C and C++
4. Misc. — Libary Features — Gotchas — Hints 'n’ Tips

Alastair R. Beresford

University of Cambridge

Lent Term 2007

Example

int main(void) {
int i = 42;
int j = 28;

const int *pc = &i; //Also:
*pc = 41; //Wrong
pc = &j;

int *const cp =
*cp = 41;
cp = &j; //Wrong

I
&
.

const int *const cpc = &i;

xcpc = 41; //Wrong
cpe = &3; //Wrong
return O;

"int const *pc"

Uses of const and volatile

v

Any declaration can be prefixed with const or volatile

v

A const variable can only be assigned a value when it is defined

v

The const declaration can also be used for parameters in a function
definition

v

The volatile keyword can be used to state that a variable may be
changed by hardware, the kernel, another thread etc.
» For example, the volatile keyword may prevent unsafe compiler
optimisations for memory-mapped input/output

v

The use of pointers and the const keyword is quite subtle:
const int *p is a pointer to a const int

int const *p is also a pointer to a const int

int *const p is a const pointer to an int

const int *const p is a const pointer to a const int

vV Yy VvVvyy

Typedefs

» The typedef operator, creates new data type names;
for example, typedef unsigned int Radius;

» Once a new data type has been created, it can be used in place of the

usual type name in declarations and casts;
for example, Radius r=5; ...; r=(Radius)rshort;
> A typedef declaration does not create a new type
> |t just creates a synonym for an existing type

» A typedef is particularly useful with structures and unions:

typedef struct 1llist *LLptr;
typedef struct 1llist {

int val;

LLptr next;

} LinkList;

22

In-line functions

v

v

v

v

v

A function in C can be declared inline; for example:
inline fact(unsigned int n) {
return n ? nxfact(n-1) : 1;

¥
The compiler will then try to “in-line” the function
> A clever compiler might generate 120 for fact(5)
A compiler might not always be able to “in-line” a function
An inline function must be defined in the same execution unit as it
is used

The inline operator does not change function semantics

> the in-line function itself still has a unique address
» static variables of an in-line function still have a unique address

Library support: 1/0

I/O is not in C itself; support is available in stdio.h:

>

>

>

int printf(const char *format, ...);
int sprintf(char *str, const char *format, ...);
int scanf(const char *format, ...);

» FILE xfopen(const char *path, const char *mode);

» int fclose(FILE *fp);

» size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

> size t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

» int fprintf(FILE *stream, const char *format, ...);

» int fscanf (FILE *stream, const char *format, ...);

That's it!

» We have now explored most of the C language
» The language is quite subtle in places; in particular watch out for:

> operator precedence
» pointer assignment (particularly function pointers)
» implicit casts between ints of different sizes and chars

» There is also extensive standard library support, including:

shell and file I/O (stdio.h)

dynamic memory allocation (stdlib.h)
string manipulation (string.h)
character class tests (ctype.h)

(Read, for example, K&R Appendix B for a quick introduction)

vV VY VY vy VY VY

(Or type “man function” at a shell for details)

#include<stdio.h>
#define BUFSIZE 1024

int main(void) {

}

FILE x*fp;
char buffer[BUFSIZE];

if ((fp=fopen("somefile.txt","rb")) == 0) {
perror("fopen error:");
return 1;

}

while(!feof (fp)) {
int r = fread(buffer,sizeof (char) ,BUFSIZE,fp);
furite(buffer,sizeof (char),r,stdout);

}

fclose(fp);
return O;

22

Library support: dynamic memory allocation

v

Dynamic memory allocation is not available in C itself

v

Support is available in stdlib.h:
» void #*malloc(size_t size)
» void *calloc(size_t nobj, size_t size)
» void #*realloc(void *p, size_t size)
» void free(void *p)

v

The built-in sizeof (variable) (or sizeof (type)) operator is handy

when using malloc:

p = (char *) malloc(sizeof (char)*1000)

Any successfully allocated memory must be deallocated manually
> Note: free() needs the pointer to the allocated memory

v

v

Failure to deallocate will result in a memory leak

Gotchas: i++

#include <stdio.h>
int main(void) {
int i=2;
int j=i++ + ++1;

printf("%d %d\n",i,j); //What does this print?

return O;

11/22

Gotchas: operator precedence

#include<stdio.h>

struct test {int i;};
typedef struct test test_t;

int main(void) {

test_t a,b;

test_t *pl[] = {&a,&b};
pl0]->i=0;

pl11->i=0;

test_t *q = p[0];

printf ("%d\n",++q->1i); //What does this do?

return O;

Gotchas: local stack

#include <stdio.h>

char *unary(unsigned short s) {
char localls+1];
int i;
for (i=0;i<s;i++) locallil=’1’;
localls]="\0";
return local,;

}
int main(void) {
printf ("%s\n",unary(6)); //What does this print?

return O;

}

10/22

12/22

Gotchas: local stack (contd.)

#include <stdio.h>

char global[10];

char *unary(unsigned short s) {
char local[s+1];

char *p = s%2 7 global :

for (i=0;i<s;i++) pl[il=’17;

int i;
plsl="\0";
return p;

}

int main(void) {
printf ("%s\n",unary(6)); //What does this print?
return O;

}

Tricks: Duff's device

send(int *to, int *from, int

{
int n=(count+7)/8;
switch(count%8){
case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *fromt++;
case b: *to = *fromt++;
case 4: *to = *from++;
case 3: *to = *fromt++;
case 2: *to = *xfromt++;
case 1: *to = *from++;

} while(--n>0);

}

local;

13 /22

count)

15/22

Gotchas: careful with pointers

#include <stdio.h>

struct values { int a; int b; };

int

main(void) {

struct values test2 = {2,3};
struct values testl = {0,1};

int *pi = &(testl.a);

pi

+= 1; //Is this sensible?

printf ("%d\n",*pi);

pi

+= 2; //What could this point at?

printf ("%d\n",*pi);

return O;

}

Assessed exercise

vV v.v Y

To be completed by 12 noon on 27 April 2007
Results will be available by 11 May 2007
Second submission by 12 noon on Friday 25 May 2007

Download the starter pack from:
http://www.cl.cam.ac.uk/Teaching/current/CandC++/
This should contain six files:

server.c rfc0791.txt messagel
client.c rfc0793.txt message2

14 /22

16 /22

http://www.cl.cam.ac.uk/Teaching/current/CandC++/

Exercise aims

Demonstrate an ability to:

Understand (simple) networking code

Use control flow, functions, structures and pointers

Understand a specification

>
>
» Use libraries, including reading and writing files
>
>

Compile and test code

Task is split into three parts:

Hints: IP header

+
I
+
I
+
|
+
I
+

» Comprehension and debugging

» Preliminary analysis

» Completed code and testing

0

1

2

17 /22

3

012345678901 234567890123456789¢01
bttt bttt —t— bttt — bt —t—F— b —F— bt — b —F—F—F—F—F——F—+—+—+
|Version| IHL

—+—+—+-—
Time
—t—t—+-

+—t—t—+-
to Live
F—t—t—t—
+—t—t—+—

+—t—t—t—

+—t—t—t—

|Type of Service]

St E S S S B S T
Identification |Flags|
ottt bttt b=ttt

+

Protocol |
B Tt S B s Tk ot et
Source Address
—t—t—t—t—t—t—t—F—t—F—+—
Destination Address
b= ——
Options
—t =ttt =t — b=t ==t —

Total Length

F=t =t =ttt ettt =t
Fragment Offset

+—t—t—t—t—t—F—+—+—+—

Header Checksum

B e e e

+—t—t—t—t—t—t—t—t—+—
ettt b=t —t—t—t—

| Padding
s T e

19/22

|
-+
|
-+

I
-+
I
-+

-+

-+

Exercise submission

» Assessment is in the form of a ‘tick’
» Submission is via email to c-tick@cl.cam.ac.uk

» Your submission should include seven files, packed in to a ZIP file
called crsid.zip and attached to your submission email:

answers.txt clientl.c summary.c messagel.txt
serverl.c extract.c message2.]jpg

Hints: IP header (in C)
#include <stdint.h>

struct ip {
uint8_t hlenver;
uint8_t tos;
uintl6_t len;
uintl6_t id;
uintl6_t off;
uint8_t ttl;
uint8_t p;
uintl16_t sum;
uint32_t src;
uint32_t dst;

s

#define IP_HLEN(lenver) (lenver & 0xOf)
#define IP_VER(lenver) (lenver >> 4)

20 /22

c-tick@cl.cam.ac.uk

Hints: network byte order

» The IP network is big-endian; x86 is little-endian

» Reading multi-byte values requires conversion
» The BSD API specifies:
» uint16_t ntohs(uintl16_t netshort)

v

v

v

uint32_t ntohl(uint32_t netlong)
uint16_t htons(uint16_t hostshort)
uint32_t htonl(uint32_t hostlong)

Exercises

1. Use struct to define a data structure suitable for representing a
binary tree of integers. Write a function heapify(), which takes a
pointer to an integer array of values and a pointer to the head of an
(empty) tree and builds a binary heap of the integer array values.
(Hint: you'll need to use malloc())

2. What other C data structure can be used to represent a heap? Would
using this structure lead to a more efficient implementation of
heapify()?

3. Complete the assessed exercise using the knowledge gained in the
lectures so far. (The keen student might want to revise their work
using some C++ features after they have studied them.)

N
N
N

