C and C++

5. Overloading — Namespaces — Classes

Alastair R. Beresford

University of Cambridge

Lent Term 2007

C++ fundamental types

v

C++ has all the fundamental types C has
» character literals (e.g. *a’) are now of type char

In addition, C++ defines a new fundamental type, bool
A bool has two values: true and false

When cast to an integer, true—1 and false—0

vV v.v Y

When casting from an integer, non-zero values become true and
false otherwise

C++

To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

» is a better C
» supports data abstraction
» supports object-oriented programming

» supports generic programming.”

IN]
N
=1

C++ enumeration

» Unlike C, C++ enumerations define a new type; for example enum
flag {is_keyword=1, is_static=2, is_extern=4,...}

» When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword

» Implicit type conversion is not allowed:

f = 5; //wrong f = flag(5); //right

» The maximum valid value of an enumeration is the enumeration’s
largest value rounded up to the nearest larger binary power minus one

» The minimum valid value of an enumeration with no negative values
is zero

» The minimum valid value of an enumeration with negative values is
the nearest least negative binary power



References

» C++ supports references, which provide an alternative name for a
variable

> Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

» A reference is declared with the & operator; for example:
int i[]l = {1,2}; int &refi = i[0];
> A reference must be initialised when it is defined

» A variable referred to by a reference cannot be changed after it is
initialised; for example:
refi++; //increments value referenced

Overloaded functions

» Functions doing different things should have different names

> It is possible (and sometimes sensible!) to define two functions with
the same name

» Functions sharing a name must differ in argument types

» Type conversion is used to find the “best” match

» A best match may not always be possible:

void f(double);
void f(long);
void test() {
f(1L); //f(1long)
£(1.0); //f(double)
f(1); //Wrong: f(long(1l)) or f(double(1l)) 7

References in function arguments

» When used as a function parameter, a referenced value is not copied;
for example:
void inc(int& i) { i++; } //bad style?

» Declare a reference as const when no modification takes place

» It can be noticeably more efficient to pass a large struct by reference

» Implicit type conversion into a temporary takes place for a const
reference but results in an error otherwise; for example:
float funl(float&);
float fun2(const float&);
void test() {
double v=3.141592654;
funl(v); //Wrong
fun2(v);

}

Scoping and overloading

» Functions in different scopes are not overloaded; for example:
void f(int);

void example() {
void f(double);
£(1); //calls f(double);

}



Default function arguments

» A function can have default arguments; for example:
double log(double v, double base=10.0);

» A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

» A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

» Be careful of the interaction between * and =; for example:
void f(char*=0); //Wrong ’*=’ is assignment

Using namespaces

A namespace is a scope and expresses logical program structure

The use of a variable or function name from a different namespace

A namespace without a name limits the scope of variables to the local

» The keyword using allows this qualification to be stated once, thereby

>
» It provides a way of collecting together related pieces of code
>
execution unit
» The same namespace can be declared in several source files
» The global function main() cannot be inside a namespace
>
must be qualified with the appropriate namespace(s)
shortening names
» Can also be used to generate a hybrid namespace
» typedef can be used: typedef Some::Thing thing;
» A namespace can be defined more than once

> Allows, for example, internal and external library definitions

11/20

Namespaces

Related data can be grouped together in a namespace:

namespace Stack { //interface in header
void push(char);
char pop();

}

void £() { //usage

Stack::push(’c’);

namespace Stack { //implementation
const int max_size = 100;
char s[max_size];

int top = 0;

void push(char ¢) { ... }
char pop(O) { ... }
}

Example

namespace Modulel {int x;}

namespace Module2 {

inline int sqr(const int& i) {return i*i;}
inline int halve(const int& i) {return i/2;}

}

using namespace Modulel; //"import" everything

int main() {

10/20

using Module2::halve; //"import" the halve function

x = halve(x);
sqr(x) ; //VWrong

}



Linking C and C++ code

> The directive extern "C" specifies that the following declaration or
definition should be linked as C, not C++ code:

extern "C" int f();

» Multiple declarations and definitions can be grouped in curly brackets:

extern "C" {
int globalvar; //definition
int £0);
void g(int);

}

13/20

User-defined types

» C+-+ provides a means of defining classes and instantiating objects

» Classes contain both data storage and functions which operate on
storage

» Classes have access control:
private, protected and public

» Classes are created with class or struct keywords

» struct members default to public access; class to private

» A member function with the same name as a class is called a

constructor

» A member function with the same name as the class, prefixed with a
tilde (), is called a destructor

» A constructor can be overloaded to provide multiple instantiation
methods

» Can create static (i.e. per class) member variables

15/20

Linking C and C++ code

» Care must be taken with pointers to functions and linkage:

extern "C" void gsort(void* p, \
size_t nmemb, size t size, \
int (xcompar) (const void*, const voidx));

int compare(const void*,const voidx);

char s[] = "some chars";
gsort(s,9,1,compare); //Wrong

14 /20

Example

class Complex {
double re,im;
public:
Complex(double r=0.0L, double i=0.0L);

s

Complex: :Complex(double r,double i) {
re=r,im=i;

}

int main(void) {
Complex c(2.0), d(), e(1,5.0L);
return O;

}

16/20



Constructors and destructors

v

vV v.v. v Y

A default constructor is a function with no arguments (or only default
arguments)

If no constructor is specified, the compiler will generate one
The programmer can specify one or more constructors
Only one constructor is called when an object is created
There can only be one destructor

This is called when an object goes out of scope and is deallocated,;
this even occurs during exception handling (more later)

17 /20

Copy constructor

» A new class instance can defined by assignment; for example;

Complex c(1,2);

Complex d = c;

In this case, the new class is initialised with copies of all the existing
class’ non-static member variables; no constructor is called

This behaviour may not always be desirable (e.g. consider a class with
a pointer as a member variable)
> In which case, define an alternative copy constructor:
Complex: :Complex(const Complex&) { ...}
If a copy constructor is not appropriate, make the copy constructor a
private member function

Assignment operator Constant member functions

» By default a class is copied on assignment by over-writing all
non-static member variables; for example:
Complex c(), d(1.0,2.3);
c = d; //assignment

» Member functions can be declared const

» Prevents object members being modified by the function:
double Complex::real() comnst {

return re;
» The assignment operator (operator=) can be defined explicitly: }

Complex& Complex::operator=(const Complex& c) {

» This behaviour may also not be desirable

19/20 20/20



