Lecture 16 — Data-flow Machines & Future Directions

Computer Desigh — Lecture 16 1

Overview of this Lecture

¢ Comparing the principles of data-flow and control-flow processors (or “von
Neumann” processors after the work of von Neumann, Eckert and
Mauchly)

¢ Problems with control-flow processors

¢ Data-flow implementation techniques:

< static data-flow
<& coloured dynamic data-flow
< tagged token dynamic data-flow

& Evaluation of data-flow

¢ Review and future directions

Comparing Control-flow & Data-flow 2

Example function: f(a,b,c) := a.b + a/c
control-flow data-flow

‘@ duplicated G +.23 P ¢

by source node

load r0,(sp+a) destination

load r1,(sp+b)

mul r0,r1,r2

matching_G %, -
or joining

load r1,(sp+c)
div ro,r1,r0
add r2,r0,r0

data path = arcS

return

returned value

Problems with Control-flow 3

typically optimised to execute sequential code from low latency memory:

® concurrency simulated via interrupts and a software scheduler which:

< has to throw the register file away and reload
< disrupts caching and pipelining

& jump/branch operations also disrupt the pipeline

¢ load operations easily cause the processor to stall (cannot execute
another thread whilst waiting).

notes:

¢ multiple pipelines and an increasing disparity between processor and
main memory speed only accentuate these problems

¢ perform badly under heavy load (esp. multithreaded environments)

¢ multiprocessor code is difficult to write

source: J. Dennis et al. at MIT

characteristics:

& at most one token on an arc

& backward signalling arcs for flow control

¢ tokens are just address, port and data triplets (a, p, d)

example instruction format:

[op-code | op1 [(op2) [dst1 + dc1 | (dst2 + dc2) [sig1 [(sig2) |

where () indicates optional parameters
op-code is the instruction identifier
op1 and op2 are the space for operands to wait (op2 missing for monadic
operations)
dst1 and dst2 are the destinations (dst2 being optional)
dc1 and dc2 are destination clear flags (initially clear)
sig1 and sig2 are the signal destinations (handshaking arcs)

69

Example Static Data-flow Program 5

address instruction
(e.g.) |op-code operands dests. dests. clear sigs.
0x30 mul o o , 0x314,nil, 0,0, (a)t,(b)¢
0x31 add o o , 0x33¢nil, o 0, 0x30¢,0x32¢
0x32 div o .0 , Ox31r,nil, o 0, (a)r,(c)t
0x33 ret o ,0 , undefundef, o 0, 0x31¢,(dest)¢
notes:

& instruction ordering in the memory is unimportant
& 0 =space for operandto be stored

® O =space for destination clear to be stored (initially clear)

¢ (and r indicate left or right port

¢ (a),(b) and (c) are difficult to determine — dependent on calling code
¢ functions are difficult to implement because:

¢ mutual exclusion required on writing to function input arcs
¢ backward signal arcs have to be determined

solution: code copying (horrible!)

Implementation 2 — Coloured Data-flow 6

example machine: Manchester data-flow prototype
characteristics:

¢ many tokens on an arc and no backward signal arcs for flow control

¢ tokens have a unique identifier, a colour, which identifies related data
items

¢ matching tokens for dyadic operations by matching colours
thus, function calls by each caller using a unique colour
instruction format: similar to static data-flow but no backward signals and

operand storage is more complex.
problems:

¢ matching colours is expensive

¢ implemented using hashing with associated overflow
< difficult to pipeline

¢ garbage collecting unmatched tokens is expensive

¢ uncontrolled fan-out can cause a token explosion problem

Implementation 3 — Tagged-token Data-flow 7

example machines: Monsoon machine (MIT) and EM4
(Japan)

characteristics:
¢ dynamic data-flow, so many tokens per arc

& separates the token storage from the program into activation frames
(similar to stack frames for a concurrent control-flow program)

¢ function calls generate a new activation frame for code to work in
® tokens have an associated activation frame instead of a colour

& activation frames are stored in a linear memory with an empty/full flag for
every datum, (type, value, port, presence)

