
C and C++
5. Overloading — Namespaces — Classes

Alastair R. Beresford

University of Cambridge

Lent Term 2007

1 / 20

C++

To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

I is a better C

I supports data abstraction

I supports object-oriented programming

I supports generic programming.”

2 / 20

C++ fundamental types

I C++ has all the fundamental types C has
I character literals (e.g. ’a’) are now of type char

I In addition, C++ defines a new fundamental type, bool

I A bool has two values: true and false

I When cast to an integer, true→1 and false→0

I When casting from an integer, non-zero values become true and
false otherwise

3 / 20

C++ enumeration

I Unlike C, C++ enumerations define a new type; for example enum

flag {is keyword=1, is static=2, is extern=4,...}
I When defining storage for an instance of an enumeration, you use its

name; for example: flag f = is keyword

I Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right

I The maximum valid value of an enumeration is the enumeration’s
largest value rounded up to the nearest larger binary power minus one

I The minimum valid value of an enumeration with no negative values
is zero

I The minimum valid value of an enumeration with negative values is
the nearest least negative binary power

4 / 20



References

I C++ supports references, which provide an alternative name for a
variable

I Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

I A reference is declared with the & operator; for example:
int i[] = {1,2}; int &refi = i[0];

I A reference must be initialised when it is defined

I A variable referred to by a reference cannot be changed after it is
initialised; for example:
refi++; //increments value referenced

5 / 20

References in function arguments

I When used as a function parameter, a referenced value is not copied;
for example:
void inc(int& i) { i++; } //bad style?

I Declare a reference as const when no modification takes place

I It can be noticeably more efficient to pass a large struct by reference

I Implicit type conversion into a temporary takes place for a const

reference but results in an error otherwise; for example:
float fun1(float&);
float fun2(const float&);
void test() {

double v=3.141592654;
fun1(v); //Wrong
fun2(v);

}

6 / 20

Overloaded functions

I Functions doing different things should have different names

I It is possible (and sometimes sensible!) to define two functions with
the same name

I Functions sharing a name must differ in argument types

I Type conversion is used to find the “best” match

I A best match may not always be possible:

void f(double);
void f(long);
void test() {

f(1L); //f(long)
f(1.0); //f(double)
f(1); //Wrong: f(long(1)) or f(double(1)) ?

7 / 20

Scoping and overloading

I Functions in different scopes are not overloaded; for example:

void f(int);

void example() {
void f(double);
f(1); //calls f(double);

}

8 / 20



Default function arguments

I A function can have default arguments; for example:
double log(double v, double base=10.0);

I A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

I A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

I Be careful of the interaction between * and =; for example:
void f(char*=0); //Wrong ’*=’ is assignment

9 / 20

Namespaces

Related data can be grouped together in a namespace:

namespace Stack { //interface in header

void push(char);

char pop();

}

void f() { //usage

...

Stack::push(’c’);

...

}

namespace Stack { //implementation

const int max size = 100;

char s[max size];

int top = 0;

void push(char c) { ... }
char pop() { ... }
}

10 / 20

Using namespaces

I A namespace is a scope and expresses logical program structure

I It provides a way of collecting together related pieces of code

I A namespace without a name limits the scope of variables to the local
execution unit

I The same namespace can be declared in several source files

I The global function main() cannot be inside a namespace
I The use of a variable or function name from a different namespace

must be qualified with the appropriate namespace(s)
I The keyword using allows this qualification to be stated once, thereby

shortening names
I Can also be used to generate a hybrid namespace
I typedef can be used: typedef Some::Thing thing;

I A namespace can be defined more than once
I Allows, for example, internal and external library definitions

11 / 20

Example

namespace Module1 {int x;}

namespace Module2 {
inline int sqr(const int& i) {return i*i;}
inline int halve(const int& i) {return i/2;}

}

using namespace Module1; //"import" everything

int main() {
using Module2::halve; //"import" the halve function
x = halve(x);
sqr(x); //Wrong

}

12 / 20



Linking C and C++ code

I The directive extern "C" specifies that the following declaration or
definition should be linked as C, not C++ code:
extern "C" int f();

I Multiple declarations and definitions can be grouped in curly brackets:

extern "C" {
int globalvar; //definition
int f();
void g(int);

}

13 / 20

Linking C and C++ code

I Care must be taken with pointers to functions and linkage:

extern "C" void qsort(void* p, \
size t nmemb, size t size, \
int (*compar)(const void*, const void*));

int compare(const void*,const void*);

char s[] = "some chars";
qsort(s,9,1,compare); //Wrong

14 / 20

User-defined types

I C++ provides a means of defining classes and instantiating objects

I Classes contain both data storage and functions which operate on
storage

I Classes have access control:
private, protected and public

I Classes are created with class or struct keywords
I struct members default to public access; class to private

I A member function with the same name as a class is called a
constructor

I A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor

I A constructor can be overloaded to provide multiple instantiation
methods

I Can create static (i.e. per class) member variables

15 / 20

Example

class Complex {
double re,im;

public:
Complex(double r=0.0L, double i=0.0L);

};

Complex::Complex(double r,double i) {
re=r,im=i;

}

int main(void) {
Complex c(2.0), d(), e(1,5.0L);
return 0;

}

16 / 20



Constructors and destructors

I A default constructor is a function with no arguments (or only default
arguments)

I If no constructor is specified, the compiler will generate one

I The programmer can specify one or more constructors

I Only one constructor is called when an object is created

I There can only be one destructor

I This is called when an object goes out of scope and is deallocated;
this even occurs during exception handling (more later)

17 / 20

Copy constructor

I A new class instance can defined by assignment; for example;
Complex c(1,2);

Complex d = c;

I In this case, the new class is initialised with copies of all the existing
class’ non-static member variables; no constructor is called

I This behaviour may not always be desirable (e.g. consider a class with
a pointer as a member variable)

I In which case, define an alternative copy constructor:
Complex::Complex(const Complex&) { ...}

I If a copy constructor is not appropriate, make the copy constructor a
private member function

18 / 20

Assignment operator

I By default a class is copied on assignment by over-writing all
non-static member variables; for example:
Complex c(), d(1.0,2.3);
c = d; //assignment

I This behaviour may also not be desirable

I The assignment operator (operator=) can be defined explicitly:
Complex& Complex::operator=(const Complex& c) {
...
}

19 / 20

Constant member functions

I Member functions can be declared const

I Prevents object members being modified by the function:
double Complex::real() const {

return re;
}

20 / 20


