
Introduction to Algorithms

A C Norman. Michaelmas 1994

1 Introduction

This is a set of four lectures aimed just for the Diploma class. It leads in to
the “Data Structures and Algorithms” course that is timetabled immediately after
it. The DS&A course is also attended by CST 1B students, who had a couple
of courses on programming last year as well as one on DiscreteMathematics.
The programming side of things is covered to a large extent bythe fact that the
Diploma class gets taught Modula-3 early in the term, thus this course provides
survival training with regard to the mathematics that the DS&A course needs to
rely on. Those Diploma students who have just completed a first degree in mathe-
matics (elsewhere or here, and possibly including Part 3) might reasonably collect
a copy of these notes, observe the topics covered and not worry about attending
these four lectures1.

Later in the year there is a course that has “Discrete Mathematics” as its title.
There may be a small amount of overlap between this course andthat one, but
I do not mind! Firstly because some things can usefully be said twice and make
more sense the second time, and secondly because the coverage I give here will be
somewhat compressed and will relate only the the DS&A course, while Discrete
Mathematics has other applications in Computer Science.

This set of four lectures is not directly examined. Some of the concepts in-
troduced may, however, help in answers to DS&A questions, and it may give a
preview of Discrete Maths and hence make that easier to cope with.

2 Proofs and Induction

A significant issue in designing proper computer proceduresto solve problems is
that of proving that theyalways work. There is a very large body of empirical
evidence that just writing a program and testing it (even testing it on a very large
number of examples) is not sufficient: formal proof is necessary. Examples given
in this course will not all have a very obviously computerishfeeling — I hope
that when the DS&A course follows it you will see some of the applications of
notation introduced here.

The first piece if notation to introduce here is the symbol “⇒” which I will
pronounce “implies”. The idea is that if you know that the thing on the left is true
then you can deduce that the one on the right is. A major use of this is in the
following construction:

If you know bothA andA ⇒ B

1However note that before dropping anyother lectures you ought to discuss your plans with
your Director of Studies.

1

Then you may deduceB

whatever the statementsA andB are. Eg:

All cats are animals
and Arthur is a cat

therefore
Arthur is an animal

To bring the example better into line with the original formalism it is perhaps
helpful to see “All cats are animals” as shorthand for standing for all possible state-
ments of the form “x is a cat⇒ x is an animal”, with arbitrary words (including
in particular including “Arthur”) substituted for the markerx.

What you find is that the more you strain to make real-world examples precise
the more murky they appear. Some of this is a direct reflectionof the flexibility
and imprecision of natural language. Often things that start off mathematical in
style fit into the structure of formal proofs more easily.

The notation “A ⇒ B” can be read as “IfA thenB” or “ B is true ifA is”. So
far we have use this in cases where we have some way of knowing thatA is true.
Another use of the same rule is when we can tell (from some other source) that
B is false. It is then valid to deduce thatA must be false also. For instance given
that all cats are animals, knowing that the statement “the moon is an animal” is
false assures us that the moon is not a cat. Wow! If you were a class of mediaeval
philosophers you would know these rules asmodus ponensandmodus tolens, and
we could talk about deduction using them as syllogisms. I hope the rules look like
natural common sense, but it is worth noting that in common speech (especially
of a political nature!) the rules are very often not adhered to. As an exercise try to
spot examples where people try to carry forward an argument but break the formal
rules of logic. Eg modified from a Thurber story

People who eat carrots and have long ears cause earthquakes
and there was just an earthquake

therefore
It was caused by the rabbits

therefore We wolves are justified in taking them into protective custody
. . . to protect ourselves

Some people would consider that the above line of argument illustrates various
other bad forms of deduction, such as starting the argument off with an assertion
that is false, and slightly adjusting the interpretation of“protect” part way through
(etc).

On occasions it will also be useful to write things the other way around as
in “B ⇐ A”, which can perhaps unexpectedly be read as “A only if B”. To

2

see how, observe thatA being true whileB is false contradicts the implication.
Finally A ⇔ B is a shorthand for having bothA ⇒ B andA ⇐ B, and to prove
it you normally need to prove both theif and theonly if parts — often separate
proofs will be required for these two parts. A very common confusion is to mix
up whether you are in the process of proving the⇒ or⇐ part.

Often the sorts of things you want to prove in computer science (and math-
ematics) will be general statements true forall cases of some condition. One
approach to this is known asproof by induction. It comes in a number of variants,
so I will deal with the simplest one first:

Suppose I want to prove that some result is true for all integer values ofn, ie
n = 1, n = 2, n = 3, . . . then I can start by proving thebase casewhich will be
the first one,n = 1, and then showing that if the result is true for some particular
value ofn then it must also be true for the next step up (n + 1).

As an example, consider the Tower of Hanoi problem — you have aset of
graduated discs and three pegs. A larger disc may never be piled on top of a
smaller one, and the discs live on the pegs. In a single move you may move one
disc from the top of the pile on one peg to the top of the pile on another peg, but
you must keep to the rule that large discs may never be placed above small ones.
The result to be proved is that however many discs there are itis possible (starting
with all discs piled in order on one peg) to make a sequence of moves that end up
with the discs on another nominated peg.

The proof by induction goes as follows

Base case:With one disc it is easy - just move it!

Induction step: Suppose we can achieve the desired effect withk discs, and now
we havek + 1. Calls the discs X, Y and Z and suppose all discs start on X
and are to be moved to Y. Observe that if we just ignore the bottom (largest)
disc the remainingk discs are subject to the same rules of the Hanoi game,
so by our induction hypothesis there is a sequence of moves that ends up
with all of them on peg Z. From this state it is possible to movethe largest
disc from X to Y. For the remainder of the sequence again the largest disc
can be ignored, and again moving thek discs from Z to Y can be done. In
the end all discs are on peg Y in the desired order, so we have shown how
to generate a sequence of steps that movek + 1 discs.

The two parts above are sufficient to prove the general result. If one writes an
abbreviationHn for the statement “The Hanoi puzzle can be solved if there are
n discs” then we provedH1 directly, and then set up a chainH1 ⇒ H2, then
H2 ⇒ H3, H3 ⇒ H4 and so on for ever. So you see that the inductive step in the
proof is just a way of building up (all at once) a chain of simple “⇒” deductions.

3

It is vital in proofs by induction to have a base case. In many examples that
you will come across it will be incredibly trivial, but it is still important to write it
down.

In the above example the inductive step took the view that when proving stage
n it was legal to assume that stagen − 1 was true2. An alternative variant on the
induction idea is that when proving stagen you assume that the result has already
been proved forall values less thann, not just the special valuen − 1.

A lion may be asleep somewhere in a desert, can we find it or discover that it
is absent?

Base case:If the desert has area less than 10 square metres then we can find the
lion [since this example is slightly a joke I am going to assume that this
remark is “obviously” true].

Inductive step: Divide the desert into two sub-deserts each of equal area. Call
these N and S (or E and W if you like). Observe that their area isin each
case smaller than that of the whole desert. Thus by an induction hypothesis
we can find the lion (or its absence) in each sub-desert. If we find the lion in
one part we report success, if it is not found in either sub-desert it is utterly
absent.

This proof needs one more crucial component — an argument that if we take any
desert at all and keep dividing it in two we will always end up with a region of
sand that has area less than 10 square metres. The base case here is in fact a bit
questionable, especially if you imagine a large desert always being split strictly
North/South so that the 10 square metre base case is in fact a very very long but
very very thin strip of territory. Such concerns do not damage the structure of the
inductive proof, but should serve to warn you that all the finedetails must be in
place for a proof to be valid.

I will show one more example of a proof that uses a form of induction. The
result I want to prove is that any arithmetic expression thatuses just addition and
multiplication and that has only even numbers written in it will evaluate to an
even value. This will be structurally much closer to many of the proofs needed for
DS&A methods. The inductive proof will be in terms of the number of operators
in an expression.

Base case:With no operators at all the expression is just a number, and by the
statement of the problem that is an even one.

Inductive step: If there is at least one operator then the whole expression isof the
form A ⊕ B where⊕ will be either an addition or multiplication operator,

2Well, the notation that when proving stagek + 1 I assumed the result true fork, but that
amounts to the same thing!

4

and A and B are sub-expressions. I will treat things like2 + 4 + 6 as
(2 + 4) + 6 here. There are then two cases to consider

The leading operator is + Each ofA andB will have fewer operators than
the whole expression, hence by induction each will evaluateto an even
number. The sum of two even numbers is even, hence the whole ex-
pression is even as required.

The leading operator is * Similarly, since the product of two even num-
bers is even.

3 Sets, Relations

Very many computer data structures are best reasoned about using things called
“sets”. For the purpose of this course a set is collection of things, and is written
by listing the members of the set inside curly brackets.. So for instance the set
whose members are the first five whole numbers might be written{0,1,2,3,4}. It
is perfectly possible to have a set with no members at all, andit is then (obviously)
written as{}, and known as the empty set. There are a number of rules about sets
and a collection of things you are allowed to do with them:

• The members of a set should not be thought of as being there in an particular
order, even though when you write down a representation of a set you have
to list them somehow. So for instance{1,2,3}, {3,1,2} and{2,1,3} are all
just different ways of writing down the same set.

• Any particular object can either be in a set or not. The consequence of this is
that when you list the members of a set you should never see anyduplicates.
It is not possible for an object to be a member of a set twice or more times,
so{1,1,1,2,2,3} is not a valid things to write.

• As well as having the null set{} it is (of course) quite proper to have sets
that have a single member. Set members can be arbitrary things, includ-
ing other sets. Thus we can have the number 1, and the sets{1}, {{1}},
{{{1}}}. These are all quite different things. For instance the set{{},
{{}}} is a set with two members (one of which is the empty set, the other
is a set whose sole member is the empty set).

• It is quite common to use upper case letters to stand for sets and lower
case ones for the items that may be members of those sets. The notation
x ∈ A is used to indicate set membership.x is an object andA is a set. Eg
3 ∈ {1, 2, 3, 4, 5} is true. The notationA ⊂ B is used to indicate thatA is

5

a subset ofB, ie it has as its members some selection from the members of
B. Eg{2, 4} ⊂ {1, 2, 3, 4, 5}.

• The notationA ∩ B is a set whose members are just those things that are
present in bothA andB (theintersection), whileA∪B has all the members
that are in either (or both)A andB (theunion).

• The exact rules for the treatment of very infinite sets are notneeded in this
course, but informal notation will be used to describe simple cases, such as
the integers{. . . ,−2,−1, 0, 1, 2, . . .}. The expression{x2|x ∈ {0, 1, . . .}}
stands for{0, 1, 4, 9, . . .}.

• Given a finite set you can find out how many members it has. The number
is known as the cardinality of the set (or more simply as its size), and is
sometime written|A| as in|{2, 4, 6}| = 3.

An ordered pair is just a pair of things grouped together where (unlike the
situation with sets) the ordering of the two items does match. Such pairs will
be written with parentheses as in (1,2) rather than curly brackets. This idea will
be extended to ordered triples, quadruples, 5-tuples and soon, and in generaln-
tuples. The objects in ann-tuple do not need to be all of the same sort. Eg here is
a 4-tuple

(1, "string", {{}, {22}}, x}

where the third member of the 4-tuple is a set.
Given one or more sets there are ways of constructing bigger sets out of them.

The outer product of two setsA and B is the set of ordered pairs(a, b) with
a ∈ A andb ∈ B. Eg {a, b} × {1, 2} = {(a, 1), (a, 2), (b, 1), (b, 2)}. The pow-
erset of a setA is the collection of all subsets ofA. Eg. powerset({p, q, r})=
{{}, {p}, {q}, {r}, {p, q}, {q, r}, {p, r}, {p, q, r}}

You might like to convince yourself that|A×B| = |A||B| and|powerset(A)| =
2|A|. For the powerset example try induction on the size of the set.

Given a setX , a relation is some property that may or may not hold between
one member ofX and another. For instance if attention is restricted to setsof
numbers then the operator “<” for “is less than” is a valid relation, as would be
“=” for equality. Sometimes people will want to use a general name, say R for an
unspecified relation, and then rather than something concrete likex = y they will
write xRy to show thatx relates toy under R.

Relations are not only things that arise with numbers. In a family tree (or many
computer data structures you will come across later) the relation “is an ancestor
of” can be relevant. Given a set of people one could specify the relationship

6

“likes” (useful for a computer-based system for arranging seating plans at large
dinners?). A final example is the “is married to” relation.

Relations can have different properties, and the examples given above can
illustrate some of the important ones:

Reflexive: Given any member of the set,x say, does the relation hold true be-
tweenx and itself. For= it does, for< and “is married to” it does not and
for “likes” the status is unclear to me. Relations that have this property are
known as reflexive. From any (possibly non-reflexive) relation you can de-
rive something called the reflexive closure by forcing each itemx to relate
to itself but otherwise leaving conditions unchanged.

Symmetric: Of the examples given here,= and “is married to” have the property
that if (x,y) relate then (y,x) do too. This makes them symmetric, while< is
clearly not. Again the extent to which “likes” is a symmetricrelation on any
particular set is an interesting social consideration. Thereflexive closure of
a relation extends a relation to force symmetry. Eg the symmetric closure
of < is 6=.

Transitive: If x = y andy = z then we may deduce thatx = z. Similarly for
<, and these relations are, on account of this, known as transitive. There is
such a thing as a transitive closure, which is discussed in the next section.

4 Relations and Graphs and Matrices

Relations can seem rather abstract things, of dubious utility. One of the things that
makes them come alive in computer science is just an alternative way of looking
at them (and especially at relations on finite sets). Take a set X and a relation R
on it, and identify the members ofX with nice dots drawn somewhere on a piece
a paper. Then take the relation, and if two members in the set,say (x,y) are related
(ie xRy) draw a directed arc from the spot that stands forx to the one that stands
for y. By a “directed arc” I mean that the line drawn has an arrow on itshowing
which way it goes, so that there is no possible confusion between the arc (x,y) and
the one (y,x). The effect is that the relation has been represented as a graph.

Now set up a square table, with one row for each possiblex or y and one
column for each. Fill in the cell at position (x,y) with a true or false marker that
indicates whetherxRy holds. The relation has been represented as a matrix. And
in passing we have shown that any graph can be represented as amatrix, and any
matrix that has just boolean values can be interpreted as a graph. To give yourself
concrete example, try drawing the graphs and matrices for the relations= and<
as they apply to the set{1, 2, 3, 4, 5}.

7

Now I can come back to the transitive closure of a relation. A typical applica-
tion is to start with a set consisting of cities, and a relation which is true if there
is a direct non-stop rail link between the two cities involved. Then the transitive
closure of this relation will indicate whether there is any way of travelling by rail
between two places, ignoring the original requirements that the journey be direct
and non-stop. In terms of graph operations this is now probably reasonably easy
to visualise.

Interpreted in this new image, a reflexive closure just adds little loops to each
vertex in the graph so you can do a small round trip and get backto where you
started. Note the difference between being somewhere and being able to get some-
where by taking a single step of a journey — adding the loops does make a real
difference.

A symmetric closure extends the rail network so that if it is possible to go from
A to B then it is also possible to get back fromB to A.

There are a great many natural and important problems that are naturally
thought of in terms of graphs — and so relations can provide some mathemati-
cal notation and underpinning while sometimes boolean matrices may be a useful
concrete representation for computers to use. Sample problems include:

1. Is the graph connected (ie each vertex can be reached from any other)? If
not, how many pieces does it fall into?

2. What is the longest path you can take through the graph without visiting any
vertex more than once. What is the longest path that does not traverse any
edge more than once?

3. Given a connected graph, is there any vertex which if removed would leave
it not connected? This is important for communication networks, in that
such a vertex would be critical for the reliability of the whole net.

4. How many colours are needed to colour each vertex of the graph so that
vertices that are joined by an edge have different colours?

5. Within the graph, where is the largest subset of vertices that are all mutually
directly connected.

6. Given two graphs are they really the same shape, only differing in the way
they happen to have been described?

A special sort of graph (and hence relation) has all arcs starting in one subset
of its vertices (call that subsetA), and ending in another (B), and only one arc
issuing from any one vertex. This can be seen as a way of representing a function
from the setA to B.

8

Looking at relations and functions as graphs is probably theeasiest way of
working out how many of them there are. For instance for a setX with sizen the
number of relations possible is2n2

. These range from the vacuuous one where the
relation is never true to the almost equally silly one where it is always satisfied.
See this by observing that each relation onX can be seen as ann by n matrix with
boolean entries, so there aren2 entries in all, and each can be either true or false
(2 possible values) so there are2n2

possibilities in all.

5 Big-O andΘ notation

All the while in Computer Science we are concerned with how long things are go-
ing to take. It is almost always necessary to make a few simplifying assumptions
before starting of cost estimation, and for algorithms the ones most commonly
used are:

1. We only worry about the worst possible amount of time that some activity
could take. The fact that sometimes our problems get solved alot faster
than that is nice, but the worst case is the one that is most important to
worry about.

2. We do not know what brand of computer we are using, so ratherthan mea-
suring absolute computing times we will look at rates of growth as our com-
puter is used to solve larger and larger problems of the same sort. Often
there will be a single simple number that can be used to characterise the
size of a problem, and the idea is to express computing times as functions
of this parameter. If the parameter is calledn and the growth rate isf(n)
then constant multipliers will be ignored, so100000f(n) and0.000001f(n)
will both be considered equivalent to justf(n).

3. Any finite number of exceptions to a cost estimate are unimportant so long
as the estimate is valid for all large enough values ofn.

4. We do not restrict ourselves to just reasonable values ofn or apply any
other reality checks. Cost estimation will be carried through as an abstract
mathematical activity.

Despite the severity of all these limitations cost estimation for algorithms has
proved very useful, and almost always the indications it gives relate closely to the
practical behaviour people observe when they write and run programs.

The notations bit-O andΘ are used as short-hand for some of the above cau-
tions.

9

A functionf(n) is said to beO(g(n)) if there are constantsk andN such that
f(n) < kg(n) whenevern > N .

A functionf(n) is said to beΘ(g(n)) if there are constantsk1, k2 andN such
thatk1g(n) < f(n) < k2g(n) whenevern > N .

Note that neither notation says anything aboutf(n) being a computing time
estimate, even though that will be a common use. Big-O just provides an upper
bound to say thatf(n) is less than something, whileΘ is much stronger, and
indicates that eventuallyf andg agree within a constant factor. Here are a few
examples that may help explain:

sin(n) = O(1)

sin(n) 6= Θ(1)

200 + sin(n) = Θ(1)

123456n + 654321 = Θ(n)

2n − 7 = O(17n2)

log(n) = O(n)

n100 = O(2n)

1 + 100/n = Θ(1)

Various important computer procedures have costs that growasO(n log(n)).
In the proofs of this the logarithm will often come out as onesto base 2, but
observe thatlog2(n) = Θ(log10(n)) [indeed a stronger statement could be made
— the ratio between them is utterly fixed], so with Big-O orΘ notation there is
no need to specify the base of logarithms — all versions are equally valid.

6 Recurrence Formulae

When analysing algorithms one will often end up with a proof byinduction that
shows that the method described does indeed always solve theproblem it was sup-
posed to. Quite frequently this proof can be extended to yield a way of estimating
the costs involved. Look back to the Tower of Hanoi example, and now we know
that given a tower ofn discs it can be moved from one peg to another, consider
how many elementary moves will be used if we follow the recipeimplicit in the
inductive proof. To do this start by introducing a name for the cost, sayM(n) for
the number of steps to moven discs. Then from the base case of the induction
we haveM(1) = 1. The induction step shows that success is possible by a route
which gives

M(n) = M(n − 1) + 1 + M(n − 1) = 2M(n − 1) + 1

10

This is a recurrence formula that we would like to solve to findsome explicit
representation of the cost growth functionM(n). Note that the proof we have
does not show that this will necessarily be the most efficientway of moving the
discs, just that it is one way that achieves the desired final configuration. Thus any
result we get out from solving the recurrence will probably be put inside a Big-O
to indicate that it is just an upper bound for the cost of solving the problem.

This course will not have either the time or inclination to show you all the
clever ways there are of solving recurrence formula, and instead just provides a
cook-book listing some of the more commonly arising ones andindicating their
solutions. Symbols with names likek stand for constants, and will sometimes
need to have values larger than 0 or 1 for the results quoted tobe valid.

f(n) = f(n − 1) + k : f(n) = Θ(nk)
f(n) = k1f(n − 1) + k2 : f(n) = Θ(kn

1)
f(n) = k1f(n/k1) + k1n : f(n) = Θ(n log(n))

f(n) = f(n/k1) + k2n : f(n) = Θ(log(n))
f(n) = k1f(n/k2) + . . . : f(n) = Θ(nlog(k1/k2))

f(n) = f(n − 1) + f(n − 2) : f(n) = Θ(φn)

whereφ = (
√

5 + 1)/2 ≈ 1.618034, the golden ratio. In each case more careful
analysis would specify the exact constraints on the values of the constants permit-
ted, and limitations on the initial values off(0) or f(1). Often an exact solution
(not just one correct to within the constant factor thatΘ permits) can be found, for
instance for the Hanoi problem the solution isM(n) = 2n − 1.

7 Conclusion

If you want more reading on this sort of material, I recommend“Concrete Mathe-
matics” by Knuth, Graham and Patashnik. It obviously containsmuch more that
can fit in my four lectures, but a great deal of what it containscould find direct
use somewhere in a computer science course.

11

