
Databases

A C Norman, Lent Term 1995

These notes prepared by A C Norman and N H M Caldwell, 1995

1 Introduction: What is a database?

First let me introduce these lecture notes. They are not a complete presentation of
all the material covered in the lectures — rather they provide an overview of the
topics around which the course is based. The textbooks listed at the end should be
consulted to find complete and accurate technical discussions of all these issues.
However some of the textbooks are sturdy 800+ page volumes, and so obviously
they contain much more than the lecture course can possibly cover: these notes
should help you sort out which sections are vital and which you should read just
for interest.

The term “database” may be used loosely as a term for almost any body of
information kept on a computer. Here the emphasis will be on cases that tend to
have most of the following properties:

Persistent data: The information must be preserved beyond the end of the run
of just one program. Thus I will not view the contents of a computer’s
memory while it is running a program to be (of itself) a database unless
perhaps steps have been taken to keep that computer running and reacting
over a very extended period of time;

Multiple uses: Data become most interesting when related information is col-
lected together and multiple applications share access to it.

Scale: Utterly tiny amounts of information do not call for databasetechnology,
so we will often be thinking about substantial amounts of information;

Enterprise Data: Frequently databases hold information that is central to the
operation of some organisation (“mission critical” in software engineering
parlance), and anything that compromises either the accuracy of the data
or smooth access to it would have severe repercussions. Thusreliability
becomes a serious issue;

Modelling the Real World: The data stored will be a representation of some in-
formation that has a relevance and reality outside the computer. Thus (usu-
ally) the storage of temporary results computed during somelengthy math-
ematical calculation will not count;

Security Matters: Information in many databases will be sensitive in one way or
another, so although it is important to make the intended patterns of access
to data easy, preventing improper access is usually also vital;

Flexibility is needed: All the other issues listed here imply that use of any real
database will evolve over time, and so abstractions must be used so that
incidental implementation decisions do not inhibit this.

1

Coping with these demands will naturally lead to costs: in thesize and com-
plexity of the database management software, in the design effort needed to es-
tablish a database and set up ways in which controlled subsets of the information
stored can be accessed, and in the machine resources needed to support it all. So
perhaps the first suggestion from this course is that if you have an application
with simple data, structured in a way that is not going to change, without need
for multiple users or security or with severe constraints onthe absolute delay that
can be tolerated for one operation, then avoid database technology and store your
information in simple files with some clever index structure. But as soon as you
start to find multiple uses for (subsets of) your data, and multiple concurrent users
need support, it is time to move to use of a data base management package.

When considering the costs of using database technology (andthat will often
need to include the cost of learning how to apply it) it is perhaps instructive to
think about the value of data. I will give a simple (perhaps over-simple) calcula-
tion that suggests that perhaps it is quite high. First suppose that the real-world
data exists somewhere outside any computer, that it is either textual or numeric,
and that there is no obvious way of setting up machines to scanit directly. Given
these assumptions I will just look at the cost of having somebody sit at a keyboard
typing the data into a computer. I will not make any allowancefor collecting the
information in the first place, proof-reading it once it has been typed, or editing it
later to correct the mistakes.

A respectable typing rate is around 60 words per minute, at around five letters
per average word, so I will estimate (coarsely) that data canbe presented at five
bytes per second. This is 18 Kbytes per hour, which figure might be accurate to
within a factor of two. Continuing this calculation leads to the conclusion that a
simple floppy disc (that costs 25p when bought in bulk) takes two weeks to fill
even if we have somebody typing at fairly high speed full time. Rounding all
estimates fairly vigorously, I will count this as having cost £500, or 2000 times
the cost of the floppy disc.

The amount of information stored on a single floppy disc is still pretty small
by today’s standards. Consider a CD-ROM, which can be stamped out in bulk
for not much more than a pound, or where you can have a version that you can
record for yourself for a unit cost of under£10. If I consider such a disc totally
filled (around 600 Mbytes) and again suppose that this is datathat I have had
to get typed in at some stage, the cost of the keyboarding stage alone is around
£200,000. Even if I store the data on a hard disc (as of early 1995 a suitable one
could be bought for around£160) there is ahugedifference between the cost of
the computer hardware involved in storage and the value of the data itself.

Of course sometimes the information in a database can be collected in some
other way that might be more efficient e.g. some supermarketswill use bar-code
scanners at their checkouts to collect information. But in general the cost of col-

2

lecting data will increase as the need for reliability increases (spotting errors and
making corrections is time consuming and expensive), and the value (as distinct
from the cost) of data will be higher yet. The message I want toget across is that
even medium sized databases may represent significant investments, and large
ones have to be recognised as enormously valuable - and henceworth treating
with care.

Date[1] lists as some of the potential benefits of use of a DBMS:

Control of redundancy: If all your data is stored together you may avoid the
need for multiple copies of the same information. While this may save disc
space a much more important issue is that it removes the possibility that the
multiple copies get out of step with one another.

Access Control: DBMS software should be able to support some form of au-
thentication, and only allow access to data to users or applications that are
properly registered.

Persistence:Some modern (often experimental!) database managers are moving
towards being able to capture and preserve almost any data structure that
can be created within a program, so that it can be re-loaded and used again
on another day.

Integrity Constraints: A severe problem with real data is that of errors — for
instance those caused by the original incorrect input of text or values. A
DBMS must make it easy to specify various consistency checks that can
help flush out erroneous entries and which can prevent bad data from cor-
rupting the results of too many queries.

Backup and Recovery: Database software should also provide coherent strate-
gies to allow the reconstruction of information after almost arbitrary hard-
ware (and software) crashes.

Economy of Scale:Use of a database may focus explicit attention on the support
of uses of that data, and make it possible to concentrate the people with
relevant in-depth technical knowledge in a small group rather than letting
distributed amateurs deal with each separate application.

This course isnot going to be about the detailed procedures for laying out
data on discs or algorithms for searching it in clever and fast ways. The low level
details of database implementation are of course fun and complicated. However a
first course on databases should assume that suitable database management pack-
ages already exist: it should worry about how raw real-worlddata can be organ-
ised in ways that avoid unnecessary hardware dependence andrisk of error, and

3

talk about how the data can then be mapped onto the major models that database
managers support.

2 Applications of Databases

Database technology is pervasive wherever computers are used in support of large
enough projects. However the fact that thefull problems associated with them
do not arise until there are multiple uses (and possibly users) of the data, or until
there is a large amount of information to be stored will mean that most students
(and indeed a great many academics) will not have personal and direct experience
of them. The uses of a database may have a strong influence on how it should be
organised and implemented, so here are a few sample applications, together with
brief commentary on the aspects of them that are likely to be most challenging:

Bank Customer Records: You would presumably be upset if anything caused
your bank to lose track of how much money you have lodged with them (or
less upset if they forgot about your overdraft). Banks and Building Societies
will often have very large databases, with a large volume of updates, and a
need for real-time response to some queries (such as checks to determine
if enough money is available to make it reasonable to withdraw cash from
a hole-in-the-wall automated teller. There are very heavy peak periods for
bank transactions. A bank will have a large number of local branches, and
one might like to be able to take advantage of the fact thatmost transactions
involving any one customer involve activity quite close to that branch. A
key issue is the high volume of updates to the data.

Retail Business: A retail business (consider a supermarket chain) will need to
keep records that relate to stock levels, suppliers, orders, sales volumes,
VAT, payroll, shop repairs and its advertising campaigns. At least! In dif-
ferent parts of the company quite different sorts of access to this information
will be required — individual departments should only be able to access the
information relevant to their work. A key issue is the rich collection of ways
in which information has multiple uses.

Computer Aided Manufacture: The manufacture of almost any reasonably com-
plicated object will involve a range of computer activity. This may involve
engineering design, with elaborate computer models and simulations of the
object, through to the keeping of detailed records of suppliers of compo-
nents and failure rates of units that involve those components. In most cases
the object being made will go through a number of different revisions or
models, and there will be financial as well as directly technical information

4

to be kept. In some cases this may require the support of very complicated
forms of data in a database — much more than records that just count the
number of tins of baked beans sold.

Telephone-based insurance companies:will need to be able to retrieve customer
records whenever you phone them. I include this to suggest the extra prob-
lem that can arise if there are real-time constraints on how queries to the
database must be satisfied.

Historical records: These may provide an example of a sort of database that is,
by its nature, not subject to update (unless of course an archaeologist un-
earths new information). Being read-only might in many ways simplify
database management, but in some applications this might bebalanced out
by the need to perform very elaborate sorts of search to find the information
that is wanted, for instance in an attempt to trace the life ofan individual by
piecing together information from many different sorts of record. Note par-
ticularly that a retrieval from such a database may involvemuch more effort
than just using a single word as a key that points to the required information.

It should be clear from the above that databases can be very varied. There
will be major parameters that influence how they should be implemented. These
include the ratio of updates to inspect-only accesses (enquiries), the degree of
uniformity and simplicity in the data stores, whether the database is enormous or
just large and whether queries will all fall into a small number of regular patterns.

3 Problems in database design and use

The real concern of this section is more to explain what issues about databases
are most tricky and critical. Obviously performance will beone difficult issue.
Arranging for robustness in the face of potentially fallible hardware will raise
other problems. But the really critical challenges that facedatabase administrators
are at a quite different level:

1. If the same information is extracted from the database twice, using different
access routes, is it certain that the results will match?

2. Is it possible to prevent “obviously” wrong information from ending up in
the database?

3. If it is necessary to reconfigure the database — either to accommodate
changed hardware or to allow for new styles of use of the data —can exist-
ing uses of it continue uninterrupted?

5

4. Can the database be documented well enough that it will be possible to
support and extend its structure many years after its initial installation.

5. Will the formal database structure that has been set up form an adequate
model for the real-world objects or activities that it is supposed to record
information about?

These challenges relate more to controlling the structure of the database than
to any details of its algorithmic implementation.

4 Separation of concerns: the ANSI/SPARC archi-
tecture

A database can be considered from three major perspectives,and keeping the
various issues that arise neatly attached to one of these is referred to as “using the
ANSI/SPARC (three-schema) architecture”. The three views considered are:

1. An internal one, which is concerned with physical disc drives, the layout
of data onto blocks, detailed indexing procedures and in general the inter-
pretation of how data is mapped onto a real computer. Aschema for this
would be a document describing all relevant internal-leveldetails of how
the database in question is configured.

2. Theconceptual levelalso has a schema to document its view of the data.
This time the idea is to suppose that low level details have been handled
elsewhere, and concentrate on specifying the types of information to be
stored, the relationships that the database may be called upon to handle and
what operations will be provided for accessing and updatinginformation.
It is the job of a conceptual schema to describe the complete structure of a
database, so when setting one up it will be necessary to understandall the
uses that the data will be put to.

3. At any one time a database can be described by just one internal and one
conceptual schema. But there can then be severalexternal models of the
data. In general there will be one external schema for each major use that
the database has, and this must document just the parts of theinformation
that is relevant to that use. Note that this does not at all mean that an ex-
ternal schema will be just a subset of the conceptual one — data that it
exposes may need to be retrieved indirectly from the conceptual model, and
sometimes information will need re-arranging or filtering before it is made
available to the (external) user.

6

Before continuing it is perhaps necessary to stress that the “customer” of a
database will, for the purposes of this course, always be an application program.
In the simplest cases this program will just sit there allowing a user to type in
queries, it will forward these to the database proper, receive a result and display
it for the user. But in more realistic cases the program will make several (perhaps
many) database queries in response to one interaction with its human user, and will
update records in the database as well as just read from them.The parts of this
program that perform calculations, run communications networks and organise
convenient interactive user interfaces arenot of concern to a database course. The
external schema of a database explains how this program talks to the more central
database manager.

The three levels all describe the same database, but at leastin principle dif-
ferent people design and work with each. A major goal of database design, and
one that has made the ANSI/SPARC architecture very successful, is referred to as
data independence. This has two sub-flavours:

Physical: If the conceptual schema of a database can be kept separated from the
internal one, itshould be possible to change the internal schema without
disrupting anything else. A circumstance where this becomes a vital practi-
cal concern is when the computer on which the database is mounted has its
configuration changed, or when new low level data managementalgorithms
are invented. There are also possibilities that following measurements on
the actual pattern of use of a database the administrator could want to re-
arrange the internal schema so that especially frequently performed opera-
tions take less time. Changing the internal schema will very often alter the
performance of a database, but we do not want that to make any previously
supported styles of access to become totally unavailable.

Logical: Logical data independence represents the ideal state whereconceptual
and external views are well separated, so that changes in theconceptual
schema do not cause existing application programs (all of which use one
of the external schemas) to fail. It can be useful to change the conceptual
schema either to add new sorts of information to the system, or to add extra
constraints that police consistency conditions that had previously been ig-
nored, or to remove or rearrange the storage of information that is now no
longer frequently accessed.

The main consequence of the ANSI/SPARC architecture and its application to
data independence is that there have to be explicit mappingsthat transform queries
from the language used at one level to that needed by the next.

A secondary matter (well, historically it was not secondaryat all!) is that a
strict adherence to data independence makes it hard for one of the higher level

7

schemas to provide the lower level ones with hints that mightmake a big dif-
ference to performance. For instance if following the tenets of data independent
design, a conceptual schema will utterly ignore such issuesas the size of sectors
or tracks on the discs that will be used at the internal level,and so will sometimes
specify records that would (in a naive implementation) grate against the hardware.
Bigger and better database management software systems can now deduce or re-
construct most of what they need to deliver reasonable performance, and because
many databases will last for many years, designs optimised for one generation
of equipment may look rather silly next year when new computers and discs are
installed.

The conceptual level of a database is defined in some notationthat will be
referred to as aData Definition Languageor DDL . The termStorage Definition
Languageor SDL relates to a notation used to define the internal schema. The
ways that external users see the data are sometimes known asviews, and one can
have aVDL to describe one. At the external level there will also need tobe aData
Manipulation Language (DML) in which operations on the data are expressed.
Often the DML will be embedded within some ordinary programming language,
either using language-extension keywords, wrapped up as a collection of library
routines, or supported by some way in which ordinary programs can exchange
messages with the Database Manager (DBMS).

5 Databases and Reality

A quite unexpected problem with databases is that it is usually not at all easy to
design them so that they are proper mirrors of the real world.While starting to
plan this course I came across a concrete example of such a problem, and one that
relates to what is really quite a small amount of data. Trinity College was keeping
separate records relating to students in several differentoffices, and it turned out
that even after putting in real work chasing oddities it proved impossible to dis-
cover exactly how many undergraduates were around! The numbers as shown by
the different lists differed by two or three, and the differences seemed not to be
simple to reconcile. Some of the difficulty is that the term “undergraduate” ends
up not being quite precise enough:

1. The Admissions office might count the number of applicantswho had been
made offers, had achieved the relevant grades and had not indicated that
they were going to withdraw;

2. The Tutorial offices might count exam entries;

3. The Junior Bursar looks at students who need accommodationin the under-
graduate room ballot;

8

4. The College office needs to report how many students are getting grants
from their local authorities as undergraduates, and how many are being
funded in some other way.

In each case there can be odd or marginal cases. These includestudents who
are away from Cambridge for a year hoping to recover from illness. Also ones
studying abroad for a year on some exchange scheme. Some students drop out
completely, but at odd times of year, for academic, financialor other reasons.
Exam entries get muddled, and it is even the case that a few students will be
entered for two sets of examinations in different subjects in one year. In even a
medium sized College one can get two different students each called J Smith and
both reading the same subject — and thereby causing confusion. I have known
of students changing their names (by deed poll) partway through their stay here,
further muddling things. Frequently in curious cases the exact status of a maybe-
student will be unclear for quite a long time, and it will not be at all clear cut when
their status in any particular batch of records should be updated.

Of course the funny cases are each individually fairly uncommon, but with
about 600 undergraduates (hah — for some purposes a Part III mathematician
is an undergraduate too. . . , and where shall we list affiliated students?) some
uncertainty remains.

A further indication of how hard it is to collect nicely structured data that nev-
ertheless ties in with the real world is the large incidence of grossly inappropriate
questions on forms that have to be completed. They often indicate assumptions
that the designer of the form made when deciding what to ask, and how such as-
sumptions can fail. Kent’s book[3] is by now pretty old, and its typography is a
reminder of a few unhappy years when some authors were invited to hand golf-
ball-typewriter typed final copy to their publishers. But it explores at length the
relationship between the tidy virtual world of electronically stored data and the
reality that it is intended to model.

The message that this gives us is that an unthinking acceptance of words that
are in common use as adequate descriptions for classes of entities to be installed
in databases can lead to trouble: more careful thought is needed.

6 Entities and Relationships

Two vital words associated with database design areentity and relation1. An
entity is just any object that a database will want to includereference to. Date
gives an example where a database will contain entities thatare suppliers, projects,

1Later on we will cover a database strategy that is known as therelational model, but for now
the term “relation” is not implying that we are using that particular approach.

9

parts, warehouses, locations, employees and departments.When starting to design
a database identifying the entities that are needed will be avery early step. A
relation links several entities, and although many relations concern themselves
with just pairs of entities it is perfectly possible to have higher order relations.

The purpose of identifying entities and relations is to gainsome degree of con-
trol over the semantics of the database that is eventually designed. Note that when
identifying entities and relations present in some scenario that is to be modelled
by a database you are concerning yourself with the conceptual level and are not
pre-judging any internal details.

When listing the sorts of entities that will be used it will also be useful to
think about their types (for instance some numeric data willrepresent amounts of
money, other data that may end up stored using exactly the same numeric repre-
sentation may indicate size rather than value) and to decidewhat constraints apply
(so the age of a person might reasonably be constrained to liebetween 0 and 969
(the age that Methuselah is reported as having lasted to)).

7 The network model

The “network model” for databases is hardly even mentioned in the latest edition
of Date’s book, but you can read about it in Elmasri and Navathe[2]. Or if you
go back to a 5th edition of Date you will find a lengthy appendixabout it, with
yet earlier editions giving it even greater prominence. Today there is much more
emphasis on “relational” databases (discussed later). Thenetwork model emerged
from the CODASYL (Conference on Data System Languages) Data Base Task
Group (DBTG) in 1971. This is (in computer terms) an enormously long time
ago, so why still discuss it? There are two major reasons:

1. Databases are often very long lasting entities. Many large databases will
last much longer than the particular computer systems on which they are
mounted. Thus there will be databases initially established in the 1970s
that are still in use, and where altering the associated models will be very
hard. The existence of such “legacy” systems means that it isstill useful to
understand the previous major generation of database techniques.

2. Understanding the places where the network model was awkward to use can
help justify the relational replacement. In the same way it will be necessary
to study relational databases even when they have been replaced by the next
big 20-year wave of ideas (whichmay be object orientated databases).

One of the most important examples of a network-based DBMS is aproduct
called IDMS, and some of this section may relate specificallyto that, while other

10

remarks will be true of network-based databases in general.It does not support
the full three levels of the ANSI/SPARC suggestion, but stilltries to keep some
separation of concerns. It provides three components:

1. A “Schema DDL”, which is used to define the global structureof the mater-
ial that is to be stored. It slightly mixes together concernsthat ANSI/SPARC
separate into their conceptual and internal schemas;

2. A “Sub-Schema DDL” that defines external views of the data (i.e. ones that
will be used by individual applications);

3. A DML (data manipulation language) which is a set of record-by-record
operations that work on the structures defined by the two DDLs. This will
be embedded in some existing programming language — and for most real
database applications over the time-frame where this styleof work was most
common, this would mean COBOL. (Although a FORTRAN DML is also
supported through the use of a database library to extend thelanguage.) The
access is batch oriented and not all convenient forad hoc queries.

The presentation here willnot reveal too much about how network databases
are mapped onto physical discs, or how multiple simultaneous users are supported,
or what is done to ensure recovery following hardware failure. I will provide a
logical explanation of what is done. The entire database will be made up out of
records andlinks. There will be types associated with both records and links.Each
link type will associate one record from aparent (or owner) type with an ordered
collection of records from achild (or member) type. Any particular record of
the parent type has exactly one link (and thus one associatedset of child records)
associated with it. Each child record is in at most one link (of specified link
type). The individual records will comprise fields that contain whatever strings,
numbers or other material the database is concerning itselfwith. The detailed
representation of links is a business for the DBMS to worry itself with, not for us.
Even if, internal to the database, some quite different indexing scheme is used, it
is normal (and convenient) to think of a parent record containing a pointer to its
first child, a pointer chain following through there to further children, and ending
by referring back to the parent. This forms a loop or ring. We can therefore
reasonably expect that given an instance of a parent, we can find the first child,
given a child we can find the next child (or have a LAST indicator returned), and
given a child we can find its parent, and this is indeed the case.

A somewhat more detailed presentation of the various components of the CO-
DASYL DBTG proposals will now be given (but some of the goriness has been
suppressed).

11

7.1 Schema DDL

There are four main parts to the Schema DDL:

• Schema Entry

• Area Entry

• Record Entry

– Record Subentry

– Data Subentry

• Set Entry

– Set Subentry

– Member Subentry

The Schema Entry NAMES the data model (database), and can also specify
procedures to be called for the validation of access rights (logon procedure, pass-
word protection), and on error. Thus there is overall provision for privacy, security
and integrity in the proposals.

The Area Entry describes the LOGICAL data storage regions (thus enabling
records to be stored on different discs dependent on some attribute value), and
specifies procedures to be called to effect OPEN and CLOSE as well as when er-
rors occur. Access is specified on OPENing and is usually EXCLUSIVE for UP-
DATE and PROTECTED for RETRIEVAL. Areas can also be specified as TEM-
PORARY in order to define a scratchpad which will persist only from OPEN to
CLOSE.

In the Record Entry, there must be one entry for each RECORD TYPE. The
Record Subentry is about accessing the record as a whole and will define the type
name, with possibly KEY information including control overduplicates and or-
dering, and a reference to the AREA or AREAs on which the record occurrences
are to be stored. An important clause covers the placement ofrecord occurrences
when they are created — LOCATION MODE IS — and this can be set to DIRECT
(near a given DBKEY — a physical address), CALC (e.g. hash, index), VIA set-
name SET (logical level version of direct placement) or SYSTEM-DEFAULT (up
to the DBMS). This clause mixes concerns of the internal levelwith the concep-
tual level, and is contrary to the ideals of data independence. The Data Subentry
gives the ‘record layout’ by FIELD, defining field-name, typeand length attribute
by attribute for each record type.

The Set Entry defines the relationships in terms of parent andchild records that
exist in the data model. For each association (or set) of child records with parent

12

records, an OWNER type must be specified, and for each SET occurrence (each
ring structure) the ordering of MEMBERs and the insertion strategy must be spec-
ified. For most sets, MEMBER types must be defined in the Member Subentry
to determine whether for each MEMBER type membership in a set is MANDA-
TORY (must have a proper OWNER), or OPTIONAL. This Subentry will also
give details of KEYs for ordering set occurrences, locatingmember records etc.
If membership is MANDATORY, then the actual insertion may beMANUAL or
AUTOMATIC and in the latter case the occurrence of the set to which the newly
created MEMBER record is to be appended is explicitly defined.

7.2 The Sub-Schema DDL

On the whole, this provides a restricted view of the data model. The structure
of the sub-schema definition closely follows the pattern setin the Schema DDL.
However AREAs are now called REALMs. It is also the case that notall SET
and RECORD types need be visible (but nothing new can be added). The Data
Subentry for records can now specify changes of data type, calculate new units
etc. New privacy controls may be introduced at sub-schema, realm, record or set
level.

7.3 Data Manipulation Language

The access to the database is always via some subschema. An application pro-
grammer will compile in an environment containing subschema information, and
will be able to create work areas for each record type with thesame names and
components as are specified in the subschema through using the INVOKE <sub-
schema> statement.

The security of data as well as the control of concurrent access is effected by
the OPEN and CLOSE “verbs” (COBOL terminology for a command), and OPEN
can specify either the SETs (high-level) or REALMs (more physical) that are to
be manipulated. Query processing would be run as ‘PROTECTED RETRIEVAL’
whereas update processing would be made via ‘EXCLUSIVE UPDATE’. This is
not enforced and is left to the discretion of the applicationprogrammer.

Once a process has OPENed SETs or REALMs, data access is possible. Records
of given type are read into the work areas defined by INVOKE. The program has
available the following CURRENT records:

• CRU — the Current-of-Run Unit which is the record currently being looked
at (regardless of type)

• CURRENT of each record TYPE — the last record of each specific typeto
be looked at

13

• CURRENT of each SET — which is the OWNER or MEMBER last looked
at (‘touched’) in that set

• CURRENT of each AREA/REALM

The programmer “navigates” around the database transferring attention from
record to record by RECORD SELECTION EXPRESSIONs (RSEs). Normallyif
a new record is selected, each of the currency indicators will change — although
it is possible to suppress all changes except those to the CRU.To establish a par-
ticular record currency, the FIND verb is used and the RSE can select in a number
of ways:

• via DBKEY

• via KEY and mode CALC (hash table or index access)

• NEXT, PRIOR, FIRST, LAST in the current occurrence of given SET

• the OWNER (parent) in given set using any currency indicator

• by making CURRENT of RECORD TYPE, REALM or SET the CRU

The verb GET actually transfers data from the CRU to the work area, and in IDMS
the verb OBTAIN≡ FIND + GET.

There are a number of other verbs available such as STORE (to the database!)
which creates a new record of specified type from data in the corresponding work
area, and also inserts the record into the appropriate occurrence of any set in which
its membership is AUTOMATIC. The verb MODIFY may be used to alter data
values in the CRU obtaining the new values from the work area (and can some-
times alter its set membership from one set occurrence to another). The verb
INSERT (or CONNECT) places the CRU in a selected occurrence of one or more
sets, whereas REMOVE (or DISCONNECT) has the opposite effect. The verb
DELETE (or ERASE) erases the CRU and may delete members of sets that are
owned by the CRU (i.e. any of its child records). The actual result of a DELETE
invocation depends on which qualifiers are used, but an injudicious use could
cheerfully delete the entire database. Currency and navigation are a complex and
dangerous way of moving around a database.

After all that, it is no wonder that the relational database model has won many
adherents.

8 The Relational Approach

The Relational Model was founded in 1970 by a paper from E.F. Codd (then of
IBM Thomas J. Watson Research Center). It aims to provide a simple and clear

14

mathematical representation to aid database design. The data model description is
at a high level, and the nature of the proposed DMLs is such that they will ensure
data independence. There is no provision in the proposals for the storage level
specification and so this is left entirely to the DBMS implementor.

To understand and discuss relational data models, we must recall a few terms
and define a few crucial ideas:

• An entity is an object which exists in the enterprise and which is distin-
guishable from other objects in the enterprise.

• An attribute is a function which maps from an entity set into a domain
(set of permitted values) such that every entity can be described by a set of
(attribute, data value) pairs with one pair for each attribute of the entity set.

• An attribute value set is the set of values that may be taken by a given
attribute taking account ofall possible populations of the database.

• A relationship is a n-ary association arising naturally between entities.

• Populations : the population is the collection of valuescurrently derived
from a real-world entity set.

• Relations (not relationships): are current entity descriptions or current
entity associations. (Both entity descriptions and relationships may be rep-
resented in relations.)

• Functions: Those relations which are necessarily functional (whatever that
means) in any achievable real world state.

The relational model is founded on the idea of adomain or value set which
is specified by an underlying simple (scalar) data type whichis the smallest se-
mantic unit of data.2 The domain is essentially a datatype providing a set of scalar
values from which the actual values of the various attributes defined in terms of
the domain are drawn.

A record in the relational model is known as atuple which is a set of attribute
values di taken from domains Di (where 1≤ i ≤ n). Thus we write (d1, d2, . . . , dn)
where n is thedegreeof the tuple (ie number ofattributes). Tuples defined over
the same domains Di and with the samemeanings are grouped to formrelations.
The number of domains then becomes the degree of the relation. The number
of tuples in a relation is known as thecardinality of the relation and varies with
time. It should be noted that different attributes in a relation may share the same
underlying domain (but the intended semantics of the attributes will be different)

2This criterion for nondecomposition of domains is First Normal Form — explained later.

15

and so it is necessary to name both the underlying domain and the r̂ole played by
a given attribute in a relation.

A relation can be thought of as a table with the columns representing the at-
tributes and the rows representing the tuples, but this is anapproximation only for
three very important reasons:

1. There are no duplicate tuples in a relation (follows from fact that relation is
a mathematical set of tuples). Thus a proper implementationof a relation
should not permit duplicate tuples to be entered. (SQL unfortunately does
allow this.)

2. Tuples are unordered (top to bottom) and this is also a set definition conse-
quence. Thus there is no such concept as positional addressing or nextness
in the model.

3. Tuples are unordered (left to right) and this is again a setdefinition con-
sequence. Attributes should only be referenced by name, andthere should
in particular be no importance attached to the first attribute (i.e. it does not
have to be the primary key (explained now)).

In order to address a tuple in a relational database, we need to choose apri-
mary key for each relation. As a result of the no duplicate tuple constraint, it
will always be possible to accomplish this. The process of selecting a primary key
involves determining thecandidate keysof the relation. A candidate key for a re-
lation R is a subset K of the set of attributes of R where K possesses the properties
of uniquenessand irreducibility . Uniqueness means that no two distinct tuples
of R will have the same value of K, and irreducibility means that no proper subset
of K has the uniqueness property. If there is more than one candidate key for a
given relation then which one becomes the primary key must bechosen. (The
other candidate keys are then calledalternate keys)

8.1 The Relational DML

Two formalisms are available to serve as the basis for relational DMLs, and both
have been used in that capacity. Both formalisms are equivalent in that any ex-
pression in one formalism can be reduced to an expression in the other. The two
formalisms in question are the relational algebra and the relational calculus. The
Relational Algebra is efficient at providing query operations at the relation level,
whereas the Calculus operates at the tuple level in order to provide efficient up-
date (which would be cumbersome at relation level). I will content myself with
presenting only the relational algebra. (Concrete examplesof the algebra will
(probably) be given in the lectures.)

16

The Algebra allowsset operations to be performed on pairs of relations R,S
having the same domains underlying their corresponding columns (and hence also
the same degree; the two relations should also have the same meanings). Thus tu-
ples from R,S are comparable and the standard Boolean operations can be mean-
ingfully applied. The Algebra supports:

Intersection: R ∩ S — a relation that contains those tuples common to R and S
(Notation R·S)

Union: R ∪ S — a relation that contains all the tuples from R and S (Notation
R+S)

Difference: R \ S — set of tuples that belong to R but NOT to S (Notation R-S)

Quadratic Join: If R is a relation over domains (D1, . . ., Dm) and S is a relation
over domains (D′

1
,. . ., D′

n), then the quadratic join R× S has the domains
(D1,. . .,Dm,D′

1
,. . .,D′

n), and therefore it consists of concatenations
(d1,. . .,dm,d′

1
,. . .,d′n) where (d1,. . .,dm) ε R and (d′

1
,. . .,d′n) ε S. As the no-

tation suggests, this is essentially the Cartesian product of the two relations
and so the resulting cardinality of R× S is the product of the cardinalities
of R and S.

There are three data manipulation operations specific to therelational data
model, namelyselection, projection andequi-join.

Selectionexpressions define filters that accept or reject the tuples ofa re-
lation. Exactly what can be specified in a selection expression depends on the
underlying DBMS. The simplest selection expressions restrict by constraining the
values in a particular attribute. Most systems permit Boolean combinations of
such elementary selectors. More generally if two attributes (Ci,Cj) in a relation
are defined over the same domain D, it should be possible to SELECT via ex-
pressions involving the domain values di,dj. The most general case is of selection
by a tuple-predicate f(d1,. . .,dn) that returns the boolean true or false to indicate
whether tuple (d1,. . .,dn) is to be accepted or rejected.

Projection serves two functions. Firstly it permutes a subset of the columns
(rôles) of a relation: secondly it permits redefinition of rôle identifiers. The latter
is needed in some DBMS to enable correct data linkage via the equi-join, and may
aid sensible tabulation. Projection (because it specifies asubset of a relation), like
selection, can only decrease or maintain the cardinality.

Equi-join provides the cross-reference by value between two relations, and
requires good tactics as it is the most costly operation. Assume two relations R
defined by columns (C1,. . .,Cm) with domain Di underlying Ci, and S defined by
columns (C′

1
,. . .,C′

n) with domain D′j underlying C′j. A common requirement is

17

to combine data from tuples in R and S that match on some columnor columns.
Thus if columns Ci in R, C′

j in S share the domain Di = D′

j R and S can be joined
“WHERE Ci = C′

j”. Similarly if there is more than one pair of columns that share
an underlying domain. In the worst case (when all tuples in each factor in the
JOIN share the same single value of the “join key”) the resulting relation can have
cardinality that is the product of the cardinalities of the two factors.

The set operations together with selection, projection andequi-join may be
combined to form relational expressions in order to pose more complex queries.

8.2 SQL — Structured Query Language

The first prototype of this language appeared in 1974-75, andit has been revised
since thenculminating in an ISO/ANSI standard known as “SQL/92” (or Inter-
national Standard Database Language SQL (1992)). The standards document is
over 600 pages long, and so I will not even pretend to present SQL in any depth.
The fact that SQL/92 has diverged greatly from being a close implementation of
the relational model is another reason why I will not spend much time on it.

SQL/92 consists of three components: a data definition language, a data ma-
nipulation language, and a view definition. The data definition language possesses
a schema definition and a table definition (table is SQL-speakfor relation). The
data manipulation language is based on relational calculuswith relation-valued
queries. The view definition consists of named relational expressions. An SQL
database consists of one or more schemas (database areas belonging to some in-
dividual user), with transaction support in terms of “commit” and “rollback”.

SQL data definition consists of issuing a CREATE SCHEMA invocation fol-
lowed by an AUTHORIZATION< user> in order that the user can then GRANT
privileges. The principal task after this is to define the tables that will store the
data. This is done via the CREATE TABLE command:

CREATE TABLE Cities
(CITY CHAR (15) NOT NULL,

POP DECIMAL (10),
PRIMARY KEY (CITY))

The above example defines a table with two columns (SQLuses the term “col-
umn” where the relational model talks of an “attribute”) where the CITY column
will be used as the primary key. The domains as allowed by SQL are not user-
defined types in any real sense but merely a slightly extendedset of primitive
built-in data types that one would expect to find in any ordinary programming
language. No support is available for strong typing or inheritance. SQL tables
are allowed to have duplicate rows (ie tuples) and the tablesare further consid-
ered to have a left-to-right column ordering. Tables can be ALTERed at any time

18

to insert/delete a column or to insert/delete a column default value (NULL is the
“default default”).

Data manipulation comprises four principal statements SELECT, INSERT,
UPDATE and DELETE. I will content myself with giving some simple exam-
ples for these operations which should be (fairly) self-explanatory but will not
demonstrate the full power of the language.

INSERT
INTO Cities (CITY, POP)
VALUES (‘Cambridge’, 75000) ;

UPDATE Cities
SET POP = 85000
WHERE Cities.CITY = ‘Cambridge’ ;

DELETE
FROM Cities
WHERE Cities.CITY = ‘Oxford’ ;

SELECT Cities.CITY , Cities.POP
FROM Cities
WHERE Cities.POP > 50000
ORDER BY Cities.CITY

The SELECT statement should not be confused with theselection operator
from the relational algebra as the use of various optional clauses in a SELECT
statement can enable it to perform a complex series of selections, projections and
joins.

SQL supports views via the CREATE VIEW statement. It should be noted
that INSERTs and UPDATEs on a view will only fail if they violate the view-
defining conditionsand if a special optional clause has been included, otherwise
they will not fail. I hope that you all realise that this is logically wrong. A view
will typically be accesible via the standard data manipulation statements as given
above.

9 Redundancy and Normal Forms

Codd’s original paper on the relational model presented a methodology for helping
to maintain functional dependencies in the form of criteriafor schema definitions
that store information on a “ONE FACT, ONE PLACE” basis. The normalisation
strategies that I will present are based on removing redundancy from the schema

19

vianonloss decompositionwhere no information is lost in the process of breaking
up relations into smaller ones.

Firstly, a definition of what it means to be functionally dependent:

Let R be a relation, and let X and Y be arbitrary subsets of the set of attributes
of R. Then Y is functionally dependent on X (or X functionally determines Y (X
−→ Y)) iff each X-value in R has associated with it precisely oneY-value in R.

Thus whenever two tuples in R agree on their X-value, they also agree on their
Y-value. It should be noted that the functional dependencies of interest here will
be ones that relate to the real-world semantics associated with the data being rep-
resented. Thus dependencies that just happen to be true for all the data currently
stored but which could potentially be broken next time the database is updated
will not count. This is a major reason why the delicacies of modelling real-world
data have an important effect on database design.

First Normal Form A relation is in 1NF if and only if all underlying domains
contain scalar values only.

1st Normal Form Example
MAKER MODEL DOORS C.C. STYLE DEALER TEL
AUDI 100 CD 4 2200 SALOON SMITH 8331
MG MAESTRO 4 1600 H’BACK JONES 6221
MG METRO 2 1300 H’BACK JONES 6221
ROVER VITESSE 4 3500 H’BACK JONES 6221
ROVER 2000 4 2000 H’BACK JONES 6221
VW GOLF GTI 2 1800 H’BACK SMITH 8331

Second Normal FormA relation is in 2NF if and only if it is in 1NF and every
non-key attribute is fully functionally dependent on the primary key.

Without 2NF, the functional dependency of a non-key attribute on a subset of
the key (in our example, main dealer is only dependent on maker and not (maker
and model)) can be broken. This problem can only arise if the primary key is
composite in nature (multi-attribute).

Third Normal Form A relation is in 3NF if and only if it is in 2NF and there are
no functional dependencies between non-key attributes.

Otherwise we could break such a functional dependency by introducing an
additional tuple into the relation. Here is the previous example converted into
3NF.

20

MODELS
MAKER MODEL DOORS C.C. STYLE
AUDI 100 CD 4 2200 SALOON
VW GOLF GTI 2 1800 H’BACK
MG METRO 2 1300 H’BACK
MG MAESTRO 4 1600 H’BACK
ROVER 2000 4 2000 H’BACK
ROVER VITESSE 4 3500 H’BACK

DEALERS FOR MAKERS
MAKER DEALER
AUDI SMITH
VW SMITH
MG JONES
ROVER JONES

NUMBERS OF DEALERS
DEALER TEL
JONES 6221
SMITH 8331

Boyce-Codd Normal FormLet R be a relation of degree n defined over domains
D i (1 ≤ i ≤ n). A proper subset of k≤ n domains forms adeterminant if some
other attribute value in R is functionally dependent on the values taken in these
k domains. Then a relation is in BCNF if and only if the only determinants are
candidate keys.

The intuition behind BCNF is that if something determines anything then it
should determine everything, hence it should appear only once. It should be noted
that BCNF is strictly stronger than 3NF and is conceptually simpler in that it does
not refer to more liberal normal forms as such. Breaking BCNF means that we
run the risk of storing a determined value in more than one place.

In order to demonstrate BCNF and the next level of normalisation (4NF) we
will exhibit a relation in BCNF.

Qantas Airways run a fleet of Boeing 747’s. Individual aircraft differ in pay-
load, seating capacity and range, and so each aircraft only flies some of the routes,
being operated by particular crews. Spare parts are held at major airports visited
by Qantas aircraft, but only those required for models visiting that airport. (The
relation we exhibit is all key, and therefore in BCNF, but clearly information is
redundantly stored.)

21

BCNF EXAMPLE
Aircraft Crew Spares Depot
City of Brisbane Capt Thomas Auckland
City of Brisbane Capt Thomas Tullamarine
City of Brisbane Capt West Auckland
City of Brisbane Capt West Tullamarine
City of Melbourne Capt West Amsterdam
City of Melbourne Capt West Singapore
City of Melbourne Capt West Tullamarine
City of Darwin Capt Smith Auckland
City of Darwin Capt Smith Tokyo
City of Darwin Capt Smith Tullamarine
City of Darwin Capt Thomas Auckland
City of Darwin Capt Thomas Tokyo
City of Darwin Capt Thomas Tullamarine

Fourth Normal Form Given a relation R with (sets of) attributes A, B, and C, the
multi-valued dependenceA →→ B holds in R iff the set of B-values occurring
for a given (A-value, C-value) pair is independent of the C-value. Then a relation
is in 4NF if and only if, whenever there is a multi-valued dependency in R, say
A →→ B, then all attributes of R are functionally dependent on A. (Equivalently:
R is in 4NF if R is in BCNF and all multi-valued dependencies in R are in fact
functional dependencies.)

I will now exhibit the Qantas aircraft schema in 4NF.

AIRCRAFT CREW
City of Brisbane Capt Thomas
City of Brisbane Capt West
City of Melbourne Capt West
City of Darwin Capt Smith
City of Darwin Capt Thomas

AIRCRAFT SPARES DEPOT
City of Brisbane Auckland
City of Brisbane Tullamarine
City of Melbourne Amsterdam
City of Melbourne Singapore
City of Melbourne Tullamarine
City of Darwin Auckland
City of Darwin Tokyo
City of Darwin Tullamarine

22

Fifth Normal Form Let R be a relation, and let A, B,. . ., Z be arbitrary subsets
of the set of attributes of R. Then R satisfies thejoin dependency* (A, B, . . .,
Z) if and only if R is equal to the join of its projections on A, B,. . ., Z. Thus
a relation is in 5NF (also calledprojection-join normal form (PJ/NF) iff every
join dependency in R is implied by the candidate keys of R.

So are Normal Forms a wholly ‘good thing’? They do remove a number of
serious problems resulting from redundant information, but they also have their
problems in that decomposition may lead to poor performance(because of the
need to run round tables), decomposition may make it easy to break semantic
constraints, and finally one sort of normalisation may causeanother to be broken.
Constraints of referential integrity can aid us, but I do not have the time to go into
the nature of these constraints.

10 Missing Values and other problems

10.1 The Problem of the Missing Values

In the real world, it is often the case that you don’t actuallyknow the answer to
a question, or the question is in fact inappropriate or irrelevant in your particular
circumstances. The Problem of the Missing Values is that we must decide how
the database shall represent such real world situations. This area of concern has
sparked a tremendous controversy in the literature and there is still no consensus.
I shall outline the two opposing “solutions” but I stress that neither of them should
be considered to be theright answer as Missing Values are a really nasty problem.

The first “solution” is to usenulls to represent missing information. Thus in
a historical database storing genealogical information, we would insert a special
marker (a null) in any tuple where we didn’t know the date of birth for instance.
Thus we insert a null in any attribute position in order to record the fact that we
don’t know the given fact — i.e. that the requested value is UNKNOWN. A null
is not a blank and it does not equate to zero, it is simply an undetermined value.
It may well be the case that certain attributes had better notcontain nulls and
so some current relational database software includes DDL extensions to allow
the database designer to specify whether a given attribute may be assigned nulls
or not. The problem with using nulls is a consequence of nullsbeing based on
three valued logic (true, false, and unknown). Thus when we ask queries like
“How many people were born before 1st Jan 1900?” of our hypothetical historical
database, we cannot be sure what the answer really means, andexpected identities
such as (Number Born Prior to 1st Jan 1990) + (Number Born After 31st Dec
1899) = (Total Number of Entries in Database) will also not hold. For this and
similar reasons, some researchers hold that null values have no place whatsoever

23

in a mathematically based model such as the relational model, and that their very
introduction destroys the mathematical validity of the model.

The alternative “solution” is to usedefaults instead of nulls. Thus wherever
we have to represent missing information, we insert the default value associated
with the corresponding domain. This has a number of consequences. For instance,
on the insertion of a new tuple into the relation, the user must supply a value for
each attribute where a default value would be illegal (such as an attribute which by
itself or in tandem with others forms a candidate key), and the system will supply
default values for any other attribute where the user is unable to specify a value.
There is a need to support a builtin function to return the default value associated
with a particular domain. When applying aggregate functionsto the relation (say
to average the wage earned by each employee), there is an explicit need to ignore
default values. There is a certain amount of trouble caused in cases where every
value in the domain is a possible real (in the sense of being nondefault) value,
and so explicit user support is required to handle these cases. The use of defaults
is considered not to result in the normalisation breakdown caused by the use of
nulls. Default values are a somewhat inelegant solution requiring significant user
interaction, but their proponents claim that default values are intuitively closer to
what we use in the real world.

10.2 The Problems of Aggregates and Nonscalar Domains

It is often the case that we wish to manipulate groups of records in order to answer
such queries as “What is the monthly wages bill for the qualitycontrol section?”
This cannot be accomplished using selections, projectionsand joins. In SQL,
this sort of query can be satisfied using the GROUP BY field and SUM builtins,
but this is an SQL fudge to provide this sort ofaggregatefunction. There is no
generalised solution in the basic relational model for handling sets of tuples as
first-class values.

One extension which provides some help towards solving aggregate require-
ments and also support for more complex datatypes is to abandon the insistence
that all domains must correspond to scalar types. This can beaccomplished by a
method known as thenested relational model(akaNF2 — Non First Normal
Form). Thus in a database comprising details on scientific paperswe are now
allowed to have the attribute authorlist which is a simple set of authornames and
so the domain of authorlist is relation valued. This (one-level) nesting of relations
enables us to represent dates as an attribute whose domain isthe relation consist-
ing of attributes Day, Month and Year. Care must be taken when using nested
relations in this way as the model is too liberal in terms of values that would be
valid members of the domain underpinning Month say but not valid components
of a calendar date. Extensions must be made to the DML in termsof NEST and

24

UNNEST (flatten) operators in order to provide this functionality.
One concern raised about using NF2 is that it endangers the validity of nor-

malisation strategies, and introduces additional possibilities for needing nulls. A
variation has been proposed to use encapsulated relation-valued attributes where
you are unable to look simultaneously at both the inner structure of an attribute
and the outer face it presents at the higher level of the relation.

Recursively nested relational models have been suggested (i.e. multiple levels
of nesting) but there is little experience of using these in the real world.

11 Object Orientated Databases

It may be the case that object-orientated databases will be the successors to re-
lational databases, and so it is a thoroughly good idea to probe deeper than the
hype. An object-orientated DBMS (OODBMS) comprises an object-orientated
programming language combined with persistence and transaction support facili-
ties. (You will all by now be Modula3 and C++ wizards and so abstract datatypes
and class-based methods should hold no fear.)

Proponents of OODBMS tend to be rather fanatical in their views and so
presentmanifestos (rather than polite proposals) as to which features should be
mandatory in an OO database.

For a database to be truly object-orientated, it must allow object identifiers,
user-defined types and at least simple inheritance. The objects must be encapsu-
lated so that they can only be used via an interface. Support must also be provided
for aggregates in terms of bulk types, sets and relations. Late-binding (for per-
sistence) is mandatory in that new programs must be incorporated by name using
dynamic lookup. The database must implement concurrency control and recovery
procedures as necessary features for transaction support.Finally ad hoc queries
(or ‘database browsing’) must be efficiently supported evenin large databases.
(Of course this is only one of many OO philosophies, OO manifestos come in
more flavours than ice-cream — which is clearly evidence of anactive research
area.)

The key mantra to chant is “Everything is an object” (sometimes refined
by high adepts to “Everything is afirst-class object). Objects can be divided
into two worlds — builtin, primitive,immutable objects (such as integers e.g.
666, character strings e.g. “Help!”), and complex, usuallyuser-created,mutable
objects (like Student, Vehicle). Every object must have aclass(i.e. a type), and
individual objects are often calledinstancesin order to distinguish them from
their defining class. Each class will have a set ofmethodswhich are functions
and operators which can be applied to objects of that given class.

Objects are alwaysencapsulatedin that the internal structure of an object is

25

hidden from the users, and they must access the objects by making calls to the
object’s methods — the methods naturally can manipulate theinternal structure.
Key terms to bandy about are “private memory” (instance variables representing
an object’s internal state) and “public interface” (interface definitions — inputs
and outputs to the various methods). Hence we haveencapsulation−→ data
independence. The methods are invoked bymessageswhich are function calls
with a little extra syntactic sugar.

Each and every object has its very own unique identity calledits “object ID” or
OID. Immutable objects are said to be “self-identifying” inthat they are their own
OIDs, whereas mutable objects have (conceptual) addressesas their OIDs, which
are then usable elsewhere in the database as (conceptual) pointers to reference the
objects in question. Objects in OO databases do not therefore need to have user-
defined candidate keys for entity identification and reference but as the OIDs are
not directly visible to the user something has to be available for user interaction. It
is claimed by some that being able to represent two or more distinct objects which
are identical in all user-visible aspects (ie differing only in OID) is an advantage
of the OO approach over the relational model. This is really dubious because how
will the user be able to distinguish between the objects?

To create a new instance of a given class, it is necessary to send aNew mes-
sage. Objects can also contain OIDs pointing to other objects which means that
the very same object can be shared by many objects, and such a shared object
is said to belong to multiplecollection objects. Naturally there is also scope for
class hierarchiese.g. the object class Student is said to be asubclassof object
class Human or equivalently object class Human is said to be asuperclassof
the object class Student if and only if every object of the class Student is neces-
sarily an object of the class Human. Thus objects of a subclass can inherit the
instance variables (structural inheritance) and the methods (behavioural inheri-
tance) of their superclass. Some systems supportmultiple inheritance, where a
given class can be a subclass of several superclasses simultaneously.

Clearly in an OO database, object instances must be the natural units of secu-
rity, authorisation, recovery and concurrency.

We conclude this overview of the OO database model by voicinga few con-
cerns about generally held (mis)conceptions regarding OO.It is claimed that OO
simplifies database design and development due to its capability to provide system
supported high-level modelling structures. The real problem is deciding for any
given data whether it should be modelled as instance variables or in a procedural
fashion as a method. It is also claimed that OO databases can model complex
objects without the need for normalisation strategies so beloved of relational data-
bases. Unfortunately the normalisation strategies have been developed to handle
problems which are inherent in any data where functional dependencies exist, and
not just relational models. OO is not a magic wand with which we can wave

26

away these very real problems. Finally many folk (includingsoftware vendors)
will convey their belief that the relational model has had its day, and that the time
has come for the OO model to conquer the world. They firmly expect that the
relational model will be swept aside in the same way that the relational model
swept aside the network model and the hierarchical model. There is however
a significant difference between relational and pre-relational models in that the
prerelational models weread hoc schemes which worked by dint of convoluted
low-level strategies and twisting the real-world data to fitthe model’s structure,
whereas the relational model is founded foursquare on a solid theoretical basis
which has been refined through years of research. (A full discussion of the need
to marry the relational model and the OO model together can befound in Date[1],
chapter 25).

References

[1] C J Date.An Introduction to Database Systems. Addison Wesley, 6 edition,
1994.

[2] R Elmasri and S Navathe. Addison Wesley, 2 edition, 1994.

[3] William Kent. Data and Reality. North Holland, 1978.

27

