
Numerical Analysis II
M.R. O’Donohoe

General references:
S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition,
1981. McGraw-Hill.

L.F. Shampine, R.C. Allen, Jr & S. Pruess, Fundamentals of Numerical Computing, 1997. Wiley.

This course is concerned with the same problems as Numerical Analysis I, but the mathematical content is
greater. In the interests of simplicity and brevity, the use of complex variables is avoided unless necessary.
However, it should be noted that many real variable methods can be generalized to complex cases, although
these are not always mentioned here. Familiarity with the notes for Numerical Analysis I is assumed.

1. Elementary Approximation Theory

Approximation theory is a major field in its own right, but it is also central to numerical analysis. The
problems treated in this section are: (i) the approximation of a function of a real variable by a simpler
function, and (ii) the approximation of a set of data points by a function of a real variable.

1.1 Preliminaries

To obtain a numerical approximation to a function, we first require accurate function values. These may be
obtained in a variety of ways: Bessel’s function J0(x) is used here as an example.

0

1

J (x)0

10
x

* A differential equation. J0(x) is defined by

xy′′ + y′ + xy = 0; y(0) = 1, y′(0) = 0.

This requires numerical solution of the differential equation – see Section 5.

* A Taylor series. The series

J0(x) = 1 − x2

4
+
x4

64
− . . .+

(−1)k(1
2x)

2k

(k!)2
+ . . .

converges everywhere. However, the expansion is only useful near x = 0 and is particularly bad for
x � 0.

1

* An asymptotic series.

J0(x) ∼
√

2

πx

{

cos(x − π

4
).(1 − 9

128x2
+ . . .) + sin(x− π

4
).(

1

8x
− 75

1024x3
+ . . .)

}

is useful for x large†.

* Other expansions about a point, e.g. infinite products, continued fractions.

* An integral representation.

J0(x) =
1

π

∫ π

0

cos(x sin θ) dθ

is useful for small x but the integrand becomes highly oscillatory for large x.

* Chebyshev series – see Section 1.4.4.

1.1.1 Polynomial approximation

Consider the problem of approximating the value of some function f(x) over some finite interval [a, b].
Since the operations of addition, subtraction and multiplication are the simplest and fastest real arithmetic
operations available on a computer, it is sensible to consider a polynomial of degree n

pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n (1.1)

as a possible approximating function.

Theorem 1.1: Weierstrass’ Approximation Theorem (1885). Given any function f(x) that is
continuous over a finite interval x ∈ [a, b], and an arbitrary tolerance ε > 0, then there exists a finite n
and a polynomial Pn(x) such that

|f(x) − Pn(x)| ≤ ε.

Proof omitted.

In other words, any continuous function can be approximated over any finite interval to arbitrary accuracy
by a polynomial. However, this theorem does not imply that all polynomial approximation methods work,
nor does it tell us how to find the best set of polynomials for approximating a given function.

1.1.2 Taylor series

Taylor series are one way of obtaining polynomials of the form (1.1) and are well understood. Let

f(x) = c0 + c1x+ c2x
2 + . . .+ cnx

n + . . . (1.2)

be the Taylor series expansion of some function f(x) about x = 0, where cn = f (n)(0)/n!. It is necessary
that f(x) be analytic at x = 0, which implies that all the necessary derivatives exist for the coefficients {c n}
to be found. By the ratio test, the series (1.2) converges for |x| < r where

r = lim
n→∞

∣

∣

∣

cn
cn+1

∣

∣

∣.

However, the sequence of approximating functions 1, x, x2, . . . xn, . . . is unsatisfactory in general because
the powers of x become closer to linear dependence as n increases.

† However, note that it is difficult to evaluate sin and cos for large arguments which contain rounding
error.

2

Taylor series are only useful for analytic functions, whereas Weierstrass’ theorem suggests that all continuous
functions could be approximated by polynomials. In practice Taylor series are only used for approximation
in special cases.

1.2 Interpolation

We consider the problem of finding a polynomial of degree n that is equal to a given function f(x) at a
prescribed set of points x0, x1, . . . xn. These interpolation points are sometimes called abscissae. The theory
of interpolation is needed in order to investigate quadrature (numerical integration) – see Section 2.

Of the various ways of expressing the formula for polynomial interpolation, the most useful for theoretical
purposes is the Lagrange form:

Ln(x) =

n
∑

i=0

f(xi)li(x) (1.3)

where each polynomial li(x) depends only on the set of points x0, x1, . . . xn and not on the function values.
The polynomials {li(x)} are called the cardinal functions and each has the form

li(x) =

n
∏

j=0

j 6=i

x− xj

xi − xj
(1.4)

so that li(xi) = 1 and li(xk) = 0 for k 6= i, for example:

7654210 xxxxxxx

3l (x)

1

0
3x

By choosing a particular interpolation point, say x = xk, it is easy to verify that formula (1.3) is correct.

We define the error in Ln(x) by
en(x) = f(x) − Ln(x)

so that en(xi) = 0 for i = 0, 1, . . . n. However we are more interested in the error at some general point x
which is not one of the interpolation points. In order to treat x as a single point it is convenient to introduce
another variable z and let pn+1(z) represent the polynomial of degree n+ 1 defined by

pn+1(z) = (z − x0)(z − x1) . . . (z − xn) (1.5)

where pn+1(xi) = 0 and pn+1(x) 6= 0. Note that we can re-write (1.4) in the form

li(x) =
pn+1(x)

p′n+1(xi)(x − xi)
(1.6)

3

Exercise 1a

By differentiating (1.5) show that formulae (1.4) and (1.6) are equivalent.

Let Ln(x) represent the polynomial that interpolates the function f(x) at the points x 0, x1, . . ., xn. To
establish the error term in polynomial interpolation, we construct the function

F (z) = f(z) − Ln(z) − [f(x) − Ln(x)]
pn+1(z)

pn+1(x)

which has the property that

F (xi) = 0, i = 0, 1, . . . n

F (x) = 0,

i.e. the function F (z) has n+2 zeros. We now assume that f(z) is n+1 times continuously differentiable, so
that F (z) is also n+ 1 times continuously differentiable. By Rolle’s Theorem‡ F ′(z) has n+ 1 zeros, F ′′(z)
has n zeros, etc. It follows that F (n+1)(z) has at least 1 zero in the interval spanned by x0, x1, . . ., xn and

x. Now p
(n+1)
n+1 (z) = (n+ 1)! so

F (n+1)(z) = f (n+1)(z) − L(n+1)
n (z) − [f(x) − Ln(x)]

(n + 1)!

pn+1(x)
(1.7)

Let z = ξ be a point at which F (n+1)(z) = 0. It follows from setting z = ξ in (1.7) that

en(x) =
pn+1(x)

(n+ 1)!
f (n+1)(ξ). (1.8)

The Lagrange formula (1.3) does not suggest an efficient algorithm for its evaluation so, in practical
computation, polynomial interpolation is usually performed by iterated linear interpolation which is
equivalent in exact arithmetic. Writing the formula for linear interpolation between the two points (x i, u)
and (xj , v) as

Lij [u, v](x) =

(

x− xj

xi − xj

)

u+

(

x− xi

xj − xi

)

v

we write fi = f(xi) and define the array of interpolants {fij} as follows.

linear quadratic cubic

f01 = L01[f0, f1] f02 = L02[f01, f12] f03 = L03[f02, f13]
f12 = L12[f1, f2] f13 = L13[f12, f23] . . .
f23 = L23[f2, f3] . . .

. . .

In general, fij = Lij [fi,j−1, fi+1,j].

As a practical method of approximation, interpolation has drawbacks: because all data in floating point
representations are potentially erroneous it is better to use methods such as least squares fitting, even if high
accuracy is required.

‡ Recall that Rolle’s Theorem essentially states that if g(a) = 0 and g(b) = 0 when g(x) is continuously
differentiable over the interval [a, b] then g ′(x) = 0 somewhere in the interval (a, b). This is fairly obvious,
but is very useful in analysis.

4

1.3 Best approximations

A more practical approach to approximation is to consider some function f(x) defined over an interval I .

The Lp norms on the interval I are defined by

‖f‖p =
{

∫

I

|f(x)|p dx
}

1
p

.

The space of functions for which this integral exists is usually denoted by L p. [Recall that the corresponding
vector space (or its norm) is usually denoted by lp.]

Let g(x) be an approximation to the function f(x). We can choose g(x) to minimize various error norms in
order to approximate over an interval I of the real line.

* Least first power or L1 approximation:

min
g

∫

I

|f(x) − g(x)| dx.

* Least squares or L2 approximation:

min
g

∫

I

[f(x) − g(x)]2 dx.

Note that the L2 norm itself is actually the square root of the integral.

* Minimax or Chebyshev or uniform or L∞ approximation:

min
g

max
x∈I

|f(x) − g(x)|.

To accomplish this we frequently use the limiting properties of an approximation on a finite point set. The
L∞ approximation, for example, interpolates f(x) at a set of points that cannot be predetermined.

Approximations of the three types defined above are called best approximations. We will look first at the
theory of L∞ approximation, which requires the interesting properties of Chebyshev polynomials.

Weight functions may be introduced into these norms, most usefully in the L 2 case – see Section 1.5.

1.4 Chebyshev methods

1.4.1 Chebyshev polynomials

Note that cos kθ can be expressed as a polynomial in cos θ, e.g.

cos 2θ = 2 cos2 θ − 1

cos 3θ = 4 cos3 θ − 3 cos θ.

Setting x = cos θ we define the Chebyshev polynomial Tk(x) = cos(kθ). The first few Chebyshev polynomials
are

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

. . .

5

Tk(x) is a polynomial of degree k in x which satisfies the recurrence relation

Tk+1 = 2xTk − Tk−1.

Tk(x) has k real zeros in the interval [−1, 1] at

x = cos
(2j − 1)π

2k
; j = 1, 2, . . . k.

Tk(x) has k + 1 maxima and minima (known collectively as extrema) in [−1, 1] at

x = cos
jπ

k
; j = 0, 1, 2, . . . k

such that Tk(x) = ±1 at these points. Tk may be described as an ‘equal ripple’ function in the range [−1, 1]
and over the domain [−1, 1]. The k zeros separate the k + 1 extrema.

Chebyshev polynomials are orthogonal over [−1, 1] with respect to the weight function 1/
√

1 − x2, i.e.
∫ 1

−1

Tr(x)Ts(x)√
1 − x2

dx = 0, r 6= s

∫ 1

−1

{Tr(x)}2

√
1 − x2

dx =

{

π, r = 0
π
2 , r 6= 0.

(1.9)

Theorems involving Chebyshev polynomials typically apply to the interval [−1, 1]. However this is not a
restriction and Chebyshev methods can be applied over a general closed interval [a, b] by means of the linear
transformation

x =
t− 1

2 (b+ a)
1
2 (b− a)

.

Consequently we only consider [−1, 1] in Section 1.4.

In a polynomial of degree k the coefficient of the term in xk is called the leading coefficient. Thus the leading
coefficient of Tk(x) is 2k−1. It is often convenient to normalize the Chebyshev polynomials and consider
instead the polynomials

T̄k(x) = Tk(x)/2k−1

so that the leading coefficient of T̄k(x) is 1. The extrema of T̄k(x) are ±1/2k−1.

1.4.2 L∞ approximation

Theorem 1.2. Let Sk be the set of all polynomials of degree k whose leading coefficient is 1, that is the
set of all polynomials of the form

Pk(x) = xk + ck−1x
k−1 + . . .+ c1x+ c0.

Then T̄k(x) is the polynomial in the set Sk with least absolute value over [−1, 1], i.e.

|T̄k(x)| ≤ 1

2k−1

for all x ∈ [−1, 1] and

|Pk(x)| > 1

2k−1

for some x ∈ [−1, 1] for any Pk(x) ∈ Sk such that Pk(x) 6≡ T̄k(x).

Proof omitted.

Theorem 1.3. The best polynomial approximation over [−1, 1] to xn of lower degree is xn − T̄n(x), which
is of degree n− 2.

Proof omitted.

6

Theorem 1.4: The Chebyshev characterization theorem. The best L∞ approximation to
f(x) ∈ C[−1, 1] by a polynomial pn−1(x) of degree n− 1 has the property that

max
x∈[−1,1]

|e(x)|

is attained at n+ 1 distinct points −1 ≤ ξ0 < ξ1 < . . . < ξn ≤ 1 such that

e(ξj) = −e(ξj−1)

for j = 1, 2, . . . n where

e(x) = f(x) − pn−1(x).

The best L∞ approximation is unique.

Proof. Assume that e(x) 6≡ 0, otherwise the theorem is trivial. Let maxx∈[−1,1] |e(x)| be attained at the
r+1 distinct points −1 ≤ η0 < η1 < . . . < ηr ≤ 1. Consider the sign changes in the list e(η0), e(η1), . . . e(ηr).
If the kth sign change is between e(ηi) and e(ηi+1) then define

µk = 1
2 (ηi + ηi+1).

If there are s sign changes then we have −1 < µ1 < µ2 < . . . < µs < 1. Let qs(x) be the unique polynomial
of degree s that is zero at µ1, µ2, . . . µs and such that qs(η0) = e(η0). Then qs(x) is non-zero and has
the same sign as e(x) whenever |e(x)| attains its maximum. Therefore, if pn−1(x) is the best polynomial
approximation of degree n− 1 to f(x) and ε is a sufficiently small positive number then

pn−1(x) + εqs(x)

is a better approximation than pn−1(x). Hence we deduce that s must be greater than n− 1. Hence r must
be at least n and it only remains to prove uniqueness.

Assume that qn−1(x) is equally as good an approximation as pn−1(x), then so is (pn−1 + qn−1)/2 because

|f − 1
2 (pn−1 + qn−1)| ≤ 1

2 |f − pn−1| + 1
2 |f − qn−1| ≤ 1

2E + 1
2E = E

where E is the absolute value of the error incurred by pn−1 or qn−1 at each extremum. At an extremum of
f − 1

2 (pn−1 + qn−1) it is necessary for pn−1 = qn−1 otherwise either |f − pn−1| or |f − qn−1| would exceed
E at this point. But there are n + 1 extrema of f − 1

2 (pn−1 + qn−1) so pn−1 and qn−1 must be identical
(because pn−1 − qn−1 would have n+ 1 zeros if not).
¶

Note that the first part of the proof leads to a constructive algorithm.

7

Sketch graphs may be found useful to show how the proof works. The following diagram shows an example
of the error e(x). This diagram can also be used to show how a non-best approximation can be improved by
adding a sufficiently small multiple of q s(x).

e(x)

EE

1-1

−E−E

3η

2η1η

0η

1.4.3 l∞ approximation

The Chebyshev characterization theorem also holds for best l∞ approximation if [−1, 1] is replaced by a set
Xm of m discrete points, where m ≥ n+1. In practice we cannot generally solve the approximation problem
on an interval so we solve the approximation problem over a discrete point set in the required interval. From
the characterization theorem the approximation problem over Xm reduces to finding a set of n+ 1 points in
Xm which characterize the best approximation. The computation is usually performed using the ‘exchange
algorithm’ or a linear programming method.

1.4.4 Chebyshev series

We can use the orthogonality property of Chebyshev polynomials (1.9) to expand a function f ∈ L 2[−1, 1]
in the form

f(x) = 1
2c0 +

∞
∑

r=1

crTr(x) (1.10)

where

cr =
2

π

∫ 1

−1

f(x)Tr(x)√
1 − x2

dx. (1.11)

Exercise 1b

By considering
∫ 1

−1

f(x)Ts(x)√
1 − x2

dx

and assuming f(x) has an expansion like (1.10), verify formula (1.11).

Note that, with the substitution x = cos θ, (1.10) becomes a Fourier cosine series. The error in truncating
(1.10) after n+1 terms is smaller (in the Chebyshev sense) than the error in truncating a Taylor series after
n+ 1 terms.

If the integrals (1.11) are evaluated by quadrature, various approximations to (1.10) result, e.g. using the

8

change of variable x = cos θ and the repeated trapezium rule at intervals (of θ) of π/n we get

f̃n(x) = 1
2 c̃0 +

n−1
∑

r=1

c̃rTr(x) + 1
2 c̃nTn(x)

where

c̃r =
2

n

n
∑′′

j=0

Tr(xj)f(xj); xj = cos
jπ

n
.

(The double prime indicates that the first and last terms of the summation are halved.) Such approximations
are useful, particularly when the integrals (1.11) have to be evaluated numerically, but the coefficients {c̃ r}
now also depend on n so this is no longer a series expansion.

1.4.5 Lagrange interpolation with Chebyshev abscissae

From (1.8) the error in Lagrange interpolation over the points x1, x2, . . . xn is given by

f(x) − Ln−1(x) =
f (n)(ξ)

n!

n
∏

j=1

(x− xj).

In practice we do not usually know f (n)(ξ) but we can attempt to reduce this error by minimizing
|∏n

j=1(x − xj)| over the interval [−1, 1]. Choose the abscissae

xj = cos
(2j − 1)π

2n
j = 1, 2, . . . n (1.12)

so that
n

∏

j=1

(x− xj) ≡ T̄n(x).

Theorem 1.5. The abscissae (1.12) minimize

max
x∈[−1,1]

∣

∣

∣

n
∏

j=1

(x− xj)
∣

∣

∣.

Proof similar to Theorem 1.4, and omitted.

We conclude that the abscissae (1.12) are a reasonable choice for Lagrange interpolation of an n-times
differentiable function f(x). In fact, if f(x) is a polynomial of degree n then we obtain the best L∞

approximation out of polynomials of degree n− 1 over [−1, 1] since f (n)(x) is a constant. It may be proved
that Lagrange interpolation over the abscissae (1.12) converges uniformly as n → ∞ for meromorphic§
functions f(x). In contrast, using equally-spaced abscissae, Runge showed† that Lagrange interpolation
diverges for the apparently well-behaved function 1/(1 + x2) over [−5, 5].

§ A meromorphic function is a function of a complex variable whose only singularities are poles.
† By means of complex variable theory.

9

1.4.6 Economization of Taylor series

We can approximate a Taylor series by truncating to a polynomial, say

Pn(x) = a0 + a1x+ a2x
2 . . .+ anx

n. (1.13)

We have seen that the best L∞ approximation to (1.13) over [−1, 1] by a polynomial of lower degree is given
by Lagrange interpolation at the zeros of Tn(x). The error in approximating (1.13) is then

Pn(x) − Ln−1(x) =
P

(n)
n (ξ)

n!
T̄n(x)

= anT̄n(x).

Hence we can economize Pn(x) by forming

Ln−1(x) = Pn(x) − anT̄n(x),

i.e. forming a polynomial approximation of one degree lower‡. The maximum error due to economization is
therefore an/2

n−1. The method is equivalent to truncating an approximate Chebyshev series after the term
in Tn−1, so we may repeat the process if the leading coefficient is small e.g., rounding to 5 decimal places,

ex ' 1 + x+ 0.5x2 + 0.16667x3 + 0.04167x4 + 0.00833x5 + 0.00139x6

' 1.26606T0 + 1.13021T1 + 0.27148T2 + 0.04427T3 + 0.00547T4 + 0.00052T5 + 0.00004T6.

Error in truncating Taylor series after term in x6 ' 0.00023.
Economization error in neglecting terms in T5 and T6 ' 0.00052 + 0.00004 = 0.00056.
Total error after economization ' 0.00023 + 0.00056 = 0.00079.
This may be compared with the error in truncating the Taylor series after the term in x 4 (' 0.0099).

1.5 Least-squares approximation over a finite interval

Suppose φ0, φ1, φ2, . . . are a basis, i.e. a set of approximating functions φn(x), over an interval [a, b]. Let
f(x) be a (suitable) function to be approximated by

f(x) =
n

∑

j=0

ajφj . (1.14)

Let w(x) be a weight function, that is w(x) must be positive in the interval [a, b] except that it may be zero
at either end-point. In order to obtain a least-squares fit to the function f(x) we need to find the coefficients
a0, a1, a2, . . . an which minimize

I =

∫ b

a

w(x) {f(x) −
n

∑

j=0

ajφj}2 dx.

To find the minimum we take a particular a i and form the equation ∂I/∂ai = 0, i.e.

∂I

∂ai
= −2

∫ b

a

w(x) {f(x) −
n

∑

j=0

ajφj}φi dx = 0.

‡ This approximation may also be derived from Theorem 1.3.

10

Exercise 1c

Verify the above formula for ∂I/∂ai.

(Note that the factor −2 can be ignored.) We get n+1 such equations and observe that they can be written
in the form

Ca = b

where a = {a0, a1, . . . an} and, writing C = (cij), b = (bi), we have

cij =

∫ b

a

w(x)φiφj dx, (1.15)

bi =

∫ b

a

w(x)f(x)φi dx. (1.16)

Assuming that all these integrals can be easily computed, we still have to solve an (n + 1) × (n + 1) set of
simultaneous equations. This is by no means trivial and, in the interesting case φ n ≡ xn, the solution is
very difficult to obtain even to moderate accuracy§. However if we can arrange that c ij = 0 for i 6= j then
we have the equations

c00
c11

c22
. . .

cnn

a0

a1

a2
...
an

=

b0
b1
b2
...
bn

with the trivial solution

ai = bi/cii for i = 0, 1, 2, . . . n.

Further, if we arrange for cii = 1 for all i then the solution is ai = bi and we have reduced the problem to
that of computing the integrals (1.16). If the sequence φ0, φ1, φ2, . . . has the property that

cij =

∫ b

a

w(x)φiφj dx = 0 for i 6= j

then it is said to be an orthogonal basis. Also, if

∫ b

a

w(x)[φi(x)]
2 dx = 1 for all i

then the sequence {φi} is said to be orthonormalized.

For example, the Chebyshev polynomials form an orthogonal basis over [−1, 1] with w(x) = 1/
√

1 − x2, so
a truncated Chebyshev series is itself a best L2 approximation.

§ On IBM System/370 hardware, n = 4 gives just 1 significant figure in single precision, and n = 12 gives 1
significant figure in double precision.

11

1.6 The Gram-Schmidt process

The ‘modified’ (i.e. numerically stable) version of this algorithm is described for forming an orthogonal basis
from a set of basis functions or vectors. Let {φ0

0, φ
0
1, φ

0
2, . . . φ

0
n} be some basis to be orthogonalized. We

compute the triangular array (column by column):

φ0
0

φ0
1 φ1

1

φ0
2 φ1

2 φ2
2

.

φ0
n φ1

n φ2
n . . . φn

n

where {φ0
0, φ

1
1, φ

2
2, . . . φ

n
n} is the computed orthogonal basis. The formula is

φs
r = φs−1

r − as
rφ

s−1
s−1

where

as
r =

< φs−1
r , φs−1

s−1 >

< φs−1
s−1, φ

s−1
s−1 >

and < λ, µ > denotes an inner product such as
∫ b

a
w(x)λ(x)µ(x) dx. If an extra basis function φ0

n+1 is added

it is necessary to carry out n+ 1 further steps to find φn+1
n+1.

Exercise 1d

Starting from 1, x, x2 find the first three Legendre polynomials P0(x), P1(x), P2(x) that are orthogonal
over [−1, 1] with respect to the weight function w(x) = 1.

1.7 Tables and interpolation

A method often used for approximation of the common transcendental functions (exponential, trigonometric
functions, etc) is to store large tables of function values and to use interpolation to determine intermediate
values. If values are stored to a greater accuracy than required by library functions, and the intervals between
the arguments of stored values is small, then low order interpolation is sufficient. The method has been found
to be faster than a purely algorithmic approach, provided disc access is fast.

1.8 Domain reduction in computation

In a numerical library function to compute f(x) for any representable value of x it is seldom efficient to use
a single approximation over the whole interval (−∞,∞). Depending on f(x) the following devices may be
useful.

* Periodic reduction, e.g. sinx. Find

n = int
(x

π
+

1

2

)

and compute t = x− nπ so that t ∈ [− π
2 ,

π
2). Then

sinx = (−1)n sin t.

12

* Binary reduction, e.g. ex. Find

n = 1 + int(x log2 e)

and compute t = n− x log2 e so that t ∈ (0, 1]. Then

ex = 2x log2 e = 2n−t = 2n.2−t

and 2−t ∈ [12 , 1).

* Subdivision of the interval.

asymptotic polynomial exponential

1.8.1 Example: approximation of square roots

To evaluate square roots on a computer Newton’s method is normally used since it gives quadratic
convergence near the root. Writing t =

√
x Newton’s method for f(t) = t2 − x is

tn+1 =
1

2
(tn +

x

tn
).

Writing tn =
√
x+ en we have

√
x+ en+1 =

1

2
(
√
x+ en +

√
x{1 − en√

x
+
e2n
x

− . . .})

so

en+1 =
1

2

e2n√
x

+O(e3n). (1.17)

It may be shown that the method converges for any t0 > 0, so the problem reduces to finding an optimal
starting value t0.

Consider normalized numbers in a binary floating point implementation. We have x = m× 2 k where k is the
exponent and m ∈ [1, 2). If k is even

√
x =

√
m× 2k/2. If k is odd the correct exponent is given by

√
x =

√
2m× 2(k−1)/2

since √
2m ∈ [

√
2, 2) ⊂ [1, 2).

Hence we need only use Newton’s method for
√
m or

√
2m. We require a starting approximation t0 for

√
x

13

where x ∈ [1, 4). The L∞ linear approximation is suitable.

x1

x

1 4

ax + b

The error has three extrema at 1, x1, 4 by Theorem 1.4. Therefore the error

e(x) = ax+ b−
√
x

has a turning point at x1 so that, setting de/dx = 0 at x = x1, we get

x1 =
1

4a2
.

From Theorem 1.4, e(1) = −e(x1) = e(4), i.e.

a+ b− 1 = − 1

4a
− b+

1

2a
= 4a+ b− 2

which gives a = 1/3, b = 17/24, and max |e0| = 1/24. From (1.17) |e1| ' 10−3.

Exercise 1e

Repeat the derivation of the method of Section 1.8.1 for use on a calculator that uses base 10. Calculate
the maximum relative error in the starting approximation and explain why the method works better
in base 2 than in base 10. Assuming a precision of 9 decimal digits, and an absolute error e 0 ' 1 in
the starting approximation, estimate how many iterations will be required in the worst case. (Assume
210 ' 103 in your calculation.)

1.9 Splines

This discussion is restricted to cubic splines, or splines of order 3. However, splines are well defined for all
orders. In particular, a piecewise straight line (or polyline) is a spline of order 1.

1.9.1 Interpolating splines

A simplified treatment was given in Numerical Analysis I; this section provides the algebraic details. The
cubic spline function φ(x) interpolating the values {yj} at the knots {xj} over the interval [a, b] may be
defined by the following conditions. Note that there is no requirement that interpolation should be at the
knots, so this is only one illustrative case.

14

(i) φ is a polynomial of degree 3 in each interval [x 1, x2], [x2, x3], . . . [xn−1, xn].

(ii) φ is a polynomial of degree 1 in each interval [a, x 1], [xn, b].

(iii) φ, φ′ and φ′′ are continuous in [a, b].

(iv) φ(xj) = yj , j = 1, 2, . . . n.

The cubic spline is a piecewise cubic polynomial and has 4n coefficients. The conditions (i)–(iv) produce 4n
linear equations which may be shown to be non-singular so that φ is uniquely determined.

The spline φ(x) has the following minimum curvature property†. Let ψ(x) be any function, different from
φ(x), such that ψ and ψ′ are continuous in [a, b] and ψ ′′ exists. Suppose also that condition (iv) holds for
ψ, then

∫ b

a

{ψ′′(x)}2 dx−
∫ b

a

{φ′′(x)}2 dx =

∫ b

a

{ψ′′(x) − φ′′(x)}2 dx+ 2

∫ b

a

φ′′(x){ψ′′(x) − φ′′(x)} dx

> 2

∫ b

a

φ′′(x){ψ′′(x) − φ′′(x)} dx.

Integrating by parts, the right-hand side of the inequality is zero so that

∫ b

a

{ψ′′(x)}2 dx >

∫ b

a

{φ′′(x)}2 dx,

i.e. φ(x) minimizes this integral out of all twice-differentiable interpolating functions ψ(x) with continuous
first derivative.

Exercise 1f

By integrating by parts, show that

∫ b

a

φ′′(x){ψ′′(x) − φ′′(x)}dx = 0.

[Hint: use the fact that φ′′′(x) is a piecewise constant.]

Defining dj = xj+1 − xj and µj = φ′′(xj), it may be verified that for x ∈ [xj , xj+1]

φ(x) =
(x− xj)yj+1 + (xj+1 − x)yj

dj
− (x− xj)(xj+1 − x){(dj + xj+1 − x)µj + (dj + x− xj)µj+1}

6dj
(1.18)

so that, in particular,

φ′(xj) =
yj+1 − yj

dj
− (2µj + µj+1)dj

6

φ′(xj+1) =
yj+1 − yj

dj
+

(2µj+1 + µj)dj

6
.

(1.19)

Exercise 1g

Verify from (1.18) that φ(xj) = yj , φ(xj+1) = yj+1, φ
′′(xj) = µj , φ

′′(xj+1) = µj+1.

† The minimum curvature property is a misleading name: what we are talking about here is the second
derivative, not curvature as such. In this case we require a scalar measurement over an interval, so we choose
the L2 norm of the second derivative.

15

From the continuity condition, and using (1.19), we can equate the values of φ ′(xj) in the pair of intervals
[xj−1, xj], [xj , xj+1] to get

yj − yj−1

dj−1
+

(2µj + µj−1)dj−1

6
=
yj+1 − yj

dj
− (2µj + µj+1)dj

6
(1.20)

for j = 2, 3, . . . n − 1. We also know that φ is linear in [a, x1], [xn, b] so that µ1 = µn = 0. Let
m = {µ2, µ3, . . . µn−1}. From (1.20) we get the linear equations Am = z where

zj =
6(yj+1 − yj)

dj
− 6(yj − yj−1)

dj−1

and

A =

2(d1 + d2) d2

d2 2(d2 + d3) d3

d3
. . . dn−2

dn−2 2(dn−2 + dn−1)

which is symmetric positive definite and tridiagonal, and hence well-conditioned for solution. The spline is
easily evaluated in the form (1.18).

Exercise 1h

Prove A is positive definite, i.e. xT Ax > 0 for any x 6= 0 given dj > 0 for all j.
[Hint: in the expansion of xT Ax, prove that each dj has a positive coefficient.]

As stated above, there is no requirement that interpolation should be at the knots. Indeed, interpolation
midway between the knots has some theoretical advantage. There are several variations of the above
procedure in order to produce special-purpose splines. For example, periodic splines have identical end
conditions at each end, to enable approximation of simple closed curves using polar coordinates. Also,
because of their adaptability to fairly arbitrary shapes, parametric splines are particularly useful in computer
aided design.

1.9.2 Convergence of interpolating splines

Define the mesh norm ∆x by

∆x = max(x1 − a, x2 − x1, x3 − x2, . . . xn − xn−1, b− xn)

and let f , f ′ be continuous in [a, b] and let f ′′ be square integrable in [a, b]. Schoenberg showed that

lim
∆x→0

‖f − φ‖∞ = 0

lim
∆x→0

‖f ′ − φ′‖∞ = 0

lim
∆x→0

‖f ′′ − φ′′‖2 = 0.

These results are independent of how ∆x → 0.

1.9.3 B-splines

It is possible to express the cubic spline φ(x) in terms of a linear combination of functions {B j(x)} which
are themselves cubic splines which depend only on the set of knots x1, x2, . . . xn and the end conditions.
The general form of a spline over a set of n knots is then

φ(x) =
n+2
∑

j=−1

cjBj(x) (1.21)

where {cj} is a set of coefficients to be determined. Note that B−1(x), B0(x), Bn+1(x), Bn+2(x) depend on
the end conditions which need not concern us here.

16

The function Bj(x) is called a B-spline and, for j = 1, 2, . . . n, has the property that Bj(xk) = 0 for k ≤ j−2
and k ≥ j + 2, as shown below.

0 jx

jB (x)

Note that the summation (1.21) for a particular value of x is over at most 4 terms. The study of B-splines
leads to improved algorithms for spline approximation, and a clearer theoretical understanding of this topic.

2. Quadrature

Quadrature (or numerical integration) was introduced in Sections 2 and 3 of Numerical Analysis I. This
Section takes a more theoretical approach.

2.1 Theory

2.1.1 Riemann sum rules

Consider a set of numbers a = ξ0 < ξ1 < . . . < ξn = b. A Riemann integral is defined by

∫ b

a

f(x) dx = lim
n→∞
∆ξ→0

n
∑

i=1

(ξi − ξi−1)f(xi) (2.1)

where xi ∈ [ξi−1, ξi], ∆ξ = maxi |ξi − ξi−1|. The summation on the right hand side of (2.1) is called a
Riemann sum. Some primitive quadrature rules are clearly Riemann sums, e.g. the composite rectangular
rule

Rnf = h

n
∑

i=1

f(a+ ih)

a b

with h = (b− a)/n. Other quadrature rules of the form

Qnf =

n
∑

i=1

wif(xi)

17

can be expressed as Riemann sums if there exist ξ1 < ξ2 < . . . < ξn−1 such that

wi = ξi − ξi−1, ξ0 = a, ξn = b

and xi ∈ [ξi−1, ξi].

To show that a given sequence of quadrature rules {Qnf} converges to the integral of a function, it is
sufficient to establish that each rule is a Riemann sum such that ∆ξ → 0 as n→ ∞.

2.1.2 Calculation of weights for quadrature rules

Interpolatory polynomial quadrature rules can be derived by integrating the Lagrange interpolation formula
(1.3). Given a set of abscissae x0, x1, . . . xn we wish to determine the unique weights w0, w1, . . . wn such that
the interpolating quadrature rule

∫ b

a

W (x)f(x) dx =

n
∑

i=0

wif(xi) +E(f)

is exact for polynomials of degree n, where W (x) is a weight function. Using equations (1.3) – (1.6) we can
express the Lagrange polynomial interpolating to f(x) at the abscissae as

Ln(x) =

n
∑

i=0

f(xi)
pn+1(x)

p′n+1(xi)(x − xi)

so that
n

∑

i=0

wif(xi) =

∫ b

a

W (x)Ln(x) dx

=

∫ b

a

W (x)
n

∑

i=0

f(xi)
pn+1(x)

p′n+1(xi)(x− xi)
dx

=

n
∑

i=0

f(xi)

∫ b

a

W (x)
pn+1(x)

p′n+1(xi)(x− xi)
dx.

Hence

wi =
1

p′n+1(xi)

∫ b

a

W (x)
pn+1(x)

x− xi
dx.

2.1.3 Error analysis

Theorem 2.1: Taylor’s theorem. If x ∈ [a, b] and f ∈ CN+1[a, b],

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x− a)N

N !
f (N)(a) +

1

N !

∫ x

a

f (N+1)(t)(x − t)N dt. (2.2)

Proof. Let TN (a) represent the Taylor series up to the term in (x− a)N treated as a function of a, i.e.

TN (a) = f(a) + (x − a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x − a)N

N !
f (N)(a).

We can differentiate TN(a) once with respect to a,

T ′
N(a) = f ′(a) − f ′(a) + (x− a)f ′′(a) − (x− a)f ′′(a) + . . .

. . .+
(x− a)N−1

(N − 1)!
f (N)(a) − (x − a)N−1

(N − 1)!
f (N)(a) +

(x− a)N

N !
f (N+1)(a)

=
(x− a)N

N !
f (N+1)(a).

18

For any g ∈ C1[a, b]

g(x) = g(a) +

∫ x

a

g′(t) dt

so

TN (x) = TN(a) +

∫ x

a

T ′
N(t) dt

i.e.

f(x) = TN (a) +
1

N !

∫ x

a

(x− t)Nf (N+1)(t) dt.

¶

Let E(f) denote the discretization error in a quadrature rule, i.e.

E(f) =

∫ b

a

f(x) dx−
n

∑

i=0

wif(xi).

Note that it is usual to write E(f) as Ex(f) to make it clear that integration is with respect to x. Suppose
that the quadrature rule is exact for polynomials PN of degree N , so that E(PN) = 0. It is possible to
obtain an expression for E(f) by integrating the Lagrange interpolation formula (1.3).

Theorem 2.2: Peano’s theorem. If E(PN) = 0 and f ∈ CN+1[a, b] then

E(f) =

∫ b

a

f (N+1)(t)K(t) dt

where

K(t) =
1

N !
Ex[(x − t)N

+]

and

(x− t)N
+ =

{

(x− t)N , x > t
0, x ≤ t.

The function K(t) is called the Peano kernel (or influence function) and is a spline function of order N .

Proof. We start from Taylor’s theorem. Since f ∈ CN+1[a, b] and E(Pr) = 0 for r ≤ N we get, directly
from (2.2),

E(f) =
1

N !
Ex

{

∫ x

a

f (N+1)(t)(x − t)N dt
}

.

It may be seen that it makes no difference to write

E(f) =
1

N !
Ex

{

∫ x

a

f (N+1)(t)(x− t)N
+ dt

}

and further, because of the definition of (x− t)N
+ , we can replace the upper limit of the integral by b, thus

E(f) =
1

N !
Ex

{

∫ b

a

f (N+1)(t)(x − t)N
+ dt

}

.

Now the limits of the integral no longer depend on x, so we can take Ex inside the integral to get

E(f) =
1

N !

∫ b

a

f (N+1)(t)Ex[(x − t)N
+] dt.

¶

19

Peano’s Theorem is quite elegant, but the algebraic details can get tedious, so we will restrict ourselves to
the simplest quadrature rules as examples. Consider the simple trapezium rule for which

E(f) =

∫ b

a

f(x) dx− 1
2h[f(a) + f(b)] (2.3)

where h = b− a. The rule is exact for polynomials of degree 1, so taking N = 1 in Theorem 2.2 we get the
Peano kernel

K(t) = Ex[(x− t)+]

=

∫ b

a

(x − t)+ dx− 1
2h[(a− t)+ + (b− t)+]

from (2.3). Since we require K(t) only for t ∈ [a, b] we can take (a− t)+ = 0, (b− t)+ = b− t so that

K(t) =

∫ b

t

(x− t) dx− 1
2h(b− t)

= 1
2 (a− t)(b− t).

(2.4)

Using the kernel (2.4) in Peano’s theorem we get

E(f) = 1
2

∫ b

a

f ′′(t)(a− t)(b− t) dt. (2.5)

To simplify (2.5) we need the following theorem.

Theorem 2.3. If K(t) does not change sign in [a, b] then

E(f) =
f (N+1)(ξ)

(N + 1)!
E(xN+1)

for some ξ ∈ (a, b).

Proof. If K(t) does not change sign the mean value theorem applied to Theorem 2.2 gives

E(f) = f (N+1)(ξ)

∫ b

a

K(t) dt (2.6)

and in particular

E(xN+1) = (N + 1)!

∫ b

a

K(t) dt. (2.7)

The result follows from eliminating the integral from (2.6) and (2.7).
¶

To apply Theorem 2.3 to (2.5) we require

E(x2) =

∫ b

a

x2 dx − 1
2h(a

2 + b2) = − 1
6h

3

so that

E(f) = − 1
12h

3f ′′(ξ)

for some ξ ∈ (a, b).

20

Exercise 2a

The mid-point rule (b − a)f [1
2 (a + b)] is exact for polynomials of degree 1. Use Peano’s theorem to

find a formula for E(f). [Hint: this is similar to the trapezium rule example given above, except that
it is harder to prove that K(t) does not change sign in [a, b].]

If K(t) does change sign in [a, b] then we can use the (sharp) inequality

|E(f)| ≤ max
x∈[a,b]

|f (N+1)(x)|.
∫ b

a

|K(t)| dt.

Note that, in general, a polynomial quadrature rule with error O(hn) will integrate exactly a polynomial of
degree n− 2.

2.2 Gaussian quadrature

In Gaussian quadrature the abscissae {xi} of a quadrature rule are chosen such that the formula is accurate
for the highest possible degree of polynomial. Consider

∫ b

a

f(x) dx '
n

∑

i=1

wif(xi).

At best the abscissae can be chosen such that an n-point rule is exact for polynomials of degree 2n− 1. Let
{pn} be a sequence of orthonormal polynomials with respect to the weight function W (x), i.e.

∫ b

a

W (x)pM (x)pN (x) dx =

{

0 , M 6= N
1 , M = N .

Also, let kn > 0 be the leading coefficient of pn(x), i.e.

pn(x) = knx
n +

It is known that the zeros of real orthogonal polynomials are real, distinct and lie in (a, b). It may be shown
that the zeros of pn(x) are the n abscissae {xi} which produce a quadrature rule that is exact for polynomials
of degree 2n− 1. The weights are

wi = −kn+1

kn

1

pn+1(xi)p′n(xi)

and are always positive. The discretization error is given by

E(f) =

∫ b

a

W (x)f(x) dx−
n

∑

i=1

wif(xi) =
f (2n)(ξ)

(2n)! k2
n

for some ξ ∈ (a, b). Such Gauss rules are named after the orthogonal polynomials used, e.g. Gauss-Legendre,
Gauss-Laguerre, etc.

21

The most commonly used Gauss rules are
∫ 1

−1

f(x) dx Gauss− Legendre

∫ 1

−1

f(x)√
1 − x2

dx Gauss− Chebyshev

∫ 1

−1

(1 − x)α(1 + x)βf(x) dx Gauss− Jacobi

∫ ∞

0

e−xf(x) dx Gauss− Laguerre

∫ ∞

−∞

e−x2

f(x) dx Gauss− Hermite

Lobatto rules use both end points of the interval as abscissae, and the remaining abscissae are chosen
optimally; these have degree 2n− 3. Radau rules use one end point as an abscissa and have degree 2n− 2;
a Radau rule is often used instead of Gauss-Laguerre for the interval [0,∞). For integrals of the form
∫ ∞

−∞
e−x2

f(x) dx the composite trapezium rule is superior to Gauss-Hermite – see Section 2.4.

2.3 Composite rules

Composite rules are also known as compound, repeated, extended or iterated rules. Let R be an m-point
quadrature rule. We denote by (n×R) the rule R applied to n subintervals. Note that if R is an open rule
(i.e. does not include end-points) then (n × R) uses mn points. If R is a closed rule (i.e. includes both
end-points) then (n× R) uses only (m − 1)n+ 1 points, which may be significantly less for small values of
m. For R applied to [−1, 1] we write

Rf =

m
∑

j=1

wjf(xj)

and for (n×R) applied to [a, b] we write

(n×R)f =
b− a

2n

n
∑

i=1

m
∑

j=1

wjf(xij) (2.8)

where xij is the jth abscissa of the ith subinterval. Note that the weights {wj} are independent of [a, b].
Also, for closed rules, some xij ’s coincide.

Theorem 2.4. Let R be a rule that integrates constants exactly, i.e. R.1 =
∫ 1

−1
dx = 2. If f is bounded in

[a, b] and is (Riemann) integrable then

lim
n→∞

(n×R)f =

∫ b

a

f(x) dx.

Proof. Reversing summations and taking the limit in (2.8),

lim
n→∞

(n×R)f = 1
2

m
∑

j=1

wj lim
n→∞

{b− a

n

n
∑

i=1

f(xij)
}

= 1
2

∫ b

a

f(x) dx.

m
∑

j=1

wj

22

since the sum over i is a Riemann sum and therefore converges. Also, since R.1 = 2,
∑m

j=1 wj = 2.
¶

Theorem 2.4 essentially states that composite rules converge for bounded Riemann-integrable functions f .

The rule R is a simplex rule if the discretization error ER(f) can be expressed in the form

ER(f) = c(b− a)k+1f (k)(ξ) (2.9)

for f ∈ Ck[a, b], ξ ∈ (a, b), and constant c. The following theorem formalizes an idea that was explained in
Numerical Analysis I, Section 2.

Theorem 2.5. Let R be a simplex rule and let En×R(f) denote the discretization error of (n×R)f . Then

lim
n→∞

nkEn×R(f) = c(b− a)k[f (k−1)(b) − f (k−1)(a)].

That is to say, (n×R)f converges like n−k for n sufficiently large.

Proof. From (2.9)

En×R(f) =

n
∑

i=1

c
(b− a

n

)k+1

f (k)(ξi)

where ξi lies inside the ith subinterval. Rearranging and taking limits,

lim
n→∞

nkEn×R(f) = c(b− a)k lim
n→∞

{ b− a

n

n
∑

i=1

f (k)(ξi)
}

= c(b− a)k

∫ b

a

f (k)(x) dx

= c(b− a)k[f (k−1)(b) − f (k−1)(a)].

¶

For example, for Simpson’s rule

ER(f) = − (b− a)5

2880
f (4)(ξ)

and

lim
n→∞

n4En×R(f) = − (b− a)4

2880
[f (3)(b) − f (3)(a)]

for f ∈ C4[a, b], i.e. Simpson’s rule converges like h5, so the composite rule converges like h4.

2.4 Singular integrals

It is sometimes possible to integrate a function f(x) over an interval in which it has a singularity. Typically
such a singularity is a point where f(x) or f ′(x) becomes infinite, but the integral remains finite. Although
the value of the integral may be well-defined, quadrature methods based on polynomials are inappropriate
as polynomials cannot display this behaviour.

It is necessary to know the location of the singularity or singularities, and to split the interval in such a way
that each sub-integral has a singularity only at one end-point. Consequently we need only consider integrals
with one singularity at an end-point of the interval.

Various analytic methods may be tried to remove a singularity before computation. For example, integration
by parts may reduce the problem to the sum of a computable function and a non-singular integral. Also
‘subtracting out’ the singularity is simple in some cases, e.g.

∫ 1

0

cosx√
x
dx =

∫ 1

0

{ 1√
x

+
cosx− 1√

x

}

dx = 2 +

∫ 1

0

cosx− 1√
x

dx.

23

In this case cosx − 1 = O(x2) so the integrand becomes O(x3/2) which is less severe. This process can be
repeated if necessary.

In general, as singularities are not polynomial-like, polynomial rules are unsuitable and indeed convergence
is either not achieved or retarded.

A simple non-polynomial rule can be developed from a curious property of the trapezium rule. It turns out
that, for a ‘suitable’ function f(x), the best method for integrating

I =

∫ ∞

−∞

e−x2

f(x)dx (2.10)

is to use the composite trapezium rule with h = 1/N , where N is a suitably large integer.

x− 2
e f(x)

N−
x

0 N

This can be truncated to 2N 2 + 1 terms to give

I = h

N2

∑

i=−N2

e−i2h2

f(ih) +O(e−A/h)

which has an exponential rate of convergence! This property holds provided that the function f(x) has
no singularities for any finite (real or complex) x. This is usually hard to establish, but if f(x) does have
complex singularities (but none on the finite real line) then the rate of convergence is slower, but still of an
exponential rate§.

The significance of this result is that we can transform the integral

I =

∫ 1

−1

f(x) dx (2.11)

to an infinite interval to which the composite trapezium rule can be applied. For example, using the
transformation x = tanhu we get

dx = sech2u du

so that (2.11) becomes

I =

∫ ∞

−∞

sech2u f(tanhu) du.

§ There is a sense in which an exponential rate of convergence may be too fast, in that ‘convergence testing’
becomes more difficult.

24

Note that sech2u→ e−u2

as u→ ±∞. Choosing N sufficiently large that the integrand is negligible outside
[−N,N], setting h = 1/N and applying the composite trapezium rule we get

h

N2

∑

i=−N2

sech2(ih) f [tanh(ih)]

which is a new (non-polynomial) quadrature rule with weights w i = h sech2(ih) and abscissae xi = tanh(ih)
and with an exponential rate of convergence. The great advantage of such a rule is that it can be used even
when the integrand is singular at one or both end-points†.

2.5 Multi-dimensional integration

2.5.1 Introduction

Consider the problem of evaluating

I =

∫ ∫

. . .

∫

f(x1, x2, . . . xd) dx1dx2 . . . dxd

where there are d integrals. Such problems often arise in practice, more commonly for 2 or 3 dimensions,
but occasionally in 10 or 20 dimensions. As the problem becomes considerably more expensive to solve with
each extra dimension, it is not surprising that different methods have been developed for different ranges of
dimensions.

Product integration is useful for small dimensions, say 2 or 3 – see Section 2.5.3.

For circular (spherical) regions variable transformation methods, similar to that described in Section 2.4,
have been used successfully.

The generalization of adaptive techniques to several dimensions leads to inefficiency; this is not too serious
in 2 dimensions but increases with the dimension.

For irregular shaped regions, or for high numbers of dimensions, Monte Carlo methods are often used – see
Section 2.5.5.

Gauss rules exist in more than one dimension, but they are rarely used. Unlike the one-dimensional case,
Gauss rules in 2 dimensions do not always have positive weights. Also abscissae can lie outside the region of
integration: this is highly undesirable because the integrand may not be defined.

2.5.2 Transformation to a hypercube

To devise integration rules it is convenient to consider standard regions, e.g. hypercube, simplex, hypersphere,
surface of a hypersphere. Most regions can be transformed to standard regions. As an example, consider
the d-dimensional integral

I =

∫ U1

L1

∫ U2(x1)

L2(x1)

∫ U3(x1,x2)

L3(x1,x2)

. . .

∫ Ud(x1,x2,...xd−1)

Ld(x1,x2,...xd−1)

f(x1, x2, . . . xd) dx1, dx2, . . . dxd.

This fairly general region of integration is transformed to a hypercube by

xi =
Ui + Li

2
+ yi

Ui − Li

2
, i = 1, 2, . . . d.

If f(x1, x2, . . . xd) = g(y1, y2, . . . yd) then

I =

∫ 1

−1

∫ 1

−1

. . .

∫ 1

−1

|J|.g(y1, y2, . . . yd) dy1, dy2, . . . dyd

† However, abscissae may be so close to a singularity that loss of significance occurs.

25

where the determinant of the Jacobian is

|J| =

d
∏

i=1

Ui − Li

2
.

2.5.3 Product rules

If I1 = [a, b], I2 = [c, d] are intervals then the Cartesian product I1 × I2 denotes the rectangle a ≤ x ≤ b,
c ≤ y ≤ d. Let R, S denote the quadrature rules

Rf =

m
∑

i=1

uif(xi), Sf =

n
∑

j=1

vjf(yj).

We define the product rule R× S by

(R× S)F =

m
∑

i=1

n
∑

j=1

uivjF (xi, yj).

Theorem 2.6. Let R integrate f(x) exactly over the interval Ix and let S integrate g(y) exactly over Iy,
then R× S integrates f(x)g(y) exactly over Ix × Iy.

Proof omitted.

Exercise 2b

Prove Theorem 2.6.

As an example of product integration, we can extend Simpson’s rule to the rectangle using 9 abscissae with
weights in the ratios shown.

41 1

41 1

4 16 4

The weights shown are multiplied by hk/36 where h, k are the step lengths in each dimension. The rule is

26

exact for any linear combination of the monomials

1 x x2 x3

y xy x2y x3y

y2 xy2 x2y2 x3y2

y3 xy3 x2y3 x3y3

The idea generalizes to d dimensions but becomes increasingly inefficient and is rarely used for d > 3. Simple
product integration is only suitable for integrals over rectangular (or hypercuboid) regions.

2.5.4 High dimensions

The problem with high dimensions is the dimensional effect: most methods behave like n−k/d as the number
of dimensions d increases, and where k is a constant dependent on the method.

To improve the accuracy of a composite rule in one dimension we usually replace n subintervals by 2n
subintervals. In d dimensions we replace n subintervals by 2dn subintervals. It is especially advantageous
to use the vertices, say of a hypercube, as abscissae because these points are re-used, e.g. the product
trapezium rule or product Simpson rule. Consequently, a rule such as a Gauss rule is unsatisfactory when
used in composite form because no abscissae lie on the boundary of the region.

Consider the product trapezium rule applied to a d-dimensional hypercube. This requires 2 d function
evaluations. Halving the interval in each dimension requires a further 3 d − 2d function evaluations. Note
that 3d − 2d ' 3d when d is large. Similarly, further halving of the interval in each dimension requires
approximately 5d, 9d, 17d, . . . extra function evaluations at each stage.

d 2d 3d 5d 9d 17d

7 128 2187 8 × 104 5 × 106 108

10 1024 6 × 104 107 109 1012

20 106 109 1014 1019 1025

If one function evaluation takes 0.1 millisecond then 109 function evaluations take about 1 day of computation
time on a sequential machine. Consequently for d large, special methods are required. High dimensional
problems do exist, for example in physics, but fortunately high accuracy is not usually required: one
significant figure or merely the order of magnitude is often sufficient. Serious consideration should be
given to analytic methods such as changing the order of integration; even reducing the dimension by one can
significantly affect the tractability of a problem. It should be noted that high dimensional integration is a
problem well suited to highly-parallel computers.

2.5.5 Monte Carlo methods

While Monte Carlo methods cannot be used to obtain very high accuracy, they are not significantly less
effective for high dimensional problems. The general idea of these methods is to choose pseudo-randomly
generated abscissae and to use the average of the resulting function values multiplied by the volume of the
integration region.

Note that pseudo-random numbers are not really random, but are deterministic sets of numbers which satisfy
certain properties associated with ‘randomness’.

Monte Carlo methods, and related number-theoretic methods, are probably the only practical methods for
very high dimensional integration. The performance of Monte Carlo methods is very poor, even in one
dimension, but the dimensional effect (i.e. the effect on efficiency of extending the method to increasing
dimensions) is not so marked as with other methods.

27

Consider the one-dimensional case where I =
∫ 1

0 f(x) dx and let {xi} be a set of pseudo-random variables,
uniformly distributed on [0, 1]. Then the Strong Law of Large Numbers states that

Prob

{

lim
n→∞

1

n

n
∑

i=1

f(xi) = I

}

= 1,

i.e. using truly random abscissae and equal weights, convergence is almost sure.

Statistical error estimates can be found, but these depend on the variance σ 2 of the function f(x) where

σ2 =

∫ 1

0

{f(x)}2 dx− I2.

As an example of the efficiency of Monte Carlo, suppose that σ2 = 1. To obtain an estimate of I with
error < 0.01 with 99% certainty requires 6.6 × 104 function evaluations. An extra decimal place with the
same certainty requires 6.6× 106 function evaluations. Clearly this is very inefficient in one dimension.

The advantage of Monte Carlo methods is that the statistical theory extends to d dimensions, and the
error behaves like n−1/2 rather than n−k/d, i.e. it is (largely) independent of the number of dimensions.
However, this does not mean that there is no dimensional effect: high dimensional functions tend to have
larger variances (σ2) than low dimensional ones. Nevertheless the dimensional effect is much less marked
than for conventional interpolatory polynomial quadrature.

Because pseudo-random numbers are not really random, Monte Carlo methods have been refined by finding
particularly advantageous sets of abscissae with appropriate properties. The Korobov-Conroy method uses
‘optimal abscissae’ derived from results in number theory and is often used instead of pseudo-random numbers
for integration, although it is not always superior.

3. Non-linear Equations and Optimization

3.1 Non-linear equations in one variable

3.1.1 Simple iterative methods

Additional reference: E. Isaacson & H.B. Keller, Analysis of numerical methods, 1966. Wiley.

We consider the solution of the equation f(x) = 0 for a suitably smooth function f .

If f(a)f(b) ≤ 0 then f(x) must have a zero in the interval [a, b] provided f(x) is continuous. The method of
bisection is a robust method for finding such a zero, i.e. a method guaranteed to converge although at a slow
rate. The result of the algorithm is an interval [ã, b̃] containing the solution, and the algorithm terminates
when b̃− ã is sufficiently small. The starting values are ã = a, b̃ = b and the iteration can be summarized
as follows

m = (ã+ b̃)/2

if f(ã)f(m) ≤ 0 then b̃ = m else ã = m

Suppose the calculation is performed in binary. The bisection method halves the length of the interval at
each iteration. Therefore, at worst it will add one binary digit of accuracy at each step, so this iteration is
only linearly convergent.

The method of bisection always chooses the mid-point of the current interval irrespective of the function
values. An improvement can be achieved by using linear interpolation based on f(ã) and f(b̃).

28

~a

~
b

m

f(x)

Thus the assignment of m in the above algorithm is replaced by

m = (f(b̃)ã− f(ã)b̃)/(f(b̃) − f(ã))

which is a weighted average of the function values and is unlikely to result in loss of significance since f(ã),
f(b̃) have opposite signs. This is sometimes called regula falsi or the rule of false position.

A further development is to abandon the use of intervals (and hence the guarantee of bracketting the zero
of the function) by replacing the whole iteration with

xn+1 = (f(xn)xn−1 − f(xn−1)xn)/(f(xn) − f(xn−1)) (3.1)

which is known as the secant method. The rate of convergence is improved but there is now a possibility of
loss of significance as f(xn−1), f(xn) can have the same sign. Note that (3.1) can be written in the form

xn+1 = xn − f(xn)/φn (3.2)

where

φn = (f(xn) − f(xn−1))/(xn − xn−1)

and, since

lim
xn−1→xn

φn = f ′(xn)

we can derive the Newton-Raphson iteration

xn+1 = xn − f(xn)/f ′(xn) (3.3)

from the secant method. Conversely, the secant method is merely a finite difference approximation to
Newton-Raphson.

A practical algorithm, such as that of Bus and Dekker in the NAG library, may use a combination of methods:
in this case linear interpolation, linear extrapolation and straightforward bisection. This method effectively
achieves a compromise between efficiency and robustness.

Exercise 3a

Devise an algorithm combining the rule of false position with the method of bisection to ensure that
the bracketting interval is at worst halved for every two function evaluations. Decide if your algorithm
is robust.

29

3.1.2 Fixed-point iteration theory

The Newton-Raphson formula (3.3) is an example of an iteration of the form

xn+1 = g(xn) (3.4)

where a fundamental requirement for convergence to the limit x is that

x = g(x),

i.e. that the limit x is a fixed-point of the function g(x). Consequently methods of the form (3.4) are called
fixed-point iterative methods.

We now consider the solution of f(x) = 0, where f(x) = x − g(x) at the solution, using the iteration
xn+1 = g(xn). We require that g(x) is differentiable over some interval containing the fixed point x.

Theorem 3.1. Suppose for the iteration

xn+1 = g(xn)

that

|g(x) − g(x′)| ≤ λ|x − x′| (3.5)

for all x and x′ in an interval I = [x0 − ρ, x0 + ρ], where the constant λ < 1 and |x0 − g(x0)| ≤ (1 − λ)ρ.
Under these conditions (1) all iterates lie in I , (2) the iterates converge, and (3) the solution is unique.

The proof is most simply explained graphically. Without loss of generality we can take x 0 = 0, which
simplifies the diagram considerably: the line y = x is shown as it is a convenient line with gradient 1.

| |
| |

0y=x − ρ

y=x0

0y=x + ρ

x=g(x)
x - x

0− ρx 0x 0x + ρ

g(x)0

< (1−λ)ρ

< λ < 1
’
’g(x) - g(x)

30

Proof. (1)

|xn+1 − xn| = |g(xn) − g(xn−1)|
≤ λ|xn − xn−1|
≤ λn|x1 − x0|
≤ λn(1 − λ)ρ

because x1 − x0 = g(x0) − x0. Thus

|xn+1 − x0| ≤
n

∑

m=0

|xm+1 − xm|

≤
n

∑

m=0

λm(1 − λ)ρ

≤ (1 − λn+1)ρ

so xn+1 lies in the interval I .

(2)

|xn+p − xn| ≤
n+p−1
∑

m=n

|xm+1 − xm|

≤
n+p−1
∑

m=n

λm(1 − λ)ρ

≤ (1 − λp)λnρ

which establishes convergence since the sequence {xn} is bounded, by part (1) of this proof.

(3) Suppose the root is not unique, i.e. suppose there exist roots x and y such that x = g(x), y = g(y) and
x 6= y. Then

|x− y| = |g(x) − g(y)|
≤ λ|x − y|
< |x− y|

which is a contradiction.
¶

If in (3.5) x is close to x′ and g(x) is differentiable then it is reasonable to suppose that λ ' |g ′(x)|. Indeed
it may be shown that if |g ′(ξ)| < 1 for a fixed point ξ then there exists an interval of convergence. Such a
fixed point ξ is called a point of attraction for the iterative formula.

Exercise 3b

Show that, for Newton-Raphson, an interval of convergence always exists for a fixed point ξ provided
f ′(ξ) 6= 0.

31

3.1.3 Rate of convergence of Newton and secant methods

Let α be a root of f(x) = 0 and let en = xn − α.

From (3.3) for Newton-Raphson iteration we have

en+1 = en − f(α+ en)/f ′(α + en)

= en − f(α) + enf
′(α) + 1

2e
2
nf

′′(α) +O(e3n)

f ′(α) + enf ′′(α) +O(e2n)

= en − en

1 + 1
2enf

′′(α)/f ′(α) +O(e2n)

1 + enf ′′(α)/f ′(α) +O(e2n)

= en − en{1 − 1
2enf

′′(α)/f ′(α) +O(e2n)}

= 1
2e

2
nf

′′(α)/f ′(α) +O(e3n)

= Me2n +O(e3n)

where M = |f ′′(α)/[2f ′(α)]|, so there is quadratic convergence.

From (3.2) for the secant method, using the notation fn for f(α+ en), we have

en+1 = en − fn
en − en−1

fn − fn−1

=
en(fn − fn−1) − fn(en − en−1)

fn − fn−1

=
fnen−1 − fn−1en

fn − fn−1

= enen−1

(fn

en
− fn−1

en−1
)

fn − fn−1
.

Now
fn

en
= f ′(α) + 1

2f
′′(α)en +O(e2n)

so

en+1 ' enen−1.
1
2f

′′(α)
en − en−1

fn − fn−1
' enen−1

f ′′(α)

2f ′(α)

i.e.

|en+1| 'M |en|.|en−1|

where M is the same as for Newton-Raphson. Now the order of convergence p satisfies†
∣

∣

∣

en+1

ep
n

∣

∣

∣ = O(|en|1−p|en−1|) = O
(∣

∣

∣

en

ep
n−1

∣

∣

∣

1−p)

provided 1 = −p(1− p) or p2 − p− 1 = 0. The positive solution of this quadratic is p = (
√

5 + 1)/2 ' 1.618.

† See Numerical Analysis I, Section 1.

32

3.2 Zeros of polynomials

A polynomial
pn(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0 (3.6)

is of degree§ n if an 6= 0. If pn(x) has a factor (x − λ)r then we say that λ is a root of multiplicity r. The
so-called ‘fundamental theorem of algebra’ states that pn(x) has precisely n real or complex roots if roots
of multiplicity r are counted r times. We restrict the discussion to the problem of determining one or more
roots of a polynomial with real coefficients.

If the coefficients of (3.6) are real then any complex roots appear in conjugate pairs, i.e. if µ+ iν is a root
then so is µ− iν. The polynomial can be factorized into quadratic factors with real coefficients, except that
if n is odd then one factor must be linear. It follows that any odd-degree polynomial with real coefficients
must have at least one real root.

3.2.1 Condition of polynomial roots

Roots of polynomials of high degree are usually ill-conditioned. Assume an error δa j in a particular coefficient
aj only. If pn(α) = 0 then the total derivative gives

∂pn

∂α
.δα+

∂pn

∂aj
.δaj ' 0

from which we get a formula for relative error

δα

α
' − αj−1

p′n(α)
.aj .

δaj

aj
.

Multiple roots are ill-conditioned, and can be removed by finding the greatest common divisor (g.c.d.) of p n

and p′n, but this does not help with roots that are very close together and are also ill-conditioned.

Consider a relatively well-conditioned case where the roots are well separated, e.g.

pn(x) = (x+ 1)(x+ 2) . . . (x+ 20) = 0

= x20 + 210x19 + . . .+ 20! = 0.

Note that n = 20, and consider one root, say α = −16. The relative error due to an error in, say, a19 is
given by

δα

α
' 1618.210

15!4!
.
δaj

aj
' 3.2× 1010.

δaj

aj
.

The relative error is magnified by about 1011, although this is a relatively well-conditioned case.

3.2.2 Methods for finding zeros of polynomials

If only the real roots of a polynomial are required then search methods can be used, with the aid of various
known properties, such as Descartes’ rule of signs. Let n+ be the number of positive real roots of pn(x).
Let c be the number of changes in sign when the coefficients are taken in order, ignoring zero coefficients.
Descartes’ rule of signs states that

0 ≤ c− n+ = 2k

for some non-negative integer k. As an example, consider

p4(x) = x4 + 2x2 − x− 1

for which c = 1. Descartes’ rule gives 0 ≤ 1 − n+ = 2k which is only satisfied if n+ = 1 and k = 0.
Consequently there is precisely 1 positive real root.

§ The definition of degree is slightly different for the purposes of Section 3.2.

33

Note that the sign changes in pn(−x) can be used to bound the number of negative real roots. By suitable
shifts of origin, it is possible in principle to bracket real roots so that search methods can be used to locate
them. Such methods are rarely used in practice, although various generalizations of search methods are often
used as part of an algorithm for finding complex roots. For example, consider the equations

|an|xn − |an−1|xn−1 − . . .− |a1|x− |a0| = 0 (3.7)

|an|xn + |an−1|xn−1 + . . .+ |a1|x− |a0| = 0. (3.8)

By Descartes’ rule, as each equation has one sign change, there is exactly one real positive root, call these
R for (3.7) and r for (3.8). A theorem due to Cauchy states that all roots of pn(x) lie in the annular region
of the complex plane

r ≤ |x| ≤ R.

Other search methods could be used to subdivide this bounded region.

When a real root, or pair of complex conjugate roots of a polynomial are accurately determined, it is possible
to factorize pn(x) to obtain a polynomial of lower degree that remains to be solved. This process is known
as deflation. For example, consider the cubic

p3(x) = x3 − 6x2 − 222x− 1160

which has precisely 1 real positive root, by Descartes’ rule. We can search for this positive root by examining,
say, p3(10k) for various values of k until we have bounded it. Thus, since p3(0) < 0, p3(1) < 0, p3(10) < 0,
p3(100) > 0 we deduce that this root lies in the interval (10, 100) and can use any suitable method (e.g.
bisection, Newton) to calculate it. This solution turns out to be x = 20. The factorization of p 3(x) can then
be performed numerically to obtain (x− 20)(x2 + 14x+ 58). The deflated polynomial x2 + 14x+ 58 has the
complex roots −7± 3i.

Exercise 3c

Devise a method for solving a cubic polynomial given that it has a double root.
[Hint: Descartes’ rule is not needed.]

Newton-Raphson iteration can be used to find real polynomial roots:

xn+1 = xn − pn(xn)

p′n(xn)

and could in theory be used to find complex roots, but there is an overwhelming drawback. Suppose x 0

is a complex starting approximation, and that all roots are complex. If any iterate, x k say, happens to be
real then so will xk+1, xk+2, . . . so convergence cannot occur. Bairstow’s method overcomes this by using
a Newton-like iteration which converges to the coefficients of a quadratic factor, rather than to a solution
itself. However, Bairstow’s method is rarely used in modern software.

Müller’s method is a generalization of the secant method which works well for polynomials, especially if
complex roots are also required. The secant method is based on linear interpolation between two successive
iterates. Müller’ method uses quadratic interpolation between three iterates, say x i, xi−1 and xi−2. Suppose
q(x) is the quadratic that interpolates a function f(x) at these points. The interpolating formula can be
expressed in the form

q(x) = f(xi) + ci(x− xi) + bi(x− xi)
2 (3.9)

where

bi =
f(xi)

(xi − xi−1)(xi − xi−2)
+

f(xi−1)

(xi−1 − xi)(xi−1 − xi−2)
+

f(xi−2)

(xi−2 − xi)(xi−2 − xi−1)

ci =
f(xi) − f(xi−1)

xi − xi−1
+ bi(xi − xi−1).

34

Applying one version of the quadratic formula‡ to (3.9) gives

x = xi −
2f(xi)

ci ±
√

c2i − 4bif(xi)
. (3.10)

Müller’s method uses the iteration

xi+1 = xi + hi+1

where hi+1 is the quotient on the right hand side of (3.10), with the sign chosen to maximize the absolute
value of the denominator. The rate of convergence is better than the secant method, and almost quadratic,
although no derivatives are required. For solution of polynomials, no starting approximation is needed since
x0, x1 and x2 may be almost arbitrarily chosen. If roots with small magnitude are found first then the
build-up of rounding error is minimized, so it is reasonable to choose x 0 = 0. The square root in (3.10)
ensures that complex values can arise naturally even if real starting values are used.

3.3 Unconstrained optimization

If x is a vector of n variables x1, x2,. . . xn then the unconstrained optimization problem is usually expressed
as the problem of determining

min
x

F (x) (3.11)

which occurs at some point where

∇F(x) = 0 (3.12)

where ∇F is the vector of partial derivatives ∂F/∂xi. The maximization problem is conventionally treated
as a minimization because

max
x

F (x) ≡ min
x

{−F (x)}.

There is a close relationship between the unconstrained optimization problem and non-linear equations.
Consider a single equation

fj(x) = 0.

We could equally well use the equation

[fj(x)]2 = 0

and, since squaring any non-zero quantity ensures that the result will be positive, any solution of the
equation occurs at a minimum value of [f j(x)]2. A set of n non-linear equations can then be expressed as a
minimization problem of the form (3.11) where we take F (x) to be a suitable combination of the f j ’s such
as

F (x) =

n
∑

j=1

[fj(x)]2. (3.13)

Although special software is available for non-linear equations, as an alternative they can be solved using
optimization software. Minimizing a function of the form (3.13) is referred to as the non-linear least squares
problem.

Note that a descent direction is any direction u for which

n
∑

i=1

∂F

∂xi
ui < 0.

‡ See Numerical Analysis I, Section 1.

35

3.3.1 Newton methods

Newton’s method for solution of a system of n non-linear equations§ has been applied to the equations
(3.12) and adapted for both non-linear least squares and general unconstrained minimization problems. For
solution of the system of equations

f(x) = 0 (3.14)

the basic Newton iteration is
xk+1 = xk − J−1

k f(xk) (3.15)

where Jk is the Jacobian matrix (∂fi/∂xj). If Gaussian elimination is used to avoid inverting the matrix
then the system of equations is

Jk(xk+1 − xk) = −f(xk).

The method is rarely employed in practice without modification because it tends not to converge if the initial
approximation is poor. Also, it can be very expensive to evaluate the Jacobian if the number of equations
is large.

Continuation methods can be useful, e.g. instead of solving (3.14) solve a sequence of problems of the form

g(x, t) = f(x) − (1 − t)f(x0) = 0

where x0 is a starting approximation. The problem g(x, 0) = 0 has a trivial solution and g(x, 1) = 0 is
the original problem. Solving a sequence of problems with gradually increasing values of t usually ensures a
good starting approximation for the next problem.

There are many variations on Newton’s method, and we mention briefly the main differences between them.
We write the Newton iteration in the form

xk+1 = xk + hk+1

where hk+1 is the vector of increments.

In the damped Newton method the residuals are examined at each iteration to check that ‖f(x)‖2 has decreased
since the last iteration. If not, then hk+1 is rejected and 1

2hk+1 is tried instead. This is repeated until a
small enough increment vector is found so that the iteration produces an improvement. Note that the
Newton direction is a descent direction so a small enough multiple of h k+1 can in principle be found but, in
a pathological case, underflow might occur first, so it is necessary to have a fallback strategy if halving the
increment a reasonable number of times does not work. The following diagram illustrates the principle by
showing an example of the one-dimensional damped Newton method.

x0 x1

§ See Numerical Analysis I, Section 2.

36

Note that there are only two possible descent directions in one dimension, i.e. ±1. Following the tangent
produces a larger function value, but the Newton direction is downhill, so a sufficiently short increment in
that direction must produce a reduction.

In the modified Newton method the cost of calculation is reduced by using the same matrix J for more than
one iteration, on the grounds that successive Jacobians Jk and Jk+1 will not differ very much close to the
solution. If Gaussian elimination is used to solve the Newton equations then this costs O(n 3) operations,
plus the cost of recalculating the Jacobian. If the same Jacobian is used again then the cost of re-solving
the same equations with a different right-hand side is only O(n2).

There is also a class of matrix update methods in which the iterations are calculated in the form (3.15) by
first computing and storing J−1

0 but, at each subsequent iteration, performing only a rank-one or rank-two
update† to the matrix such that the new inverse can be computed straightforwardly from the previous inverse
without solving any equations.

Finally, quasi-Newton methods are those in which the iteration (3.15) is replaced by

xk+1 = xk −Mkf(xk)

where Mk is some other matrix corresponding to a descent direction.

3.3.2 Steepest descent methods

A different approach to optimization problems is offered by steepest descent methods. Let u = {u 1, u2, . . . un}
be a vector representing a search direction. Consider the function

g(t) = F (x + tu)

which is a function of the scalar t only. If x is an approximate solution then g(0) is equal to the function
value at the point x. As t increases from zero then g(t) represents the function value as the approximation
moves from x in the direction u. The method of steepest descents consists of minimizing g(t) with repect to
t along the steepest descent direction u = −∇F, i.e. if xk is the kth approximation then

xk+1 = min
t>0

g(t) = min
t>0

F (xk − t∇F(xk)).

The minimization over the vector x is exchanged for a sequence of minimizations over the scalar t. The
minimization over t is called a line search. This method is guaranteed to converge under suitable conditions,
since all search directions are ‘downhill’ except at the solution, but may have a very slow rate of convergence.
In 2 dimensions a minimum in a narrow valley is sufficient for the algorithm to perform poorly.

Practical methods use different descent directions and different methods for minimizing g(t). If ∇F can
be calculated fairly cheaply then it is possible to solve g ′(t) = 0 to find a minimum. If ∇F is expensive
to calculate then the line search can be performed using quadratic interpolation to obtain an approximate
minimum.

† The rank of a matrix is discussed in Section 4.

37

4. Numerical Linear Algebra

4.1 Eigenproblems

Suppose an equation (of some sort) has a parameter λ and that this equation has a solution only for
certain discrete values of λ, then the problem is called an eigenproblem and λ is said to be an eigenvalue.
Eigenproblems are met in various fields, such as differential equations and matrix algebra.

The linear matrix eigenvalue problem
(A − λI)x = 0,

where A is an n × n matrix, is the most commonly encountered. The solution x is called an eigenvector.
It may be shown that the eigenvalues are the zeros of det(A − λI) which is a polynomial of degree n in λ
and consequently has n roots. Therefore the matrix A has n eigenvalues, counting possible multiple roots.
If the eigenvalues are distinct then there is a complete set of n linearly independent eigenvectors.

Strictly speaking, for each eigenvalue λ there is a corresponding right eigenvector x and a left eigenvector
yT such that

yT (A − λI) = 0.

In practical problems, one or more eigenvalues are usually required, but eigenvectors are not always required.
Consequently methods are designed so that eigenvectors need not be calculated unless needed.

4.1.1 Eigenvalues and eigenvectors

For a square matrix A, we write
Ax = λx (4.1)

yT A = λyT (4.2)

where λ is an eigenvalue and x and yT are eigenvectors.

Matrices A and B are said to be similar if there exists a non-singular matrix R such that A = R−1BR.
Writing

R−1BRx = λx

and premultiplying by R we get
B(Rx) = λ(Rx)

or
Bz = λz

where z = Rx. Therefore A and B have the same eigenvalues; the eigenvectors are transformed.

A matrix Q is orthogonal if QT Q = I, i.e. Q−1 = QT . If A is a symmetric matrix then the orthogonal
transformation QT AQ is a similarity transformation that also preserves the symmetry. Note also that the
product of orthogonal matrices is orthogonal, so orthogonal transformations can be built up from simpler
orthogonal matrices.

Note that if λj and λk are two distinct eigenvalues,

yT
j Axk = λky

T
j xk = λjy

T
j xk

so that yT
j xk = 0, i.e. yT

j and xk are orthogonal.

Eigenvectors are usually normalized, e.g. such that ‖x‖ = 1 if x 6= 0.

We restrict the rest of this discussion to symmetric matrices because such problems are relatively well-
conditioned and arise most often in practical situations. In this case all the eigenvalues are real, and the left
and right eigenvectors are identical. Also, it follows that xT

j xk = 0 for j 6= k.

38

Exercise 4a

By considering both the transpose and the complex conjugate of (4.1) prove that, when A is a real
symmetric matrix, the eigenvalues are real and the sets of left and right eigenvectors are identical.

4.1.2 Symmetric tridiagonal matrices

Problems with tridiagonal matrices are particularly easy to solve and lead to methods for solving general
symmetric problems, since any symmetric matrix is similar to a symmetric tridiagonal matrix.

The eigenvalues of the symmetric tridiagonal matrix

T =

d1 e1
e1 d2 e2

e2 d3 e3
. . .
en−2 dn−1 en−1

en−1 dn

are the zeros of the polynomial pn(λ) resulting from the last determinant in the sequence

pr(λ) = det

d1 − λ e1
e1 d2 − λ e2

e2 d3 − λ e3
. . .
er−2 dr−1 − λ er−1

er−1 dr − λ

.

We also define p0(λ) = 1. Note that p1(λ) = d1 − λ and, using the rules for expanding determinants, there
is a recurrence formula

pr(λ) = (dr − λ)pr−1(λ) − e2r−1pr−2(λ)

for r = 2, 3, . . . n. Hence pn(λ) is easily computed.

For a given value of λ let s(λ) denote the number of agreements in sign between successive members of the
sequence p0(λ), p1(λ), . . . pn(λ). If pr(λ) = 0 then its sign is taken to be opposite to that of pr−1(λ), but
the same as pr+1(λ).

Theorem 4.1: The Stürm sequence theorem. The number of agreements in sign s(λ) of successive
members of the sequence {pr(λ)} is equal to the number of eigenvalues of T that are strictly greater than λ.

The proof is easier to understand with the aid of a diagram.

39

+

+

+

+

+ −

−

−

−

+

+

+ −

−

+

x

p
0

p
1

p
2

p
3

p
4

Each line is a copy of the x axis representing a polynomial p r(x), with tick marks showing the zeros, and
with the sign of the polynomial indicated.

Proof (in outline). By the method of induction, if er 6= 0 for r = 1, 2, . . . n−1 then the zeros of pr(λ) strictly
separate those of pr+1(λ), and the zeros of pn(λ) are distinct. Clearly s(−∞) = n. The proof is completed
by considering the effect of increasing λ away from −∞, i.e. consider sliding a vertical line representing the
value of λ across the diagram from left to right. The possibility of coincident λ values, for different r, is also
easily explained. Note that if any er = 0 then the determinant can be factorized into two determinants of
the same form but lower degree, so the same proof applies.
¶

If s(λ1) = k and s(λ2) = k + 1 then one and only one eigenvalue of T lies in the interval [λ 1, λ2]. This
property forms the basis of algorithms that can be used (1) to find all the eigenvalues of T, (2) to count how
many eigenvalues lie in a certain interval, (3) to decide whether the matrix T is singular, or (4) to decide
whether the matrix T is positive definite.

4.1.3 Calculation of eigenvectors

Let T be a tridiagonal matrix. The calculation of an eigenvector x requires solution of the linear equations

(T − λI)x = 0

except that x needs to be normalized. This means that the equations are over-determined. They can be
solved by a method known as inverse iteration in which successive approximations are calculated by solving

(T − λ̃I)xn+1 = xn.

The important thing to notice is that λ has been replaced by an approximation λ̃ because otherwise the
matrix T − λI would be singular. However, if λ̃ is a good approximation then the iteration converges very
fast, but extra precision is normally needed.

The calculation of eigenvalues and eigenvectors each have computational complexity n 3.

4.1.4 Methods for reduction to tridiagonal form

As mentioned in Section 4.1.1, an orthogonal matrix Q can be built up as a product of simpler orthogonal
matrices. One useful orthogonal matrix is called a plane rotation and is a variant of the unit matrix of the

40

form

R(i, j) =

1
. . .

1

cos θ sin θ
1

. . .

1

− sin θ cos θ
1

. . .

1

where the elements that are different from the unit matrix appear in the ith and jth rows and columns.
Multiplying by the matrix R(i, j) is geometrically equivalent to a rotation through an angle θ in the plane
(i, j). The advantage of a transformation based on R(i, j) is that it can be used to operate on selected
elements of a matrix only.

Exercise 4b

Verify that R(i, j) is an orthogonal matrix.

Givens’ method (1954) uses a succession of plane rotations to reduce a symmetric matrix to symmetric

tridiagonal form. Consider the matrix A (m) = (a
(m)
ij) which represents the state of the transformation afterm

plane rotations. The effect on the (i, j)th element of forming the matrix A (m+1) = R(i+1, j)A(m)R(i+1, j)T

is given by

a
(m+1)
ij = −a(m)

i,i+1 sin θ + a
(m)
ij cos θ.

We can choose to set a
(m+1)
ij to zero, and the required value of θ is given by

tan θ =
a
(m)
ij

a
(m)
i,i+1

.

As symmetry is preserved, the calculations need only be performed on the lower triangle of the matrix. The
method proceeds by annihilating elements by columns, starting with a 31, . . . an1 by rotations in the planes
(2, 3), . . . (2, n). In the ith column the elements ai+2,i, . . . ani are annihilated by rotations in the planes
(i+ 1, i+ 2), . . . (i+ 1, n).

Householder’s method (1958) improved on Givens’ by annihilating a whole column at a time (and, by
symmetry, a row also) by using a different orthogonal transformation.

4.1.5 Factorization methods

Rutishauser’s qd algorithm (1954) was an entirely new but often unstable method which faded into obscurity.
However, a development from this was his LR algorithm (1958) which uses the LR (or LU) factorization†
and is based on the following property. Let

A = LR

where L and R are lower and upper (left and right) triangular factors, and then form the matrix

B = RL.

† Sometimes used for solution of linear equations – see Numerical Analysis I, Section 2.

41

Now R = L−1A so
B = L−1AL

so that A and B are similar. Under certain conditions, using the iteration

Am = LmRm

Am+1 = RmLm

the sequence {Am} converges to an upper triangular matrix with the eigenvalues on the main diagonal.
Unfortunately, the LR factorization can break down, causing the method to fail.

Francis’ QR algorithm (1961) is a stable development of the LR method. The iteration is of the form

Am = QmRm

Am+1 = RmQm

but now the factor Qm is an orthogonal matrix chosen such that the factorization does not break down. A
further development of the algorithm, using shifts of origin‡, has a built-in convergence acceleration technique,
and is generally regarded as the best method for symmetric problems (including tridiagonal problems)§.

4.2 Rank and generalized inverse matrices

Any matrix, of whatever shape, has a rank. In order to introduce this concept, and its significance in
numerical linear algebra, we will examine an n× n diagonal matrix since we can write down its inverse, if it
exists. We first assume that exact arithmetic is available, and consider the matrix

D =

d1

d2

. . .

dn

which is non-singular if di 6= 0 for all i. The inverse is then diag{1/d1, 1/d2, . . . 1/dn} and we would say that
the matrix D has rank n. If, say, only the first r elements were non-zero then there would be no inverse matrix
of order n. However, we could invert the sub-matrix of order r and form the inverse diag{1/d1, 1/d2, . . . 1/dr}.
We would then say that the matrix D has rank r. The matrix

D+
r =

1/d1

1/d2

. . .

1/dr

0
. . .

0

can then be regarded as an r-dimensional approximation to the inverse of D.

‡ Shifting the origin is a very old idea, applicable to most practical algorithms for eigenvalue problems, and is
attributed to Schröder (1870).

§ However, recent work has focussed on the related problem of determining singular values of a bidiagonal
matrix - see 4.2.1. Demmel & Kahan (1990) used a version of QR to show that these could be determined
with maximum relative accuracy, even for very small singular values. Fernando & Parlett (1994) improved
on Demmel & Kahan’s algorithm by a simple development of Rutishauser’s qd algorithm (1954) which does
not use orthogonal transformations at all.

42

Now consider the effect of using floating-point arithmetic. Suppose that each of the elements of D is being
computed by some lengthy calculation, and that it is known that only the first r elements are non-zero but
that dr is very small and may underflow during the calculation. It is therefore uncertain whether the result
will be a matrix effectively of rank r or r− 1. To be on the safe side one could assume that d r = 0 and form

D+
r−1 =

1/d1

1/d2

. . .

1/dr−1

0
. . .

0

In fact this D+
r−1 is the best l2 approximation of order r− 1 to the true inverse of order r, which is itself an

approximate inverse of Dn. Since D+
r−1 and D+

r are ‘approximations’ to an n-dimensional inverse that does
not actually exist, it is more correct to refer to these as generalized inverses instead†.

For a general n× n real matrix A the effective rank is less easy to determine but, if we can discover what it
is, then we can form a generalized inverse of any matrix. For solution of the linear equations

Ax = b

we need to be able to determine rank and, in a doubtful case, judge whether or not to reduce the rank
in order to improve numerical stability. The method of singular value decomposition provides not only a
suitable way of measuring rank, but also a stable algorithm for solution of linear equations of all types.

4.2.1 Singular Value Decomposition (SVD)

Recall that, for any non-singular square matrix A, the matrix AT A is symmetric and positive definite‡.
This result generalizes as follows: for any m × n real matrix A, the n × n matrix A T A is symmetric and
positive semi-definite§.

Consider the eigenvalue problem

AT Axj = λjxj

where the eigenvalues λ1, λ2, . . . λn are in decreasing order. As the matrix is positive semi-definite, it
follows that the eigenvalues are non-negative, so we can write σ j =

√

λj . Define the n × n matrix
W = diag{σ1, σ2, . . . σn}. A set of orthonormal eigenvectors {xj} can be found, and we can write these
as an orthogonal matrix V, i.e.

V = (x1 x2 . . . xn) .

The values

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (4.3)

are called the singular values of the m × n matrix A†. Golub & Kahan (1965) showed that A may be
factorized in the form

A = UWVT (4.4)

† The term pseudo-inverse is also used.
‡ A symmetric matrix B is positive definite if xT Bx > 0 for any vector x 6= 0 – see Numerical Analysis I,

Section 2.
§ A symmetric matrix B is positive semi-definite if xT Bx ≥ 0 for any vector x.
† It follows that the singular values of a square bidiagonal matrix are the eigenvalues of a symmetric positive

definite tridiagonal matrix - see the footnote at the end of 4.1.5.

43

where U is an m × n matrix for which UT U = In×n. The factorization (4.4) is called the singular value
decomposition (SVD) of the matrix A.

Stable algorithms for SVD have been developed, and utilize various eigenvalue methods such as Householder
reduction and the QR algorithm. Computing the singular values (4.3) gives immediate information about
the effective rank of a matrix since that is determined by the number of non-zero singular values. Further,
if some singular values are ‘small’ then we can set them to zero in order to use a generalized inverse of lower
dimension, provided we have some idea of what is meant by ‘small’ in this sense. The formula (4.4) provides
a method for solving linear equations by a lower dimensional approximation without necessarily forming the
generalized inverse explicitly.

4.3 Matrix norms

To any vector norm ‖x‖v there corresponds a matrix norm ‖A‖M such that

‖A‖M = sup
all x6=0

‖Ax‖v

‖x‖v
= sup

‖x‖v=1

‖Ax‖v.

The norm ‖A‖M is induced by the norm ‖x‖v. Induced matrix norms (also known as compatible norms) are
usually given the same name as the corresponding vector norm, in particular the l p norm of a matrix is that
induced by the lp norm of a vector. It is usual to write

‖A‖p = sup
‖x‖p=1

‖Ax‖p (4.5)

where it is understood that the norms are different on each side of the equation. Note that (4.5) is the
definition of a matrix norm, not an actual formula. The formulae derived from this definition, in the
commonly used cases, are as follows.

Vector norm Matrix norm

l1
∑n

i=1 |xi| maxj

∑n
i=1 |aij |

l2
√

∑n
i=1 x

2
i

√

max eigenvalue of AT A

l∞ maxi |xi| maxi

∑n
j=1 |aij |

(4.6)

It follows that ‖A‖1 = ‖AT ‖∞.

For any induced matrix norm, Schwarz’s inequality holds:

‖AB‖ ≤ ‖A‖.‖B‖.

This inequality also holds if A or B is replaced by a vector using the compatible vector norm.

4.4 Solution of linear equations

4.4.1 Condition of the problem

First consider the linear equations
Ax = b

where A is a square matrix. We can check an approximate solution x̂ by forming the vector of residuals

r = b −Ax̂

and, if these residuals are small, it tells us that the equations are being satisfied, but this does not tell us
anything about the size of the errors in x̂.

44

Define the error vector e = x − x̂. Note that Ae = Ax − Ax̂ = b − Ax̂ = r so e = A−1r. Taking norms
and using Schwarz’s inequality, we have

‖e‖ = ‖A−1r‖
≤ ‖A−1‖.‖r‖

so the relative error in x is represented by

‖e‖
‖x‖ ≤ ‖A−1‖ ‖r‖‖x‖ .

But ‖b‖ = ‖Ax‖ ≤ ‖A‖.‖x‖ so we can replace ‖x‖ on the right-hand side and form an inequality in which
the right-hand side is computable, i.e.

‖e‖
‖x‖ ≤ ‖A‖.‖A−1‖ ‖r‖‖b‖ (4.7)

where K = ‖A‖.‖A−1‖ is the condition number for the matrix A. Note that K depends on the norm being
used. If we choose the l2 norm then, using (4.6), we see that SVD provides a simple formula for K, i.e.

K =
σ1

σn
, (4.8)

where σ1 and σn are the largest and smallest singular values of A. In the case of a singular, or nearly
singular matrix, we can replace (4.8) by K = σ1/σr in order to examine the condition of an r-dimensional
approximation.

Although (4.7) is a sharp inequality, it is nevertheless a worst case result, so the exact value of the condition
number K cannot be taken too seriously. However, if K > 1/macheps then accuracy is likely to increase if
some singular values are discarded‡. In general some judgement, either human or algorithmic, is required to
decide how many singular values, if any, to discard for a given matrix A.

Now write Kn = σ1/σn. Having found the SVD A = UWVT , the sequence Kn, Kn−1, . . . can be examined
to find r such thatKr < 1/macheps. The corresponding approximate solution of the equations UWVT x = b
is then x = VW+

r UT b where
W+

r = diag{σ−1
1 , σ−1

2 , . . . σ−1
r , 0, . . . 0}.

The ideas in this section can be generalized to m× n matrices and to complex matrices also.

4.4.2 Over-determined and under-determined linear equations

Consider linear equations with an m× n matrix A where m 6= n.

In the case m > n there are more equations than unknowns, i.e. the solution is over-determined. Such a case
may arise where a simple data model, e.g. a quadratic curve, is to be fitted to a large number of observed
data points. Forming the SVD of A provides the opportunity to solve the equations directly. Typically the
rank will be n, although a smaller value is possible. The solution obtained by SVD is in fact the best l 2

approximation, i.e. the linear least-squares solution.

In the case m < n there are not enough equations to define a unique solution, i.e. the solution is under-
determined. All possible solutions form a vector space of dimension r, where r ≤ n − m. This problem
does not often arise in practice, but it is interesting that even this case can be fully solved by SVD. The
unique solution produced directly from the SVD method is the so-called minimal l 2 approximation, i.e. the
r-dimensional solution vector t which minimizes ‖t‖ 2 over the solution space. Furthermore, a set of r basis

‡ Recall that macheps or machine epsilon is the smallest ε > 0 such that (1 + ε)∗ > 1 for the floating-point
precision in use – see Numerical Analysis I.

45

vectors can be extracted from the eigenvector matrix V such that any solution of the equations can be
expressed as a linear combination of this basis.

5. Differential Equations

5.1 Preliminary theory

We begin by contrasting linear differential equations with linear difference equations. Consider first a linear
ordinary differential equation (or ODE) with constant coefficients

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = 0. (5.1)

This is termed homogeneous because the right-hand side is zero. Assuming a solution of the form y = e βx

and substituting this in (5.1) gives the characteristic equation

anβ
n + an−1β

n−1 + . . .+ a1β + a0 = 0 (5.2)

which has n solutions, say β1, β2, . . . βn. If all the βi are distinct then the general solution to (5.1) has the
form

y(x) =
n

∑

i=1

Cie
βix (5.3)

where each Ci is an arbitrary constant. In the case that, say, βj is a triple root of the characteristic
polynomial, then (5.3) is modified by including terms in e βjx, xeβjx and x2eβjx. Note also that, as the roots
can appear in complex conjugate pairs, sin and cos terms can appear in the general solution.

If the differential equation is non-homogeneous, i.e.

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = g(x) (5.4)

and p(x) is any particular solution of (5.4), then the general solution of (5.4) is

y(x) = p(x) +

n
∑

i=1

Cie
βix. (5.5)

Now consider a homogeneous linear difference equation with constant coefficients

anyN+n + an−1yN+n−1 + . . .+ a1yN+1 + a0yN = 0. (5.6)

Assuming a solution of the form yN = βN , substituting this in (5.6) and dividing through by βN gives

anβ
n + an−1β

n−1 + . . .+ a1β + a0 = 0. (5.7)

Note that the characteristic equation (5.7) is identical to (5.2). If all the solutions β i are distinct then the
general solution to (5.6) can be shown to have the form

yN =
n

∑

i=1

ciβ
N
i (5.8)

for all N , where each ci is an arbitrary constant. In the case that, say, βj is a triple root of the characteristic
polynomial, then (5.8) is modified by including terms in β N

j , NβN
j and N2βN

j . As with differential equations,
sin and cos terms can appear in the general solution due to complex conjugate roots of (5.7).

If the difference equation is non-homogeneous, i.e.

anyN+n + an−1yN+n−1 + . . .+ a1yN+1 + a0yN = bN (5.9)

46

and pN is any particular solution of (5.9), then the general solution of (5.9) is

yN = pN +
n

∑

i=1

ciβ
N
i . (5.10)

5.2 Initial value problems

We will consider the first order initial value problem

y′ = f(x, y), y(x0) = y0 (5.11)

in which the solution is known at an initial point x = x 0. Numerical methods generally progress the solution
through a finite sequence of points x0, x1, . . . xn. Note that the solution at x = xn can be written

y(xn) =

∫ xn

x0

f(x, y(x)) dx.

As with quadrature, the total number of evaluations of the function f(x, y) is a good measure of the efficiency
of a method.

By convention we write y(xn) for the true solution at the point xn and let yn denote a computed
approximation to it.

Methods are characterized as one step methods in which the computed value yn+1 depends only on data
evaluated at the point xn, and multistep methods in which the computed yn+1 depends on more than one
previous xi value.

5.2.1 Euler’s method

We begin with one step methods, of which Euler’s is the simplest. It is of some practical value, but it is
particularly useful in order to introduce the important concepts of local error and global error.

Methods for numerical solution, and error estimates, can typically be derived from the Taylor series

y(xn + h) = y(xn) + hy′(xn) +
h2

2!
y′′(xn) + . . .+

hk

k!
y(k)(xn) + . . . (5.12)

but note that the evaluation of y(k)(xn) requires partial derivatives since it involves differentiation of
f(x, y(x)). However, by ignoring terms O(h2) in (5.12), and using the equation (5.11), we obtain immediately
Euler’s formula

yn+1 = yn + hf(xn, yn) (5.13)

with the error

E =
h2

2
y′′(ξn).

Because it relates only to a single step, this is termed the local error of the method. A method is said to be
of order k if the local error is O(hk+1), so Euler’s method is of order 1.

Let en represent discretization error, i.e.
en = y(xn) − yn

for n ≥ 0 and assume that e0 = 0. By an analysis omitted here§ it may be shown that the error over n steps
builds up in such a way that

|en| ≤
hY

2L
(e(xn−x0)L − 1)

§ See, for example, Conte & de Boor.

47

where Y and L are constants, i.e. for fixed xn the rate of convergence is only linear. We say that the global
error is O(h), whereas the local error is O(h2). There is an analogy here with quadrature rules which have
a lower order of convergence when used in composite form†.

Usually Euler’s method requires a very small step size h to give reasonable accuracy, so is not often used in
practice. Euler’s method is the simplest of the family of Taylor series methods, but Taylor series methods
of higher order are rarely used because of the partial derivatives required.

5.2.2 Runge-Kutta methods

Runge-Kutta methods, also derived from Taylor series, avoid the need for partial derivatives at the expense
of extra function evaluations.

Consider again Euler’s method
yn+1 = yn + k1, k1 = hf(xn, yn) (5.14)

where k1 is an increment based on an estimate of y ′ at the point (xn, yn). Having computed k1 it is possible
to re-estimate y′ based on the point (xn+1, yn + k1). This gives an increment, k2 say, where

k2 = hf(xn + h, yn + k1). (5.15)

The Runge-Kutta method of order 2 (sometimes called RK2) uses the average of these two increments, i.e.

yn+1 = yn + 1
2 (k1 + k2) (5.16)

where k1, k2 are defined by (5.14), (5.15) respectively. Formally, Runge-Kutta methods are derived from
Taylor’s theorem by finding the coefficients of a formula of a certain type in such a way that the error term
is of as high an order as possible. The local error term for the formula (5.16) is

h3

12
(fxx + 2ffxy + f2fyy − 2fxfy − 2ff2

y) +O(h4)

where fx, fyy, etc denote partial derivatives. The local error is of order h3 compared with h2 for Euler’s
method, but the increased complexity of the error term means that error estimates are difficult to obtain.
Although RK2 requires two evaluations of f(x, y) per step, larger steps can be taken than for Euler’s method.

The most commonly used Runge-Kutta scheme is that of order 4 (called RK4) which is

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4)

where
k1 = hf(xn, yn)

k2 = hf(xn + 1
2h, yn + 1

2k1)

k3 = hf(xn + 1
2h, yn + 1

2k2)

k4 = hf(xn + h, yn + k3).

The local error is O(h5) and four function evaluations are required per step. Note that Runge-Kutta methods
do not need a starting procedure.

As a calculation proceeds, it may be desirable to vary the size of the step length h. One way to check on
the size of the Runge-Kutta step is to repeat part of a calculation using h and h/2 as step sizes. For a
Runge-Kutta method of order p it may be shown that

y(h)(xn+1) = y(xn+1) + Cnh
p +O(hp+1)

y(h/2)(xn+1) = y(xn+1) + Cn(h/2)p +O(hp+1).

† See Theorem 2.5.

48

By subtraction, and taking absolute values,

En ' |Cn|(h/2)p ' |y(h/2)(xn+1) − y(h)(xn+1)|
2p − 1

where En provides a suitable error estimate.

Let ε be the target error per unit step, i.e. we will compare ε with En/h. Now for a Runge-Kutta method
of order p, halving the step should reduce the error per unit step to approximately ε ′ = ε/2p+1‡. Whenever
the size of h is to be checked, there are three possibilities:

(1) ε′ < En/h < ε. Accept y(h/2)(xn+1) and keep the same step h.

(2) En/h > ε. Go back to the point xn, use h/2 and h/4 and repeat the test.

(3) En/h < ε′. Accept y(h/2)(xn+1) and change the step size to 2h.

More sophisticated variations on this idea allow the step size to be varied more widely.

5.2.3 Higher order equations

The RK4 algorithm, and many other algorithms for initial value problems, can be generalized to the solution
of a set of m simultaneous differential equations of the form

y′ = f(x,y), y(x0) = b (5.17)

where x is a scalar variable, b is the initial value of the vector of solutions y, and f is a vector of functions.
This is called a first-order system of differential equations. The generalization of the 4th order Runge-Kutta
scheme is

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4)

k1 = hf(xn,yn)

k2 = hf(xn + 1
2h,yn + 1

2k1)

k3 = hf(xn + 1
2h,yn + 1

2k2)

k4 = hf(xn + h,yn + k3)

where k1, k2, k3 and k4 are also now vectors. Because of the similarity of the scalar and vector formulae
it is usual for software for initial-value problems to be written for first-order systems rather than just the
scalar case.

In fact, this algorithm is quite generally applicable. Consider, for example, the solution of the second order
initial-value differential equation

y′′ + p(x)y′2 = q(x); y(0) = u, y′(0) = v (5.18)

where p, q are given functions and u, v are given constants. By writing z1 = y, z2 = y′ we can write (5.18)
as the pair of equations

z′1 = z2

z′2 = −p(x)z2
2 + q(x)

with initial conditions z1(0) = u, z2(0) = v. Note that this can be written in the vector form (5.17), and is
now a first-order system. This formulation can easily be used for most initial-value problems.

‡ The factor 2p comes from the order of convergence. The extra 2 is because the meaning of ‘per unit step’
changes as a result of halving the step.

49

5.2.4 Multistep methods

To solve the ODE

y′ = f(x, y(x)) (5.19)

we can integrate both sides
∫ xn+1

xn

y′ dx =

∫ xn+1

xn

f(x, y(x)) dx

so

yn+1 = yn +

∫ xn+1

xn

f(x, y(x)) dx (5.20)

then approximate f(x, y(x)) by a polynomial that fits the calculated values of f at xn, xn−1, . . . xn−k and
integrate that polynomial over (xn, xn+1). This leads to an Adams-Bashforth method, which is an example
of a multistep method. Note that it uses a quadrature rule incorporating abscissae outside the interval of
integration. If k = 3 the resulting formula is most conveniently stated in the form

yn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) (5.21)

where fn denotes f(xn, yn), and the local error term is

E = 251
720h

5y(5)(ξ)

for some ξ in the interval (xn−3, xn+1). Another class of formulae can be derived similarly by instead
integrating (5.19) from xn−p to xn+1. In this case if p is odd then it can be shown that the coefficient of
fn−p is always zero, so the method is slightly more efficient. Interesting cases are p = 1, i.e.

yn+1 = yn−1 + 2hfn (5.22)

with the local error term

E =
h3

3
y′′′(ξ)

and p = 3, i.e.

yn+1 = yn−3 +
4h

3
(2fn − fn−1 + 2fn−2) (5.23)

with the local error term

E = 14
45h

5y(5)(ξ).

Multistep methods are more powerful that one-step methods but suffer from the disadvantage that starting
procedures are required: the formulae always require one or more values that are not available at the start
of the algorithm.

Exercise 5a

Suppose formula (5.21) is used with h = 0.1 and Euler’s method is used as a starting procedure with
step h/N . Assuming a global error h/N in Euler’s method, and that |y (5)| < 30, estimate the number
of steps N of Euler’s method required. Suggest a more suitable starting procedure.

5.2.5 Predictor-corrector methods

All the ODE formulae described up to now may be classified as being of open type as they are formulae
for computing yn+1 from data corresponding to previously evaluated points. Formulae of closed type are
implicit, i.e. the formula for yn+1 will depend on data corresponding to xn+1. In general, a closed formula
tends to have a more favourable error term but is not necessarily useful on its own.

50

Using the multistep approach, we can integrate (5.19) from xn−1 to xn+1 and approximate the integral on
the right hand side using an interpolating polynomial that fits the (undetermined) value f n+1. This yields
the formula

yn+1 = yn−1 +
h

3
(f̃n+1 + 4fn + fn−1) (5.24)

where f̃n+1 is the best available approximation to fn+1. Assuming that fn+1 is exactly known, the local
error term for (5.24) is

E = − 1
90h

5y(5)(ζ).

This is 28 times smaller than that for the comparable formula (5.23).

A predictor-corrector method uses a predictor formula to provide a starting approximation for an unknown
quantity, typically fn+1. A corrector is a closed formula that uses the best available estimate of fn+1 in
order to estimate yn+1 and, possibly, further improve it by iteration.

Milne’s method consists of using the formula (5.23) as a predictor, i.e. to provide a starting approximation
to yn+1 and hence fn+1, and the formula (5.24) as a corrector to be used iteratively. Generally the predictor,
though less accurate, should be of similar order to the corrector to avoid inefficiency.

5.2.6 Runge-Kutta versus predictor-corrector methods

Runge-Kutta methods are self-starting and numerically stable for sufficiently small h. The user has no way
of knowing whether the value of h is sufficiently small, except that step-size control can be used. However,
step-size control can be expensive.

Predictor-corrector methods may require less computation time, e.g. RK4 requires four function evaluations
per step, whereas fourth order predictor-corrector methods require only two. It is easier to estimate a suitable
value of h for predictor-corrector methods, though starting methods are required and, hence, changing the
value of h is expensive.

Predictor-corrector methods may be numerically unstable.

5.3 Stability theory

The local error of Euler’s method (5.13) is O(h2), whereas the local error of, say, formula (5.22) is O(h3).
When comparing numerical results from these two methods for a small value of h the accuracy of the latter
method is typically better for the first few steps, but this may cease to be true as the number of steps
increases.

The following table is taken from Conte & de Boor and illustrates numerical instability in practice. Two
methods are applied to the initial value problem

y′ = −2y + 1, y(0) = 1

which has the exact solution

y = 1
2e

−2x + 1
2 .

Methods (5.13) and (5.22) are compared using step length h = 1/32 in each case.

51

Errors
n x(n) y(n) Euler(5.13) Multistep(5.22)

0 0.0000000 1.0000000 0.0000000 0.0000000

1 0.0312500 0.9697065 -0.0009565 -0.0000000

16 0.5000000 0.6839397 -0.0059027 0.0001420

32 1.0000000 0.5676676 -0.0042733 0.0001571

48 1.5000000 0.5248935 -0.0023205 0.0002392

64 2.0000000 0.5091578 -0.0011202 0.0005429

72 2.2500000 0.5055545 -0.0007583 0.0008719

80 2.5000000 0.5033690 -0.0005070 0.0014214

96 3.0000000 0.5012394 -0.0002203 0.0038365

112 3.5000000 0.5004559 -0.0000931 0.0104110

120 3.7500000 0.5002765 -0.0000601 0.0171571

121 3.7812500 0.5002598 -0.0000568 -0.0182603

122 3.8125000 0.5002440 -0.0000538 0.0194397

123 3.8437500 0.5002293 -0.0000509 -0.0206902

124 3.8750000 0.5002154 -0.0000482 0.0220260

125 3.9062500 0.5002023 -0.0000456 -0.0234434

126 3.9375000 0.5001901 -0.0000431 0.0249564

127 3.9687500 0.5001785 -0.0000408 -0.0265630

128 4.0000000 0.5001677 -0.0000386 0.0282768

Note that the listed x values are selective. Although initially more accurate, the multistep method goes
unstable eventually.

Any one-step method, such as Euler’s, is unconditionally stable for sufficiently small h, whereas the stability
of a multistep method must always be investigated in order to decide whether it is stable, and under what
circumstances.

Note that the formula used for numerical solution of an ODE is typically a difference equation, and the key
to understanding the stability of the method is to examine the general solution of this difference equation.
Consider a general non-linear ODE y ′ = f(x, y). If we use a multistep method then this will typically lead to
a non-linear difference equation, which is as hard to solve as the original problem. Consequently it is usual
to examine the stability of a method only for the linear ODE

y′ = λy (5.25)

where λ is a constant. This is sometimes referred to as the test equation. The general solution is y = Ce λx

so we can consider increasing solutions, by taking λ > 0, or decreasing solutions, by taking λ < 0. The ODE
(5.25) leads to a linear difference equation, so the theory in Section 5.1 can be applied. This can be made
clear by means of examples. Also in the interests of simplicity, and without loss of generality, we take x 0 = 0
so that xn = nh.

The analysis of Euler’s method is straightforward when applied to (5.25). Substituting f = λy in (5.13)
gives the difference equation

yn+1 = (1 + λh)yn

with the general solution yn = c(1 + λh)n. Using the well-known result

lim
ε→0

(1 + ε)1/ε = e (5.26)

we get that
lim
h→0

yn = c. lim
h→0

(1 + λh)n

= c. lim
h→0

(1 + λh)(λxn)/(λh)

= ceλxn

. (5.27)

52

The end result of this analysis is similar for all one-step methods, but the significance of it only becomes
apparent when we compare it with the analysis for a multistep method.

Consider now the multistep formula (5.22) applied to the ODE (5.25). Substituting f = λy gives the
difference equation

yn+1 − 2λhyn − yn−1 = 0

with the general solution yn = c1β
n
1 + c2β

n
2 where β1, β2 are the roots of the characteristic equation

β2 − 2λhβ − 1 = 0,

i.e.
βi = λh±

√

1 + λ2h2

= ±1 + λh+O(h2).

Again using (5.26) we have

lim
h→0

yn = lim
h→0

{c1(1 + λh)n + c2(−1 + λh)n}

= lim
h→0

{c1(1 + λh)(λxn)/(λh) + (−1)nc2(1 − λh)(−λxn)/(−λh)}

= c1e
λxn + (−1)nc2e

−λxn

which being a second order difference equation has 2 solutions, only one of which corresponds to a solution
of the ODE (5.25). Now the equation (5.25) must have an initial condition which, if applied to the formula
(5.22) in exact arithmetic, should be equivalent to setting the constant c 2 = 0 so that the correct solution is
obtained. However, if the calculation is performed in floating-point arithmetic then rounding error will cause
a small component of the second solution to be added in as the calculation progresses. To see the effect of
this, we consider two cases: (1) λ > 0, and (2) λ < 0.

(1) If λ > 0 then the solution eλx of the ODE (5.25) is an increasing function of x. Adding in, due to
rounding error, a small component of the second solution e−λx does not matter since it is a decreasing
function of x and is multiplied by a small value anyway.

(2) If λ < 0 then the solution eλx of the ODE is a decreasing function of x. The second solution e−λx of
the difference equation is an increasing function of x and even if multiplied by a small value it will
eventually swamp the other component of the solution.

A formula such as (5.22), in which the stability depends on the sign of λ in (5.25), is said to be weakly stable.

We will now consider the general case. When a multistep method is applied to the ODE (5.25) the
characteristic equation for the resulting difference equation can be expressed in the form

ρ(β) + λhσ(β) = 0 (5.28)

where ρ(β) and σ(β) are polynomials. The left hand side of (5.28) is called the stability polynomial. As
h → 0 the roots of this polynomial approach the roots of ρ(β) = 0. We would expect that β = 1 would be
one of these roots since it corresponds to the solution of the ODE (5.25). A method is said to be strongly
stable if all the roots of ρ(β) = 0 are such that |βi| < 1 except for the root β = 1. Then any extra solutions
of the difference equation cannot dominate the solution that corresponds to the ODE.

For example, consider the Adams-Bashforth formula (5.21). The stability polynomial for this is

β4 − β3 − λh

24
(55β3 − 59β2 + 37β − 9)

with ρ(β) = β4−β3. The roots of ρ are β1 = 1, βi = 0 for i = 2, 3 and 4. Consequently the Adams-Bashforth
method is strongly stable.

53

Note that, trivially, all one-step methods are strongly stable simply because the resulting difference equation
does not have any solutions other the one that corresponds to the solution of the ODE.

Weak and strong stability are concepts that do not take into account the size of h, merely that it has to be
sufficiently small. In general we have to take into account the entire stability polynomial (5.28) in order to
compare methods.

A method is said to be relatively stable if the extra roots of the stability polynomial are less than the principal
root in magnitude. A method is said to be absolutely stable for those values of λh for which the roots of the
stability polynomial are less than one in magnitude.

Finally, it is worth noting that the build-up of rounding error in an ODE solution can be significantly reduced
by performing some of the calculations using extra precision. In particular, summations of the form u+ hv
should be performed with extra precision when h is small compared with u and v, and the result stored
using extra precision.

Exercise 5b

Consider the alternative formulae

yn+1 = yn + hf(xn, yn) +O(h2) (a)

yn+1 = yn−1 + 2hf(xn, yn) +O(h3) (b)

applied to the problem
y′ = −y, y(0) = 1

using h = 0.2 in each case. Given y(0.2) = 0.82, and using only 2 significant digits in your calculation,
progress the solution as far as x = 0.8 using each method. The exact solution to this accuracy is

exact
x y(x)

0.4 0.67
0.6 0.55
0.8 0.45

Which method is more accurate? Why?

If the methods are applied as far as x = 3.0, the results at the last two steps are as follows:

method method exact
x (a) (b) y(x)

2.8 0.043 0.068 0.061
3.0 0.034 0.040 0.050
3.2 0.041
3.4 0.033
3.6 0.027
3.8 0.022

Progress the solution as far as x = 3.8 to supply the missing values from the table. Given that the
low precision of your calculations contributes only slightly to the errors, explain the behaviour of each
method in this region.

Despite the behaviour you have observed, formula (b) is often used as a predictor in a predictor-
corrector method. Why is this justifiable?

State the properties that you would expect a compatible corrector formula to possess.

54

5.4 Stiff ODEs

In various fields, e.g. chemical reactions, control theory, and electronics, systems exist in which certain
processes happen on a very short time-scale and others on a very long time-scale. For example, in modelling
the depletion of the ozone layer in the upper atmosphere, it may take years for pollutants released on the
earth’s surface to rise to the ozone layer, but a resulting chemical reaction may take place over only a few
seconds. It would not seem sensible to model the whole process by means of uniform time-steps. Such systems
give rise to so-called stiff differential equations, in which the independent variable x often represents time,
and for which there are transient solutions that require a short time-step for some part of the calculation.

We will consider only a simple linear example in order to study the special numerical problems that this
poses. Consider the second order ODE

y′′ + 1001y′ + 1000y = 0, y(0) = 1, y′(0) = −1 (5.29)

which has the exact solution y(x) = e−x. The general solution of the differential equation is

y(x) = Ae−x +Be−1000x

but the initial conditions ensure that B = 0. From the discussion of stability in Section 5.3 we would
expect that, due to rounding error, a small proportion of the second component e−1000x would creep into
any numerical solution but, as this decays very rapidly, this in itself would not cause a problem.

Changing the notation slightly, we can write y1 = y and y2 = y′ to convert (5.29) into the first-order system

y′1 = y2

y′2 = −1001y2 − 1000y1

y1(0) = 1

y2(0) = −1

so that the vector generalization of RK4 could be used. Analysis of this method, as applied to this problem,
shows that stability is affected by both solutions of (5.29) even though one of them is absent for the given
initial conditions. Stability is only achieved for h < 0.0028, which is a reasonable step size for calculating
e−1000x but rather small for e−x.

The trapezoidal method is an example of a method which does not have such stability restrictions when
applied to stiff problems. For a first-order system this may be expressed in vector notation as

yn+1 = yn + 1
2h{f(xn,yn) + f̃(xn+1,yn+1)}.

This is a closed formula and so needs to be used iteratively with, say, Euler’s method to start it off. Using
this formula on the problem (5.29) reasonable accuracy can be achieved for comparatively large step sizes,
e.g. h = 0.1.

For a general non-linear first-order system
y′ = f(x,y)

stiffness is determined by the eigenvalues of the Jacobian matrix (∂f i/∂yj). In a region (of the x axis) where
the eigenvalues of the Jacobian are negative and well-separated in magnitude the problem is stiff and special
methods must be used. The work of C.W. Gear and others on backward differentiation formulae (or BDF
methods) has led to much of the available modern numerical software for stiff equations.

M.R.O’D.
18.1.2005

55

