
by E. M. Schwarz
M. A. Check
C.-L. K. Shum
T. Koehler
S. B. Swaney
J. D. MacDougall
C. A. Krygowski

The
microarchitecture
of the IBM
eServer z900
processor

The recent IBM ESA/390 CMOS line of
processors, from 1997 to 1999, consisted
of the G4, G5, and G6 processors. The
architecture they implemented lacked 64-bit
addressability and had only a limited set of 64-
bit arithmetic instructions. The processors also
lacked data and instruction bandwidth, since
they utilized a unified cache. The branch
performance was good, but there were delays
due to conflicts in searching and writing the
branch target buffer. Also, the hardware
data compression and decimal arithmetic
performance, though good, was in demand by
database and COBOL programmers. Most of
the performance concerns regarding prior
processors were due to area constraints.
Recent technology advances have increased
the circuit density by 50 percent over that of
the G6 processor. This has allowed the design
of several performance-critical areas to be
revisited. The end result of these efforts is the
IBM eServer z900 processor, which is the first
high-end processor based on the new 64-bit
z/ArchitectureTM.

1. Introduction
The microarchitecture of the IBM eServer z900 processor
is based on that used in the G4 processor, introduced in

1997 [1]. The G4 processor supported the ESA/390
architecture and was a single-issue 32-bit processor with
a unified cache and a short six-stage pipeline. This design
was expanded in 1998 to create the G5 processor. The G5
processor was the first IBM 390 mainframe to implement
the IEEE 754 binary floating-point standard [2–5] as well
as the traditional hexadecimal floating-point architecture.
The G5 processor doubled the performance of the G4 by
implementing more instructions in hardware versus low-
level software and improving branch prediction with a
branch target buffer (BTB). The 1999 G6 processor was
primarily a remap of the G5, but with the expansion of
some facilities to lead to a multiprocessor system of twelve
central processors, versus ten central processors on G5,
with two extra processors for I/O processing, coupling, or
simply as spares [6]. This type of configuration is called a
12 � 2-way system. The z900, introduced in December
2000 [7], continued the enhancements of the G4
through G6 design, and is available in a 16 � 4-way
system.

The G6 processor had some performance bottlenecks
which were recognized as key targets for future
improvements. The fetching of data operands could
conflict with instruction fetches. The level 1 (L1) cache
was interleaved, which allowed multiple requests at the
same time, but conflicts were still possible because it was
unified, containing both data and instructions. The BTB
had some delays due to conflicts between searches and
history field updates. Branch performance was greatly

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

381

aided by the use of a BTB, but its 2K size was a concern.
Also, database programmers had concerns about the data
compression performance. On the G3 processor, data
compression was implemented in a hardware compression
engine [8]. In the G4, G5, and G6 processors, only
a set of compression hardware assist instructions were
implemented in the fixed-point unit (FXU), and much of
the functionality came from low-level software called
millicode. The cycle time of the G4 was half that
of the G3 in 1997, and thus the relative compression
performance was acceptable. However, within three
years there was a concern about hardware compression
performance. Also, our COBOL customers are continually
asking for increased decimal performance, so we wanted
to make some substantial changes in this area. With the
latest circuit and packaging advances, circuit densities are
far greater than in previous generations. Thus, there
was plenty of room to enhance the functionality and
performance of the prior-generation (G6) processor. It
was possible in 2000 to consider large-area-consuming
enhancements such as doubling the L1 cache, quadrupling
the BTB, and adding a hardware compression engine.

The z900 processor is the first processor to implement
the 64-bit z/Architecture*. It also retains support for all
older 390 to 360 architectures, thereby providing binary
compatibility for programs written in the 1960s. Thirty-
four new instructions were added to the ESA/390
architecture mode and 139 new instructions for the
z/Architecture mode, for a total of 173 new opcodes. The
new ESA/390 instructions are 32-bit-long immediate
relative branches; nondestructive rotates, which use
a different source and target register; conversion
instructions for Unicode to/from UTF-8 format and store
clock extended; and translate extended, as well as set clock
field and store system information instructions. The new
z/Architecture instructions include many new arithmetic
instructions which operate on 64-bit binary integers [9, 10].
Of the additions to the general instruction set, the most
notable are some new 16-bit immediate operations, and
nondestructive shift operations. Architected facilities

have also changed. The general-purpose register file
(GPR) has increased from 32 bits to 64 bits; 32-bit
instructions operate on only the low-order data in bits
32 to 63. The control registers have also been widened,
but there was no need to widen the access registers or
floating-point registers. The processor status word (PSW)
was also widened from 64 bits to 128 bits, so that it could
easily hold the 64-bit instruction address (IA). The z900
processor supports 24-, 31-, and 64-bit addressing and
32- and 64-bit arithmetic.

The underlying hardware supports all facilities for both
architectures and all addressing mode possibilities. The
architecture level supported by hardware execution
cannot be changed readily and requires a signal processor
(SIGP) or start interpretive execution (SIE) privileged
instruction. The architecture level is important to the
operating system for determining translation table sizes
and other underlying information, but it is not very
important to user programs. The newer the architecture
level, the greater the numbers of instructions that are
enabled. The addressing mode, on the other hand, is very
important to user programs and is controlled by bits 31
and 32 of the PSW. The addressing mode can be rather
dynamic. Other architectures have allowed transitions to
64-bit architectures which have provided only minimal
support for old user programs. Other platforms which
have made the transition to 64-bit architectures have
forced the user to recompile, have allowed one addressing
mode to be active at a given run time, or have forced old
binaries into slow software emulation. The z900 platform
allows old subroutines to run with new programs, each
using different addressing modes, and they run efficiently
together. Several instructions such as branch and save or
set address mode can change the addressing mode. In
z/Architecture mode, all three addressing modes are
possible: 24-, 31-, or 64-bit addressing.

Since the architecture is relatively complex, it is
implemented by a combination of hardware and low-level
software called millicode. Millicode on the z900, as well
as for G4, G5, and G6, is vertical code consisting of
a combination of 390 assembler and additional assist
instructions. The millicode operates on working registers
called millicode general-purpose registers (MGRs) rather
than on the architected GPRs. For the z900 there is a new
interface between hardware and millicode which enhances
performance and simplifies code. Working registers are
bigger, for a total of 16 by 64-bit MGRs. Register
interlocks for millicode control registers are handled
primarily in hardware. System operation commands such
as move page or store with padding are handled with an
asynchronous controller. This allows the launch of these
special instructions to be decoupled from the instruction
pipeline, easing the handling of pipeline hazards and

Figure 1

Instruction pipeline of the z900 processor.

IF

Instruction
fetch

D

Decode

AGEN / C0

Address
generation

C1 / E-1

Cache
access,
directory,
TLB

C2 / E0

Data
return,
rotate,
merge,
operand
buffer

E1

Execution

WR

Write-
back

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

382

exceptional conditions. Also, with a large instruction cache
(I-cache) there is no need to have a special internal code
instruction memory, as for the G4, G5, and G6 processors.
With the z900, millicode is fetched into the I-cache
using the same mechanisms as for other instructions.
To help some routines where it is critical that millicode
instructions be in cache, a new millicode assist instruction
was added which creates an I-cache line touch mechanism.

The instruction pipeline of the z900 processor is shown
in Figure 1. The first cycle shown is the instruction fetch,
which can actually take several cycles and is not generally
counted when referring to pipeline depth. The next
cycle begins at the instruction register, where a single
instruction is decoded and the operands for address
generation are read from the general-purpose register
file (GPR). The pipeline is optimized for instructions that
require one operand from the register file and one from
memory. These instructions are referred to as RX-type
instructions. The address generation cycle is used to
add a base and index which are from the GPRs and a
displacement from the instruction text to form a memory

address. In the following cycle, the L1 cache, directory,
and TLB are accessed in parallel. In the subsequent cycle,
the memory data is sent to the execution unit, and it is
rotated and potentially merged with previously read cache
lines in the operand buffers. Then, the execution begins:
typically one cycle for most fixed-point arithmetic
instructions and three cycles for most floating-point
instructions, but these cycles are pipelineable. The last
cycle is the stage in which write-back to the register file
takes place. Thus, the z900 (as well as the G4, G5, and G6
processors) has a six-stage instruction pipeline with single
instruction issue.

The overall dataflow is shown in Figure 2. At the upper
left is the instruction unit. A hit in the BTB results in an
instruction fetch. The returned instruction text is placed in
the instruction buffers. The buffers feed the instruction
register. The instruction is decoded and placed in the
instruction queue until being issued to the execution unit.
Also during decode, the base and index registers are read
and latched. In the following cycle, the address adder
computes the address.

Figure 2

Translator

Compression

ev DW

od DW

BCE

ASCEASCE AAAA LALA

ALBAA
hist

TLB
direct.

TLB
direct.

L2

L2

QW

L2

Store
buffer

Store
buffer

DW
DW

QW

TOD

Current
check-
point
state

RU-data

EU-data

IU-BEU-B

Data

Async/
ZMT

I-reg

I-decode

I-queue

BTB

B X AR

Address adder

Address
control

I-buffer

I-unit

Local
CR

copies

Fixed-point
ALU

Floating-
point ALU

E-unit
control

GRs/ARs Operand
buffers FPRs

Dataflow of the z900 processor.

A-reg

C-reg C-reg

B-reg A-reg B-reg

E-unit R-unitCOP

Addr Addr

I-cache D-cache

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

383

The cache and cache controller referred to as the buffer
control element (BCE) are shown in the upper right
portion of the figure. The BCE is given a logical (virtual)
address and performs a hashed lookup of the upper bits in
the absolute (real) address history table. This provides an
absolute address to access the cache array. In parallel with
the array access is a directory lookup and TLB access. If
there is a hit in the directory and the TLB, the operand
data is returned. Two doublewords (one fetch and one
store) can be accessed from the data cache (D-cache) per
cycle. The I-cache provides data for the I-unit as well as
the compression and translator units. One quadword can
be fetched from the I-cache per cycle.

The execution unit (E-unit), which consists of a fixed-
point unit (FXU) and a floating-point unit (FPU), is
shown in the lower left portion of the figure. The
operands from the D-cache are buffered in the E-unit
operand buffers, where they are rotated and merged
with other cache lines to form a doubleword of aligned
operand data. The FXU executes most of its instructions
in one cycle, though some multicycle instructions such as
divide decimal can take hundreds of cycles. The FPU has a
five-stage pipeline, but most instructions execute with a
latency of three cycles with a throughput of one per cycle.

Shown to the right of the E-unit are the translator and
the compression unit, which together are referred to as
the coprocessor unit (COP). Both can make table fetches
directly from the I-cache. The recovery unit (R-unit) is
shown in the lower right portion of the figure. The R-unit
holds the machine state with ECC protection and provides
this data in the event of an error. The R-unit also contains
system-pervasive functions and miscellaneous functions
such as the time-of-day clock (TOD) and trace and
instrumentation functions.

Thus, the overall dataflow of the processor has been
described. The overall CP chip is 17.9 mm by 9.9 mm and
contains 47 million transistors, of which 13 million are in
logic circuits and 34 million are in arrays. The L1 caches
have a capacity of 256 KB. The chip is implemented in a
CMOS process with minimum dimensions of 0.18 �m and
seven-metal-layer copper technology. The cycle time of the
first products shipped was 1.3 ns, with a junction temperature
of 0�C, requiring the use of a chiller (a self-contained
cooling unit) to remove the almost 30 W per chip. For
more details on the technology or circuits, see [11, 12].

The z900 processor contains some major enhancements
by comparison with the G6, both in terms of functionality
and performance, while retaining some of its simplicity,
such as a simple six-stage pipeline with in-order execution,
as well as the issuing of a single instruction per cycle.
But the z900 has increased functionality with the
implementation of the new z/Architecture, and it also has
increased performance. The rest of the paper describes
these enhancements in more detail. Section 2 discusses the

new split I/D cache, which increases bandwidth as well as
doubling the L1 cache size. Enhancements made to the
instruction unit, including the BTB, are discussed in
Section 3. Section 4 presents a new hardware compression
engine which quadruples the performance of the G6
compression implementation. The hardware translator,
which deals with the new complexities of 64-bit
architecture, is discussed in Section 5. Section 6 describes
new features of the execution unit, such as enhanced
decimal arithmetic algorithms that aid performance. The
overall processor enhancements are summarized in the
final section.

2. Buffer control element
The buffer control element (BCE) of the z900 processor
consists of the split L1 (I/D) caches and the interfaces
with the unified L2 cache. To reduce rework and promote
reuse, the I- and D-caches were designed by the same
team of logic and circuit designers. The pipeline operations
were generally kept the same for both caches. Thus, most of
the logical and physical entities, e.g., cache/directory/TLB
arrays, are shared between the two cache units. A high-
level diagram of the BCE is provided in Figure 3 to show
the similarities between the two cache designs.

The decision to change from a unified cache (in
previous z-processors) to split I/D caches resulted from a
desire to provide greater bandwidth to the processor by
separating the instruction and operand fetch requests. The
split design also allows faster access time for larger cache
sizes. The caches are both 256 KB in size, with a line size
of 256 bytes; both require an access time of only one
cycle. The z900 contains an L1 cache twice as big as that
of its predecessor, the G6 processor, which had a unified
256KB L1 cache. The z900 L1 caches are managed by
grouping the contents into 256 congruence classes of four
lines (four-way set-associative). The I-cache is managed as
single-quadword (16 bytes)-accessible, while the D-cache
is managed as two-doubleword (8 bytes)-accessible by
interleaving on even and odd doubleword addresses. Since
the D-cache is interleaved, it is possible to process a fetch
in one of its interleaves while processing a store in the
other interleave.

The z900 BCE required changes in many areas to
support the new 64-bit z/Architecture. Logical address
paths have been increased from 32 bits to 64 bits, while
physical address paths have also been increased to access
the larger physical storage provided with the new z900
machines. A new interface has been added between the
coprocessor and the I-cache to allow both compression
dictionary/table fetches and translation table fetches. A
new content-access-memory (CAM)-structured TLB has
been added to the pipeline to speed up the selective entry
purging required by the z/Architecture. To fully support
the split-cache structure, the L2 cache (off chip) and the

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

384

L2 interfaces have been changed to support concurrent
misses from both I- and D-caches. To support the
z/Architecture requirement of self-modifying instructions,
the address-compare logic (called program-store-compare,
or PSC) has been redesigned and distributed among the
L1 and L2 caches. Communications between the I- and
D-caches of an individual processor are performed
through the L2 using the multiprocessor cache-coherency
protocols. To modify an instruction, the D-cache must
send a cross-interrogate (XI) command to the L2
requesting the line exclusive. The I-cache must eventually
give up the requested line to L2, which then notifies the
D-cache that it has the line exclusive. Rather than creating
another protocol between an individual processor’s I- and
D-caches, the cache-coherency protocol among the 20
processors (or 40 L1 caches) is used.

During the address generation cycle, the I-unit provides
the logical address requested and its corresponding
address information to the caches. Since the cache is
organized as an absolute-addressed structure (instead of
logical-addressed), the logical address cannot be used
directly to index the cache or directory. In the D-cache,
the I-unit maintains the existing hash index used in
looking up in the absolute address history table (AAHT)
for predicting the absolute address bits needed to access
the directory and cache. For instruction fetches, the BTB
in the I-unit manages absolute address bits rather than
using an AAHT. As in the G6 processor BCE, if
misprediction occurs, the AAHT is corrected, and the
initial request is recycled with the correct guess based on
the result from TLB lookup. The corresponding address
space control element [(ASCE), the translation table
origin, detailed in Section 5] is also looked up using the
control register files in the I-cache for instruction fetching
and the ALB in the D-cache.

During the array lookup cycle, the translation lookaside
buffer (TLB) is indexed with the logical address, using the
appropriate ASCE. The corresponding absolute address
is obtained if the translation hits in the TLB. If not, the
logical request address is forwarded to the coprocessor’s
translator to perform hardware translation. During the
cycle in which the TLB is addressed, the directory and
cache are also accessed; if a match is detected in the
directory, the data is obtained with a late selection
multiplexor from the parallel cache lookup.

During the data return cycle, if data is obtained
successfully through the cache, the I-unit is notified of
the presence of requested data. If data is missing from
the L1 cache, a line fetch request is formulated to be
sent through the L2 interface to the L2 cache. In the
meantime, the I-unit is notified of the miss and is
advised to wait for the return of requested data.

The D-cache has a write-through policy, and the L2
cache uses a write-back policy. Since the reliability of

cache array cells was a chief concern, we chose a write-
through L1 design with parity protection but with an ECC-
protected L2. This also simplified recovery from errors,
since the L1 caches contained no architected state that
was not already available in the L2. The L1 caches were
simply flushed for recovery. Write-back caches have the
advantage of reducing bus traffic, but instead we chose to
use dedicated wires from each processor to the L2. The
processor-to-L2 structure is a 2 � 10-way binodal set of
dedicated bidirectional buses.

Operand stores are written into the L1 cache as each
store is executed, and are merged with current data from
the cache to form the doubleword. Since the connection to
the L2 cache is by two-quadword bidirectional buses, any
storage updates are forwarded to the L2 cache when no
cache-miss traffic is returning from the L2 cache to the L1
caches. The z/Architecture requirement to support self-

Figure 3

Major components of the buffer control element.

I-unit
interf AAHT STO

TLB
logical
(wxyz)

TLB
abs

(wxyz)

TLB
cam

(wxyz)

Lookup
control

PSC
regs

XI
stack

L2
interf

Xlat
interf

Cmprs
interf

Err
trace
LRUs

L1
cache
(abcd)

Hit logic

DIR
(abcd)

AA
pipe

mux

Cmprs I-unit Translator

Parity/mux

I-unit
interf

AAHT ALB

TLB
logical
(wxyz)

TLB
abs

(wxyz)

TLB
cam

(wxyz)

Lookup
control

Store
queue

XI
stack

L2
interf

Xlat
interf

Err
trace
LRUs

L1
cache
(abcd)

Hit logic

DIR
(abcd)

AA
pipe mux

Parity/mux

Store
buffer

Cache select

Cache select

I-cache (BCEi)

D-cache (BCEd)

Request
(I-unit/translator/coproc)

D-cache
bias

L2
data

Request
(I-unit/translator)

L2
bias

L2
data C-bus

Op buffer L2 store

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

385

modifying instructions is more difficult with a split I/D-
cache design than with a unified L1 cache. To simplify the
design and reduce buses in the chip, the multiprocessor
cache coherency protocol is used to communicate between
the I- and D-caches.

To increase multiprocessor performance, changing a
page key (SSKE instruction) or invalidating a selective
page (IPTE instruction) had to be very fast. In the
G6 processor, the TLB had to be searched for the
corresponding absolute address in every entry, which
required one cycle per entry for a total of 256 cycles. In
the z900, the TLB has 128 entries four-way set-associative,
which takes 128 cycles to invalidate a page or change its
key. The TLB is indexed by bits 45 to 51 of the logical
address, and each TLB entry has three addresses: 1) the
logical address bits 0 to 44, 2) the ASCE bits 24 to 51,
and 3) the absolute address bits 24 to 51. Also, a TLB
entry contains miscellaneous control information bits such
as the key, the change bit, and valid bits. For the z900, an
additional array is implemented which speeds the lookup
of an absolute address; it is called the content-addressable
memory (TLB-CAM). The TLB-CAM contains bits 42 to
51 of the absolute address rather than all of the absolute
address bits (24 to 51). This provides speed of lookup at
the cost of overpurging entries in the TLB. Rather than
taking hundreds of cycles to find an entry which matches
an absolute address, only one cycle is required. When a
selective purge is needed, the pipeline requires four to six
cycles to invalidate the requested keys or translations. This
speeds up the overall machine performance, since most of
the selective purges involve the coordination of many
processors.

3. Instruction unit
The instruction unit (I-unit) for the z900 processor
required changes to almost all areas to accommodate
the new 64-bit z/Architecture. However, much of the
fundamental structure did not change. The unit had
to expand its entire dataflow to handle the full 64-bit
addressing of the new architecture. As mentioned in the
Introduction, support for 173 new instructions was added.
The majority of these new instructions are executed
completely in hardware with no millicode assistance.
Many changes were also required to support the dynamic
modal nature of the three addressing modes. To improve
performance, the fetch interface to the instruction cache
and the address generation interlocks were enhanced, the
number of outstanding branch paths was increased, and
the size and performance of the BTB were increased
considerably.

The z/Architecture adds new instructions that allow for
programs to switch address modes easily among 24-bit,
31-bit, and 64-bit. One set of instructions is set addressing
mode (SAM24, SAM31, SAM64), which executes in

hardware. This allows program execution to dynamically
switch addressing modes without even the need to
branch to a different subroutine. To ensure that address
calculation for these different modes for both instruction
and operand fetching can flow through the instruction unit
simultaneously, all addresses in the instruction unit keep
mode tags and handle the proper truncation of addresses
to the correct mode. This allows for a single 64-bit address
and mode tag interface to both of the L1 caches which is
independent of the addressing mode of the processor.

When the processor is running in the new z/Architecture
mode, program execution is allowed to mix 32-bit and
64-bit arithmetic, since there are separate instructions
for the 64-bit operations. This required special handling
of updates to the GPR set for address generation. Since
it is now possible to update an entire 64-bit register,
the lower 32 bits or the upper 32 bits via different
instructions, careful attention must be given to which
addressing mode the processor is in when these updates
are made. This affects the address generation interlock
(AGI) logic. Care must now be taken to allow bypass
of only data having a width which matches that required
for the different addressing modes.

In the G5/G6 processor, the early resolution of data
from load address (LA) and load (L) was allowed in the
instruction unit for address calculation before the fixed-
point unit would execute and update the GPR file for
these instructions. For the z900 processor, additional
instructions have been added which also exploit early
address generation interlock (AGI) resolution for
performance. These include all of the index branches and
some linking branches for which the instruction unit has a
result that updates the GPR at the execution time of these
branches. The branches that are supported for early AGI
generation include branch on index, branch and link, and
branch and save. The index branches are often used in
floating-point loops to increment the register used to
index a data array. For linking branches, the register value
is often used as a base for storage reference by subsequent
instructions.

The G5/G6 processor contained a single unified cache.
All operand data and instruction fetch requests to the
cache were prioritized in the I-unit. In some cases this
resulted in conflicts between the need to fetch operand
data and to fetch more instruction text. With the split
I/D cache design of the z900, there are now two cache
interfaces. While this does not significantly change the
priority in the operand fetch logic, it does remove conflicts
of branch addresses. The greater change is in the
instruction fetch performance. With its own interface,
instruction fetching has many more fetch cycles available,
allowing more aggressive fetching of instruction text.

With more fetch cycles and the expectation of running
more new 64-bit instructions, most of which are 4- or

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

386

6-byte instruction formats, more instruction text must be
buffered. Thus, the six-quadword (32-byte) buffers of the
G5/G6 design have been increased to six double-quadword
(64-byte) buffers for the z900. In addition to making the
buffer larger, the number of predicted branch paths
fetched has been increased by one to allow three
outstanding branches.

The z900 processor has the same basic pipeline as the
G4 through G6 processors. Note that the G5 processor
was the first to use a BTB in its design to predict the
target address of branches. Most branches in old
workloads for z/Architecture are not relative addressed
branches, so a simple direction guess is not very useful.
Instead, each BTB entry is very wide to contain the
address of the target and so that it can be prefetched into
the instruction buffers. The penalties for branches are the
same as in the G4 through G6 processors. A branch for
which the prediction is in the wrong direction costs five
cycles, since the target can be decoded two cycles after
execution of the branch on this short six-stage pipeline.
A “surprise-guessed-taken” branch (a branch which is
not found in the BTB and is statically predicted taken)
has a three-cycle penalty, since decode of the target can
occur on the execute cycle of the branch. A branch with
a wrong target address predicted costs six cycles, since
the addresses are compared in the cycle after address
generation but the instruction fetch of the target is not
performed until the direction is determined.

The most significant performance enhancement in the
I-unit was the change to the BTB. In the G5/G6 design it
is 1K by two-way associative for a total of 2K entries. In
the z900 it is a 2K by four-way associative design for a
total of 8K entries. In addition to holding more entries,
the BTB can search 32 bytes per cycle instead of 16. Also,
the history and least-recently-used (LRU) portions of the
BTB are a two-port design. Every time a predicted branch
is executed, an update cycle is made to the branch history
and LRU sections of the array to update it. Note that the
history has three states: invalid, weakly taken, and strongly
taken; a surprise-taken branch starts in the strongly taken
state. The two-port design simultaneously allows the
update of these fields for a predicted branch and a search
for future branches. In the G5/G6 single-port design, a
search cycle had to be taken away to perform the update.
The data portion of the array is still a single port, but it
grew in width to accommodate the larger addresses. With
these changes, 11 bits of the branch address are used to
index the array. The array holds 19 additional bits for
branch address for comparison purposes. The array also
holds a 30-bit target address. The BTB array can be
searched modulo 2 GB on the instruction address of a
branch. For the predicted target address, the upper bits
are assumed to be the same as the address of the branch
itself. Only taken branches are maintained in the BTB.

There is an advantage to saving taken and not-taken
branches if only a history table is maintained, but the
added area of target addresses in a synchronous BTB
makes it a disadvantage to save not-taken branches.
The BTB is shown in Figure 4.

With the much larger size of the BTB in the z900,
changes were made in how the BTB was protected for
reliability. For the G5/G6, it was part of the I-unit and
was replicated. Now it is outside the replicated I-unit and
is protected with parity, saving considerable silicon area
while still providing soft array failure protection. On hard
fails, each of the sets may be disabled independently,
allowing the BTB to continue to operate in a degraded
mode.

4. Compression unit for data compression and
character translation
The compression unit for the z900 implements data
compression and character translations. Data compression
is commonly used in database applications to save
memory. The compression unit performs table loads
from the I-cache and then iterates on a compression or
translation. The prior G6 processor does not have a

Figure 4

Dataflow of the branch target buffer.

Update
addr

LRU
addr

History
12

LRU
6

Data

Entry
addr

256

64

R

R

WW

R/W

Search addr

Hit
logic

History Targ
A

Targ
B

Targ
C

Targ
D

2k2k2k

Entry
addr (48:58)

Update
addr (0:10)

History (0:2)

History (0:1) Target
address (0:29)

LRU
addr (0:10) LRU (0:5)

LRU (0:5)

Data (0:63)

BTB array

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

387

dedicated compression unit and instead performs some
millicode assist instructions in the FXU. Thus, the z900
has significantly higher performance than the G6 processor,
taking of the order of one third the number of cycles of the
G6; also, the cycle time is significantly shorter.

Hardware data compression
The z/Architecture incorporates support for data
compression in the processor based on the Lempel–Ziv 2
(LZ2) method with static dictionaries [13–15]. Data
compression is invoked by the compression call (CMPSC)
instruction, which specifies via general registers the source
operand address and length, target operand address and
length, dictionary address, and a few bits for controlling
the algorithm (such as a bit for compression versus
expansion). The operands and the dictionary reside in
main storage and are accessed through the regular cache
hierarchy.

CMPSC is a synchronous processor instruction, which
means that the processor cannot continue executing other
sequential instructions as long as CMPSC is running.
From a system performance perspective, processor
utilization and memory/cache utilization (for dictionaries
and compressed data) are increased in the short term in
order to save disk space and I/O bandwidth in the long
term. The net effect on system performance depends
on whether the environment is more processor-bound,

memory-bound, or I/O-bound. In the case of database
queries, the expanded data often has a very short lifetime
before being overwritten with new expanded data in the
L1/L2 caches and therefore may never propagate beyond
L2 cache toward main memory. This effect can reduce
overall data traffic in the system and in many cases
substantially improves system performance as a result
of using hardware data compression.

Character translations
The z/Architecture defines the instructions TR, TRT,
and TRE for translating an input stream of single-byte
characters bytewise into an output stream of single-byte
characters by means of a 256-byte translation table. Input
data, translation table, and output data reside in main
memory and are accessed through the regular cache
hierarchy. The three translate instructions are
differentiated by format and ending conditions.

Coprocessor implementation
Predecessor processors of the z900 had implemented data
compression and character translates mainly in millicode
with extensive hardware assists in the processor.
Increasing performance requirements for data
compression were the main reason for the choice of a
coprocessor-based implementation. In addition, the
hardware assists for data compression and character
translations or “translates” in the processor turned out to
severely restrict efforts for further reduction of logical
path lengths.

Both data compression and character translates convert
source operand data sequentially into target operand data
by means of a translation table or dictionary. This analogy
was the motivation to implement those functions in a
common coprocessor to exploit the hardware resources
efficiently. The coprocessor is attached to the processor
via three interface buses, as shown in Figure 5. Input data
and control information are sent to the coprocessor via
the 8-byte-wide C-bus (upper left), from which they are
loaded either to the coprocessor control registers or to
the 256-byte input buffer. Output data is loaded from the
coprocessor to the 256-byte output buffer and from there
is sent to the processor via the 8-byte-wide R-unit bus
(shown in the lower middle portion of the figure). This
bus is operated in multiplex mode and also transmits
status information back to the processor. The data
transfer between processor and coprocessor in general is
under control of millicode, which fetches source operand
data from memory and sends it to the input buffer; reads
data from the output buffer and stores it to the target
operand in memory; and reads and interprets status
information from the coprocessor (which primarily
indicates the number of empty input buffer slots, the
number of data units ready to be read from the output

Figure 5

Overview of coprocessor for compression and character translations.

Input
buffer

I-cache
interface

C-bus interface (8 B) I-cache interface (16 B)

Character
selector

Symbol
selector

Translation
table
buffer

Compare and
matching logic

Address
generation

Character
router

Symbol
router

Output
buffer

Target
registers

Source
registers

R-unit interface (8 B)

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

388

buffer, and, at the end of the operation, the type of
ending condition encountered).

The coprocessor reads data from the input buffer,
performs the required processing, and stores the result
data to the output buffer. While both input data and
output data may be considered as sequential data streams,
the dictionaries and translation tables are accessed
randomly. Therefore, the coprocessor has a logical
interface to memory, consisting of an 8-byte-wide address
bus, a 16-byte-wide data bus, and a few control lines for
the “handshake” protocol shown at the upper right in
Figure 5 as the I-cache interface. Because this interface is
read-only, it is physically connected to the I-cache rather
than to the D-cache, since wiring congestion and timing
there are less critical. For CMPSC with dictionary sizes up
to 64 KB, every entry is accessed individually when it is
needed. For the character translates with a table size of
256 bytes, a fast-streaming mode has been implemented
which allows loading of the entire translation table into
the coprocessor at the beginning of the operation and
eliminates delays on the I-cache interface during
processing.

The coprocessor itself comprises the following main
functional components:

● Source registers are two 8-byte-wide registers that are
loaded alternately from the input buffer.

● Character selector selects up to five characters from the
input registers for processing by CMPSC compression or
character translates.

● Symbol selector selects one compressed symbol from the
input registers for processing by CMPSC expansion.

● Address generator calculates a logical address for fetching
a dictionary entry or a translation table.

● Compare logic performs the compare and matching
processes required for CMPSC compression.

● Translation table buffer holds the 256-byte translation
table for the character translates. It is implemented
logically as a register file with a 16-byte write port for
loading the translation table with 16 consecutive data

shots, and two single-byte read ports allowing translation
of 2 bytes every cycle.

● Character router loads the output characters of a translate
or of CMPSC expansion to the output registers.

● Symbol router loads a compressed symbol to the output
registers.

● Target registers are six 8-byte-wide registers (two for
compression, four for expansion) that are stored
alternately to the output buffer. Separate registers are
used for compression and expansion for timing reasons.
Expansion requires four registers, since processing
inside an expanded symbol may be either from left
to right or right to left.

Coprocessor performance
The data compression performance is strongly data- and
dictionary-dependent. Basically, a better compression ratio
yields better performance, since more expanded characters
can be processed with every compressed symbol. Long
records show a better per-byte performance than
short records because of the start-up overhead of the
coprocessor. Table 1 shows measurements in terms of
cycles for the z900 and its predecessor machine, the G6,
for different record lengths and compression ratios. All
numbers are based on the assumption that all data needed
are in the L1 cache. Compared to the G6, the z900
processor requires about a third of the number of cycles
to compress data and about half the number of cycles
to expand data. This is a significant performance
improvement above and beyond the usual cycle time
improvements for successive processors.

The raw performance for the character translates is
2 bytes per cycle. In addition, the start-up overhead for
initially loading the translation table at the beginning of
the execution of every character translate instruction is
20 cycles.

5. Translation unit
The translation unit performs virtual-to-real address
translation in hardware. This function has expanded with

Table 1 Data compression performance measurements for the z900 and G6 processors.

Record
length

Compression
ratio
(%)

Cycles Speedup
compression

Cycles Speedup
expansion

z900
compression

G6
compression

z900
expansion

G6
expansion

80 B 54.5 1041 2960 2.84 410 767 1.87
1 KB 54.5 11301 36459 3.23 3011 8163 2.71
4 KB 54.5 44722 145579 3.26 11484 32252 2.81

80 B 70.9 1042 3000 2.88 355 526 1.48
1 KB 70.9 11303 36873 3.26 2270 5051 2.23
4 KB 70.9 44680 147052 3.29 8498 19769 2.33

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

389

the introduction of 64-bit addressing in the z/Architecture.
The basic function is rather simple: Find a translation
table origin, add an offset to it, find the table entry, and
determine where to look next. The translator is started
up when either the instruction or data cache translation
lookaside buffer (TLB) misses, or for special processor
millicode operations. The cache control forwards the
missed virtual address, along with any operand access
control information (OACR) such as whether the fetch
is in primary, secondary, access register, or home mode
(which affects the location of the initial translation
table origin). The translator performs table fetches by
requesting the entries from the I-cache using the same
interface as the compression unit.

A typical translation table entry for the z/Architecture is
shown in Figure 6. Bits 0 –51 or 0 –52 designate the table
origin of the next-lower-level table. Bit 54 on the segment
table entry (STE) and page table entry (PTE) is a page
protection bit. Bits 56 –57 designate a table offset of the
next-lower-level table. Bit 53 of the page table entry or
bit 58 of the other table entries designates an invalid bit,
meaning that this entry is invalid. Bit 59 on the STE
designates whether the common segment bit is on, which
indicates that this STE entry allows multiple mappings.
Bits 60 – 61 designate the table type, and bits 62– 63
designate the table length. Formats for a particular table
level may not define all of these bits; for more complete
details, see Reference [10].

The additional effort required to complete a
z/Architecture translation can be very involved for a 64-bit
address. For 31-bit addresses, the first step is to identify
which control register holds the segment table origin
(STO) for the requested address space controls. The
11-bit segment table index (SX) is used to offset the
segment table origin to find the segment table entry, which
contains the page table origin (PTO). The 8-bit page table
index (PX) is added to the page table origin, and the
resulting page table entry (PTE) is read from the I-cache.
The contents of the PTE gives the page frame real address
(PFRA). The real address is formed from the adding of
the base index (BX) to the PFRA. For a 31-bit address
translation, there is a maximum of only two table lookups.
In access register mode there can be several more table
lookups to determine the initial segment table origin.

Figure 7 depicts the translation of a 64-bit address.
There are three additional tables for 64-bit translation
called the region tables. The upper 33 bits of the address
are divided into three 11-bit fields called the region first
index (RFX), region second index (RSX), and region third
index (RTX). They are used to look up table entries in
the region first, second, and third tables (RFT, RST,
RTT). The initial table origin is called the address space
control element (ASCE) and can specify table lookups
starting at the RFTO, RSTO, RTTO, or STO. In this way,
only the necessary translation tables have to be built by an
operating system, and software can save memory and speed
translation by using only the minimal number of tables.

The ASCE can be specified in a control register by
primary, secondary, home, or address space mode, or it
can be specified in a more complex manner using access
register mode. Access register mode effectively creates 211

address spaces. The z/Architecture has a 64-bit virtual
address, but with additional addressability created by
multiple address spaces. Note that all of these table
lookups, including access register mode, are handled
in hardware by the translator unit.

In addition to the complexities that access register
mode creates, the translator additionally handles SIE

Figure 6

Typical translation table entry for z/Architecture.

Next-lower-level table origin

PI - Page invalid bit
P - Page protection bit
TF - Table offset
I - Invalid entry bit (all tables except page)
C - Common segment bit
TT - Table type
TL - Table length

53 54 56 58 59 60 62

PI TF TT TLP CI

Figure 7

Virtual-to-real translation of a 64-bit address.

RFX RSX RTX

RST ST

RTTRFT PT

SX PX BX

11b 11b 11b 11b 8b 12b

ASCE

Virtual address (64b)

Real
address

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

390

architecture. This architecture defines the host, guest 1,
and guest 2 virtual environments, and the z900 maintains
many of the architected facilities for each environment in
hardware rather than maintaining just the current level.
A guest 2 translation has the potential to go through a
guest 1 and host translation. By design, one out of three
translations is guaranteed not to require table lookups
and is a direct map of virtual to real mode with possibly
an offset addition required. But even with two levels of
translation, many table lookups are possible. For instance,
if in the middle of a guest 1 translation the RTE misses in
the I-cache TLB, a host translation must be started on this
entry, which may very well have up to five table lookups.
In a worst-case scenario, a translation may require five
host table lookups for all five guest table entries, for a
total of 25 table lookups to complete one translation. The
guests and hosts can be in different architecture modes,
addressing modes, and OACR modes, all of which must
be handled by the translator for each translation. The
zSeries* and 390 architectures are very rich, which gives
the operating system vast capabilities to efficiently run
one operating system on top of another (e.g., Linux on
z/VM*). All of these translations are handled with the
speed of hardware execution, since the translator unit is
designed to handle all possible combinations.

Additionally, millicode has the capability of issuing
requests to the translator. These instructions become
very useful for system operations in which an absolute
or real address must be sent to the L2 or I/O processor
to perform an operation on memory. Millicode can send
an instruction to the translator unit to translate a virtual
address into a real one and put the result in a system
register accessible by millicode. This millicode special
instruction is called perform translator operation (PXLO)
and is decoded by the I-unit. The I-unit issues the
instruction to the D-cache on its operand fetch control
bus. The D-cache then transmits the command to the
translator. The translator performs the operation and then
signals the D-cache, which subsequently signals the E-unit
that the operation has been completed. When the E-unit
receives the PXLO instruction, it waits for the operand
fetch controls to signal completion. When the D-cache
signals that the processing is done, it issues an end-of-
instruction signal and proceeds to the next instruction.

6. Execution unit
The execution unit (E-unit) of the z900 processor shares
the same fundamental design as its predecessor [2]. As
mentioned earlier, the E-unit comprises two subunits: the
fixed-point unit (FXU) and the floating-point unit (FPU).
In order to support the z/Architecture, the FXU required
the most extensive changes of the two units. The sheer
number of new fixed-point arithmetic instructions
required a massive effort to implement the new hardware

instruction algorithms. This effort primarily affected the
control logic. However, there were additional changes,
which included enhancements to the dataflow of the FXU
to efficiently perform 32-bit, 64-bit, and mixed 32-/64-bit
arithmetic. Specialized functional elements were added to
the FXU dataflow to allow complete hardware execution
of decimal multiplication and division, and to increase the
performance of conversion between decimal and binary
formats. There were also innovative changes made to
the controls of the FXU to accommodate the aggressive
processor clock frequency. The FPU unit was relatively
unchanged from that of the G6 processor, but it did
receive minor changes to support the new instructions
included in the z/Architecture, as well as additional
hardware support of instructions previously implemented
in millicode.

FXU dataflow enhancements to accommodate the
z/Architecture
The hardware implementation of the many new
instructions included in the z/Architecture did not require
massive changes to the existing FXU dataflow elements.
The existing FXU dataflow taken from the G6 processor
was already 64 bits wide, since the internal architecture
of the G6 processor allowed a limited amount of 64-bit
arithmetic. As a review, the FXU dataflow consists of
three input registers: the A, B, and E registers, which are
each 64 bits wide. The input controls to these registers
include independent selection on each 32-bit half, allowing
for a robust variety of data selection possibilities. These
registers are fed from multiple sources: the general-
purpose register array (GPR), the access register array
(AR), the operand buffers, or a multitude of result wrap-
back paths, as shown in Figure 8. The binary adder is 64
bits wide and has byte granularity on its primary controls,
thus permitting zeroing and inversion of input data. The
bit logical unit/and-insert-under mask (BLU/AIM) is also
64 bits wide and remains unchanged from the G6. The
BLU/AIM function is fed from the rotated A-register, the
B-register, and the mask generator. The decimal adder,
which was only 32 bits wide in the G6, has been enhanced
to be 64 bits wide to increase the performance of decimal
arithmetic. There is also a new decimal support unit,
which contains hardware that allows for performance
improvements in the conversion between decimal and
binary formatted data.

A significant change to the FXU dataflow for the
z/Architecture was made to the GPR array. In the
previous ESA/390 architecture, this architected
register file had sixteen 32-bit entries. The new IBM
z/Architecture defines sixteen 64-bit registers in order to
accommodate the arguments and results of either 32-bit
or 64-bit arithmetic. In addition to the sixteen architected

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

391

GPRs, there are also sixteen millicode general registers
(MGRs). For implementation purposes, the latter are
combined into a single register file which is 128 bits wide
and 16 entries deep (see Figure 8), and in which each
128-bit entry consists of an even/odd register pair.
The GPR array has two 64-bit read ports and a
single 64-bit write port. The write operation is rather
complex and allows two 32-bit words of data to be
written to any word within a 128-bit quadword. This
is accomplished with separate two-bit write flags and
enables for each word and combined address bits
defining the quadword address.

Changes to the FXU controls: The E-1 pipeline stage
At the onset of the z900 design effort, it was determined
that the existing instruction pipeline structure from
the predecessor design would not meet an aggressive
processor clock cycle time target. Therefore, a redesign of
the fundamental instruction staging from the instruction
queue in the I-unit to the E-unit was needed. The goal
of this redesign was to create a new instruction dispatch
mechanism which achieved the cycle time target and also
required no additional stages to be added to the overall

processor instruction pipeline. The result was the creation
of the concept of the E minus one (E-1) stage inside the
E-unit.

The E-1 stage can be considered a “virtual” pipeline
stage, since its existence does not necessarily imply
that another pipeline stage was inserted between the
instruction dispatch cycle and the register access, or
E0, cycle. Instead, the E-1 cycle in the execution unit
overlaps with the instruction dispatch cycle in the I-unit
and the cache access cycle. Another reason for using
“virtual” as a description of the E-1 stage is that the
validity of the E-1 stage is not established until the
following (E0) cycle. The main benefit of the E-1 stage
is that it allows most of the timing-critical controls that
are needed in the E0 cycle to originate directly from latch
outputs, thereby allowing the most time for the control
signal to propagate through the dataflow. The E-1 stage
was most beneficial in the formation of the register array
access controls (which control the outgating of operand
data to the dataflow) and the mask generation controls
(which control the operation of the logical unit). The
register array read address path was one of the more
timing-critical logic paths in the previous designs, since
the access of the register array and the input register
selection consumed the majority of the machine cycle.
This left very little time in the E0 cycle to form the GPR
read address. In the z900 design, the instruction text is
available at the beginning of the E-1 cycle, which is
much sooner than in the G6. The formation of the register
array read address consists of a selection among the
timing-critical new instruction text, multiple hold paths,
and a control-logic-formed address for multi-cycle
instructions.

Another section of control logic which benefited from
the E-1 cycle is the mask generation logic, as shown in
Figure 9. The mask generation signals specify the starting
and ending positions of a consecutive string of 1s in a
64-bit string. This mask is used by the bit logical unit to
bitwise mask the results of the logical operation during
the E1 cycle. Because of the complexity involved in
forming the mask, it is preferable to have the starting and
ending positions of the mask available at the E0 cycle,
which means that the formation of the mask specification
is required during the E-1 cycle. Since this is primarily
a function of the instruction, it is feasible to form the
starting and ending positions of the mask during the E-1
cycle. However, as with the formation of the register
addresses, the real challenge is to predict what mask
controls should be on the following cycle.

Decimal instruction performance enhancements
The FXU required many changes to improve the
performance of decimal instruction execution. In most
cases, instructions are moved from millicode emulation

Figure 8

Dataflow of the fixed-point unit.

GPR array
Two read ports/one write port

GPR
array

Operand
buffer array

64b 64b 32b 64b

mux mux

0 63 0 63 0 63
A-register B-register E-register

0 63
C-register

Bit rot Mask gen

Binary
adder
(64b)

Decimal
adder
(64b)

Decimal
assist

BLU/
AIM
(64b)

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

392

to an algorithm implemented in hardware. These hardware
algorithms required the creation of a dedicated multi-cycle
state machine which controls preexisting dataflow units
and the functionally enhanced decimal dataflow units. As
mentioned earlier, the existing decimal adder is widened
from 32 bits to 64 bits, which improves the performance of
decimal addition, subtraction, and compare. It also aids
the performance of decimal multiplication and division. A
new decimal assist function is also added to the dataflow
to allow high-performance format conversions between
decimal and binary.

Decimal adder
In the G4 and G5, the FXU decimal adder was limited to
a width of 32 bits primarily because of area and timing
constraints. The z900 decimal adder was redesigned to
perform single-cycle additions, subtractions, and compares
on 64-bit or 16-digit binary coded decimal (BCD)
numbers. This adder design uses a common algorithm
which carries out a binary addition followed by a decimal
correction; however, it essentially performs the correction
in parallel rather than serially after the binary add.
Decimal carry-outs can be generated either by a binary
carry from the digit position or by a sum digit which is
larger than 9. The decimal correction is performed by
adding a value of 6 to each sum digit which received a
carry-in. The adder consists of two pre-sum logic adders, a
digit-carry network which produces the hot carries for the
16-BCD-digit pre-sums, and a �6 increment/decrement
correction logic. For each digit for decimal addition or
subtraction, four sums are created and selected on the
basis of a carry network. For addition, A�B�0, A�B�1,
A�B�6�0, and A�B�6�1 are calculated, and for
subtraction, A�B '�0, A�B '�1, A�B '�0�6, and
A�B '�1�6 are calculated. There are four different
possible results for each digit; two are the outputs of the
pre-sums and two are the outputs of the �6 corrections.
For more details, see Reference [16].

Decimal conversion hardware
A specialized function has been added to the FXU
dataflow to facilitate the hardware implementation of
decimal conversion instructions and other decimal support
instructions. This function can quickly perform decimal
conversions between packed and zoned format and can
also perform the conversion between decimal and binary
formats. It can convert three decimal digits to a 10-bit
binary number in one cycle by using three lookup tables
and a three-input binary adder. The reverse binary-to-
decimal conversion consists of converting a 12-bit binary
value to three BCD digits through the use of three table
lookups and a BCD adder.

Decimal multiplication and division
In the G4, G5, and G6 processors, decimal multiplication
and division are implemented using a hardware-assisted
millicode routine. The z900 processor is the first of the
CMOS S/390 processors to implement decimal multiplication
and division entirely in hardware. The algorithm to
perform the decimal multiply depends on the number
of significant digits in both operands. It first generates
multiples of the multiplicand and stores them in the
register file. It then iterates on the multiplier by examining
the value of each digit and performs an accumulate and
shift operation of the partial product.

Like the decimal multiply algorithm, the divide
algorithm is implemented using multiple iterations
depending on the number of significant digits of both
operands. One quotient digit is generated during each
iteration by subtracting the dividend from the divisor
using a restoring division algorithm. In some cases, nine
subtractions may be required to find the correct quotient
digit. By moving the algorithm from millicode to complete
hardware execution on the z900, the number of cycles on
average was reduced to one half to one third that of the
G6 processor.

7. Summary
The z900 processor contains substantial architecture
enhancements for supporting the 64-bit z/Architecture
as well as increases in cache size, bandwidth, number of

Figure 9

E-1 cycle.

Instruction dispatch

Register read
Address selection

Mask
selection

Control register

Register
array

Read address

Input register
muxing

Input register Mask register Control register

Output register Control register

Mask
generation

Mask start, end,
complement

ALU E1 cycle

PA cycle

E-1 cycle

E0 cycle

64b

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

393

multiprocessors in a configuration, branch target buffer,
and decimal performance. This paper has described the
enhancements to the L1 cache design, with its new split
instruction and data cache, and to the I-unit, with its
multiported quadruple-sized BTB. Also, its compression
unit is new and requires one half to one third the number
of cycles required by its predecessor processors. Its
translator unit implements in hardware the complexity of
64-bit z/Architecture translation, including AR translation
and SIE modes. Its enhanced execution unit achieves
aggressive cycle time goals by adding a virtual E-1 cycle,
and performance enhancements to decimal arithmetic
instructions have been achieved.

From the start of the IBM mainframe CMOS system
line with the G4 processor (introduced in 1994) to the G6
processor (introduced in 1999), performance has doubled
every 12 to 24 months. The z900 system continues this
performance growth. The performance of the G6
multiprocessor (1999) was 1600 MIPS.1 By comparison,
that of the z900 processor (2000) is more than 2500 MIPS.
Uniprocessor performance also increased substantially,
even on 32-bit performance benchmarks. In general,
uniprocessor performance increased from about 200 MIPS
for the G6 to about 250 MIPS for the z900, continuing
performance increases over prior generations while adding
functional enhancements via a 64-bit architecture.

Acknowledgments
Processor development involves a considerable team
effort, from logic design to millicode, to circuit design,
and to verification. Most notable in the work described
here were the chip integrator, Peter Camporese, the
circuit and timing leader, Brian Curran, and the millicode
leader, Mark Farrell. Logic design efforts were carried out
by Wen Li, Fadi Busaba, John Rell, Michael Kroener,
Bruce Giamei, Brian Prasky, Thomas Pflueger, Doug
Balazich, Jennifer Navarro, Aaron Tsai, Farhan Mansoor,
Siegmund Schlechter, Thomas Streicher, Ute Gaertner,
and Gerhard Doettling. Key contributing advisors were
Charles Webb, Timothy Slegel, John Liptay, Barry
Krumm, Bill Lewis, and Dean Bair. Circuit design efforts
were carried out by Yuen Chan, Bill Huott, Leon Sigal,
Rainer Clemen, Frank Tanzi, Rocco Crea, Yiu-Hing Chan,
Mark Mayo, and Greg Northrop.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. C. F. Webb and J. S. Liptay, “A High-Frequency Custom

CMOS S/390 Microprocessor,” IBM J. Res. & Dev. 41, No.
4/5, 463– 473 (July/September 1997).

2. M. A. Check and T. J. Slegel, “Custom S/390 G5 and G6
Microprocessors,” IBM J. Res. & Dev. 43, No. 5/6, 671–
680 (September/November 1999).

3. T. J. Slegel, R. Averill, M. Check, B. Giamei, B. Krumm,
C. Krygowski, W. Li, J. Liptay, J. MacDougall, T.
McPherson, J. Navarro, E. Schwarz, K. Shum, and C.
Webb, “IBM’s S/390 G5 Microprocessor Design,” IEEE
Micro 19, No. 2, 12–23 (March/April 1999).

4. G. Northrop, R. Averill, K. Barkley, S. Carey, Y. Chan,
Y. H. Chan, M. Check, D. Hoffman, W. Huott, B.
Krumm, C. Krygowski, J. Liptay, M. Mayo, T. McNamara,
T. McPherson, E. Schwarz, L. Sigal, C. Webb, D. Webber,
and P. Williams, “600 MHz G5 S/390 Microprocessor,”
1999 International Solid-State Circuits Conference, Digest
of Technical Papers, February 1999, pp. 88 – 89.

5. E. Schwarz and C. Krygowski, “The S/390 G5 Floating-
Point Unit,” IBM J. Res. & Dev. 43, No. 5/6, 707–721
(September/November 1999).

6. T. McPherson, R. Averill, D. Balazich, K. Barkley, S.
Carey, Y. Chan, Y. H. Chan, R. Crea, A. Dansky, R.
Dwyer, A. Haen, D. Hoffman, A. Jatkowski, M. Mayo, D.
Merrill, T. McNamara, G. Northrop, J. Rawlins, L. Sigal,
T. Slegel, and D. Webber, “760 MHz G6 S/390
Microprocessor Exploiting Multiple Vt and Copper
Interconnects,” 2000 International Solid-State Circuits
Conference, Digest of Technical Papers, February 2000,
pp. 96 –97.

7. M. Check, “z900 —A 64-bit Processor,” presented at the
Microprocessor Forum, San Jose, CA, 2000.

8. G. Doettling, K. J. Getzlaff, B. Leppala, W. Lipponer,
T. Pflueger, T. Schlipf, D. Schmunkamp, and U. Wille,
“S/390 Parallel Enterprise Server Generation 3: A
Balanced System and Cache Structure,” IBM J. Res.
& Dev. 41, No. 4/5, 405– 428 (July/September 1997).

9. K. E. Plambeck, W. Eckert, R. R. Rogers, and C. F.
Webb, “Development and Attributes of z/Architecture,”
IBM J. Res. & Dev. 46, No. 4/5, 367–379 (2002, this issue).

10. IBM Corporation, z/Architecture Principles of Operation,
Order No. SA22-7832-00, December 2000; available
through IBM branch offices.

11. B. Curran, P. Camporese, S. Carey, Y. Chan, Y. H. Chan,
R. Clemen, R. Crea, D. Hoffman, T. Koprowski, M.
Mayo, T. McPherson, G. Northrop, L. Sigal, H. Smith, F.
Tanzi, and P. Williams, “A 1.1GHz First 64b Generation
Z900 Microprocessor,” 2001 International Solid-State
Circuits Conference, Digest of Technical Papers, February
2001, pp. 238 –239.

12. B. W. Curran, Y. H. Chan, P. T. Wu, P. J. Camporese,
G. A. Northrop, R. F. Hatch, L. B. Lacey, J. P. Eckhardt,
D. T. Hui, and H. H. Smith, “IBM eServer z900 High-
Frequency Microprocessor Technology, Circuits, and
Design Methodology,” IBM J. Res. & Dev. 46, No. 4/5,
631– 644 (this issue, 2002).

13. J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Trans. Info. Theory
23, 337–343 (May 1977).

14. J. Ziv and A. Lempel, “Compression of Individual
Sequences via Variable-Rate Coding,” IEEE Trans. Info.
Theory 24, 530 –536 (September 1978).

15. IBM Corporation, Enterprise Systems Architecture/390:
Data Compression, Order No. SA22-7208-00, November
1996; available through IBM branch offices.

16. F. Busaba, C. Krygowski, E. Schwarz, W. Li, and S.
Carlough, “IBM z900 Decimal Arithmetic Unit,”
Proceedings of the 35th Asilomar Conference on Signals,
Systems, and Computers, November 2001; in press.

Received September 21, 2001; accepted for publication
March 6, 2002

1 MIPS are measured in terms of the geometric mean of several commercial
benchmarks which are called LSPR MIPS, and are used to describe relative
performance differences between IBM machines.

E. M. SCHWARZ ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

394

Eric M. Schwarz IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (eschwarz@us.ibm.com). Dr.
Schwarz received a B.S. degree in engineering science from
Pennsylvania State University in 1983, an M.S. degree in
electrical engineering from Ohio University in 1984, and
a Ph.D. degree in electrical engineering from Stanford
University in 1993. He joined IBM in 1984 in Endicott, New
York, and in 1993 transferred to Poughkeepsie. He is a Senior
Technical Staff Member and was the z900 microprocessor
logic design leader. Dr. Schwarz provides support to IBM
floating-point unit teams and is on the program committee of
the IEEE Symposium on Computer Arithmetic. He is also
actively researching computer architecture and heads two
IBM/CMU microarchitecture work groups. Dr. Schwarz is
currently working on future microarchitectures for IBM
zSeries, iSeries, and pSeries processors. He is an author
of 26 U.S. patents, 15 journal articles, and many conference
proceedings and technical reports.

Mark A. Check IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (check@us.ibm.com). Mr.
Check received a B.S.E.E. degree from the University of
Wisconsin at Madison in 1988 and an M.S.C.E. degree from
Syracuse University in 1993. He joined IBM in Poughkeepsie,
New York, in 1988. He is a Senior Engineer and was
microarchitecture and instruction unit logic leader for the
z900 processor. He has received a fifth-level IBM Invention
Achievement Award, two IBM Outstanding Innovation
Awards, and an IBM Outstanding Technical Achievement
Award. Mr. Check is currently working on the design of
future IBM server processors and systems.

Chung-Lung Kevin Shum IBM Server Group, 2455 South
Road, Poughkeepsie, New York 12601 (cshum@us.ibm.com).
Mr. Shum received a B.S. degree and an M.S. degree in
electrical engineering from Columbia University in 1987 and
1988, respectively. He is one of the leading processor design
engineers with the IBM Server Division in Poughkeepsie,
New York. Mr. Shum joined IBM in 1988 and has had various
logic and high-frequency assignments in the development of
IBM zSeries central processor units, focusing mostly on
I/D caches and load/store units. He is also a lead advisor
on the front-end design methodology for the recent zSeries
microprocessor designs. His current research interests include
design methodology and high-frequency microprocessor
design. Mr. Shum is the author of several patents and papers;
he has received several IBM Outstanding Technical
Achievement Awards.

Thomas Koehler IBM Server Group, Boeblingen
Development Laboratory, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (thkoehler@de.ibm.com). Mr. Koehler
received his B.S. and M.S. degrees in electrical engineering
from the University of Stuttgart, Germany, in 1980 and 1984,
respectively. He joined IBM in 1986 to work on memory and
I/O adapter development for IBM server systems. He is
currently the technical leader for the data compression and
cryptographic design for the IBM zSeries processor. Mr.
Koehler holds several patents; he has received two IBM
Outstanding Technical Achievement Awards related to
processor design and data compression.

Scott B. Swaney IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (sswaney@us.ibm.com). Mr.
Swaney joined IBM in 1988 in Poughkeepsie, New York,
after receiving a B.S.E.E. degree from Pennsylvania State
University. He has worked on many aspects of advanced
processor design, including timing verification, logic
verification, and logic design, in bipolar and CMOS
technologies. Mr. Swaney’s work is currently focused on
reliability, availability, and serviceability (RAS) in enterprise
computing.

John D. MacDougall IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (jmacdo@us.ibm.com). Mr.
MacDougall is a Senior Engineering Manager. He received
a B.S. degree in computer engineering from Worcester
Polytechnic Institute in 1990, joining the IBM S/390 division
that same year to work as a logic designer of the buffer
control element. He has continued his career in processor
development, involved in logic design, floorplanning, and
physical design. He was responsible for the definition and
design of the z900 translator logic, and has since moved into
the management position of the logic team. Mr. MacDougall
has received IBM Outstanding Technical Achievement Awards
for his work on the S/390 G5 and z900 processors.

Christopher A. Krygowski IBM Server Group, 2455 South
Road, Poughkeepsie, New York 12601 (cakryg@us.ibm.com).
Mr. Krygowski received a B.S. degree in electrical engineering
from Clarkson University in 1989 and an M.S. degree from
the National Technological University in 1999. He joined IBM
in 1989 and has had various logic design and simulation
responsibilities in the development of IBM zSeries central
processor units. He is currently a Senior Engineering Manager
of a department responsible for the verification of future zSeries
microprocessor designs. Mr. Krygowski’s current research
interests include floating-point arithmetic and high-frequency
microprocessor design and verification. He is an author of
several patents and papers and has received four IBM
Outstanding Technical Achievement Awards.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 E. M. SCHWARZ ET AL.

395

