Experimental Design

Samuel Kounev

“The fundamental principle of science, the
definition almost, is this: the sole test of
the validity of any idea is experiment.”

-- Richard P. Feynman
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Recall: One-Factor ANOVA

e Separates total variation observed in a set of
measurements into:

1. Variation within individual systems
Due to random measurement errors
2. Variation between systems
Due to real differences + random errors
e Is variation(2) statistically > variation(1)?
e One-factor experimental design




One-Factor ANOVA Summary

Variation Alternatives Error Total
Sumof squares SSA SSE SST
Degfreedom k-1 k(n-1) kn-1
Meansquare s =SSA/(k-1) s =SSE/[k(n-1)]
Computedr s/s

Tabulatedr Pt a1y k(n-1)

Generalized Design of Experiments

e Goals

o |solate effects of each input variable

o Determine effects of interactions

o Determine magnitude of experimental error
Obtain maximum information for given effort

e Basic idea
e Expand 1-factor ANOVA to m factors




Terminology

e Response variable
e Measured output value, e.g. total execution time
Factors

« Input variables that can be changed, e.g. cache size, clock
rate, bytes transmitted.

Levels

e Specific values of factors (inputs), continuous (e.g. ~bytes) or
discrete (e.g. type of system)

Replication

o Completely re-run experiment with same input levels
e Used to determine impact of measurement error
Interaction

« Effect of one input factor depends on level of another input
factor
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Two-Factor Experiments

e Two factors (inputs)
e A B

e Separate total variation in output values into:
o Effect due to A
o Effect due to B
o Effect due to interaction of A and B (AB)
o Experimental error

Example — User Response Time

B (Mbytes
e A =degree of (Mbytes)

multiprogramming A 32 64 128
e B = memory size

e AB = interaction of 1 0.25 1021015

memory size and 2 052 | 0.45 | 0.36
degree of

multiprogramming 3 |081]|066]|050

4 1.50 | 1.45 | 0.70
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Why not vary one factor at a time?

e E.g. fix Bto 64 MB and vary A. Then fix A to 3 and
vary B = this would reduce the number of
configurations to be considered from 12 to 6!

e Problem: Unable to determine if there is any
interaction between the memory size (factor B) and
the degree of multiprogramming (factor A).

e If A =4, the response time decreases nonlinearly
with B. When A < 4, however, the response time
appears to be more directly correlated to B.
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Two-Factor ANOVA

e Factor A — ainput levels
e Factor B — b input levels
e N measurements for each input combination
e abn total measurements
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Two Factors, n Replications

Vi is the k' measurement with A set to its i level and B set to its ji" level

/

Yiik

g J010e4

n replications

7
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Recall: One-Factor ANOVA

e Each individual
measurement was
composition of
e Overall mean
o Effect of alternative
e Measurement errors

Y, =y ta; +e

y =overallmean

a, =effectdueto A

€ =Mmeasuremererror
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Two-Factor ANOVA

Each individual
measurement is
composition of

« Overall mean Yik =Y. +a; + Bty +e
o Effects y =overallmean
e Interactions a, =effectdueto A

« Measurement errors
B; =effectdueto B

Vi = effectduetointeraction of A andB
&; = Mmeasuremererror
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Effects of Factors/Interactions

The effects of the individual factors and their interactions
are defined as follows:

%=Y."Y. Z;Oﬁi =0
ﬂj = )_/J—)_/ z:]:lﬂj =0
%= VoYY Ty, Z;yij =0 th):lyij =0
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Sum-of-Squares Terms

SST=3" 5" 5 (yu-v.)
sA=bnY" (7.-.)

sB=any’ (v,-7.)
ssAB=nY" Y’ (7,-v.-v,+ )

SSE = Zilz?ﬂziﬂ(yuk - yij.)2
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Sum-of-Squares

e As before, the sum-of-squares identity holds
SST = SSA + SSB + SSAB + SSE

e Degrees of freedom
o df(SSA)=a-1
o df(SSB)=b-1
o df(SSAB) = (a— 1)(b — 1)
o df(SSE) = ab(n — 1)
e df(SST)=abn-1

df(SST) = df(SSA) + df(SSB) + df(SSAB) + df(SSE)
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Computing The Sum-of-Squares Terms
a b n 2 S2 a b n
S Zi:lzj:lzk:lyijk _% S. = zi=lZi=1Zk=1yiik

2S¢ ”
SSA:b—;—% S. = Z?zlquyiik

DI a o
SB :—]arl] : —% S] = zi=1zk=1yiik

SSAB =

YLYLS LS XS, s
n bn a

n abn

SSE = SST - SGA-SSB - SSAB
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Two-Factor ANOVA - Summary

A B AB Error
Sumof squares SSA SB SSAB SSE
Degfreedom a-1 b-1 (a-1(b-12) ab(n-1)
Meansquare &£=S4/(a-1) & =SB/(b-1) s, =SSAB/[(a-1)(b-1)] s =SSE/[ab(n-1)]
Computed™ F,=¢/¢ F,=s/¢ F,=5/s
TabUIated: F[l—a;(a—l),ab(n—l)] F[l—a;(h—l).ah(n—l)] F[l—a;(a—l)(b—l).ab(n—l)]

If F,>F[1-a;a—-1ab(n-1)] theeffectof factor Aisstatisticdly significart.
If F,>F[1-a;b-1ab(n-1)] theeffectof factor Bisstatisticdly significart.

If F,>F[1-a;(a-1)(b-1),ab(n-1)] theeffectof interactian AB isstatisticdly significart.
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Need for Replications

e If n=1, i.e. only one measurement of each configuration
e Can then be shown that

e SSAB =SST - SSA - SSB
e SSE=SST-SSA-SSB-SSAB - SSE=0

e Thus, when n=1 — No information about measurement
errors

e Cannot separate effect due to interactions from
measurement noise

e Must replicate each experiment at least twice
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Example
e Output = user response B (Mbytes)
time (seconds)
e Want to separate A 32 64 128
effects due to
e A=degree of 1 0.25 | 0.21 | 0.15
multiprogramming
e B =memory size 2 0.52 | 0.45 | 0.36
e AB = interaction
e Error 3 0.81 | 0.66 | 0.50
e Need replications to
separate error 4 150 | 1.45| 0.70

22
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Example (cont.)

B (Mbytes)
A 32 64 128
1
2
3
4
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Example (cont.)

A B AB Error
Sumof squares 33714 05152 0.4317 0.0293
Degfreedom 3 2 6 12
Meansquare 11238 0.2576 0.0720 0.0024
Computed 4602 1055 295

Tabulated  Figesain =349 Figesoin =389 Fgseiz =300

e 77.6% (SSA/SST) of all variation in response time due to degree of
multiprogramming

e 11.8% (SSB/SST) due to memory size
e 9.9% (SSAB/SST) due to interaction of the two factors
e 0.7% due to measurement error

e 95% confident that all effects and interactions are statistically
significant
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Generalized m-Factor Experiments

mfactors= mmaineffects

‘oo3 N 3

m

m

two-factorinteractios

three-factorinteractios

=1 m-factorinteractios

2™ —1totaleffects

Effects for 3
factors:

A

B

Cc
AB
AC
BC
ABC
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Degrees of Freedom for
m-Factor Experiments

e df(SSA) = (a-1)

e df(SSB) = (b-1)

e df(SSC) = (c-1)

e df(SSAB) = (a-1)(b-1)
e df(SSAC) = (a-1)(c-1)
e df(SSE) = abc(n-1)

e df(SST) = abcn-1
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Procedure for Generalized
m-Factor Experiments

1. Calculate (2™-1) sum of squares terms
(SSx) and SSE

Determine degrees of freedom for each SSx
Calculate mean squares (variances)
Calculate F statistics

Find critical F values from table

If F(computed) > F(table), (1-a) confidence
that effect is statistically significant

o0k wN

28
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Problem With Full-Factorial Designs

e Full factorial design with replication

e Measure system response with all possible input
combinations

» Replicate each measurement n times to
determine effect of measurement error

e m factors, v levels, n replications
— n v™ experiments

e m = 5 input factors, v=4levels,n =3
e — 3(4°) = 3072 experiments!
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n2m Experiments
e Special case of generalized m-factor experiments

e Restrict each factor to two possible levels (values)
e High, low
e On, off

e Find factors that have largest impact

e Full factorial design with only those factors
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Finding Sum of Squares Terms

For simplicity, assume that there are only two factors A and B

Sum of n Factor A Factor B
measurements with
(A,B) = (High, Low)

Yas High High

Yab High

Yas High

yab

32
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n2™ Contrasts and Sum of Squares
Contrasts are defined as follows:

Wa=Yag + Yoo = Yas = Y

W =Yg = Yoo T Yas = Yao

Wag = Yag = Yao = Ya T Yao
And can be used to derive the sum of squares terms:

sa= " =Y goppsWe
n2" n2" n2"

SSE = SST - SS5A-SB - SSAB
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n2m Experiments - Summary

A B AB Error
Sumof squares SSA SSB SSAB SSE
Degfreedom 1 1 1 2"(n-1)

Meansquare s=SSA1 §=SB/1 s% =SSAB/1 s =SSE/[2"(n-1)]
Computedk F,=¢°/§ F =5/ F,=s5/s
Tabulated= F F F

[1-a;12™(n-1)] [1-a'1,2™(n-1)] [1-a'1,2™(n-1)]
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Contrasts for

n2™ with m = 2 factors

revisited
Measurements Contrast
Wu Wg Wap
yAB + + +
Y ab +
YaB +
yab +

Wa=Yaet Yoo = Yas = Yav
Ws = Yas = Yar T Y ~ Yao

Wag = Yo =~ Yo ~ Y T Y
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Contrasts for n2™ with m = 3 factors

Measure- Contrast
ments
Wa Wg We | Wag | Wac | Wae | Wasc
Yabe + + +
Y abc + + +
Yage + + +

Wac = Yane = Yane T Yase = Yanc = Yase T Yaoc =~ Yasc t Yasc

36
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n2™ with m = 3 factors

Wyc

SGAC =
2°n

df(each effect) = 1, since only two levels measured

SST =SSA + SSB + SSC + SSAB + SSAC + SSBC
+ SSABC + SSE

df(SSE) = (n-1)23

Then perform ANOVA as before

Easily generalizes to m > 3 factors
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Important Points

e Experimental design is used to
¢ |solate the effects of each input variable.
o Determine the effects of interactions.
o Determine the magnitude of the error
e Obtain maximum information for given effort

e Expanded 1-factor ANOVA to m factors

e Used n2™ design to reduce the number of
experiments needed

e But loses some information

38

19



Roadmap
o
e Goals / )

e Terminology

e Two-factor full factorial designs
o 2-factor ANOVA

e General m-factor full factorial designs
+ m-factor ANOVA

e n2™factorial designs

e Fractional factorial designs
o Plackett and Burman designs

e Case Studies

39

Still Too Many Experiments with  n2m!

Plackett and Burman (PB) designs (1946)
e Fractional multi-factorial designs

Bridges the gap between:
e Low-cost/low-detail approaches such as one-at-a-time
e High-cost/high-detail approaches such as ANOVA

Requires O(m) experiments for m factors
e Instead of O(2™) or O(v™M)

Base PB designs ignore interactions

PB designs with foldover
e Quantify the effect of two-factor interactions

40
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Trade-off Between Cost and Detall

Detail 1

Full-factorial
o ANOVA
« N2M ANOVA
. Plackett & Burman
R One-at-a-time
Cost

41

Plackett and Burman (PB) Designs

e PB designs exist only in sizes that are multiples of 4
e Requires X experiments for m parameters
e X =next multiple of 4 greater than m

e PB design matrix
e Xrows and X-1 columns
e Rows = configurations
e Columns = parameters’ values in each configuration
High/low = +1/-1
If (m < X-1) use dummy parameters
o First row initialized from P&B paper (see below)
Subsequent rows = circular right shift of preceding row
Last row = all (-1)

e Plackett, R. and Burman, J., “The design of optimum multifactorial
experiments”, Biometrika, 33, 4, 1946, 305-325.
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PB Design Matrix

Config Input Parameters (factors) Response

A B C D E F G

1 +1 +1 +1 -1 +1 -1 -1
2 -1 +1 +1 +1 -1 +1 -1
3 -1 -1 +1 +1 +1 -1 +1
4 +1 -1 -1 +1 +1 +1 -1
5 -1 +1 -1 -1 +1 +1 +1
6 +1 -1 +1 -1 -1 +1 +1
7 +1 +1 -1 +1 -1 -1 +1
8 -1 -1 -1 -1 -1 -1 -1
Effect
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Choice of High/Low Values

e High/Low values need to be chosen for each
parameter (factor)

e Selecting high and low values that span a range of
values that is too small may understimate the effect of
the parameter.

e Too large a range may overestimate the effect.

¢ |deally, the high and low values should be just outside
of the normal (or expected) range of values.

22



PB Design Matrix

Config Input Parameters (Factors) Response

o o o e e e B B

Effect

45

Computing Effects
Effect, = (+1%9) + (—-1x11) +(-1%x2) +...+(-1x4) =65

Config Input Parameters (Factors) Response
A B C D E F G
1 +1 | +1 | -1 | +1 | -1
2 +1 | +1 | +1 | -1 | +1
3 1] 41| 41| 41| 1
4 -1 SR 5 R I R I S
5 +1 | -1 | -1 | +1 | +1
6 o R 5 A S A A R o
7 +1 | -1 | +1| -1 | -1
8 -1 R A A e
Effect -

23



Computing Effects (cont.)

Config

Input Parameters (factors)

Respons

N WIN|(PF

Effect

C D E F
+1 -1 +1 -1
+1 +1 -1 +1
+1 +1 +1 -1
-1 +1 +1 +1
-1 -1 +1 +1
+1 -1 -1 +1
-1 +1 -1 -1
-1 -1 -1 -1

Computing Effects (cont.)

Config Input Parameters (Factors) Response
A B C D E F G
1 +1 | 41 | +1 | -1 | +1 | -1 | -1 9
2 1| 41 | 41 | +1 | -1 | 41 | -1 11
3 1 -1 | 41| +1 | 41 | -1 | +1 2
4 +1 | -1 | -1 | +1 | +1 | +1 | -1 1
5 1 +1 | -1 | -1 | 41 | +1 | +1 9
6 +1 | -1 | +1 | -1 | -1 | +1 | +1 74
7 +1 | +1 | -1 | +1 | -1 | -1 | +1 7
8 1]/ -1-1}-1]-1]-1)|-1 4

48
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Parameter Ranking

e Effects determine the relative impacts of parameters
on the variation observed in the output.

e Only magnitude of effect is important
e Sign is meaningless

e In example, most — least important parameters:
e [C,D,E] > F>G—>A—>B

e Parameter with highest rank is considered a
performance bottleneck, since a poor choice of its
value will impact performance significantly.

49

PB Design with Foldover

e Provides some additional information
¢ Quantifies effects of two-factor interactions

e Add X additional rows to matrix
¢ Signs of additional rows are opposite original rows

50
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PB Design Matrix with Foldover

A B C D E F G Exec. Time
= ‘
+1 +1 +1 -1 +1 -1 11
-1 +1 +1 +1 -1 +1 2
+1 -1 -1 +1 +1 +1 -1
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 4
T v
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
+1 -1 +1 +1 -1 -1 33
-1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 112
191 19 111 -13 79 55 239 s

PB Design with Foldover
e Requires 2X experiments

Effectg = (1% x9) + ((-1xD x1D) + ((-1x -1 x2) +...+ ((1x1) x112) =..

52




Design Space Exploration

e Common activity in simulation-based computer
architecture research and design

e Find optimal configuration

e Step 1: Use PB design to find the most significant
parameters (reduces # parameters from m—->n).

Cost = 2m simulations.

e Step 2: Reduced parameters can then be fully explored
using full factorial ANOVA.

Cost = 2" simulations.

53

Important Points

e Plackett and Burman design
* Requires only O(m) experiments
o Estimates effects of main factors
o Plus effects of 2-factor interactions when w/ foldover

e Logically minimal number of experiments

e Powerful technique for obtaining a big-picture
view of a lot of data

27
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Case Study #1

e Determine the most significant parameters in a
processor simulator.

e “A Statistically Rigorous Approach for Improving
Simulation Methodology” by Joshua J. Yi, David J. Lilja,
and Douglas M. Hawkins, International Symposium on
High-Performance Computer Architecture (HPCA),
February, 2003.

56
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Determine the Most Significant
Processor Parameters

e Problem
e SO many parameters in a processor simulator.
e How to choose parameter values?

» How to decide which parameters are most
important?

e Approach
e Use Plackett & Burman design.
e Choose reasonable upper/lower bounds.
o Rank parameters by impact on total execution time.

57

Simulation Environment

e Superscalar simulator

e sim-outorder 3.0 from the SimpleScalar tool suite

e Selected SPECcpu2000 Benchmarks

e Qzip, vpr, gcc, mesa, art, mcf, equake, parser, vortex,
bzip2, twolf

58
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Functional Unit Values

Parameter Low Value High Value
Int ALUs 1 4
Int ALU Latency 2 Cycles 1 Cycle
Int ALU Throughput 1
FP ALUs 1 4
FP ALU Latency 5 Cycles 1 Cycle
FP ALU Throughputs 1
Int Mult/Div Units 1 4
Int Mult Latency 15 Cycles 2 Cycles
Int Div Latency 80 Cycles 10 Cycles
Int Mult Throughput 1
Int Div Throughput Equal to Int Div Latency
FP Mult/Div Units 1 4
FP Mult Latency 5 Cycles 2 Cycles
FP Div Latency 35 Cycles 10 Cycles
FP Sqrt Latency 35 Cycles 15 Cycles
FP Mult Throughput Equal to FP Mult Latency
FP Div Throughput Equal to FP Div Latency

FP Sqgrt Throughput

Equal to FP Sqrt Latency

Memory System Values, Part |

Parameter Low Value High Value

L1 I-Cache Size 4 KB 128 KB

L1 I-Cache Assoc 1-Way 8-Way
L1 I-Cache Block Size 16 Bytes 64 Bytes

L1 I-Cache Repl Policy

Least Recently Used

L1 I-Cache Latency 4 Cycles 1 Cycle
L1 D-Cache Size 4 KB 128 KB

L1 D-Cache Assoc 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes

L1 D-Cache Repl Policy

Least Recently Used

L1 D-Cache Latency 4 Cycles 1 Cycle
L2 Cache Size 256 KB 8192 KB

L2 Cache Assoc 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes

60
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Memory System Values, Part I

Parameter Low Value | High Value
L2 Cache Repl Policy Least Recently Used
L2 Cache Latency 20 Cycles 5 Cycles
Mem Latency, First 200 Cycles 50 Cycles
|_MemLatency, Next | 002 Mem Latency, First |
Mem Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries
I-TLB Page Size 4 KB 4096 KB
I-TLB Assoc 2-Way Fully Assoc
I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries
D-TLB Page Size Same as I-TLB Page Size
D-TLB Assoc

2-Way Fully-Assoc

D-TLB Latency

Same as |-TLB Latency

61

Processor Core Values

Memory Ports

Parameter Low Value High Value
Fetch Queue Entries 4 32
Branch Predictor 2-Level Perfect
Branch MPred Penalty 10 Cycles 2 Cycles
RAS Entries 4 64
BTB Entries 16 512
BTB Assoc 2-Way Fully-Assoc
Spec Branch Update In Commit In Decode
Decode/lssue Width 4-Way
ROB Entries 8 64

62
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Determining the Most
Significant Parameters

1. Run simulations to find response
With input parameters at high/low, on/off values

Config Input Parameters (Factors) Response
A B C D E F G
2 -1 +1 | +1 | +1 | -1 | +1 | -1
3 -1 -1 +1 +1 +1 -1 +1
Effect
Determining the Most
Significant Parameters (2)
2. Calculate the effect of each parameter
® Across configurations
Input Parameter s (factors) Response
B C D E F G
+1 | +1 | -1 | +1 -1 -1 9
+1 +1 | +1 -1 +1 -1
1| 41 41| 41 -1 +1
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Determining the Most

Significant Parameters (3)

3. For each benchmark
Rank the parameters in descending order of effect
(1 = most important, ...)

Parameter | Benchmark 1 | Benchmark 2 | Benchmark 3
A 3 12 8
B 29 4 22
C 2 6 7
Determining the Most
Significant Parameters (4)
4. For each parameter
Average the ranks
Benchmark |Benchmark | Benchmark
Parameter 1 2 3 Average
A 3 12 8 7.67
B 29 4 22 18.3
C 2 6 7 5
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Most Significant Parameters

Number Parameter gcc | gzip | art | Average
1 ROB Entries 4 1 2 2.77
2 L2 Cache Latency 2 4 4 4.00
3 Branch Predictor Accuracy 5 2 27 7.69
4 Number of Integer ALUs 8 3 29 9.08
5 L1 D-Cache Latency 7 7 8 10.00
6 L1 I-Cache Size 1 6 12 10.23
7 L2 Cache Size 6 9 1 10.62
8 L1 I-Cache Block Size 3 16 | 10 11.77
9 Memory Latency, First 9 36 3 12.31
10 LSQ Entries 10 12 | 39 12.62
11 Speculative Branch Update 28 8 16 18.23

67

General Procedure

e Simulate configurations to find response

e Compute effects parameters

Determine upper/lower bounds for parameters

e Rank the parameters for each benchmark based on

effects

e Average the ranks across benchmarks

e Focus on top-ranked parameters for subsequent
analysis

68
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Summary - Case Study #1

e Started with 41 parameters (241 = 2.2 trillion
potential test cases!)

e Reduced to 88 Plackett & Burman test cases
(X=44, 2x44) plus 1024 ANOVA test cases (219)
for a total of 1112 test cases!

e Using PB design to first pare the design space
reduced the number of test cases by over nine
orders of magnitude!

69

Case Study #2

e Determine the “big picture” impact of a
system enhancement.

70
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Determining the Overall Effect of an
Enhancement

e Find most important parameters without
enhancement

e Using Plackett and Burman

e Find most important parameters
enhancement

e Again using Plackett and Burman

e Compare parameter ranks

71

Example: Instruction Precomputation

e Profile to find the most common operations
e 0+1, 1+1, etc.

e Insert the results of common operations in a table
when the program is loaded into memory

e Query the table when an instruction is issued

e Don't execute the instruction if it is already in the
table

e Reduces contention for function units

72
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The Effect of Instruction
Precomputation
Average Rank
Parameter Before | After | Difference
ROB Entries 2.77
L2 Cache Latency 4.00
Branch Predictor Accuracy 7.69
Number of Integer ALUs 9.08
L1 D-Cache Latency 10.00
L1 I-Cache Size 10.23
L2 Cache Size 10.62
L1 I-Cache Block Size 11.77
Memory Latency, First 12.31
LSQ Entries 12.62
The Effect of Instruction
Precomputation (2)
Average Rank
Parameter Before | After | Difference
ROB Entries 2.77 2.77
L2 Cache Latency 4.00 4.00
Branch Predictor Accuracy 7.69 7.92
Number of Integer ALUs 9.08 | 1054
L1 D-Cache Latency 10.00 9.62
L1 I-Cache Size 10.23 | 10.15
L2 Cache Size 10.62 | 10.54
L1 I-Cache Block Size 11.77 | 11.38
Memory Latency, First 12.31 | 1162
LSQ Entries 12.62 | 13.00
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The Effect of Instruction
Precomputation (3)

Average Rank

Parameter Before | After | Difference

ROB Entries 2.77 2.77 0.00
L2 Cache Latency 4.00 4.00 0.00
Branch Predictor Accuracy 7.69 7.92 -0.23

|_Number of integer ALUs | 9.08 [1054] 146 |
L1 D-Cache Latency 10.00 9.62 0.38
L1 I-Cache Size 10.23 | 10.15 0.08
L2 Cache Size 10.62 | 10.54 0.08
L1 I-Cache Block Size 11.77 | 11.38 0.39
Memory Latency, First 12.31 | 11.62 0.69
LSQ Entries 12.62 | 13.00 -0.38
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Case Study #3

e Benchmark program classification.

76
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Benchmark Classification

e By application type
e Scientific and engineering applications
e Transaction processing applications
e Multimedia applications

e By use of processor function units
o Floating-point code
¢ Integer code

e Memory intensive code

e Etc., etc.
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Another Point-of-View

e Classify by overall impact on processor

e Define:

e Two benchmark programs are similar if

They stress the same components of a system to
similar degrees

e How to measure this similarity?
o Use Plackett and Burman design to find ranks
e Then compare ranks

78

39



Similarity Metric

e Use rank of each parameter as elements of a vector
e For benchmark program X, let

o X = (Xgy Xgyeees Xpgy Xp)

e X, =rank of parameter 1

e X, =rank of parameter 2

e ...

e Use the Euclidean distance between points as
similarity metric:

D =[(% = Y1)?+ (% = ¥2)? oot (X = Yot)* + (X, = Vo)1
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Vector Defines a Pointin n-space

Param #3
& (X1, Xp, X3)

D Param #2

* (Y1r Y2s Ya3)

Param #1
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Most Significant Parameters

Number Parameter gce | gzip | art
1 ROB Entries 4 1 2
2 L2 Cache Latency 2 4 4
3 Branch Predictor Accuracy 5 2 27
4 Number of Integer ALUs 8 3 29
5 L1 D-Cache Latency 7 7 8
6 L1 I-Cache Size 1 6 12
7 L2 Cache Size 6 9 1
8 L1 I-Cache Block Size 3 16 10
9 Memory Latency, First 9 36 3
10 LSQ Entries 10 12 | 39
11 Speculative Branch Update 28 8 16
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Distance Computation

e Rank vectors
e gcc=(4,2,5,8,..)
e gzip=(1,4,2,3,..)
e art=(2,4,27,29,..)

e Euclidean distances

o D(gcc - gzip) = [(4-1)> + (2-4)* + (5-2)* + ... ]'
e D(gcc - art) = [(4-2)2 + (2-4)2 + (5-27)2 + ... |12
o D(gzip - art) = [(1-2)2 + (4-4)2 + (2-27)2 + ... ]M2
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Euclidean Distances for
Selected Benchmarks
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Dissimilarity

Dendogram of Distances
Showing (Dis-)Similarity
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Final Benchmark Groupings

Group Benchmarks
I Gzip, mesa
Il Vpr-Place, twolf
1] Vpr-Route, parser, bzip2

v Gcc, vortex
\% Art
Vi Mcf
Vi Equake
VI ammp
Summary

e Experimental Design (Design of Experiments)
¢ |solate effects of each input variable.
o Determine effects of interactions.
o Determine magnitude of experimental error.

e m-factor ANOVA (full factorial design)
e All effects, interactions, and errors

e N2™M designs
o All effects, interactions, and errors
e But for only 2 input values
high/low
on/off
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Summary (cont.)

Plackett and Burman (fractional factorial design)
O(m) experiments

Quantifies main effects and 2-factor interactions
For only 2 input values (high/low, on/off)

Applications — rank parameters, group
benchmarks, overall impact of an enhancement
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Further Reading

JPerformance Evaluation and Benchmarking” — Edited by Lizy
Kurian John and Lieven Eeckhout, (c) 2006 CRC Press

“The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling”
by Raj Jain, (c) 1991 Wiley

“Analyzing the Processor Bottlenecks in SPEC CPU 2000” by
Joshua J. Yi, Ajay Joshi, Resit Sendag, Lieven Eeckhout and David
J. Lilja, SPEC Benchmark Workshop 2006

“A Statistically Rigorous Approach for Improving Simulation
Methodology” by Joshua J. Yi, David J. Lilja, and Douglas M.
Hawkins, International Symposium on High-Performance Computer
Architecture (HPCA), February, 2003.

Plackett, R. and Burman, J., “The design of optimum multifactorial
experiments”, Biometrika, 33, 4, 1946, 305-325.
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