate QPN,
represented by subnet place ,DBS* above.

The above QPN is called High-Level QPN (HLQPN) of our
hierarchical model.

© S. Kounev

49

Hierarchical System Model: Low-Level QPN

Actual Population

X X
Input Output
‘ X X ‘
X X
1§ DBS-PQ DBS-CPU DBS-1/0 I
INnput output
X X {\ X I X ><
t, t,

P
P

DBS-Process-Pool

» The nested DBS subnet of our HQPN - called Low-Level QPN (LLQPN).

» Places Input, Output and Actual Population are standard for each subnet.

© S. Kounev 50

Model Analysis

Through analysis of the underlying Markov Chain, we can obtain for each
place, queue and depository its average token population N and
utilization U in steady state.

From the , Flow-In=Flow-Out” Principle =» Places Client, WLS-CPU,
DBS-PQ, DBS-CPU and DBS-I/O have the same request throughput X.

Applying Little‘'s Law to place Client, we get. X = Jl’

R

For the rest of places, queues and depositories, we get: R = 'ﬁ

The total end-to-end request response time is then:

Rrotat = Rctientp + Rwrs—cpu, +
+Rwrs—cpup + RpBs—pg +
+ RpBs—-cpug, + RpBs—1/00

© S. Kounev 51

|‘.‘1 ﬁ i.'A‘I
o b

Scenario 1: Single Request Class

» Single request class — the NewOrder TX
» 80 concurrent clients with avg. client think time of 200ms
» 60 WLS Threads, 40 JDBC Connections, 30 Oracle processes

PLACE N U X | R [ms]

Clientg 2.85 | 0.94 | 14.28 200

Clientp 17.14 | 1.00 S 1200

WLS-CPUqg 56.67 | 1.00 -//- 3967

WLS-CPUp 0.00 | 0.00 =//- 0 _

DBS-PQ 0.00 | 0.00 | -//- 0| < Analysis Results

DBS-CPUq 3.11 | 0.75 | -//- 218

DBS-I/0¢ 0.20 | 0.17 S 14

WLS-Thread-Pool 0.00 | 0.00

DB-Conn-Pool 36.67 | 1.00

DBS-Process-Pool || 26.67 | 1.00

Model | Measured | Error

METRIC
WLS-CPU Utilization 100% 100% 0%

Modelling Error ——=> |[DBS-CPU Utilization 75% 65% 15%
NewOrder Throughput 14.28 13.43 6.3%
NewOrder Resp.Time 5399ms 5738ms 5.9%
Thread Queue Length 17.14 18 4.7%

© S. Kounev 52

Scenario la: Same, but only with 40 Threads

PLACE N u X | R [ms]

Clientg 2.85 | 0.94 | 14.28 200

Clientp 37.14 | 1.00 -//- 2601

WLS-CPUg 36.67 | 1.00 S 2568

WLS-CPUp 0.00 | 0.00 S 0

DBS-PQ 0.00 | 0.00 S Al 0

DBS—CPU, 3.11 | 0.75 | -//- 218 | <—= Analysis Results

DBS-I/00 0.20 | 0.17 | -//- 14

WLS-Thread-Pool 0.00 | 0.00

DB-Conn-Pool 36.67 | 1.00

DBS-Process-Pool 26.67 | 1.00
METRIC Model | Measured | Error
WLS-CPU Utilization 100% 1007% 0%

I\/IodeIIing Error —> DBS-CPU Utilization 75% 65% 15%
NewOrder Throughput 14.28 13.41 6.47%
NewOrder Resp.Time 5401ms 5742ms 5.97%
Thread Queue Length 37.14 40 7.1%

» More contention for threads, but less contention for CPU time.

» In both cases, we can reduce the number of DB connections and

DBS processes, since they are not effectively utilized.
53

I‘-‘J ﬁ '..A‘|
o b

Scenario 2: Multiple Request Classes

A\

YV V VYV V V

Two request classes — NewOrder and ChangeOrder

Some simplifications needed to avoid explosion of the Markov Chain
Assume that there are plenty of JDBC connections and DBS processes

Drop places DB-Conn-Pool and DBS-Process-Pool

20 clients: 10 NewOrder and 10 ChangeOrder, Avg. think time = 1 sec

Only 10 WLS Threads

METRIC Model | Measured | Error
WLS-CPU Utilization 76% 7% 1.2%
DBS-CPU Utilization 547 64% | 15.6}
Avg.free WLS-Threads 6.68 7| 4.5}
NewOrder Throughput 7.45 7.47 0.2
NewOrder Resp. Time | 341ms 318ms 7.2%
ChgOrder Throughput 9.22 9.15 0.7%
ChgOrder Resp. Time 84ms 104ms | 19.2}

© S. Kounev

54

Scenario 3: Multiple Application Servers

We modify the HLQPN to include multiple WLS places
30 NewOrder clients with avg. think time of 1 sec

No contention for JDBC connections, DBS processes and WLS threads

WLS 1

CLIENT

© S. Kounev 55

i
(':!_

<% Scenario 3: Modelling Error

METRIC Model | Measured | Error
For 2 Application Servers

WLS-CPU Utilization 647 68 6%

DBS-CPU Utilization 967 917 5%

NewOrder Throughput 18.28 17.56 4y,

NewOrder Resp. Time 640ms 693ms 8h
For 3 Application Servers

WLS-CPU Utilization 437, 447, 2,

DBS-CPU Utilization 987 97 1%

NewOrder Throughput 18.42 17.61 5%

NewOrder Resp. Time 623ms 673ms Th

© S. Kounev

56

@ Conclusions from Case Study

» QPN models enable us to integrate both hardware and
software aspects of system behavior in the same model.

» Combining the expressiveness of Queueing Networks and
Petri Nets, QPNs are not just powerful as a specification
mechanism, but are also very powerful as a performance
analysis and prediction tool.

» Improved solution methods and software tools for QPNs
needed to enable larger models to be analyzed.

© S. Kounev 57

SIMQPN — Simulator for QPNs

Tool and methodology for analyzing QPNs using simulation.
Provides a scalable simulation engine optimized for QPNs.
Circumvents the state-space explosion problem.

Can be used to analyze models of realistic size and complexity.
Extremely light-weight and fast.

Portable across platforms.

Validated in a number of realistic scenarios.

“SIMQPN - a tool and methodology for analyzing queueing Petri net
models by means of simulation”,

Performance Evaluation, Vol. 63, No. 4-5, pp. 364-394, May 2006.

YDA

© S. Kounev 58

Suppliers

b=
7

HINE
il

© S. Kounhev

59

': ‘:

oy SPECJAppServer2004 Business Domains

CUSTOMER DOMAIN CORPORATE DOMAIN
Order Entry Application Customer, Supplier and
j Parts Information

- Place Order)

- Get Order Status - Register Customer

- Get Customer Status - Determine Discount

- Cancel Order - Check Credit

SUPPLIER DOMAIN MANUFACTURING DOMAIN

v

Planned Lines
Purchase)\ Parts L) | Vehicles
Parts : Large Order Line

Parts Create Large Order
Schedule Work Order
Update Work Order
Complete Work Order

- Select Supplier
- Send Purchase Order
- Deliver Purchase Order

I‘-‘J ﬁ ..“l
Ne '.:i

SPECjAppServer2004 Application Design

Benchmark Components:

1. EJBs — J2EE application deployed on the
System Under Test (SUT)
2. Supplier Emulator — web application emulating

external suppliers
3. Driver — Java application emulating clients interacting
with the system and driving production lines

« RDBMS used for persistence

 Asynchronous-messaging used for inter-domain communication
« Throughput is function of chosen Transaction Injection Rate

 Performance metric is JOPS = JAppServerOpsPerSecond

© S. Kounev 61

'.‘ ili '.‘

o SPECJAppServer2004 Application Design (2)

Driver

Client JVM

A

HTTP / RMI

A 4

SUT Supplier

Emulator
G %

Emulator
Servlet

Web Container

Ceez> |
/ HTTP

J2EE AppServer

© S. Kounev

Sample Deployment Environment (IBM)

WebSphere Application Server ¥5.1
IBM DB2Z 8.1 FP6, ESE
IBMHTTP Server 2.047

IBM Site Selector5.1
/ 5.16 DB2
. Database
/ Vith 2 arrays
Load E
516 RMI
Drser (o - rj
. 7 WebSphers
o Deployment Mar
— v * WS Serve
2 Hip . ggmég 516 http
IEld ESEREr ¥SEries 335
2% Intel 3.2GHZ Hean
: HS 2 IBEM eServer pSeries 6a0
2.4l n S 8 % |BM Power 4+ 1 45GHz
I Site Selector
| EEmeRaEs 5.1 hitp BN eserver pseries 630
- A = 1B Power 4+ 1 A5GHE
545 15 .25 r
8.1 http
. S UT Sun Sun Fire 4800
12 ¥ Sparc Il 1.05GHZ
JCOM 1924 switch
. useid for all
I ethernet connections

© S. Kounev

Driver — Satellite 2
Sun Fire V880

8= 900 Mhz UltraSPARC IIT
16 Gb memery

Driver — Satellite 1
Sun Fire V1280 |

12 % 900 Mhz Ultra?PARC IO
24 Gb memory

| Cisco Catalyst

| 2970 24 Port
10/100/1000

| Switch

Driver - Master
Sun Fire V880 |
8= 900 Mhz TiraZPARC IIT L
16 Gb memery

Application Servers
13 x Sun Fire V20z

2% 2.2 Ghz AMD Opteron
4 Gb memory
2= 73GE Ultra320 3C3I

Cisco Catalyst
2970 24 Port
10/100/1000
Switch

Database Server
Sun Fire E2900

12 % 1.35 Ghe UlwalPARC TV
96 Gb memory

FC

-

e

Sun StorEdge 3510
EC Array

1z Faid Controller
12x 73 GbFC Disks

64

Divar—SuelliteS _puetpn = | Database Server

e - System Under Test Sun Fire E6900 .

32 Gb ey P TS’L':';jn-Eigi;:to- | 20x 1.5 Ghe dual -core |
Sun Fire V420 L3I ; TraSPARC IV+

B 42125 Ghe PR SPARC 11 |

— TS PARC IV memery . 80 Gb memeory I
32 &b memny I e i e s :

Driver — 3 atellite 4

Sun Fire EZ900

122 1.5 Ghe UlraS PARCIV+
95 Gb Toernory i
4 Partitions |

AT

Doadveer — 5 atellite 3 I
Sun Fire ES200 X
24 = 1.2 Ghe UlnaSFARC IV
06 b Ineroory I
3 Faritiors

Diver — 5 atellite 2 i
Sun Fire 7220 |
8212 G he UlraS PARC III
4 Gb roernory

R ' . Sun StorEdge 3510 S I
| ¥

) ; L. FC Array ‘/ |

Cisco Catalyst. Application Servers 1 % Raid C entroller :

S For V8D i 7 x Sun Fire T2000 12x 146 GhFCDisks Sun StorEdge 3510 !

?;gi”ﬁ&ﬁ“spﬂc 1 : | 1= 1.2 GHz 8-core UtraSPARC T FC Array |
Swdtch : 32 CR 11 &m ory 1 x Faid C oniroller .

| 4% 73 GB 10K SAS Drive 1% I GBRCDks

Drriver - Master

Sun Fire V580

£ 2900 Mhz Uwaf PARC 111 NetGear GEM 7224

32 Fb IneToory

24 Port Zawitch

65

Performance Modelling Methodology

Establish performance modelling objectives.
Characterize the system in its current state.
Characterize the workload.

Develop a performance model.

Validate, refine and/or calibrate the model.

Use model to predict system performance.

N o o A~ D E

Analyze results and address modelling objectives.

S. Kounev. “Performance Modeling and Evaluation of Distributed

Component-Based Systems using Queueing Petri Nets”. IEEE

Transactions on Software Engineering, Vol. 32, No. 7, pp. 486-502, 2006.

© S. Kounev

66

Deployment Environment

Dealers
%
,//<§g;, |

dllH

Suppliers

HTTP

1 GBit
LAN

Oracle 9i Server
2xAMD MP2000+
2GB RAM

/

\/

HTTP Load Balancer

1 x AMD XP2000+ CPU, 1GB

WebLogic 8.1 Cluster
Each node with 1 x AMD XP2000+ CPU, 1GB

© S. Kounev

67

1. Establish Modelling Objectives

Normal Conditions: 72 concurrent dealer clients (40 Browse, 16 Purchase,
16 Manage) and 50 planned production lines in the mfg domain.

Peak Conditions: 152 concurrent dealer clients (100 Browse, 26 Purchase,
26 Manage) and 100 planned production lines in the mfg domain.

Goals:

* Predict system performance under normal operating conditions with
4 and 6 application servers.

* Predict how much system performance would improve if the load
balancer is upgraded with a slightly faster CPU.

o Study the scalability of the system as the workload increases and
additional application server nodes are added.

 Determine which servers would be most utilized under heavy load
and investigate if they are potential bottlenecks.

© S. Kounev 68

2. Characterize the System

SYSTEM COMPONENT DETAILS

Component

Description

[.oad Balancer

WebLogic 8.1 Server (HttpClusterServlet)
1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

App. Server Cluster Nodes

WebLogic 8.1 Server
1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

Database Server

Oracle 9i Server
2 x AMD Athlon MP2000+ CPU

2 GB RAM, SuSE Linux 8

[Local Area Network

1 GBit Switched Ethernet

© S. Kounev

69

3. Characterize the Workload

1. Basic Components: Dealer Transactions and Work Orders.
2. Workload Classes: Browse, Purchase, Manage, WorkOrder and LgrOrder.

3. Inter-Component Interactions:

o {1)—{m)—{os)—{) e

(A). Subtransactions of Browse, Purchase and Manage

C = Client

C C LB = Load Balancer

DB = Database
(B). Subtransactions of WorkQOrder and LargeOrder AS = App. Server

© S. Kounev 70

3. Characterize the Workload (2)

Describe the processing steps (subtransactions).

WORKORDER/
PURCHASE MANAGE BROWSE LARGEORDER
login login login scheduleWorkOrder
] _ 2
addVehicleToCart showlnventory openyenicle >
Catalogue
13
sellVehicles/
checkOut cancelOpenOrders Sleep(333ms)
y
goToHomePage goToHomePage browseForeward/ updateWorkOrder
Backward
| \
logout logout goToHomePage Sleep(333ms)
| :
logout completeWorkOrder

3. Characterize the Workload (3)

Workload Service Demand Parameters (ms)

BLB-C #AS-C ODB-C mDB-D

D 7
ek e %
e o
ro W S e s e
S z z

Purchase

PN fr; &;u{{{{{za
IR, ol e
Manage |7 =

B S

| ittt A e |
At o T |
L e e S S, A
Lmman e a

0 50 100 150 200 250

© S. Kounev

=3 3. Characterize the Workload (4)

WORKLOAD INTENSITY PARAMETERS

Parameter Normal Conditions Peak Conditions
Browse Clients 40 100
Purchase Clients 16 26
Manage Clients 16 26
Planned Lines 50 100
Dealer Think Time || 5 sec 5 sec
Mfg Think Time 10 sec 10 sec
© S. Kounhev 73

4, Develop a Performance Model

P/p = purchase; M/m = manage, B/b = browse

W/w = workorder, | = largeorder D
D=FP MorB d
d=pmorb
o=dlorw J
::)o
o
E
Oan® 0 . O
t t t
58 10 G = 3

Load Balancer

AppServer Cluster

Queueing Petri Net

/ |

74

5. Validate [Refine, Calibrate]

Begin

Measurements Model Solution

l l

Measured Predicted

Performance Metrics Performance Metrics

Refine Model

Enough
scenarios
considered?

Change Model
Input Parameters

Assume 2 AS nodes available.

Two Specific Validation Scenarios:

1: 20 B,10P, 10 M, 30 PL
2:40B, 20 P, 30 M, 50 PL

Max. Modelling Error:
e For Throughput: 8.1%
e For Utilization: 10.2%
* For Resp. Times: 12.9%

Note: Validation process iterative!

75

© S. Kounev

76

6. Predict System Performance (2)

ANALYSIS RESULTS FOR SCENARIOS UNDER PEAK CONDITIONS WITH 6 APP. SERVER NODES

Original Load Balancer Upgraded Load Balancer
METRIC Model | Measured Error Model | Measured Error
XpB 17.960 17.742 | +1.2% 18.471 18.347 +0.7%
Xp 4981 4913 | +1.4% 5.027 5.072 -0.8%
X 4.981 4.995 -0.3% 5.013 5.032 -0.4%
Xw 3.984 3.880 | +1.2% 9.014 3.850 +1.8%
X1, 0.497 0.490 | +1.4% 0.501 0.515 -2.7%
Rp 567ms 534ms | +6.2% 413ms 440ms -6.5%
Rp 214ms 198ms | +8.1% 182ms 165ms | +10.3%
R 224ms 214ms | +4.7% 193ms 187ms +3.2%
Rw 1113ms 1135ms -1.9% 1115ms 1123ms -0.7%
Urgs 86.6% 38.0% -1.6% 68.2% 70.0% -2.6%
Uas 54.3% 53.8% | +0.9% 55.4% 25.3% +0.2%
Ubns 32.9% 34.5% -4.6% 33.3% 35.0% -4.9%

© S. Kounev

6. Predict System Performance (3)

ANALYS1S RESULTS FOR SCENARIOS UNDER— WITH 8 APP. SERVER NODES

Heavy Load Scenario 1

Heavy Load Scenario 2

METRIC Model | Measured Error Model | Measured Error
XB 26.505 25905 | +2.3% 28.537 26.987 +3.7%
Xp 4.948 4817 | +2.7% 4.619 4.333 +6.6%
Xar 4.944 4.825 | +2.5% 4.604 4.528 +1.6%
Xw 8.984 8.820 | +1.8% 9.003 3.970 +0.4%
X 0.497 0488 | +1.8% 0.460 0417 | +10.4%
Rp 664ms 714ms | -7.0% 2012ms 2288ms -12.1%
Rp 253ms 257ms | -1.6% 632ms 302ms -21.2%
TE%r 263ms 276ms -4.7% 630ms 745ms -15.4%
Rw 1116ms 1128ms -1.1% 1123ms 1132ms -0.8%
Urp 94.1% 95.0% -0.9% 99.9% 100.0% -0.1%
Uas 54.5% 54.1% | +0.7% 57.3% 55.7% +2.9%
Upp 38.8% 42.0% -7.6% 39.6% 42.0% -5.7%

150 Browse Clients

200 Browse Clients

© S. Kounev

A~~~
‘n““—u
N’

D
&)
-
©
&
| —
@)
(.
| -
(V)
al
-
()]
)
7p
>

p
)
(@)

©
()]
| -

al

O

browse

T o
..

|

P
e
.

-
-

-
-

-
-

-

=
.
-
-
-

-
-

-
-

-

.

-
-
:
-
-

-
-
=

s

-

*

.
-
.

+

5
| -

-

-

-

-
-
-

-

-
-
-
-

-

-

-
-
-
-

-
-
-
-
-
-

B
.] W
Lz

-
-
-
.
-
-
-

L
-
.

-
.
-
.
.
.
.
=
-

-
-
-
-
-

-
-
-

S

.

.
.
.
.
.
=

.
-
.
S

-
-

-
.
.

.
.
.
-

.
.

.
.

¥
-
-
-
-
-

-
-
-
-
e
.
.

-
|
1
.
8
-

-
.
-
-
.

-

-
-
-
-

- .

-
.

.

.
.
.

i

-

.
.
.

-
.

-

-
i
.

-
-

-

-

-
s

-
-
.

-
]
)

|
&
-
S
-
.
-
-
-
-

i
5
s

-
-
-
-
-
-
-

o
-
.
.
-

.
%;
.
.
.
*M

=
.
.
.

-

n
1
.
.
.
L
.
.

%
-
.
.
-
-
-

-

5
-
-
-
-
-
-
-
-
-
-

-
.

.
-

-

e

.

4

r
f

i

. s,

-

4
L
-

T
e

Q

purchase
workorder,

P/p
Wiw
P.MorB

p,morb
dlorw

D
d
o

Load Balancer

Database Server

tf 1+N

AppServer Cluster

Sc.3: 300B,30P,30M, 120 PL - Max Error 16.8%

Sc.4: 270B, 90 P, 60 M, 120 PL - Max Error 15.2%

© S. Kounev

80

/. Analyze Results & Address Objectives

| B-C] AS-C DB-C

8AS / HEAVY 4

8AS / HEAVY 2
8AS / HEAVY 1
6AS / PEAK /UPG. LB
6AS / PEAK /ORIG. LB
6AS / NORMAL
4AS /| NORMAL

O 20 40 60 80 100

© S. Kounev 81

Benefits of using QPNs

1. QPN models allow the integration of hardware and software

aspects of system behavior.
2. Using QPNs, DCS can be modeled accurately.

3. The knowledge of the structure and behavior of QPNs can be

exploited for efficient simulation using SImQPN.

4. QPNs can be used to combine qualitative and quantitative

system analysis.

5. QPN models have an intuitive graphical representation

facilitating model development.

© S. Kounev 82

Summary & Conclusions from Case Study

Presented a systematic approach for performance prediction.

Studied a representative application and predicted its

performance under realistic load conditions.

Model predictions were validated against measurements on the

real system. The modelling error did not exceed 21.2%!

QPN models can be exploited for accurate performance

prediction in realistic scenarios.

Proposed methodology provides a powerful tool for sizing and

capacity planning.

© S. Kounev 83

References

“Performance Modeling of Distributed E-Business Applications using
Queueing Petri Nets”, S. Kounev and A. Buchmann. Proceedings of the
2003 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS).

“Performance Modeling and Evaluation of Large-Scale J2EE
Applications”, S. Kounev and A. Buchmann, Proceedings of the 29th
International CMG Conference on Resource Management and
Performance Evaluation of Enterprise Computing Systems, 2003.

“Performance Modeling and Evaluation of Distributed Component-Based
Systems using Queueing Petri Nets”, S. Kounev. IEEE Transactions on
Software Engineering, Vol. 32, No. 7, pp. 486-502, July 2006.

“J2EE Performance and Scalability - From Measuring to Predicting”,
S. Kounev. In Proceedings of the 2006 SPEC Benchmark Workshop,
Austin, Texas, January 23, 2006.

© S. Kounev 84

'

Further Reading

"Performance by Design: Computer Capacity Planning by Example* by
D. Menascé, V.A.F. Almeida and L. W. Dowdy. Prentice Hall,
ISBN 0-13-090673-5, 2004

"Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction” by S. Kounev,
Shaker Verlag, ISBN: 3832247130, 2005

"Scaling for E-Business: Technologies, Models, Performance, and
Capacity Planning” by D. Menascé and V.A.F. Almeida, Prentice Hall,
ISBN 0-13-086328-9, 2000

“Capacity Planning for Web Performance: Metrics, Models and Methods*
by D. Menascé and V.A.F. Almeida, Prentice Hall, Upper Saddle River,
NJ, 1998.

© S. Kounev

85

Further Reading

“Queueing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications” by G. Bolch, S. Greiner,
H. de Meer, K. Trivedi; Wiley-Interscience, 2 Edition,

ISBN: 0471565253, 2006

“Probability and Statistics with Reliability, Queuing and Computer
Science Applications” by K. S. Trivedi, John Wiley & Sons, Inc.,
Second edition, 2002.

© S. Kounev

86

