Design of Trace Cachesfor
High Bandwidth Instruction Fetching

by

Michael Sung

S.B., Electrical Engineering and Computer Science
Massachusetts I nstitute of Technology, 1997

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirementsfor the Degree of

Master of Engineeringin Electrical Engineering and Computer Science
at the
M assachusetts I nstitute of Technology

May 1998
O Michael Sung, MCMXCVIII. All rightsreserved.

Theauthor hereby grantsto M.I.T. permission to reproduce and distribute publicly
paper and electronic copies of thisthesisdocument in wholeor in part.

Author
Department of Electrical Engineering and Computer Science
May 22, 1998
Certified by
Arvind
Professor of Computer Science and Engineering
Thesis Supervisor
Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Design of Trace Cachesfor
High Bandwidth Instruction Fetching

by
Michael Sung

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 1998 in partial fulfillment of the
requirementsfor the Degree of Master of Engineeringin
Electrical Engineering and Computer Science

ABSTRACT

In modern high performance microprocessors, there has been a trend toward increased supersca-
larity and deeper speculation to extract instruction level paralldism. As issue rates rise, more ag-
gressive instruction fetch mechanisms are needed to be able to fetch multiple basic blocks in a
given cycle. One such fetch mechanism that shows a great deal of promise is the trace cache,
originally proposed by Rotenburg, €. al. In this thesis, critical design issues regarding the trace
cache fetch mechanism are explored in order to develop techniques to further improve trace cache
performance. The thesis research presents an optimized trace cache design that show an average
34.9% improvement for integer benchmarks and 11.0% improvement for floating-point bench-
marks, relative to the originally proposed trace cache design. This corresponds to a 67.9% and
16.3% improvement in fetch bandwidth over a traditional instruction cache, for integer and float-
ing-point benchmarks respectively. The results demonstrate the viability of the trace cache as a
high performance fetch mechanism and provide justification for additional research .

Thesis Supervisor: Arvind
Title: Professor of Computer Science and Engineering

Acknowledgments

First and foremost, | would like to expressmy gratitude to my Mom and Dad, for all their love and
encouragement throughaut the years. | definitely would na be where | am today, had it nat been
for them. | also want to thank my little sister, Emily, who has always made me fed important and
special.

To Marilyn, | give my utmost appreciation and thankfulness | wish | could show her how grateful
| am for her uncondtional support. She has been an inspiration to me, patiently sticking by my
side through the countless days and nights while | worked onesig.th

A special thanks goes to Marty Deneroff, who has been the most incredible resource while | have
been at Sili con Graphics. | would also like to acknowledge Professor Arvind for his guidance and
helpful suggestions.

I must also recogrize Silicon Graphics, Inc. for al the resources and goportunities that were pro-
vided to me. The company has been instrumental to my education and gowth, and I am indebted
to their support.

Finally, | would liketo pay atributeto MIT, which has been my hame for the last five years. They
have been the most memorable in my life, and | will always reserve a special placein my heart for
those that | have met and befriended while at the ‘Tute.

Table of Contents

CHAPTER L. INTRODUCTION .. .ottt ettt s e bbtee s s e e e s s sabbae e s s s e e s s ssabbbeessaeesssnsbbaeeesasenas 1
1.1 BACKGROUND AND IMOTIVATION ..ieiiiietttueieeesteettinieeesseesstsneeesssesstssaeesssesstseesssesstsmnaeessreesrne. 1
L2 THESISOVERVIEW ..ttt nnan 6

CHAPTER 2. PRIOR WORK ...ttt ettt ettt e e s ettt e s e e e s s s bbb e e e s e e e s s ssabaeeeeae e s 7

CHAPTER 3. TRACE CACHE FETCH MECHANISM ..o oottt 10
B TRACE CACHE i 10
3.2 MULTIPLE BRANCH PREDICTION ...oiiiiiiiie e 15

CHAPTER 4. CONTRIBUTIONS OF THESIS..... oottt ssaarae e 16
4.1 TRACE CACHE DESIGN ISSUESTO ADDRESScittttttiitiitiiit ittt te et et e aaaaaaaa s 16
4.2 LONG-TERM ROADMAP OF RESEARCHcoiiiiiiiiieieeeeeeeeee ettt 18

CHAPTER 5. SIMULATION METHODOLOGY ...ttt ettt s e esaavraen e e 19
5.1 SIMULATION ENVIRONMENT «..oiiiiiiie et 19

5.1.1 TracE-OriVEN SIMUIGEION ...uuuverererreesereersesserssssseesssssesssres 19
5.2 SIMULATION MODEL.....cciiiiiiiiie e 20
5.3 PERFORMANCE IMIETRIC ... 21
5.4 TEST WORKLOAD .ttttuiieeiiiettttaiieeeseeettbasseeesseestbaatseasse e st ba s seeessee bbbt eeassees bbb seesseessbaansseesseennrren 21

5.4.1 General Characteristics of SPEC95 BENCHMAIKS........uvvvvirereerreeeeeeerresereeeeersrreeeseesersrrere.. 22

4.2 T ACE GGENEI ALION ..vvvvvrvrvrrereeseeeesseesaessesessesassssessssssesssasassessssssssasssssessssssssssessssnssssnsnsnsssssnnnnnnns 22

CHAPTER 6. SSIMULATION RESULTSAND ANALY SISttt 25
6.1 INSTRUCTION CACHE RESULTS. .. ciiiiiiiieii et 25
6.2 BASE TRACE CACHE ..o i 26
6.3 EFFECTSOF HASHED INDEXINGcoiiiieiee e, 31
6.4 EFFECTSOF TRACE LINE LENGTH .coiiiiiiiiieeee e 33
6.5 EFFECTSOF INCREASING BRANCH THROUGHPUTcceeiiieeeeeeeeeeeee ettt 36
6.6 EFFECTSOF MODIFYING THE FILL MECHANISMcooiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 38

6.6.1 Storing Only Complete BasiC BIOCKS...........ccuiiiiiiiiiiiiiieic s 38

6.6.2 Abortinga Trace Fill 0N @ Trace Hit......ocvieiiiiiiiiiiieice s 41

6.6.3 Specifying ENd Branch DIiFECHIONoieiiiiiiiiie et 44
6.7 EFFECTSOF PARTIAL HITS oo 45
6.8 EFFECTS OF ASSOCIATIVITY .oiieiiiii e ettt 48
6.9 EFFECTSOF TRACE CACHE SIZE ..o oo 49
(SR (O (= = Yo = V= N = o o 52
6.11 EFFECTSOF REAL BRANCH PREDICTION....cciiiiiiiieeeee e 53

CHAPTER 7. CONCLUSIONS ...ttt ettt st e e e et e s s e e e s s eabbbae e s s e e s s ssaabaeeeeaeeeas 56

CHAPTER 8. FUTURE WORK ..ottt e st s s e e e s s bt bae e s s e e s s snabaeeneeeeeas 58

TN S I L@ LT 2N = = I 7R 60

List of Figuresand Tables

Figures
Figure 1-1: Typical Superscalar Design with Fetch and Execute ENgines..........cocvvvviiiiiininnienicnienen, 2
Figure 1-2: Noncontiguous Basic Blocks From Taken BranChes............couviviiiiiiniiiiincsescsesee s 4
Figure 1-3: Basic Functioning of Trace CacChe...........ocuiiiiiiiiiiiiii e 5
Figure 3-1: Trace Cache Fetch MEChaniSM.........ccoiiiiiiiieieeree e 11
Figure 3-2: Trace Cache Line-fill Buffer Operation with n=16 and m=3...........cccoiineeninne e 13
Figure 3-3: Misrepresented Trace Cache Hit Resulting from Starting with Delay Sot..........ccccoveeneeene 14
Figure 3-4: Correlated Predictor Scheme Extended To Increase Predictor Throughput...........ccccceeueeene. 15
Figure 6-1: Fetch IPC for Instruction Cache Fetch MechaniSm...........coovveiieiiine s 26
Figure 6-2: Fetch IPC for Base Trace Cache Fetch MeChaniSm..........ccovveiieiecne s 27
Figure 6-3: Performance Improvement of Base Trace Cache...........ccoovveveeiienecne s 28
Figure 6-4: Base Trace Cache MiSS SatiStCS.cciveiieieeieeiee ettt 30
Figure 6-5: Trace Cache Miss Cause BreakKdOWNocueiieiiiiie it 30
Figure 6-6: Hashed Indexing into the Trace Cacheccoiveeiieiieii e 32
Figure 6-7: Fetch IPC of Trace Cache with Hashed INdeXing..........ccooovereeiiine i 32
Figure 6-8: Trace Cache Miss Rate from Hashed INdeXing..........cccooeviiniiiiene s 33
Figure 6-9: Fetch IPC asa Function of Maximum Trace Length ... 34
Figure 6-10: 1PC Improvement from Increased Trace Line Length..........ccooveveiiieniene i 35
Figure 6-11: Integer Fetch IPC asa Function of Branch Throughput............ccccoveviinininincncc 37
Figure 6-12: Average Written/Read Trace Statistics for Branch Throughput = 5.........ccccoviiiiiiniinnn 37
Figure 6-13: Unnecessary Trace Sorage from OffSet Traces.......ccovveviiviiiiere e 39
Figure 6-14: Fetch IPC When Only Soring Complete Basic BIOCKS............ccoovviiieiieniciccnecc e 40
Figure 6-15: Improvement When Only Soring Complete Basic BIOCKS..........c.ccooveiienicniienicnccnc e 40
Figure 6-16: Miss Rate When Only Storing Complete BasiC BIOCKS...........coceveeveeiiene e 41
Figure 6-17: Redundant Traces from Trace Fills Allowing Trace HitS.........ccooveevieiieni e 42
Figure 6-18: Fetch IPC When Aborting a Trace Fill onaTrace Hit........ccooveveiiiiiicne i 42
Figure 6-19: Miss Rate When Aborting a Trace Fill on aTrace Hit.........ccoooeeveiiiiiicne s 43
Figure 6-20: Fetch IPC for Traceswith Specified End Br. Dir€Ction...........ccovveeveeiiene s 44
Figure 6-21: Trace Cache Modifications to Allow Partial HitS..........c.ccovveiiiniiniinineee e 46
Figure 6-22: Fetch IPC of Trace Cache Allowing Partial HitS..........ccocoviiiiinienieneeeeee e 47
Figure 6-23: Trace Cache Miss Rate from Allowing Partial HitS.........cccocoviiiiiniiinicnn e 47
Figure 6-24: Integer Fetch IPC from Increased Cache ASSOCIatiVITycccovvereereeneenecneese e 48
Figure 6-25: Trace Cache Miss Cause Breakdown for a 2-way Set Associative Trace Cache................. 49
Figure 6-26: Integer Fetch IPC asa Function of Trace Cache Sze.........ccovcveveiiieniene s 50
Figure 6-27: FP Fetch IPC asa Function of Trace Cache Sze..........coccovceeviiiiiiieine e 50
Figure 6-28: Integer Miss Rate as a Function of Trace Cache SZe..........cccocevveevieiiene s 51
Figure 6-29: FP Miss Rate as a Function of Trace Cache SZe.........ccocevveveiieenie s 51
Figure 6-30: Fetch IPC from Different Replacement POIICIES..........coovveiieriine e 52
Figure 6-31: Fetch IPC fromUsing Real Branch Predictor ..o 53
Figure 6-32: Branch MisprediCtion RALES............coiieiiiiieieeieese et e 54
Tables
Table 1-1: Average Dynamic Basic Block Sizes for SPECint95 Benchmarks..........ccocoveveeriierineneinnesenen 3
Table 5-1: Description of SPEC95 BENChMAIKS..........coiuiiiiiiiiii e 22
Table 5-2: Tracesfor BENCHMAIKS.iiiiiiiiii et e 24
Table 6-1: INStruction Cache ParamELerS.........cocui it bbb 25
Table 6-2: Base Trace Cathe DESIGN........oiuiiiiiiiiiiiie sttt sttt sttt st et et be e 27
Table 6-3: Average Written/Read Trace SatiSHCSoovviveiiiiiiiie i 29
Table 6-4: Average Trace Written/Read Statistics for Trace Line Sze = 20.......ccceevvvevceevceniieesseeens 35

Chapter 1

| ntroduction

1.1 Background and Motivation

In today’s modern microprocessor, many aggressve techniques are anployed in arder to exploit
instruction level paralldism. Thetrend d these high performance superscalar microprocessors has
been to widen dspatch andisaue paths in arder to increase their effective IPC (instructions per cy-
cle). To this end, each succesdve microprocesor generation haes increased paralld functional
units, more physical registers, larger instruction issie windows, and cegoer branch speculation.
Currently, microprocesors such as the MIPSR1000Q Sun UltraSPARC, and AMD K5 are capa-
ble of isauing up to four instructions per cycle [28], [29], [30]. Next generation microprocessors

will have even higher issue rates as hardware parallelism increases.

The focus on increasing instruction issue width in recent years has introduced a possble perform-
ance bottleneck in these superscalar architectures. In arder to fully explait instruction level paral-
Ielism, it is necessary to balance the increased isaue rate of these superscalar procesors with suffi-
cient instruction fetch bandwidth. If instructions canna be issued fast enough, then owerall per-
formance will drop as execution resources lieidle. Thus, thereis a neal to explore new techniques
for increasing instruction fetch bandwidth. Increasing fetch bandwidth can improve overall per-
formance in two ways. First and foremost, the increased rumber of fetched instructions can be
used tofill i dle functional unit resources. In addition, since there are more instructions, more inde-

pendent instructions can be found for issue.

Traditional superscalar architectures can be thought as being dvided into two main components:
an instruction fetch unit and an execution unit. The fetch and execution units are conrected by an
instructionissue buffer which serves to decouple the two components. The instruction fetch engine

fetches and decodes the dynamic sequence of instructions in the program and places them in the

instruction issue buffer. The instruction execution engine takes instructions from the issue buffer
and executes them as soon as data dependencies are resolved and resources become available.
Control dependencies, in the form of branch and jump instructions, provide a feedback mechanism

between the fetch and execution engines.

branch outcomes/jump addresses

Fetch fetch rate\ issue rate\> EXeC.Ute
Engine Engine

Instruction
Buffers

Figure1-1: Typical Superscalar Design with Fetch and Execute Engines

From Figure 1-1, it is apparent that increasing instruction fetch bandwidth is necessary as the exe-
cution engine becomes more parallel and issue rates rise. Instruction fetch bandwidth has tradi-
tionally been controlled by factors such as the cache hit rate and branch prediction accuracy. The
cache hit rate affects fetch bandwidth because overall instruction cache performance is directly
proportional to it. Branch prediction accuracy affects the fetch bandwidth because of the mispre-
dict recovery time. These two factors have long been identified as fetch performance bottlenecks
and are reatively well-researched topics. The design of instruction caches has been studied in
great detail in order to lessen the impact of instruction cache misses on fetch bandwidth [31]-[36].

Likewise, there have been many studies done to improve branch prediction accuracy [16]-[25].

To date, the techniques developed to reduce instruction cache misses and increase branch predic-
tion accuracy have been very successful in improving fetch bandwidth. However, as the issue rates
for superscalar processors increase beyond four, other additional factors become increasingly im-
portant to instruction fetch performance. These factors include the frequency of control transfer
instructions, branch prediction throughput, noncontiguous instruction alignment, and fetch unit

latency. Conventional instruction caches are limited in their effectiveness by control transfer in-

structions present within the instruction stream. Since branch prediction is currently limited to the
one branch, an instruction cache can ony fetch up to ore basic block’s worth d instructions per
cycle. Since cortrol transfer instructions occur relatively frequently in an instruction stream
(approximatdy 1 in 5 instructions for common integer code), they create a bottleneck in the in-
struction fetch bandwidth o the processor. Table 1-1 provides the percentage of cortrol transfer
instructions in a program and the resulting average basic block sizes for the SPECint95 bench-

marks.

SPECint95 % Control Transfer Average Basic
Benchmark Instructions Block Size
go 15.7% 6.32
m88ksim 16.8% 5.88
gcc 18.2% 541
compress 13.7% 7.33
li 21.6% 4.63
ijpeg 6.7% 13.87
perl 18.8% 5.32
vortex 21.7% 4.62

Table1-1: Average Dynamic Basic Block Sizesfor SPECint95 Benchmarks

In arder to increase instruction fetch bandwidth, one needs to ether increase the basic block size or
fetch multiple basic blocks every cycle. A great deal of compiler research has been conducted in
order to increase the basic block length, including research on hav to decrease the frequency of
taken branches [37], [38]. The other posshility is to increase the number of branch predictions, or
branch throughput, that can be made during a given cycle. Currently, only one branch can be pre-
dicted ahead o time. This limits the amount of instructions that can be fetched, given the fre-

guency of control transfer instructions in a typical fetch stream.

Unfortunatdy, increasing branch throughput does nat solve eserything. Even if multiple branch
prediction is employed, the presence of taken branches results in norcortiguous instruction fetch-
ing. Instruction caches dore static instruction blocks from memory. With multiple branch predic-
tion, specialized interleaved instruction caches can be made to fetch beyond a control transfer in-
struction if the next basic block is contiguous [2]. However, in general dynamic instruction se-

guences do nd always lie in contiguous cache locations, as in the case of taken branches and

jumps. This presents a problem, as a conventional instruction cache canna fetch norcontiguous
blocks in a singe cycle. Since taken condtional branches occur rather frequently (estimates of
around 70% of the time [41], instruction fetch bandwidth is sverdy limited. Figure 1-2 ill ustrates

the problem with taken branches and jumps:

A\

Dynamic Instruction Strea .
y I nstruction Cache

£ v [7 |
7

taken jump

| 3 basic block
The instruction blocks lie in noncontig /
ous locations within the instruction cact
Since a conventional cache cannot ali
these blocks in a single instruction bloc

the presence of taken branches results
the fetch of single basic blocks.

ﬁl 2" basic block |

Figure 1-2: Noncontiguous Basic Blocks From Taken Branches

Finally, fetch unit lateny has a large dfect on processor performance since incorrect control
transfer instruction speculation results in the need to flush the fetch pipdine. Increasing the fetch
latency, as is necessary for allowing Hgher branch prediction throughput and nortontiguous basic

block fetching, limits fetch bandwidth.

The above iswues that are emerging as limiting factors in instruction fetching have prompted
several significant research studies. A fill mechanism to accomplish norcontigous basic block
fetching and alignment has been proposed [6], [7]. In addtion, there has been significant work in
the area of multiple branch predictionin combination with multiple basic block fetching [2]. These
research studies all addressthe issues of branch throughput and nortcortiguous instruction fetching
but at the cost of the last factor, namely fetch unit latency. This last issue is addressed with the
groundbreaking work in the development of trace caches. A trace cache provides a low latency
mechanism for concatenating basic blocks to form instruction traces that are dynamically created

during instruction fetching [1].

The trace cache captures and stores instruction sequences, called traces, from the dynamic fetch
stream. Later on during program execution, if the same instruction sequence is present in the

dynamic instruction stream, then the instruction sequence can be fetched from trace cache. Traces

are specified by a start addressas wel as the branch autcomes of the control transfer instructions
present within it. For a given fetch iteration, if the starting address of a particular trace matches
the fetch address and the predicted autcomes of the branches match the branch drections gecified
in the trace, then the trace cache provides the trace to the instruction buffer. The basic idea is that
the stored instruction traces can crossbasic block boundaries, allowing more than ore basic block
to be fetched in a given cycle. Figure 1-3 shows the high leve functioning d the trace cache

scheme:

Dynamic Instruction Strea

g_ 27 basic block[3¥ basicblocl].. 7 |ater.. g_ 27 basic block| 37 basic blocl] ..

A n t A n t
AN 7/
A4
trace with starting addregs
and two branches (not-taken, takel Trace Cache
fetch nd rd
address A ln 1 2“ BB | 3“ BB
A completed trace is written N v s
into the trace cache along witr match
branch status information. | |

Branch
Trace Cache Predictol .
To Instruction Buffers
Ao, If the same trace (with starting addrés

and same branch outcomgs) occurs
later, then the trace cache can provid
the instructions to the instruction buffe

Figure 1-3: Basic Functioning of Trace Cache

The trace cache takes advantage of temporal locality by storing dyramic traces for reuse. The
trace cache is accessd in paralle with the instruction cache. Thus, in the worst case of a trace
cache miss normal instruction fetching proceeds through the instruction cache. The basic block

concatenation for creating the traces is dore off the critical path of the fetch mechanism so latency

is not increased. This is the primary advantage of the trace cache over other noncontiguous basic

block alignment mechanisms.

The concept of a trace cache exhibits great potential as a method to increase fetch bandwidth.
However, beyond the original design presented in [1], there has been no significant studies that
investigate the design space of trace caches. This lack of follow-up research on such a promising
idea presents the motivation for this thesis. The research for this thesis attempts to explore the
design space of trace caches by examining the performance effects of critical trace cache design
parameters. The ultimate goal is to design a high bandwidth instruction fetch mechanism suitable

for actual implementation into a future generation microprocessor.

1.2 Thesis Overview

The remaining portion of thisthesisis presented in seven chapters. In Chapter 2, reevant previous
work is discussed. Chapter 3 describes the basic trace cache design and branch prediction mecha-
nisms. Chapter 4 summarizes the trace cache design issues that will be addressed in the thesis.
The simulation methodology is presented in Chapter 5. Simulation results and the ensuing discus-
sions are presented in Chapter 6. Finally, Chapter 7 provides conclusions to this research, fol-

lowed by a chapter on future work.

Chapter 2

Prior Work

There have been several techniques that has been proposed to overcome the bottleneck presented by
control transfer instructions within the dynamic instruction stream. These techniques were deve-
oped from a number of recent studies on high instruction fetching bandwidth and is closdy related
to the research for this thesis. All of these studies deal with proposals for aligning multiple non-

contiguous basic blocks from the instruction cache in order to increase instruction fetch bandwidth.

The groundwork for the multiple basic block fetching was done by Yeh, Marr, and Patt, who pro-
posed the idea of a Branch Address Cache (BAC) as a fetch mechanism to increase instruction
fetch bandwidth [2]. This mechanism consists of an interleaved instruction cache, a multiple
branch predictor, an interchange and alignment network, and the branch address cache itsdf. The
BAC can be viewed as an extension to a branch target buffer, in which the starting address of the
next basic block is provided for a single given branch. The BAC is a generalized BTB in the sense
that it provides the starting addresses of the next m basic blocks, given the multiple branch predic-
tions for the next m branches (here, mis a small integer set by the implementation). These starting
addresses are fed into the instruction cache, which aligns the basic blocks together. A second fetch
mechanism proposed by Dutta and Franklin [3] also has a variant of a branch address cache for
multiple branch targets. However, they provide an alternative method of single-cycle multiple

branch prediction.

A third instruction fetch mechanism was proposed by Conte, Menezes, Mills, and Patd which
features a collapsing buffer (CB) [4]. It is composed of an interleaved branch target buffer, an
interleaved instruction cache, a multiple branch predictor, and an interchange and alignment net-
work with collapsing buffer logic. Two access iterations are made to the interleaved branch target
buffer, allowing two noncontiguous cache lines to be fetched. The collapsing buffer then merges

the appropriate instructions from the cache lines together to form the fetch block.

The fetch mechanisms proposed above have anumber of disadvantages, namely:

1) An additional pipdine stage before the instruction fetch may be required, because the pointers

to al the noncontiguous instruction blocks must be generated before fetch can begin.

2) Additional hardware complexity in the instruction cache because multiple noncontiguous cache

lines must be accessed simultaneoudly.

3) An additional pipeline stage after the instruction fetch may be required, in order to merge and
align instruction blocks after they are fetched for the issue buffer.

More recently, another fetch mechanism was proposed by Rotenburg, Bennett, and Smith [1] that
eliminates the above disadvantages of the two previously discussed instruction fetching schemes. It
involves a special instruction cache called a trace cache to capture dynamic instruction sequences.
The trace cache removes the instruction fetch bandwidth bottleneck by storing these dynamic se-
quences of instructions (i.e. traces) as the program executes via a fill buffer. These traces can be

composed of multiple basic blocks and may contain one or more taken branches.

In this scheme, a trace cache would be used in conjunction with a standard instruction cache. The
branch predictor of the processor would provide the predicted branch direction of the next few
branches in the program, and if they matched the direction of the branches within a stored trace,
the trace cache is used to fill the issue buffer instead of the conventional instruction cache. If no
match is made, then fetching proceeds in a standard manner from the instruction cache. Instruc-
tions from the instruction cache are merged by a fill buffer over time and written to the trace cache

when the fill buffer is done with assembling the trace.

The advantage of this setup is the fact that the fill buffer does not lie on the critical path of the in-
struction fetch, and hence latency through this structure has little impact on overall performance.
The basic assumption is that augmenting an instruction cache with a trace cache and associated fill

buffer can significantly improve the fetch |PC performance of a microprocessor.

A trace cache only improves performance if dynamic sequences of instructions are commonly re-
executed. This seems to be the case, both because of temporal locality, in which instructions used
recently have a high probability of being used again, and branch behavior, since most branches are

usualy heavily biased toward one direction.

There are two other previously proposed hardware mechanisms that exhibit similarities to the trace
cache scheme but were developed for other applications. Mevin, Shebanow, and Patt [5] pro-
posed a fill unit mechanism to cache RISC-like instructions from a CISC instruction stream.
Franklin and Smotherman [6], [7] extended the functionality of thefill unit to assemble instructions
from a fetch stream into VLIW-like instructions to be cached in a structure called a shadow cache.
The purpose of the shadow cacheis to remove the need for dependency checking in the issue stage,

thereby reducing complexity in wide issue processors.

Work on multiple branch prediction is also very relevant, as all of the above schemes rely on it in
some form. Recently, Wallace and Bagherzadeh have proposed schemes for multiple branch and
block prediction [8]. Since the introduction of the trace cache, path prediction has also become a
topic of interest. Path prediction is a form of program execution prediction, where paths of execu-
tion are predicted. Both Rotenburg [9] and Conte [10] have made contributions to this area of re-

search.

Chapter 3

Trace Cache Fetch M echanism

This chapter describes the implementation details of the trace cache fetch mechanism discussed in
the introduction. It is based on the original trace cache device proposed by Rotenburg, €. al. [1],
which forms the foundation for this thesis research. The basic trace cache mechanism is described

in detail first, followed by a description of the associated multiple branch predictor.

3.1 Trace Cache

The fetch scheme using a trace cache works in conjunction with a standard instruction cache. At
the beginning of each cycle, the trace cacheis accessed in paralld with the instruction cache based
on the fetch address. The multiple branch predictor generates the branch outcomes for the next
couple of branches while the caches are being accessed. If thereis a trace cache hit, then the trace
is read from the trace cache into the instruction issue buffer. A trace cache hit occurs when the
fetch address matches the address tag of a trace and the branch predictions match the branch di-
rections of the trace. If ether of these conditions is not true, then there is a trace cache miss and
normal instruction fetching proceeds from the instruction cache. The complete trace cache fetch

mechanism is depicted in Figure 3-1.

10

Instruction
Cache

:

Fetch Address A

A

Trace Cache

EEIEEREE \ﬂ
N

n
/
7
>1 0
> 1
n
/
7
hit?

Line-Fill Buffer

T

Take output from trace
cacheif trace cache hit;
otherwise, take output from
instruction cache.

Instruction Latch

To Instruction
n Buffers

>
7

Figure3-1: Trace Cache Fetch Mechanism

The trace cache itsdf consists of instruction trace lines, control information, and line-fill buffer

logic. The trace lines hold the actual instructions in the trace. The maximum trace length n is

specified by the trace cache line width. Each traceis also constrained by the maximum number of

branches m present within the trace. Every trace line has associated with it some control informa-

tion, namely:

* Valid Bit: Indicates whether or not atrace line contains avalid trace.

» Tag: ldentifies the starting address of the trace, i.e. the higher order bits of the address for the

first instruction of the trace.

* Branch Flags: A single bit for each branch within the trace to indicate whether or not the

branch was taken or not taken. The m™ branch of the trace does not need a flag since no in-

structionsfollow it. Therefore, only m - 1 bits are needed to encode the branch flags.

11

* Branch Mask: Some stateis needed to indicate the number of branches within the trace. This
information is used by both the trace cache, to determine how many branch flags to check, and
by the branch predictor, for updating. The first log,(m+1) bits encode the number of branches
present in thetrace. The branch mask also has an extra bit to determine whether or not the last
instruction of the trace is a branch. If so, the corresponding branch flag does not have to be

checked since no instructions follow it.

* Trace Target Address: The next fetch address if the last instruction is a branch and is pre-
dicted taken.

» Trace Fall-through Address: The next fetch address if the last instruction to the trace is a
branch and is predicted not-taken.

For a 64-entry direct-mapped trace cache with 16 instruction traces (n=16, m=3), 4kbytes is

needed for instruction store, and aminimal 712 bytesis used for the control information.

The linefill buffer is used to latch basic blocks together to form the traces to be written into the
trace cache. The basic blocks are latched one at a time into the fill buffer as instruction fetching
proceeds. The fill logic merges each new basic block with the instructions already in the linefill
buffer. Filling is completed when either the maximum trace length n or the maximum number of
branchesin thetrace mis reached. When ether case occurs, then the contents of the fill buffer are
written into the trace cache, along with the control information. The branch flags and mask is gen-
erated during the line-fill process, and the trace target and fall-through addresses are computed at
the end of thelinefill. If the trace does not end in a branch, then the target address is set equal to
the fall-through address. The complete trace cache and line fill mechanism is described in the

Figure 3-2.

In order to simplify the fill logic for the trace cache, the trace cache simply does not store indirect
jumps, returns, or traps. Whenever one of these instructions is encountered, the trace fill truncates
at that instruction. In addition, unconditional branches and calls are simply treated as conditional
branches that are highly predictable. Thus, no special caseis needed to deal with them.

12

Trace Cache

Control Information

A .
branch fal-through !
mask address .
¢ branch target Instruction Trace (maximum n instructions) '
a flags address /\ .
Ny A :
Fetch -
Address: S A |11]|111| TA FA 2™ BB 3BB '
> Control Logick\ /| Line-Fill Buffer/L ogic |
/m
\%
From Branch Trace Next Fetch From Instruction Latch
Predictor Hit? Address

Figure3-2: Trace Cache Line-fill Buffer Operation with n=16 and m=3.

In the above figure, the line-fill buffer combines 3 basic blocks fetched from the instruction cache
to form thetrace. Each basic block is latched into the buffer one at atime. In this case, the branch
limit mis reached after the third basic block. After this point, the instruction trace and the appro-

priate control information are written into the trace cache.

Thefill logic for the trace cache is complicated by the fact that there are different classes of control
transfer instructions that must be handled differently. Control transfer instructions can come as
conditional branches, unconditional branches, calls and direct jumps, indirect jumps, returns, and
traps. Thetrace cache design described is only capable of dealing with conditional branches. Indi-
rect jumps, returns, and trap instructions are not included in traces, as these instructions can have

an indeterminate number of targets. Since the predictor can only predict one of two targets (the

13

jump target or fall-through target), the trace cache scheme canna hande these control transfer in-
structions. In addition, uncondtional branches and calls $ould nd be invdved in prediction,
since their outcome is known. This complicates the trace cache hit logc, since the trace cache

must be able to identify these instructions within the trace and deal with them appropriately.

Anisae of importanceis the fact that the instructionfill should include the associated delay slot of
the branch in question. In Rotenburg’'s implementation d the trace cache, a basic block ends in a
branch and daes nat include the associated dday slot. Since the ddlay slot can be asumed as part
of the basic block, the implementation that is considered in this research includes the delay slot

when possible (i.e. when the maximum trace length has not been reached).

The trace cache design implemented for this thesis research also places the addtional restriction
whereby a trace cannd start with an instruction that is the delay slot of a branch. If a trace starts
with the delay dlot of a control transfer instruction, then the cortrol information for the trace cache
can inappropriately signal trace cache hits when it is nat supposed to. Consider the following
situation dagrammed in Figure 3-3. In this senario, the trace cache will signal a trace hit, since
the tag matches the fetch address and the branch drections match the branch predictions. This is
the case even if the trace corresponds to wrong path o execution, as long as the branch drections
of the trace happen to match the predictions. Based on existing cortrol information, there is no
way of determining whether the trace represents the correct path of execution. Thus, it is impor-

tant to pevent traces starting with delay slots from being committed to the trace cache.

Dynamic Instruction Strear e
Branch Branch
(taken) Delay Slot (~taken) Delay Slot
V4 L
Branch Taken Path f later.... Branch Not-Taken Path §
4 4

Trace with start address A
stored in trace cache.

Given the same start address #
is conceivable that the trace
cache will incorrectly fetch the
trace containing the branch tak
path if the branch predictions
happen to match.

Figure 3-3: Misrepresented Trace Cache Hit Resulting from Starting with Delay Slot

14

3.2 Multiple Branch Prediction

The trace cache relies on a multiple branch predictor in order to determine whether or not the
branch directions of a stored trace match the predicted branch outcomes of the instruction stream.
The prediction accuracy of the branch predictor is critical to the performance of the trace cache, as
mispredictions result in large trace abort penalties. Thus, the branch predictor used in this research
is the Gag correated branch predictor [21], based on its high prediction accuracy and its ability to
be generalized to do multiple branch prediction.

In this scheme, a 16-bit global history register indexes into a pattern history table. The pattern
history table actually consists of four sets of counters, which are then selected based on the predic-

tion and history bits. Figure 3-4 shows the basic multiple branch prediction scheme:

Pattern History Table

Global History Register
AN
bis by by ” b
IIIIIbIILIIIII [L1 MUX
15~
b14'b1
7 Do
41 MUX (dpo
AR RN
2-bit counters / L MUX/S—s J
arranged in a
arrays of four. IEI
\ \ /
3 branch predictions

Figure3-4: Correlated Predictor Scheme Extended To Increase Predictor Throughput

15

Chapter 4

Contributionsof Thesis

The concept of a trace cache shows a great deal of promise, as it provides a method d effectively
generating traces for instruction fetching that crosses basic block boundaries withaut increasing
fetch latency. However, this area of research remains relatively untouched and there are a great
deal of trace cache designisaues that have nat been explored. The focus of the research behind this

thesis attempts to further improve fetch bandwidth by exploring the design space of trace caches.

This thesis will attempt to refine and develop methods for improving fetch bandwidth beyondlimits
achievable by currently proposed mechanisms. Specifically, techniques are explored to decrease
the trace cache missrate and increase trace cache storage dficiency. The goal is to establish the
viability of the trace cache as a practica hardware device for future high performance

MICroprocessors.

4.1 Trace Cache Design Issuesto Address

There is a considerable amount of research that can be dore to expand upon Rotenburg, . a.’s
initial work ontrace caches. In their paper, the authors only discussa simple trace cache design.

Important issues in trace cache design that this thesis research will address include:

1) Indexing: The simplest way of indexing into a trace cache is by directly using the bits from
thefetch address There are alternative indexing schemes, some of which invdve hashing, that

may result in more uniform trace distribution within the trace cache.

2) Trace Length: One of the most basic parameters in trace cache design is how long a maxi-
mum trace can be. If the trace length is st too high, then trace cache storage dficiency de-

creases as the extra space within the trace line is wasted. Specifying a trace length that is too

16

3

4)

5)

6)

7)

8)

small may also have detrimental effects on trace cache performance by decreasing the effective
possible fetch bandwidth. It remains to be seen what the optimal length of a trace line should
be.

Branch Throughput: The currently accepted standard for multiple branch prediction is lim-
ited to a throughput of three. There is no reason to assume that this number is optimal for
trace cache fetching. Studies need to be done to see if there is any additional benefit from in-

creased branch throughput.

Fill Issues: There are a variety of different methods of how a trace is collected for the trace
cache. Specifying how to determine traces for the trace cache can have a significant effect on
performance. This includes issues of how the beginning of a trace is specified, how and when

instructions are committed to the fill buffer, and how to terminate atrace.

Partial Matches: A common situation that arises is when the fetch address matches the start
address of the trace but not all of the branch predictions match the path of the trace. In such a
situation, it is still feasible for the trace cache to provide instructions to the issue buffer, up to
thelast valid branch where the prediction matches the taken path. This scheme results in addi-

tional complexity, including the additional costs of storing intermediate basic block addresses.

Associativity: One of the problems of indexing traces within the trace caches by a start ad-
dressis the fact that only one trace from a given address can be stored. An alternative method
of storage is to increase the trace cache associativity, which could reduce thrashing effects

from traces that start with the same address.

Sizing: Increasing the size of a trace cache can obviously have a degp impact on performance.

However, there has been no research done as to how performance scales with trace cache size.

Replacement Policy: Aswith standard caches, there are several different methods of choosing
which trace to replace when filling the cache. It is possible that the replacement algorithm

chosen might affect overall trace cache performance.

All the above design issues can be applied to the general trace cache framework proposed by Ro-

tenburg, in which the trace cache acts as a supplementary device to the instruction cache. There

also exists the possibility of generalizing the instruction cache by completely replacing it with a

trace cache. In this scheme, the trace cache acts as the main mechanism in the instruction fetch,

17

with a L2 cache used as the source for trace fills. The details of the viability of this scheme pres-

ents another focus area for thisthess.

4.2 Long-Term Roadmayp of Research

Theresearch for this thesis can be broken down into a number of general steps which are summa-
rized below:

1)

2)

3)

4)

Initial statistical gathering and infrastructure development. This includes writing a trace ana-
lyzer to collect basic statistics such as average trace lengths, basic block sizes, branch frequen-
cies, number of dynamic basic blocks in a trace, instruction cache hit rates, etc. for standard

representative programs.

Judiciously sdlecting metrics suitable in characterizing performance, such as fetch IPC and

trace cache missrate.

Implementing a parameterizable trace cache simulator and doing extensive simulating on typi-
cal workloads to determine performance improvement of the different trace cache designs over

standard instruction fetch mechanisms.

Analyzing design issues and iterating refinements based on simulation results. The intent is to
refine the original trace cache design as much as possible to maximize trace cache

performance.

18

Chapter 5
Simulation M ethodology

The research for this thesis is to be primarily simulation-based and entail s the development of a
trace-driven simulator in arder to gather results and \alidate trace cache design. In this chapter,
the smulation methoddogy such as the simulation environment, simulation modd, performance

metrics, and test workload are each discussed in turn.

5.1 Simulation Environment

The simulator development for this research was dore under the Mips Techndoges Incorporated
(MTI) Architecture Simulation Environment. The Architecture Group at MTI is responsible for
performance and behavioral simulation for MTI's microprocessor line. In addtion, the group is

involved with investigation of general architectural innovations for next-generation processors.

In arder to facilitate the development of simulators, a well-developed simulation environment was
created by the Architecture group. The simulation environment consists of 1) standard benchmark
execution trace collections, 2) standard tods for running simulations, and 3) user-provided simu-
lators. The trace cache simulator was developed using this infrastructure. The standard bench-
mark trace collection is used as the source of simulator inputs, as discussed below under the test
workload section. The trace cache simulator is trace-driven, in which an instruction input trace is
fed to the simulator for statistics gathering (such as trace cache missratio, fetch bandwidth, over-

all, etc.).

5.1.1 Trace-driven Simulation

The simulation tods run simulations by fealing benchmark execution traces to the simulators.
Thus, this type of simulation is called trace-driven simulation. Trace-driven simulation is used

over other forms or simulation (such as cycle simulation) for a number of reasons. These reasons

19

include: 1) trace-driven simulation is much faster, 2) representative traces for the SPEC bench-

marks already existed, and 3) trace-driven simulation is architecture independent.

The data results collected from this study are all from trace-driven simulation. A distinction must
be made between the input traces used in the simulation of the trace cache and the dynamic traces
that the trace cache actually stores in the simulator. Trace-driven simulation refers not to the
traces stored within the trace cache but to the benchmark application instruction streams that the

simulator runs on in order to generate statistics.

There is a problem with trace-driven simulation, namely that incorrect speculation cannot be
simulated, as traces represent the actual correct path of execution. This may result in some inaccu-
racies in the mode, as the cache structures do not see the contamination effects of fetching and
executing wrongly speculated instructions. However, it is assumed that such effects are negligible

and that trace-driven simulation is accurate enough for the purposes of this study.

5.2 Simulation Model

Since this research is focused on increasing instruction fetch bandwidth, the fetch engine of the mi-
croprocessor is the primary module of interest and is modeled in detail. The trace cache and in-
struction cache fetch mechanism, as described in the Trace Cache Mechanism chapter, is imple-

mented under the ssimulation environment.

In order to isolate the performance effects of the fetch mechanism, it is assumed that the machine
stalls for reasons only pertaining to the fetch mechanism and not from issues related to the instruc-
tion queue or execution backend. The fetch mechanism can stall on instruction cache misses and

incorrect branch predictions.

When using a real branch predictor, an incorrectly predicted branch results in a misprediction pen-
alty. This penalty arises from the need to abort all instructions fetched after the misprediction
point. Since the simulator only deals with the fetch portion of the machine (i.e., the execution
backend of the processor is not simulated), this mispredict penalty must be approximated. In order
to simplify the development of the machine model, all the details of the instruction issue queue and
execute engine are abstracted away. For the simulations that involve real branch prediction, the
mispredict penalty is simply assumed to be six cycles [2]. This means that instructions following
an incorrectly predicted branch will not be fetched until six cycles after the branch is fetched. In

20

effect, the mispredict penalty embodies all the effects of a mispredicted branch, including aborting

the trace and flushing instructions from the instruction queues, etc.

Although the misprediction penalty determination is very simple, it provides an effective way of
approximating the effect of branch prediction accuracy on trace cache performance. Using an av-
erage misprediction penalty gives a rough estimate on how mispredicted branches affect fetch IPC

and is deemed sufficiently accurate for the purposes of this research.

5.3 Performance Metric

The primary performance metric used for this research is fetch IPC (instructions per cycle) from
the fetch mechanism. The fetch IPC represents the number of instructions that can be fetched by
éther the trace cache or primary instruction cache and gives a basic performance gauge of the

trace cache and itsimprovement over using just an instruction cache.

Other metrics of interest include the trace cache miss rate, the miss rate per instruction, and the
instruction miss rate. The trace cache miss rate indicates the percentage of attempted trace cache
accesses that result in a trace cache miss. The instruction miss rate represents the trace cache
miss rate normalized by the number of instructions fetched. The misses/instruction is usually used
as the traditional performance metric for caches. Finally, one can measure the miss instruction
ratio, or the percentage of instructions fetched not supplied by the trace cache. One goal of this

research isto reduce these trace cache miss metrics to the lowest level possible.

5.4 Test Workload

In order to determine the performance of the trace cache fetch mechanism, a suite of programs rep-
resentative of actual program behavior must be chosen to base performance measurements on. The
SPEC benchmark suite is the most widely recognized and used benchmark suite in industry as well
as academia, and thus will be used in this research as the primary benchmark source to gauge per-
formance. The SPEC benchmark suite consists of eight integer benchmarks written in C, and ten
floating point benchmarks written in Fortran. A brief description of each benchmark is provided in
Table 5-1 below:

21

Benchmark Description

SPEC95, INT

099.go Artificial Intelligence, plays the game of Go.

124.m88ksim Motorola 88K RISC CPU simulator, runs test program.

126.gcc New Version of GCC, the GNU C Compiler, builds SPARC code.

129.compress Compresses and uncompresses filein memory using Lempel-Ziv coding.
130.li Lisp interpreter.

132.ijpeg Graphic compression and decompression. (JPEG)

134.perl M anipulate strings (anagrams) and prime numbers in Perl.
147 .vortex A database program.

SPEC95, FP

101.tomcatv ~ Tomcatv is amesh generation program.

102.swim Shallow Water Model with 513 x 513 grid.

103.su2cor Quantum physics. Monte Carlo simulation.

104.hydro2d Astrophysics. Hydrodynamical Navier Stokes equations

107.mgrid Multi-grid solver in 3D potentia field.

110.applu Parabolic/eliptic partia differential equations.

125.turb3d Simulate isotropic, homogeneous turbulence in a cube.

141 .apsi Solve weather conditions (temp., wind, velocity) and distribution of pollutants.
145.fpppp Quantum chemistry

#146.waves Plasma physics. Electromagnetic particle simulation.

Table5-1: Description of SPEC95 Benchmarks

5.4.1 General Characteristics of SPEC95 Benchmarks

The integer programs represent the bottleneck in instruction fetching, resulting from an average
basic block size of around 5. The dynamic basic blocks of the floating-point benchmarks are all
significantly larger than the corresponding humbers for the integer benchmarks. This is because
the floating-point benchmarks contain more scientific-based code and thus have large paralld loop
structures to iterate computations. This is in contrast with the tighter, more complex looping be-
havior of integer benchmarks. Among the integer benchmarks themselves, the most interesting
ones to look at are 099.go and 126.gcc because they exhibit the most erratic behavior and stress the
ability of the fetch mechanism to fetch instructions.

5.4.2 Trace Generation

The benchmarks in the SPEC95 suite range from between 25 billion to 90 billion instructions,
making it virtually impossible to run the simulator through the complete inputs given the computa-

tion resources. Thus, it is necessary to generate a set of reasonable length instruction traces that

22

arestill representative of the original benchmarks. There are two strategies for generating traces of
reasonable size. Thefirst invaves usinginput sets that result in shorter benchmark run times. The
secondis to sample through the actual full trace at even intervals (such as recording 10 milli onin-
structions, then skipping the next 90 milli on instructions and so or). The problem with the first
approach is that reducing the problem size may significantly alter the program’s behavior on the
system. The problem with the second methodis that making tradeoff s between accuracy and trace

size is non-trivial.

Because it is paramount that the input traces encapsulate actual program behavior, the traces used
for this research were created by sampling. The sampling strategy was tweaked for each applica-
tion benchmark within the SPEC95 suite in arder to capture the significant behavioral aspects of

each program.

Profiling information for each benchmark was obtained by utili zing the R10000 hardware per-
formance counters when running the benchmarks on a R10000 pocessor system. This profiling
includes basic block, instruction, and instruction classdistributions as well as data and instruction

cache misses, branch mispredicts, and TLB misses.

Some benchmarks (specifically 099.go and 126.gcc) show dramatic changes in behavior through-
out their program runs. For these benchmarks, an ardinary or/off sampling strategy is used. Spe-
cia attention was given to the periods in the program runs that exhibited the most variation by
taking more samples in those periods. For example, 126.gcc does nat show any regular behavior
for any o itsinputs, so a number of the larger inputs were chosen and evenly sampled. In contrast,
099.go shows more drastic dhanges in the erlier parts of the program. Therefore, the benchmark
was divided into 4 sections, with the erlier sections being smaller, and a specified number of 10-

million instruction samples were evenly obtained from each section.

Other benchmarks have a cyclic pattern, with their periods comparable to trace lengths that a
simulator could execute in reasonable amount of time (around 200 milli on instructions). For these
benchmarks, one or more slices of 200 milli on instructions were taken consecutively so that one
entire cycle of behavior is captured. The programs that exhibit cyclic behavior include the integer
benchmarks 129compress and 132ijpeg and the FP benchmarks 147vortex, 102swim,
104.hydro2d, 107.mgrid, 110applu, 125turbo3d, 146wave5. For a couple of these benchmarks
(namely 147.vortex and 146.waveb), the periods of their cyclic behavior was larger than 200M

23

instructions. For 147.vortex, sampling was done in chunks around the interesting areas whereas

for 146.waveb, the behavior was captured over two trace slices.

Finally, some benchmarks do not exhibit any sort of pattern but have different periods of varying
behavior. In this case, each period is sampled by different strategies such as in variable length
chunks, or on/off sampling, etc. Benchmarks that exhibit such behavior include 124.m88ksim,

130.1i, 134.perl, 101.tomcatv,103.su2cor, 141.apsi, and 145.fpppp.

By applying a sampling strategy in this way, only about one billion instructions were needed to
generate the sampled traces which represent the entire 717 billion instruction run of the SPEC95
reference set. These traces were created by the MTI Architecture Group and are used as the source
of instruction traces for this research. Since the trace samples represent less than 0.15% of the
actual benchmark runs, it is important to verify that the sampled traces actually represent actual
benchmark behavior. To provide an independent check on how representative the sampled traces
are, the profile information for a complete program run was compared to the behavior of the sam-
pled traces. Since the profile results for the sampled trace matched the distributions for the actual
program run, there is some assurance that the samples are accurate representations of actual code

execution. Table 5-2 lists the benchmarks traces that are used in this study.

Integer Number of Traces | Floating Point Number of Traces
Benchmarks (~200M Inst. each) | Benchmarks (~200M Inst. each)
099.go 2 101.tomcatv 3
124.m88ksim 2 102.swim 1
126.gcc 2 103.su2cor 3
129.compress 2 104.hydro2d 2
130.1i 3 107.mgrid 1
132.ijpeg 3 110.applu 2
134.perl 2 125.turb3d 3
147.vortex 4 141.apsi 1
145.fpppp 3
146.waveb 3

Table5-2: Tracesfor Benchmarks

24

Chapter 6

Simulation Resultsand Analysis

In this chapter, the general results of the thesis research are presented. Using the simulation meth-
odology described in the previous chapter, the effects of various parameters on trace cache per-
formance and efficiency are explored. The results section starts by presenting the simulation re-
sults for a conventional instruction fetching mechanism, as compared with a base trace cache de-
sign. Different aspects of the trace cache desigh are then explored in turn. The section concludes

with the effects of using areal branch predictor.

6.1 Instruction Cache Results

As a base method of comparison, the trace cache performance results are compared to a conven-
tional instruction cache fetch mechanism. Table 6-1 summarizes the instruction cache parameters

used as the comparison base:

Primary Instruction Cache

Size 128KB
Block Size 64B
Associativity 2
Replacement LRU
Miss Penalty 10 cycles

Table6-1: Instruction Cache Parameters

For these smulations, the maximum fetch bandwidth is set at 16 instructions/cycle. The resulting

fetch IPC vaues when just using an instruction cache are show in Figure 6-1.

25

Fetch IPC for Instruction Cache Fetch Mechanism

16

14
012
a 10
%8
T 6
LL
4
2
04
o E 9 © = ©®» =T x =2 £ 5 T T 3 B 3 o
> g5 § & £ 2 ¢ 8§ s 8¢ 5 3 8 g 8
© =N = g g ®© 5 © E «© 5
8 £ s » % =
E 8
Benchmark

Figure6-1: Fetch IPC for Instruction Cache Fetch Mechanism

From the figure, we natice several things immediately. For the integer benchmarks (first 8 bench-
marks), the average fetch IPC out of the instruction cache is comparable to the average basic block
size of the benchmark that was run. This is indicative of the fact that the basic block size is the
limiting factor in the fetch IPC, as the instruction cache can ony fetch up to ore basic block at a
time. This would mean for most common nonscientific applications, the bandwidth cellingis lim-
ited to an average of 5-6 instructions per cycle, regardlessof the parall€ism of functional units that

might exist.

The fetch IPC values for the floating-point benchmarks are much higher than the correspondng
values for the integer benchmarks. Since the branch frequencies are much smaller for these
benchmarks than the integer benchmarks, the instruction cache can fetch more instructions in a

given cycle. This results in fetch IPC values that are much closer to the maximum fetch limit.

In the next section, we will seethat by simply adding a trace cache in conjunction with the instruc-
tion cache, we can significantly improve the fetch |PC and rence overall performance of the micro-

processor.

6.2 Base Trace Cache

The results derived above for the instruction cache fetch mechanism are first compared to that of
the most basic trace cache design. For initial measurements, the original trace cache modd from
Rotenburg's design is used, as described in his paper [1]. This basic trace cache design hes the

following parameters:

26

Base Trace Cache M oddl
Trace Entries 64
Trace Length 16 Instructions
Max. # Brs. 3
Associativity 1 (direct-mapped)
Overdl Size 4 Kbytes

Table6-2: Base Trace Cache Design

For these simulations, the maximum fetch rate for the simulator is equal to the trace cache line
size, which is equal to 16 instructions in this case. Also, in order to isolate the effects of the trace

cache itsdlf, perfect branch prediction is assumed for the present. The results of the simulation

runs are shown in Figure 6-2:

Fetch I PC for Base Trace Cache Fetch M echanism

16

14
12
S I
a 10 . ETcache
5 8 Micache
o) |
w 6
4
2,
0,
o 1S Q 4 = o = x - IS s hel k=] = b 7] Q
5 g § ¢ £ 2828 :§ ¢ 5 8¢ & &
© =3 = e € n =] ° € © =] =
) € s 2 = 2
E 3
Benchmark

Figure6-2: Fetch IPC for Base Trace Cache Fetch M echanism

From the fetch IPC results for the basic trace cache design, we see immediatdly that augmenting
the instruction cache with a small trace cache results in considerable fetch performance improve-
ments. Figure 6-3 summaries the performance improvement of the trace cache fetch mechanism

over atraditional instruction cache fetch device:

27

Performance Improvement of Base Trace Cache

40%
35%
30%
25%
20% -
15% A
10% -

5%

0% -

% Improvement in Fetch IPC

go
gcc

perl

tomcatv
su2cor
mgrid
turb3d
fppp

Benchmark

Figure 6-3: Performance I mprovement of Base Trace Cache

From Figure 6-3, it is apparent that the trace cache improves the performance of the integer
benchmarks much more than the floating-point benchmarks. In fact, a number of the floating-
point benchmarks do not improve much at all. The reason is the trace cache only removes the
limitation of fetching a single basic block. For the integer benchmarks, a basic block is only 5-6
instructions in length on average, so fetch IPC improves dramatically. However, the average basic
block size for the floating-point benchmarks is already larger than the maximum fetch limit (16
instructions), so only marginal improvements in the fetch IPC can be made. The statistics for the
average trace that is written into the trace cache and the average trace that is actually read from the

trace cache are summarized in Table 6-3.

The statistics give an gauge as to how the instruction traces are being utilized by the fetch mecha-
nism. From the table, it seems that there is not too much variation between the traces that are
written into the trace cache and what is actually used by the fetch mechanism. The lack of varia-
tion is a good indication that the traces stored in the trace cache are being equitably utilized by the
fetch mechanism. Werethis not the case, such asif the trace cache only used short traces or traces
containing only one or two basic blocks, then there would be a greater disparity between the writ-
ten and read trace statistics.

28

INTEGER go m88ksim | gcc compress | li ijpeg perl vortex

trace written 113 11.0 102 10.7 10.8 131 | 116 9.3

basic blkswritten | 1.94 173 1.92 1.66 2.05 082 |18 2.09
traceread 10.4 95 9.9 113 9.4 117 [110 9.0

basic blksread 1.83 1.86 177 153 191 097 |19 2.02

Fp tomcatv | su2cor swim hydro2d mgrid applu turbo3d | aps fppp
trace written 138 14.3 13.0 15.1 15.0 140 | 120 136 153
basic blkswritten | 058 0.34 0.87 0.22 0.15 059 [o083 0.64 0.18
traceread 123 136 136 1238 132 132 | 129 134 135
basic blksread 0.80 0.32 0.88 0.53 0.34 069 [o063 0.62 0.55

Table6-3: Average Written/Read Trace Statistics

It is pleasantly surprising to note that the average trace lengths for the integer benchmarks are ac-
tually on par with that of the floating-point benchmarks. This fact shows how effective a trace
cacheis in improving the fetch bandwidth of the integer benchmarks. However, the traces for the
integer benchmarks contain, between 1.5 to 2 basic blocks on average. This is in contrast to the
floating-point benchmarks, which only store on average around half of a basic block. This con-
forms to expectations, as the floating-point benchmarks have much larger basic blocks. Sections

6.3-6.7 describe results for attempts to further improve these trace statistics.

The final results of interest for the base trace cache design are the miss statistics. These trace
cache miss rates are shown in Figure 6-4. The miss rates for the basic trace cache design are
abysmal. For a mgjority of the benchmarks, more accesses occur from the instruction cache than
from the trace cache. This is a noted problem with the implementation proposed by Rotenburg in
his original paper. The corresponding instruction miss rates are an order of magnitude off from

miss rates for current instruction caches.

29

90%
80%

Miss Per centage

0%

Base Trace Cache Miss Statigtics

70%
60%
50%
40%
30%
20%
10%

HTcache Miss Rate
OMiss Instn Rato
Binstn Miss Rate

A 1IN 1R L AL "Ijjl“IE-'
o E 9 9= 9T 5 2 E 53 T 28 7 o
>g 58 228:§sg8¢8s588%8 8

© =N = S € ®» 5 g E & 5 h

@ £ S 2 =

E 3

Benchmark

One possible fetch mechanism design optimization is to have the trace cache completely replace the
instruction cache as the primary fetching device, with a L2 cache used as a fill mechanism for the
trace cache. However, it is not possible to realize such an implementation using the original trace
cache design. The instruction miss rates are much too high, which would result in unacceptable

performance losses given the miss penalty. Figure 6-5 shows the breakdown of the cause of a trace

cache miss:;

Figure 6-4: Base Trace Cache Miss Statistics

100%

Component Per centage

Trace Cache Miss Cause Breakdown

90% +
80% +
70% +
60% +
50% +
40% +
30% +
20% +
10% +

0% -

9 £ = = E 5 &8 & =2 Z

888~ ErR f§gsEgEzE

3 g = g £ 4 S E ® 3

£ 8 = £
Benchmark

apsi

OBr. Mismatch
HTag Mismatch

fppp

Figure 6-5: Trace Cache Miss Cause Breakdown

30

A trace cache missocaurs if either 1) the trace cache tag daesn’'t match the fetch addressor 2) the
branch flags do nd match the branch predictions. From the breakdowns, we seethat most of the
trace misses result from tag mismatches, indcating either that there are a great deal of collisions
within the trace cache, or that the trace cache is smply too small to store enough useful traces.
Both these problems can be rectified by increasing the associativity and/or size of the trace cache,

as will be shown in sections 6.8 and 6.9 respectively.

6.3 Effectsof Hashed Indexing

Given the base trace cache results, this research first explores the possbility of altering the index-
ing scheme of the trace cache to improve performance. The multiple branch predictor that is nec-
essry as part of the trace cache fetch mechanism represents a very large amount of space over-
head. As an alternative to having a branch predictor, one can have the trace cache indexed as a
hash o the global history register and the fetch address (such as an XOR function). This well-
known scheme is known as the gshare indexing method [18], used ariginally to index into a branch

prediction table. The gshare indexing meltiiogy can be adapted for use with the trace cache.

Using this indexing scheme, a trace cache hit is then simply based onwhether or nat the fetch ad-
dressmatches the tag of the trace. There are several aspects of this design that significantly sim-
plifies the trace cache fetch mechanism. First of all, trace status information is reduced orly to a
tag, reducing trace storage overhead. In effect, the branch gobal history information that is used
to derive the index is used as the “branch prediction” of the trace. Thus, the branch prediction
hardware can be completdy removed from the fetch mechanism, saving a great deal of space and
complexity. Also, because of the nature of the XOR hash performed to derive the index, traces can
be more uniformly spaced within the trace cache. Figure 6-6 depicts the hashed indexing into the

trace cache.

31

Trace Cache

~
fetch A —7

@ E— tag A Trace

|
Y

\%
> @ hit? If tag matches fetch address, then
thetrace is read into the Instruction
Buffers.

Figure6-6: Hashed Indexingintothe Trace Cache

The resulting fetch |PC for thisindexing scheme is shown in Figure 6-7:

Fetch IPC of Trace Cachewith Hashed Indexing

16
14 1
12 H
O i
&10 Micache
5 8 I |OHash Index
o) , i
w 6
4 4 i
2, I
0 L
o £ o o = o = x 2 £ 5 T B 3 © 5 =%
g5 ¢ B2 ¢ 83§ L eEEEos
© =% = = £ n = <} € © 5 h
@ £ S o 2 =
E 3
Benchmark

Figure6-7: Fetch IPC of Trace Cachewith Hashed Indexing

From the fetch IPC results, we see that hashed indexing into the trace cache does not work very
effectively at all. The resulting IPC values are far worse than using the original indexing scheme,
and marginally greater than just using an instruction cache. The main reason is the extremdy bad

trace cache missrates using the XOR hash, as shown in Figure 6-8:

32

Trace Cache Miss Rate from Hashed Indexing

100%
99%
98% -
97% -
96% -
95% -
94% A
93% -
92% A
91% A
90% -

Miss Rate %

go
m88ksim
compress
ijpeg

perl

Benchmark

Figure 6-8: Trace Cache Miss Rate from Hashed Indexing

Although hashed indexing is not abad ideain and of itself, we see that unless we improve the re-

sulting trace cache miss rate, the ideais not very feasible.

6.4 Effectsof TraceLineLength

The trace line length is one of the basic parameters of the trace cache, dictating the maximum
length of the trace that can be stored. Since longer traces can be stored, it is intuitive that increas-
ing the line size would increase trace cache performance. However, it is necessary to explore how
performance scales with increased trace length and whether or not this increase in performance is
commensurate with the additional storage cost of increasing the maximum trace length. Since the
maximum trace length specifies exactly how much storage is set aside for a single trace regardless

of how long the actual trace s, setting an overly long trace line size would result in wasted storage.

The maximum line constraint can also feasibly affect performance based on the way existing traces
are incorporated into a tracefill. Consider the case where a trace hit occurs while the fill buffer is
still collecting instructions for a trace fill. Only complete traces can be stored in the fill buffer
during the fill process; no partial traces fills are allowed since it is not possible to determine the
number of control instructions in the partial trace given existing control information. This, coupled
by the fact that a trace cache hit occurs reatively frequently, results in the possibility of having
only small traces stored. This can occur when a fill starts with a basic block, followed by a long
trace. If both the basic block and trace cannot fit in thefill buffer, only a single basic block will be

stored. By increasing the maximum trace length, this possibility is reduced.

33

Increasing the trace length size beyond 16 has a modest effect on the fetch IPC performance of
both the integer and floating-point benchmarks. However, the performance curve for the integer
benchmarks tapers off with larger trace line lengths whereas the floating point benchmarks still
improve dlightly. Figure 6-9 shows the integer fetch IPC results when the maximum trace length is

varied from between 10 to 24 instructions, in increments of 2.

Fetch IPC asaFunction of Maximum Trace Length

—o—qo
—l—m88ksm
—&—gce
—>— compress
—H—li
—0—ijpeg
—o— perl
—O—vortex

Fetch IPC

Maximum Trace Length

Figure 6-9: Fetch IPC asa Function of Maximum Trace Length

From Figure 6-9, we see that integer fetch IPC monotonically increases for trace lengths under 20,
after which point improvement levels off. Given an average basic block size of 5 instructions, a
branch throughput limit of 3 would result in atrace just about the size of the maximum trace length
for the base trace cache design. The fact that fetch IPC improves for longer trace lengths seems to
indicate that the variance of basic block sizes could result in situations where increased trace line
sizeis beneficial. It is possible that further IPC improvement with trace line lengths greater than
20 may be caused by a limitation of the branch throughput. However, in the next section, we will
see that thisis not the case. The fetch IPC improvement for a trace line length of 20 is shown in

Figure 6-10:

Fetch IPC Improvement from Increased Trace Line Length

(20 Instructions)
9.0%

8.0%
7.0%
6.0%
5.0%
4.0%
3.0% +
2.0%
1.0% A
0.0% -

% Improvement

o Q [= =] = x 5 he] =] =3 el 7] Q
o E 3] I @ 5] [9) % E 3 N = 5 @ 2 a
7] S o o s £ 3 s o IS a a
Q2 i=3 5 N o =3 o 5 2
© =3 = s 1S n =} ° € © =1
@ £ S o > =
E 5] =~ =
(5]
Benchmark

Figure 6-10: IPC Improvement from Increased Trace Line Length

The corresponding average trace lengths that are written/read are shown in Table 6-4:

INTEGER go m88ksim | gcc compress | li ijpeg perl vortex

trace written 121 116 10.9 112 114 133 | 128 9.9

basic blkswritten | 2.05 1.82 2.02 171 2.21 096 [1.99 214
traceread 117 10.1 10.4 118 9.8 121 | 121 9.6

basic blks read 1.96 2.00 1.83 1.66 213 104 | 207 2.10

FP tomcatv | su2cor swim hydro2d mgrid | applu | turbo3d | aps fppp
trace written 14.1 14.7 133 15.9 15.1 144 | 126 14.2 155
basic blkswritten | 0.64 0.37 0.95 0.28 0.22 067 | 086 0.69 0.23
traceread 131 141 139 134 133 138 | 135 137 136
basic blksread 0.85 0.35 0.93 0.57 0.46 072 [o070 0.67 0.61

Table6-4: Average Trace Written/Read Statisticsfor TraceLine Size=20

We see that increasing the maximum trace line size results in an increase in both the trace length
written into the trace cache as well as the average trace length read from the trace cache during a
hit.

35

6.5 Effectsof Increasing Branch Throughput

Based on the results from the preceding section, it is legitimate to ask whether or not increasing
branch throughput, and hence the number of basic blocks that can be stored in the trace cache,

would further improve fetch IPC.

In order to support additional branch throughput, several modifications are necessary to both the
trace cache and branch predictor. The trace cache modifications amount to simply adding branch
flags and branch number bits to the trace cache control information. These changes are very
straightforward and do not add much to the implementation cost. However, the changes to the
multiple branch predictor represent a much larger overhead. Increased branch throughput support
entails adding an additional set of counters to the multiple branch predictor. Thus, the pure hard-
ware cost is very large for each additional branch prediction that is to be added. In addition, there
is no reason to assume that the proposed multiple branch prediction strategy would scale wel be-
yond three predictions. Thus, increasing branch throughput can possibly affect branch prediction

accuracy aswell as increasing the space overhead.

Because of the large space overhead, there must be significant performance gains in order to justify
increasing branch throughput. However, simulation results indicate that increasing branch
throughput does not have any significant effects on fetch IPC. The effects of varying branch
throughput between 1 to 5 for the integer benchmarks are shown in Figure 6-11. For these simula-
tions, the maximum trace line length is set to infinity in order to prevent the line length from being

the limiting factor.

From Figure 6-11, we see that increasing branch throughput is highly effective for improving in-
teger fetch IPC only past the third branch. Any additional branch throughput does not improve
fetch IPC at all. Simulations show the same trend for the floating-point benchmarks. These results

are not surprising; there is adiminishing return from increased throughput.

36

Fetch IPC as a Function of Branch Throughput

——go

—l— m88ksim
gce
compress

—¥—li

—@—ijpeg

—+—perl

g | —=—vortex

Fetch IPC

Branch Throughput

Figure6-11: Integer Fetch IPC asa Function of Branch Throughput

Storing traces that contain more than 3 basic blocks are not utilized as often, as they represent
more specific paths of execution. This fact can be verified by looking at the written/read trace sta-
tistics for the higher branch throughput simulations, as shown in Figure 6-12:

INTEGER go m88ksim | gcc compress | li ijpeg perl vortex

trace written 126 121 11.8 122 116 139 | 12.9 10.4

basic blkswritten | 210 1.96 2.25 2.01 2.69 132 [230 2.41
traceread 109 9.7 9.9 114 9.7 120 | 113 2.4

basic blks read 1.86 1.89 175 158 1.95 103 | 207 2.22

FP tomcatv | su2cor swim hydro2d mgrid | applu | turbo3d | aps fppp
trace written 13.9 14.1 133 15.4 15.1 144 | 122 13.9 15.4
basic blks written | 0.61 0.32 0.92 0.24 0.17 060 [086 0.65 0.18
traceread 12.7 136 139 132 134 138 | 134 137 137
basic blks read 0.82 0.37 0.91 0.57 0.33 072 | 069 0.66 0.56

Figure 6-12: Average Written/Read Trace Statisticsfor Branch Throughput =5

Whereas the statistics for the floating-point benchmark are much the same as before, the corre-
sponding figures for the integer benchmarks are slightly different. The trace written statistics show
that for the integer benchmarks, the trace cache stores longer traces consisting of more basic

blocks. However, the trace read statistics illuminate why fetch IPC does not actually improve.

37

The trace read statistics are almost identical to that of the base trace cache design, indicating that
the trace cache preferentially fetches the shorter traces. Again, this may be because of the fact that
the traces that contain more basic blocks cannot be fetched unless all the branch predictions match.
Since these conditions are more restrictive, they are not fetched as often. Thus, according to the
simulation results, a branch throughput of 3 is perfectly adequate for fetching purposes. One way

of relaxing the trace hit requirementsisto allow partial hits, aswill be shown in section 6.7.

6.6 Effectsof Modifying the Fill Mechanism

Looking at the trace cache miss rates for the base design, we can see that the trace cache is not
very efficient at al. It is obvious that we can further improve the performance of the trace cache
by reducing the miss rates. There are several issues related to the fill mechanism that can possibly

be changed to improve trace cache performance.

6.6.1 Storing Only Complete Basic Blocks

The original trace cache design allows trace fills up to the third branch that it encounters or up to a
maximum of 16 instructions, whichever comes first. There is an argument that can be made to
only include instructions that end on a basic block boundary. First of all, this results in the next
fetch IPC to be the start of a basic block. Thisrestriction works well as it allows the trace cache to
be accessed; if a dday dot is the start address, then the trace cache must miss as a trace cannot

start with adelay sot (see Chapter 3).

However, the most compelling reason to limit trace fills to include only complete basic blocks is to
reduce the amount of storage needed to store trace information. Given a loop, it is conceivable that
multiple traces are generated from offset addresses. A reason may be that the trace length(s) re-
sultsin an access stride that does not match the loop length. This mismatch can cause a great deal
of unnecessary trace storage for a single loop, as well as cause collisions in the trace cache. This

effect isdepicted in Figure 6-13.

38

\4

Dynamic Instruction Stream

AT

A4 A4 A4
Trace 1 with start addressA Trace 2 with start addressB -~ Trace 3 with start address C

Consider the following The above instruction stream shows the loop

loop: unrolled for threeiterations. In this pathological
A: Instruction 1 case, 16 instruction traces (max. length) are stored.
Instruction 2 This ultimately resultsin atotal of 16 total traces
. stored in the trace cache, each of which is offset by
one. Thisresultsin extra space necessary to store
. theingtructionsin the trace cache, possibly dis-
Instruction 14 placing other useful traces. Note aso that it takes
Jump A 16 iterations of the loop before the trace cache will
Delay Slot actually start hitting.

Figure6-13: Unnecessary Trace Storage from Offset Traces

The above example shows a pathological case where every stored traceis just one instruction offset
from each other. This means 16 different traces are stored in the trace cache for the same loop,
resulting in highly redundant storage. In this scenario, the trace cache will also be forced to ini-

tialy missthe first 16 iterations of the loop while all the traces are being generated.

By a simple modification to the trace fill logic for the trace cache, instructions can be committed to
the fill buffer only when the end of a basic block is encountered (i.e., the ddlay slot of a control
transfer instruction). During the beginning of a trace fill, the fill buffer initially commits all in-
structions that are fetched. After the first complete basic block is committed, all following instruc-
tions must wait until a complete basic block is available before committing to the fill buffer. Al-
though this complicates the fill logic, the performance improvement from treating basic blocks as
atomic units is considerable. Figure 6-14 summarizes the fetch results for a 64-entry trace cache

identical to the base trace cache design with this modification.

39

Fetch IPC When Only Storing Complete Basic Blocks

16
14 L

12 H

O 19 |
o MBase
5 8 (] M |oessil
D 6 H
i
4 . I
2 . I
0 - L
o E o (7] = =] = x 2 IS 5 he] kel =] el 7] Q
° 5 & ¢ £ 82 8 s 8§ ¢ 58 8 & 8
© =3 = = € n] ° € © S =
>} £ S a2 2
E 3
Benchmark

Figure 6-14: Fetch IPC When Only Storing Complete Basic Blocks

From Figure 6-14, we see that the modification to the fill mechanism has the greatest affect on the
integer benchmarks. For most of the integer benchmarks, limiting the trace fill to complete basic
blocks results in considerable performance gains. In contrast, the floating-point benchmarks re-

sults are not affected much at all. The performance improvement is shown in Figure 6-15:

IPC Improvement When Only Storing Complete Basic Blocks

g o
= 8%
[S]
T 7%
LL
= 6% -
é 5% -
54%*
3%
8 (
5 2% -
£ 19
£ 0% .
o IS I %) = o = x £ = kel kel =] o 7] [=%
> 5 S b g ¢ ¢ 5§ 5 8 $ 5 & @ g 8
X = = I} N = Q = © 2
% g S g 7] a g 1S5 © 3
E 8 £~ <
Benchmark

Figure 6-15: Improvement When Only Storing Complete Basic Blocks

The corresponding miss rate statistics are as follows:

40

Miss Rate When Only Storing Complete Basic Blocks

80% -
70% A

60% -
50% -
40% -
30% -

HBase
aBsfill

Miss Rate %

20% -
10%
0% -

o [1] = o = x = el =] =} el 7
s E g @ 2 T 3 8 E 53 % 2 2 8% & g
] > 9 o o E o 2 Q [} > g 2 K (=%
s = <] o = = w
© =3 > £ n = = € © =
@ £ s} 7 > =
E 5] =~ =
(8]
Benchmark

Figure 6-16: MissRate When Only Storing Complete Basic Blocks

We see that the trace cache miss rates also drop considerably using the modified fill mechanism.
Based on the reasoning explained above, it seems valid that the reduced storage overhead and asso-
ciated effects of only storing complete basic blocks would result in the lowered miss rates. The
decrease in the miss rates, between 13% to 46% for the integer benchmarks, is most likely the pre-

dominant reason for the fetch 1PC improvement.

6.6.2 Aborting a TraceFill on a Trace Hit

Another possible fill mechanism modification is to not include traces as part of a trace fill. With
this proposed modification, a trace fill terminates when a trace hit occurs. In the original trace
cache design, it is possible for a trace fill to include a previously existing trace if a trace cache hit
occurs during the fill. This reduces the efficiency of the trace cache as now two identical traces are
present in different locations within the trace cache, except one is prefixed by some instructions
that were committed to thefill buffer prior to the concatenation of thetrace. This may not be a bad
thing, depending on how long the prefix length is, but redundancy is still present. Figure 6-17 il-
lustrates this effect:

41

\ 4

Dynamic Instruction Strea

ar. -] 7

A B A

~

trace 1 with starting addres trace 2 with starting addreBs
that includes trace 1

d

Trace Cache
X

5| es [ace T
Redundant trace storage aris

\ from allowing trace fills to

append other traces.
A

Figure6-17: Redundant Tracesfrom Trace Fills Allowing Trace Hits

By having trace fill s abort on a trace hit, the trace cache can achieve a higher leve of storage dfi-
ciency. However, based onsimulation results, the fetch IPC does nat improve much at all; in fact,
fetch performance actually decreases for a majority of the benchmarks. Figure 6-18 shows the

simulation results, as compared with the base trace casiga.d

Fetch IPC When Aborting a Trace Fill on a Trace Hit

16
14 H
12 H
E_e 10 [| |mBase
5 8 [l |ONo Trace
5o f
4 4 i
2, I
0 L
= f Ll BT jEsiiEELEE
% g = S E 7] E; % 1S5 © 3
(5]
Benchmark

Figure6-18: Fetch IPC When Aborting a TraceFill on a Trace Hit

42

It appears that since trace hits occur relatively frequently, the no-trace requirement results in many
truncated trace fills. This reguirement causes much smaller traces to be written into the trace
cache, which is ultimately detrimental to fetch IPC. Apparently, the reduced trace redundancy from
not allowing tracesin a trace fill is outweighed by the truncation problem. Ironically, this negative
effect on fetch IPC becomes more pronounced as the trace cache hit rate increases. For example,
for larger sized trace caches, overall fetch IPC actually decreases as the probability of truncated

traces becomes larger and overrides the benefits of having alarger cache.

Although the fetch IPC suffers from this fill mechanism modification, there is actually a decrease

in the trace cache miss rates, as shown in Figure 6-19:

Miss Rate When Aborting a TraceFill on a Trace Hit

0.8 7
0.7 1
0.6 1
0.5 1
0.4
0.3 1
0.2 §
0.1 4

HBase
ONo Trace

Miss Rate %

o Q 1% = o = x 5 el =] =} o 7] o
o = o 7] @ o) % € S N = BT M 2 =
] > 9 2 o t Q 2 <] 2 o 2 © o
X = = S N = = LS
) =% S £ [Z= T £ © =]
@ £ S I 2
£ S =
(5]
Benchmark

Figure 6-19: MissRate When Aborting a Trace Fill on a Trace Hit

Thus, although fetch IPC does not improve, not including traces in a trace fill results in better trace
cache miss statistics. This may be because thereis a higher probability that a smaller trace result-
ing in a trace cache hit, since it depends less on branch outcomes than longer traces with more ba-
sic blocks. Thisinteresting result presents a tradeoff of using this trace fill modification. One may
want to use trace fills that do not include exiting traces depending on whether the goal is to increase

fetch IPC or to decrease miss rates.

43

6.6.3 Specifying End Branch Direction

In the original trace cache design, a target address as well as a fall-through address is designated.
This may cause unnecessary overhead in the case where a branch does not terminate the trace, in
which case the target address and fall-through address are set as the same thing. An alternative to
storing both the target address and the fall-through address is to just add a third branch flag and do
a prediction comparison on the third branch flag as well. Only one target address is specified,
based on how the direction of the original branch that ended the trace. Although this reduces the
flexibility of using the trace (for example, a trace miss will be generated from the last iteration of a

loop where the fall-through case is used), the fetch performance results do not suffer much at all:

Fetch IPC for Traceswith Specified End Branch Direction

16
14
12

10
HBase
OEnd Branch

Fetch IPC

o N A O

go
m88ksim

gcc
compress
ijpeg

perl
vortex
tomcatv
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fppp

Benchmark

Figure 6-20: Fetch IPC for Traceswith Specified End Br. Direction

Based on the results, it is apparent that the benefits of having a fall-through address is limited.
This makes sense, since falling out of a loop is not the common case. Thus, specifying the end
branch direction in the trace does not affect fetch performance much. Effectively, this saves 4
bytes in storage for every trace ling, which can become considerable given the trace cache sizes

that maximize fetch IPC (see section 6.9).

6.7 Effectsof Partial Hits

One of the prime restrictions with the way traces are stored in the base trace cache design is that
the predicted path of execution must match the complete path o atrace. A way of removing this
restrictionis to allow partial trace hits, where nat all the branch predictions have to match in arder
for there to be a trace cache hit. In this case, if the fetch address matches the trace cache tag, the
basic blocks up to the first branch prediction that doesn’t match the trace cache branch flags are
used, thereby allowing partial traces to be fetched. Thisis in cortrast to the “all or nathing’ ap-

proach used in the original trace cache design.

In arder to support partial hits, intermediary addresses must be stored for each basic block. For
every branch that exists within the trace, there is an assciated addressthat indicates where pro-
gram execution is to continue if the predicted branch drection daesn’'t match the branch flag. In
addtion, the trace cache must have some way of determining the end d the associated basic block
of abranch. This means that either a pointer for each basic block is needed, or the read logic has a
way of identifying the presence of a branch and mask the rest of the instructions. Sinceit is pro-
hibitively expensive to doan associative search o all theinstructions in a trace to determine where
the branches are, pointers are stored as part of the trace cache cortrol information. The modfica-
tions to allow partial hits entail an additional 8 bytes for intermediate addresses and approximately

1 byte to store pointers.

The trace cache fetch processis modfied in the following manner to allow partial hits: the fetch
addressis again compared with the trace cache tag. If there is a match, then the branch flags are
compared with the branch predictions. If thereis a mismatch between the prediction and flag, then
the asociated pointer is used to determine the instructions within the trace that are valid. These
instructions are then fed into the instruction latch. The associated intermediary addressis then
used as the next fetch address Figure 6-21 shows the modfication recessary for the trace cache to

support partial hits.

45

\4

Dynamic Instruction Strea

A A ﬁ:{
Z_ 2" basic block[37 basic blocl].. 5 |ater .. 2 basic blocl* 4
n t n n
AN /
N
trace with starting addregsand two
branches (not-taken, taken) written int Trace Cache

trace cache

| L1
> Almol|[B|C]|D 2" BB | 39 BBI

——
. . . intermediary
Late.r, the |nstru§:t|on stream contain addresses
the first two basic blocks of the trace
but not the third (the branch outcom pointers

of the 2% basic block is different).

With partial hits, the first two basic
blocks can be read from the trace Branch
cache. The appropriate intermediar Predictor | predictions

address C is provided as the next fe .
address. (n,n) To Instruction Buffers

Figure6-21: Trace Cache Modificationsto Allow Partial Hits

By allowing partial hits, we relax the strict requirement that a complete trace must match the pre-
dicted program execution path. This dramatically improves trace cache performance, as own in
Figure 6-22. The simulation results dhow the fetch IPC for the base trace cache design with oy

the partial hit modification.

The integer benchmarks ghow an average 9.4% improvement from allowing partial hits, justifying
the additional storage overhead reeded to support partial hits. An important fact to redlize is that
now at the very least, one basic block will be read from the trace cache as long as the trace cache

tag match occurs. Thus, in the worst case scenario, a trace cache can act astaminatrioe.

46

Fetch IPC from Allowing Partial Hits

16
14 I
12 H
O
10 M |
E M Base
5 8 T Il |OPartialhit
o}
w69 I
4, o
2, o
0+ |
9 E g ¥ = ©®» T x 2 E 5 - T 2 T B o
>3 5 ¢ 28 ¢ Es 8§58l g g
@ =3 = S £ o S B £ S 5 h
Q £ s oz =
E 3
Benchmark

Figure 6-22: Fetch IPC of Trace Cache Allowing Partial Hits

Allowing partia hits aso resultsin much lower trace cache missrates, as Figure 6-23 indicates:

Trace Cache Miss Rate from Allowing Partial Hits

80%

70% A

60%

50% -
’ HBase

OPartialhit

40% A
30% A

Miss Rate %

20% A
10% -

0% -

o Q 1% = o = x 5 el =] =} o 7] (=X
S £ S 7] @ o) % € 8 8 = & @ 2 =
2 °© ¢ 2 o £t o = § © © g 2 & &
= o =3 = —
© o = € n S T € © =]
<] £ s} 0 > =
E 5] =~ =
(5]
Benchmark

Figure 6-23. Trace Cache MissRate from Allowing Partial Hits

The decreased trace cache miss rates can be attributed to the fact that branch prediction mis-
matches do not cause trace misses anymore. In fact, after initial cold start misses, the only way
that a trace cache will miss is because of atag mismatch. Thus, in away, allowing partial hitsin a
trace provides a degree of path associativity, where multiple paths can exist within the trace cache.

In this case, paths with common starts can simultaneously exist in trace cache. Another way al-

47

lowing multiple paths from the same start address is to simply provide associativity in the trace

cache, as shown in the next section.

6.8 Effectsof Associativity

Another simple method of providing path associativity and preventing collisions within the trace
cache is to increase the associativity of the trace cache. Associativity effectively provides a form
of multiple path selection whereby different traces based on the same start address can be stored
simultaneously in the trace cache. Thus, associativity allows the trace cache to store complete al-
ternative traces with the same start address, or completely different traces that happen to be
mapped to the same line in the trace cache. Thisis in contrast to partial hits, which can only pro-
vide the prefix of a trace if another path of execution with the same start address root is chosen.
Figure 6-24 show the integer fetch IPC results for a 4 Kbyte set-associative trace cache corre-

sponding to a 64-entry direct mapped trace cache:

Fetch IPC asa Function of Associativity

12

10

HDM

@ 2-way
O4-way
O8-way

Fetch IPC
(2]

go
m88ksim
gcc
press
ijpeg

perl
vortex

W com,

enchmark

Figure 6-24: Integer Fetch IPC from Increased Cache Associativity

From Figure 6-24, we see a slight improvement in the fetch IPC provided by associativity, with
diminishing returns after 2-way associativity. Because of the modest gains in fetch improvement,
we can conclude that the majority of the misses within the trace cache are capacity misses rather

than conflict misses. This makes desigh decisions easy because increasing the associativity results

48

in increased access time and replacement logic complexity and is not economical beyond a certain
size. However, providing a small degree of associativity such as 2-way is justifiable for improving
performance. It must be noted that these results are based on small trace cache configurations. It

remains to be seen what the effects of associativity are for larger sized trace caches.

We can see how the associativity improves trace cache performance from decreasing address colli-
sions by measuring the percentage of trace cache misses that arise from starting tag mismatches.

For a 2-way set associative trace cache, the trace cache miss breakdown is as follows:

Trace Cache Miss Breakdown for 2-way Set Associative Cache

100%
90% +
80% T
70%

60% 1 OBr. Mismatch

50% HTag Mismatch

40% +

30% T+

20% +

10% +
0% -

Component Per centage

go

m88ksim
gcc
compress
ijpeg

perl
vortex

vy)
3
o)
>
3
2
=~

Figure 6-25: Trace Cache Miss Cause Breakdown for a 2-way Set
Associative Trace Cache

From Figure 6-25, we see that by providing associativity over a direct-mapped cache, there is a
significant decrease in the trace cache misses from a tag mismatch. This reduction indicates that
associativity is very effective in reducing the number of misses due to strict address collisions as

well as replaced traces with the same start address.

6.9 Effectsof Trace Cache Size

Thus far, al the results have been presented for a small 64-entry trace cache. For such a small
number of entries, not many useful traces can be stored in the trace cache. Also, there is a much
greater probability of address collisions, resulting in possibly useful traces being displaced from

the cache. Trace cache performance can be improved dramatically by increasing the trace cache

49

size. This section attempts to explore how trace cache performance scales with increased trace

cachesize.

For these simulations, the best fill mechanism that maximizes performance is used (storing com-
plete basic blocks, allowing traces in fills, specifying the end branch direction, and partial hits).
The trace cache sizeis doubled from between 64 entries to 4096 entries. The results for the integer

benchmarks are shown in Figure 6-26:

Integer Fetch | PC asa Function of Trace Cache Size

——go

—— m88ksim
gce
compress

—K—i

—&—ijpeg

—+—perl

—=—ortex

Fetch IPC

6.5 += t + + + + + + t
0 500 1000 1500 2000 2500 3000 3500 4000

Trace Cache Entries

Figure 6-26: Integer Fetch |PC asa Function of Trace Cache Size

and for the floating point benchmarks:

Floating-Point Fetch IPC asa Function of Trace Cache Size

—&— tomcatv
—l—swim
su2cor
hydro2d
—¥— mgrid
—@—applu
—+—turb3d
apsi
fppp

Fetch IPC

0 500 1000 1500 2000 2500 3000 3500 4000
Trace Cache Entries

Figure6-27: FP Fetch IPC asa Function of Trace Cache Size

50

From the graphs, we see that increasing the number of trace cache entries has a great impact on the
fetch IPC performance. We see that in general, fetch performance increases significantly as the
trace cache is doubled up to 512 entries. However, beyond 1024 entries, corresponding to a 64K
trace cache, fetch IPC improvement drops dramatically. Although the fetch IPC does not com-
pletey leve off as the trace cache size after 1024 entries, this improvement does not justify the
associated costs of doubling the storage space. The fact that fetch IPC improves even for very
large trace caches indicates that collisions within the trace cache is always a factor, unless the
complete program can be stored in the trace cache. Looking at the trace cache miss rates, we can

see that increasing the number of entries has a dramatic effect on trace cache efficiency as well:

Integer Miss Rate asa Function of Trace Cache Size
50%
——go
—l— m88ksim
40%
o\o gcc
Q compress
=)0, o
s 30% R —K—i
iz —&—ijpeg
s 20% —t+—perl
10% +
- 1
0% : : : : : : : :'
0 500 1000 1500 2000 2500 3000 3500 4000
Trace Cache Entries

Figure 6-28: Integer Miss Rate asa Function of Trace Cache Size

Floating-Point Miss Rate as a Function of Trace Cache Size

60% - —&—tomcatv
\ —l— swim
04 4
50% su2cor
X
S 40% | hydr.ozd
= —¥— mgrid
% 30% | —e—applu
= —+—turb3d
= 20% 4 apsi
fppp
10% +

0%

0 500 1000 1500 2000 2500 3000 3500 4000
Trace Cache Entries

Figure 6-29: FP MissRate asa Function of Trace Cache Size

51

The miss rates drop sharply as the cache size is increased from 64 entries, indicating that at that
size, there are a great deal of collisions with the trace cache. From the figures, it appears that the
trace cache miss rates level off after 1024-entries. For a 1024-entry trace cache, compress, li and
ijpeg reach a remarkably low miss rate of around 4%. The integer benchmark gcc improves the
most, dropping from 45% to a mere 6%. In general, the trace cache miss rates drop to around 10%
for integer benchmarks, and 13% for floating-point benchmarks. Again, although these miss rates

are much lower than for the original 64-entry trace cache, they are still not comparable to the miss

rates that can be found for standard instruction caches.

6.10 Replacement policy

Another basic specification of a cache is the replacement strategy when deciding what eements of
the cache are to be replaced. In the associativity section, the trace cache replacement policy was
implemented as a random selection from the trace cache entries. There are other alternatives that

could possibly improve the trace cache performance. The most common policies include Least
Recently Used (LRU) and simple Round Robin replacement.
A comparison of the different replacement policies on a 1024-entry, 2-way set associative trace

cache are shown in Figure 6-30:

Fetch IPC from Different Replacement Policies

16
14
12

10 A H |ERandom
|| |[HLRU
|| |@Round Robin

Fetch IPC

o N A O

go
m88ksim
gcc
compress
Ipeg
perl
vortex
tomcatv
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fppp f

Benchmark

Figure 6-30: Fetch IPC from Different Replacement Policies

52

In general, the LRU replacement algorithm performs the best, followed by random replacement.
However, there is a negligible difference in performance between the three replacement strategies.
Thisis probably due to the large size of the trace cache that the replacement strategy was tested on.
The results seem to indicate that it makes little difference what replacement strategy is chosen for
the trace cache. Whatever is easiest or least expensive to implement should be the chosen algo-

rithm.

6.11 Effects of Real Branch Prediction

All of the results presented above have assumed the presence of a perfect branch prediction mecha-
nism in order to isolate the performance of the trace cache. As such, the results represent the
maximum achievable performance by the trace cache. Since the performance of the branch pre-
dictor has a direct impact the trace cache performance, this section provides trace cache statistics
using area branch predictor.

For the branch prediction simulations, the correlated multiple branch predictor discussed in section

3.2isused. The simulations assume a 16 Kbyte PHT with a 16-bit global history register. Figure
6-31 shows the results of using real branch predicton:

Comparing Fetch IPC from Perfect and Real Prediction

16
14 H

12 H

10 H
M Perfect
OReal

Fetch IPC

o N A O ©

go
m88ksim
gcc
compress
ijpeg
perl
vortex
tomcatv
swim
su2cor
hydro2d
mgrid
applu
turb3d
apsi
fppp

Benchmark

Figure 6-31: Fetch IPC from Using Real Branch Predictor

53

The fetch IPC results from using real branch prediction are much smaller than the perfect branch
prediction values. The cause of the drop in fetch IPC is the branch mispredictions from the real
branch predictor. These mispredictions necessitate that the corresponding mispredicted traces be
aborted, which causes instructions to be flushed from the pipeline. The disparity between the per-
fect and real branch prediction IPC values indicates that the potential of the trace cache to increase
fetch IPC is highly dependent on an accuracy of the branch predictor. From the Figure 6-31, we
see that the integer benchmarks suffer much more from using areal branch predictor. This can be
understood from Figure 6-32, which shows the branch misprediction rates for the different bench-

marks:

Branch Mispredict Rates

18%
16% -
14% A
12% A
10% -
8% 1
6% A
4% A
2% 1
0% -

Mispredict Rate %

o o v = o = x 5 © ©T - © % o
s E g 8 2 & & & E g &« = 5 ® & =
. o)) [o o = o = Q o o 8 =2 © o
= o =3 = —
© =N L £ o S5 o € © =1
® £ S - =
[S 9 =
(5]
Benchmark

Figure 6-32: Branch Misprediction Rates

As we can see, the branch mispredict rates are much higher for the integer benchmarks than for the
floating-point benchmarks, with an average of 9.5% and 4.3% respectively. This makes sense,
because the floating-point benchmarks generally have highly predictable loops and exhibit fewer
complicated branch structures.

These misprediction rates seem respectively low, but represent only single branch mispredictions.
Given a prediction accuracy of p (where 0 < p < 1) and a trace that contains three branches, the
chances that the trace will be predicted correctly drops to p°. For example, given a single branch

prediction accuracy of 90%, the chances that a trace contains three branches will be predicted cor-

rectly is only 73%. This example clearly illustrates the absolute need for high branch prediction

accuracy in order to make trace caches effective.

55

Chapter 7

Conclusions

There has been a trend toward increased superscalarity and aggressive speculation techniques to
extract instruction level parallelism in modern microprocessors. As such, much more aggressive
instruction fetch mechanisms are needed to be able to fetch multiple basic blocks in a given cycle.
One such fetch mechanism that shows a great deal of promise is the trace cache, originally pro-
posed by Rotenburg, €. al. In this thesis, a number of critical design issues regarding the trace

cache fetch mechanism were explored.

Theresults indicate that the fill mechanism for the trace cache can significantly affect overall trace
cache performance. One important trace cache optimization involves storing complete basic blocks
for a trace instead of being able to truncate a trace arbitrarily. By storing only complete basic
blocks, redundancy within the trace cache is significantly reduced, resulting in an average 6.4%
improvement in the fetch IPC and a 17.2% decrease in the trace cache miss rate for integer bench-

marks.

Another important conclusion, perhaps the most significant, is the performance benefits of sup-
porting partial hits within traces. By relaxing the trace cache hit requirement, the trace cache can
be made to act effectively as an instruction cache in the worst case, with the potential of providing
more basic blocks depending on the branch predictions. This decreases the trace cache miss rate
by 29.8% and 18.3% for integer and floating-point benchmarks respectively. These trace cache
miss rate reductions result in an average integer fetch IPC improvement of 9.4% for the smallest

trace cache configuration.

This research also demonstrates the dependency of the trace cache on the branch predictor accu-
racy. Since the primary motivation behind the trace cache is to be able to fetch multiple basic

blocks every cycle, an accurate multiple branch predictor is of paramount importance. The branch

56

predictor presented by Rotenburg, has an average prediction accuracy of 90.5% for integer bench-
marks and 95.7% for floating-point benchmarks. Although these prediction rates are very admira-
ble, thereis still a great deal of room for improvement. Multiple branch prediction performance is
becoming an important research area. The performance of the trace cache will undoubtedly in-

crease as techniques to enhance multiple branch predictor performance continue to be developed
[25]-[27].

Finally, the simulation results point out the important fact that size does matter. By increasing the
trace cache from the original 4Kbyte size to a 64Kbyte configuration, there is an average fetch IPC
improvement of 15.2% for integer benchmarks, and 5.8% improvement for floating-point bench-
marks. This 64Kbyte configuration is on par with the size of the primary instruction cache (128
Kbytes), indicating that a respectably-sized trace cache can considerably improve fetch perform-

ance.

One idea that was mentioned in the course of this thesis was the possibility of having the trace
cache completely replace the primary instruction cache as the main fetch mechanism. In this sce-
nario, the L2 cache would be used as a fetch mechanism for the trace cache. However, this idea
requires that the trace cache hit rate be very high in order to be effective. Based on the simulation
results of this research, such a fetch mechanism is not feasible; the miss rate of trace cacheisin-
herently higher than instruction cache (average of 10.2% and 13.3% for integer and floating point
benchmarks respectively).

With all of beneficial design attributes included, an optimized trace cache design performs an aver-
age of 34.9% better for integer benchmarks, and 11.0% better for floating-point benchmarks than
the originally proposed trace cache design. This corresponds to a 67.9% and 16.3% improvement
in fetch bandwidth over a traditional instruction cache, for integer and floating-point benchmarks
respectively. The results presented demonstrate that the concept of a trace cache is till very nas-
cent and open to innovation. More studies like the one done in this thesis are warranted to further

develop the viability of the trace cache as a high performance fetch mechanism.

57

Chapter 8
Futurework

The concept of the trace cache is gaining support as a feasible fetch mechanism to increase fetch
bandwidth. In fact, several groups have proposed new processor architectures based on the trace
cache [13], [14]. Although this research addresses a number of important facets of trace cache
design, thereis still a great deal of research that can be done, including exploration of the following

topics.

* Victim Caches: A wel-known concept for caches, whereby a replaced trace from a cache can
be stored in a small buffer instead of being thrown out completely. This is to reduce the possi-
bility that an address collision might cause a useful trace from being displaced permanently

from the trace cache.

* Judicious Trace Selection: The current trace cache implementation simply stores all com-
pleted traces from a trace miss fill. More judicious trace sdection algorithms might improve
performance. One example is creating a commit buffer that commits a completed trace fill to
the trace cache only if a hit to that trace occurs. Another idea is to only commit a trace if it is

longer than the existing trace that it isto replace.

» Trace Storage: There are many issues of how to store traces within the trace cache. The sim-
plest method is to simply allocate a specified trace length as the cache block size, truncating
traces that are too long and leaving empty space with traces that are too short. Alternatively,
there may be more ambitious indexing methods that can increase storage efficiency, at the cost

of complexity as aresult of non-uniform trace sizes.

e Path Associativity: In this research, only standard associativity is considered. With standard
associativity, if multiple traces within a set match the fetch address, the first trace is used. An

optimization isto compare al trace hits and provide the longest trace to the instruction latch.

58

* Fill Issues: Thefill mechanism assumed in this research simply serialized trace fills, only al-
lowing one fill at a time and ignoring new trace misses until a trace is completely written.
There are aternative fill mechanism designs, such as ddlaying servicing new misses until after
atracefill in progress is completed or allowing for concurrent fills. Also, in the trace cache
implementation used in this research, a trace fill automatically truncates when a return instruc-
tion is encountered. One can allow returns in a trace if the next fetch address is provided by

the return address stack (RAS) instead of the trace cache.

* Non-speculative Trace Fills: In the current implementation of the trace cache, trace fills are
speculative in the sense that they do not wait for branch outcomes before committing the trace
to the trace cache. An alternative is to do the trace fill from graduated instructions, so only

traces from the real path of execution are stored.

* Indexing: The only form of indexing addressed in this thesis was the gshare indexing algo-
rithm. There are other indexing schemes based on concatenation of fetch address and branch

prediction bits or global history that may be more effective.

» Branch Prediction: Aswe saw in section 6.11, branch prediction accuracy affects fetch per-
formance of the trace cache tremendously. There are other possible multiple branch prediction
schemes, many of which are based on existing branch predicting techniques that may be incor-

porated to improve prediction accuracy [16] - [27].

Many of the above ideas complicate the trace cache control logic and may increase access latency.
In addition, multiple design choices can interact in complicated and subtle ways. Detailed simula-
tion studies are needed to determine their relative performance benefits. In addition, more thorough
analysis of how increased instruction fetch bandwidth affects overall processor performance is

warranted.

59

[1]

(2]

(3]

[4]

(5]

6]

[7]

(8]

[9]

[10]

[11]

Bibliography

E. Rotenberg, S. Benrett, and J.E. Smith, “Trace Cache: A Low Latency Approach to High
Bandwidth Instruction Fetching” Proceedings of the 29" Annual ACM/IEEE International
Symposium on Microarchitecture, 1996

T-Y Yeh, D. Marr, and Y. Patt, “Increasing the Instruction Fetch Rate via Multiple Branch
Prediction and a Branch Address Cache,” Proceedings of the 7" ACM International Con-
ference on Supercomputing, July 1993

S. Dutta and M. Franklin, “Control Flow Prediction With Treelike Subgraphs for Su-
perscalar Processors,” Proceedings of the 28" Annual International Symposium on Mi-
croarchitecture, December 1995

T. Conte, K. Menezes, P. Mills, and B. Patd, “Optimization d Instruction Fetch Mecha-
nisms for High Isaue Rates,” Proceedings of the International Symposium on Computer Ar-
chitecture, June 1995

S. Mdvin, M. Shebanow, and Y. Patt, “Hardware Support for Large Atomic Units in Dy-
namically Scheduled Machines,” Proceedings of the 21% Annual ACM/IEEE International
Symposium on Microarchitecture, 1998

M. Franklin and M. Smotherman, “A Fill -Unit Approach to Multiple Instruction Issue,” Pro-
ceedings of the 27" Annual International Symposium on Microarchitecture, December
1994

M. Smotherman and M. Frankiin, “Improving CISC Instruction Decodng Performance Us-
ing a Fill Unit,” Proceedings of the 28" Annual ACM/IEEE International Symposium on
Microarchitecture, 1995

S. Wallace and N. Bagherzadeh, “Multiple Branch and Block Prediction,” Proceedings of
the 27" Annual ACM/IEEE Conference on High Performance Computer Architecture,
1997

Q. Jacobsen, E. Rotenburg, and J.E. Smith, “Path-based Next Trace Prediction,” Proceed-
ings of the 30" Annual Symposium on Microarchitecture, December 1997

K. Menezes, S. Sathaye, and T. Corte, “Path Prediction for High Issue-Rate Procesors,”
Proceedings of the 1997 International Conference on Parallel Architectures and Compila-
tion Techniques, November 1997.

M. Butler, T-Y Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, “Instruction Level

Paralldism is Greater Than Two,” Proceedings of the 18" International Symposium on
Computer Architecture, May 1991

6C

[12] E. Hao, P-Y Chang, M. Evers, and Y. Patt, “Increasing the Instruction Fetch Rate via Block-

Structured Instruction Set Architectures,” Proceedings of the 29" Annual International
Symposium on Microarchitecture, December 1996

[13] S. Vaapeyam and T. Mitra, “Improving Superscalar Instruction Dispatch and Issue by Ex-

ploiting Dynamic Code Sequences,” Proceedings of the 24" Annual International Sympo-
sium on Computer Architecture, June 1997

[14] E. Rotenburg, Q. Jacobsen, Y. Sazeides, and J.E. Smith, “Trace Procesors,” Proceedings of

the 30" Annual Symposium on Microarchitecture, December 1997

[15] T-Y YehandY. Patt, “A Comprehensive Instruction Fetch Mechanism for a Processor Sup-

porting Speculative Execution,” Proceedings of the 25" International Symposium on Mi-
croarchitecture, December 1992

[16] J. E. Smith, “A Study of Branch Prediction Strategies,” Proceedings of the 8" Annual In-

[17]

[18]

ternational Symposium on Computer Architecture, 1981

J. Leeand A.J. Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”
|IEEE Computer, January 1984

S. McFarling, “Combining Branch Predictors,” Technical Report TN-36, Digital Western
Research Laboratory, June 1993

[19] ST Pan, K. So, and J. T. Rahmeh, “Improving the Accuracy of Dynamic Branch Prediction

Using Branch Corrdation” Proceedings of the 5" International Conference on Architec-
tural Support for Programming Languages and Operating Systems, October 1992

[20] T-Y YehandY. Patt, “Alternative Implementations of Two-Level Adaptive Branch Predic-

[21]

tion,” Proceedings of the 19" International Symposium on Computer Architecture, May
1992

T-Y Yeh, * Two-levd Adaptive Branch Prediction and Instruction Fetch Mechanisms for
High Performance Superscalar Procesors,” Ph.D. Thesis, Department of Electrical Eng-
neering and Computer Science, University of Michigan, 1993

[22] T-Y YehandY. Patt, “A Comparison d Dynamic Branch Predictors that use Two Levels of

Branch History,” Proceedings of the 20" International Symposium on Computer Architec-
ture, May 1993

[23] E. Hao, P. Chang, Y. Patt, “The Effect of Speculatively Updating Branch History on Branch

[24]

Prediction Accuracy, Revisited,” Proceedings of the 27" Annual International Symposium
on Microarchitecture, December 1994

B. Caldear and D. Grunwald, “Fast & Accurate Instruction Fetch and Branch Prediction,”

Proceedings of the 21% Annual International Symposium on Computer Architecture, April
1994

61

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

C. Young, N. Gloy, and M. Smith, “A Comparative Analysis of Schemes for Correlated
Branch Prediction,” Proceedings from the International Symposium of Computer Archi-
tecture, June 1995

P-Y Chang, M. Evers, and Y. Patt, “Improving Branch Prediction Accuracy by Reducing
Pattern History Table Interference,” Proceedings of the 1996 ACM/IEEE Conference on
Parallel Architectures and Compilation Techniques, 1996

P-Y Chang, E. Hao, Y-Y Yeh, and Y. Patt, “Branch Clasdfication. A New Mechanism for
Improving Branch Predictor Performance,” Proceedings of the 27" Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, 1994

L. Gwennap, “MIPS R1000 Uses Decoupled Architecture,” Microprocessor Report, Oct.
1994

A. Agarwal, “UltraSPARC: A New Erain SPARC Performance,” Proceedings of the 1994
Microprocessor Forum, Oct. 1994

M. Slater, “AMD’s K5 Designed to Outrun Pentiunhficroprocessor Report, Oct. 1994

S. McFarling, “Program Optimization for Instruction Caches,” Proceedings of the Third In-
ternational Conference on Architectural Support for Programming Languages and Oper-
ating Systems, April 1989

W. W. Hwu and P. P. Chang, “Achieving High Instruction Cache Performance with an Op-
timizing Compiler,” Proceedings of the 16" Annual International Symposium of Computer
Architecture, May 1989

C. L. Mitchel and M. J. Flynn, “The Effects of Processor Architecture on Instruction Mem-
ory Traffic,” ACM Transactions for Computer Systems, August 1990

R. Gupta and C.-H. Chi, “Improving Instruction Cache Behavior by Reducing Cache Pollu-
tion," Proceedings of the 1990 Conference on Supercomputing, November 1990

D.B. Whalley, “Fast Instruction Cache Performance Evaluation Using Compil e-time Analy-
sis,” Proceedings of the ACM SGMETRICS 1992 Conference on Measurement and Mod-
eling of Computer Systems, June 1992

D. B. Whalley, “Techniques for Fast Instruction Cache Performance Evaluation,”" Software
Practice and Experience, January 1993

R. Colwdl, R. Nix, J. O'Donrdll, D. Papworth, and P. Rodman, “A VLIW Architecturefor a
Trace Scheduling Compiler,” Proceedings of the 2™ International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, October 1987

W. Hwu, et. a., “The Superblock: An Effective Technique for VLIW and Superscalar Com-
pilation,” The Journal of Supercomputing, January 1993

62

[39] D. Stiliadi and A. Varma, “ Sdective Victim Caching. A Methodto Improve the Performance
of Direct Mapped Caches,” Proceedings of the 27" Hawaii International Symposium on

System Science, January 1994

[40] S.J Walsh andJ. A. Board, “Pallution Control Caching,” Proceedings of the International
Conference on Computer Design: VLS in Computers and Processors, 1995

[41] J. Hennessyy and D. Patterson, Computer Architecture: A Quantitative Approach. Second
Edition. Morgan Kaufmann, 1996

63

