
Data Structures and Algorithms

A C Norman. Michaelmas 1994



1 Introduction

If you look at computer systems from a very long way away you might be led to
study the effect they have on societies and organisations, or how their cost or per-
formance has improved over the last fifty-odd years. On the other hand if you look
at them very closely (say using an electron microscope) the interesting questions
will probably relate to the way in which electric potentialsarrange themselves
near junctions between different regimes in very slightly impure silicon, and how
that relates to the construction of very fast elementary switches. Each view can be
both very broadly applicable and can be seen as essential to aproper understand-
ing of computers. The difference is in the level ofabstraction being applied.
Intermediate abstraction levels allow us to focus on other aspects of our subject.
This course corresponds precisely to one such layer.

Below it (more detailed) comes a concern with programming language syntax
and the pragmatic problems of writing and debugging code. This course is not
concerned about any particular language, or about programming style or what
brand of computer is being used.

Above it (taking a broader view) will be issues that arise when full programs
to solve complete problems are to be written. At this higher level one has to
worry about reading in data and displaying results, about validating input data,
debugging programs and estimating how much it might cost to get a particular
program written.

“Data structures and Algorithms” is a title for the systematic and coherent
parts of computer science that are sandwiched between. It looks at ways of solving
nice neat well-defined problems — generally problems concerned with finding
some particular piece of information buried in a quantity ofraw data, or of re-
structuring bulk data to make some future operations on it more convenient. Quite
often the “data structure” and the “algorithm” bits of an overall design are very
well entwined so it is hard to say which motivated the other.

It might seem that the study of simple problems and the presentation of half-
page textbook-style fragments of code that solve them wouldmake this first a
simple course and ultimately a boring one. Two extra demandsand two observa-
tions make this a false prediction. The demands are

Efficiency: This course is driven by the idea that if you can analyse a problem
well enough you ought to be able to find the very best way of solving it.
That usually means the most efficient procedure or representation possible.
Note that this is the best solution not just from among all theones that we

1



can thing of at present, but the best from among all solutionsthat there ever
could be, including ones that might be extremely elaborate or difficult to
program or are not yet invented.

Correctness: A way of solving a problem will (generally) only be accepted here
if we can demonstrate that italwaysworks. This of course includes proving
that the efficiency of the method is as claimed.

It turns out that for many problems, even simple-looking ones, there are a
remarkably large number of candidate solutions. And often slight changes in the
assumptions made can render different methods attractive.An effective computer
scientist needs to have a good awareness of the range of possibilities that can
arise, and a feel for when it will be worth checking text-books to see if there
is a good standard solution to apply. Now with a range of possible solutions
available the problems of correctness and efficiency reallybite — the analysis of
the behaviour of a fragment of code can be technically challenging, and proving
that some proposed scheme really can not be improved on is almost always really
hard. Several of the techniques covered in this course are delicate, in the sense
that sloppy explanations of them will miss important details, and sloppy coding
of them will lead to code with subtle bugs. Beware!

Almost all of the data structures and the algorithms that go with them pre-
sented here are of real practical value, and in a great many cases a programmer
who failed to use them would be at risk of inventing dramatically worse solutions
to the problems addressed. Or, of course in rare cases, finding a new and yet better
solution — but not recognising the importance of what had just been achieved!

A final feature of this course is that a fair proportion of the ideas it presents
are really ingenious. Often in retrospect they are not that difficult to understand or
justify, but one might very reasonably be left with a strong feeling of “I wish I had
thought of that” and an admiration for the cunning and insight of the originator.

2 Course content and textbooks

Even a cursory inspection of standard texts related to this course should be daunt-
ing. There are some incredibly long books full of amazing detail, and there can
be pages of mathematical analysis and justification for evensimple-looking pro-
grams. This is in the nature of the subject. An enormous amount is known and
proper, precise explanations of it can get quite technical.Fortunately this lecture

2



course does not have time to cover everything, so it will be built around a col-
lection of sample problems or case studies. The majority of these will be ones
that are covered well in all the textbooks, and which are chosen for their practical
importance as well as their intrinsic intellectual content. From year to year some
of the other topics will change, and this includes the possibility that lectures will
cover material not explicitly mentioned in these notes.

A range of textbooks will be listed here, and the different books suggested
all have quite different styles, even though they generallyagree on what topics to
cover. It will make very good sense to take the time to read sections of several of
them in a library before spending a lot of money on any — different books will
appeal to different readers. All the books mentioned are plausible candidates for
the long-term reference shelf that any computer scientist will keep: they are not
the sort of text that one studies just for one course or exam and then forgets.

Cormen, Leiserson and Rivest, “Introduction to Algorithms” . A heavy-
weight book at 1028 pages long, and naturally covers a littlemore material
at slightly greater depth than the other texts listed here. It includes careful
mathematical treatment of the algorithms that is discusses, and would be a
natural candidate for a reference shelf. Despite its bulk and precision this
book is written in a fairly friendly and non-daunting style,and so against
all the expectations raised by its length it is my first-choice suggestion. The
paperback edition is even acceptably cheap.

Sedgewick, “Algorithms” (various editions) is a respectable and less daunting
book. As well as a general version, Sedgewick’s book comes invariants
which give sample implementations of the algorithms that itdiscusses in
various concrete programming languages, notably there is aversion that
uses Modula-3 and another that uses C++. I suspect that you would prob-
ably do as well to get the version not tied to any particular language, and
invest in books specifically concerned with Modula-3 or C++ if you want
to learn how to use those languages. But it is up to you!

Aho, Hopcroft and Ullman, “Data Structures and Algorithms” Another
good book by well-established authors. Select this or Sedgewick on the
basis of your personal response to the authors’ style.

Knuth, “The Art of Computer Programming, vols 1-3”. When you look at the
date of publication of this series, and then observe that it is still in print, you
will understand that it is a classic. Even though the presentation is now

3



outdated (eg. many procedures are described by giving programs for them
written in a specially invented imaginary assembly language called MIX),
and despite advances that have been made since the latest editions this is still
a major resource. Many algorithms are documented in the formof exercises
at the end of chapters, so that the reader must either follow through to the
original author’s description of what they did, or follow Knuth’s hints and
re-create the algorithms anew. The whole of volume 3 (not an especially
slender tome) is devoted just to sorting and searching, thusgiving some
insight into how much rich detail can be mined from such apparently simple
problems.

Manber, “Introduction to Algorithms” is strong on motivation, case studies and
exercises.

Your attention is also drawn toGraham, Knuth and Patashnik “Concrete
Mathematics” provides a lot of very useful background and could well be a great
help for those who want to polish up their understanding of the mathematical tools
used in this course. It is also an entertaining book for thosewho are already com-
fortable with these techniques, and is generally recommended as a “good thing”.
It may be especially useful to those on the Diploma course whohave had less
opportunity to lead up to this course through ones on Discrete Mathematics.

3 Related lecture courses

This course assumes some knowledge (but not very detailed knowledge) of pro-
gramming in a traditional “procedural” language of the style of C, Pascal, Modula
2 or Modula 3. Examples given may be written in syntax strongly reminiscent of
one of these, but little concern will be given (in lectures orin marking examina-
tion scripts) to syntactic details. Fragments of program will be explained in words
rather than in any special programming language when this seems to be best for
clarity.

1B students will be able to look back on the 1A Discrete Mathematics course,
and should therefore be in a position to understand (and hence if necessary repro-
duce in examination) the analysis of recurrence formulae that give the computing
time of some methods, while Diploma and Part 2(G) students should take these as
results just quoted in this course.

Finite automata and regular expressions arise in some pattern matching algo-
rithms. These are the subject of a course that makes a specialstudy of the capabil-

4



ities of those operations that can be performed strictly finite (usually VERY small
amounts of) memory. This in turn leads into the course entitled “Computation
Theory” that explores (among other things) just how well we can talk about the
limits of computability without needing to describe exactly what programming
language or brand of computer is involved. A course on algorithms (as does one
on computation theory) assumes that computers will have as much memory and
can run for as long as is needed to solve a problem. The later course on “Com-
plexity Theory” tightens up on this, trying to establish a class of problems that can
be solved in “reasonable” amounts of time.

4 What is in these notes

The first thing to make clear is that these notes are not in any way a substitute for
having your own copy of one of the recommended textbooks. Forthis particular
course the standard texts are sufficiently good and sufficiently cheap that there is
no point in trying to duplicate them.

Instead these notes will provide skeleton coverage of the material used in the
course, and of some that although not used this year may be included next. They
may be useful places to jot references to the page numbers in the main texts where
full explanations of various points are given, and can help when organising revi-
sion.

These notes are not a substitute for attending lectures or buying and reading
the textbooks. In places the notes contain little more than topic headings, while
even when they appear to document a complete algorithm they may gloss over
important details.

The lectures will not slavishly follow these notes, and for examination pur-
poses it can be supposed that questions will be set on what waseither lectured
directly or was very obviously associated with the materialas lectured, so that all
diligent students will have found it while doing the readingof textbooks properly
associated with taking a seriously technical course like this one.

For the purpose of guessing what examination question mightappear, two
suggestion can be provided. The first involves checking pastpapers for ques-
tions relating to this course as given by the current and previous lecturers — there
will be plenty of sample questions available and even thoughthe course changes
slightly from year to yearmost past questions will still be representative of what
will be asked this year. A broad survey of past papers will show that from time
to time successful old questions have been recycled: who cantell if this practice

5



will continue? The second way of spotting questions is to inspect these notes
and imagine that the course organisers have set one questionfor every 5 cm of
printed notes (I believe that the density of notes means thatthere is about enough
material covered to make this plausible). Then each year from the large pool of
questions a suitable number could be selected using one of the pseudo-random
number generators discussed later.1

5 Fundamentals

An algorithm is a systematic process for solving some problem. This course will
take the word ‘systematic’ fairly seriously. It will mean that the problem being
solved will have to be specified quite precisely, and that before any algorithm can
be considered complete it will have to be provided with a proof that it works and
an analysis of its performance. In a great many cases all of the ingenuity and
complication in algorithms is aimed at making them fast (or reducing the amount
of memory that they use) so a justification that the intended performance will be
attained is very important.

5.1 Costs and scaling

How should we measure costs? The problems considered in thiscourse are all
ones where it is reasonable to have a single program that willaccept input data
and eventually deliver a result. We look at the way costs varywith the data. For
a collection of problem instances we can assess solutions intwo ways — either
by looking at the cost in the worst case or by taking an averagecost over all
the separate instances that we have. Which is more useful? Which is easier to
analyse?

In most cases there are “large” and “small” problems, and somewhat naturally
the large ones are costlier to solve. The next thing to look atis how the cost grows
with problem size. In this lecture course size will be measured informally by
whatever parameter seems natural in the class of problems being looked at. For
instance when we have a collection ofn numbers to put into ascending order the
numbern will be taken as the problem size. For any combination of algorithm (A)

1As I write these notes I increasingly feel that random selection of questions in this way would
be the best way of ensuring that over a number of years all parts of the course were given proper
examination coverage and all students were treated as fairly as blind luck can ever be said to treat
anybody.

6



and computer system (C) to run the algorithm on, the cost2 of solving a particular
instance (P ) of a problem might be some functionf(A, C, P ). This will not tend
to be a nice tidy function! If one then takes the greatest value of the functionf
asP ranges over all problems of sizen one gets what might be a slightly simpler
functionf ′(A, C, n) which now depends just on the size of the problem and not
on which particular instance is being looked at.

5.2 Big-Θ notation

The above is still much too ugly to work with, and the dependence on the details
of the computer used adds quite unreasonable complication.The way out of this
is first to adopt a generic idea of what a computer is, and measure costs in abstract
“program steps” rather than in real seconds, and then to agree to ignore constant
factors in the cost-estimation formula. As a further simplification we agree that
all small problems can be solved pretty rapidly anyway, and so the main thing that
matters will be how costs grow as problems do.

To cope with this we need a notation that indicates that a loadof fine detail
is being abandoned. The one used is calledΘ notation (there is a closely related
one called “O notation” (pronounced as big-Oh)). If we say that a functiong(n)
is Θ(h(n)) what we mean is that there is a constantk such that for all sufficiently
largen we haveg(n) andh(n) within a factor ofk of each other.

If we did some very elaborate analysis and found that the exact cost of solving
some problem was a messy formula such as17n3−11n2 log(n)+105n log2(n)+
77631 then we could just write the cost asΘ(n3) which is obviously much easier
to cope with, and in most cases is as useful as the full formula.

Sometimes is is not necessary to specify a lower bound on the cost of some
procedure — just an upper bound will do. In that case the notation g(n) =
O(h(n)) would be used, and that that we can find a constant k such that for suffi-
ciently largen we haveg(n) < kh(n).

Note that the use of an= sign with these notations is really a little odd, but the
notation has now become standard.

The use ofΘ and related notations seem to confuse many students, so hereare
some examples:

1. x2 = O(x3)

2. x3 is not O(x2)

2Time in seconds, perhaps

7



3. x5 can probably be computed in timeO(1) (if we suppose that our computer
can multiply two numbers in unit time).

4. n! can be computed inO(n) arithmatic operations, but has value bigger than
O(nk) for any fixedk.

5. A numbern can be represented by a string ofΘ(log n) digits.

Please note the distinction between the value of a function and the amount of time
it may take to compute it.

5.3 Growth Rates

Suppose a computer is capable of performing 1000000 “operations” per second.
Make yourself a table showing how long a calculation would take on such a ma-
chine if a problem of sizen takes each oflog(n), n, n log(n), n2, n3 and 2n

operations. Considern = 1, 10, 100, 1000 and1000000. You will see that the
there can be real practical implications associated with different growth rates. For
sufficiently largen any constant multipliers in the cost formula get swamped: for
instance ifn > 25 then2n > 1000000n — the apparently large scale factor of
1000000 has proved less important that the difference between linear and expo-
nential growth. For this reason is feels reasonable to suppose that an algorithm
with costΘ(n2) will out-perform one with costΘ(n3) even if theΘ notation con-
ceals a quite large constant factor weighing against theΘ(n2) procedure.3

5.4 Data Structures

Typical programming languages such as Modula (2 or 3) or C provide primitive
data types such as integers, reals, boolean values and strings. They allow these
to be organised into arrays, where the arrays generally havestatically determined
size. It is also common to provide for record data types, where an instance of
the type contains a number of components, or possibly pointers to other data. C
in particular allows the user to work with a fairly low-levelidea of a pointer to a
piece of data.

In this course a “Data Structure” will be implemented in terms of these language-
level constructs, but will always be thought of in association with a collection of

3Of course there are some practical cases where we never have problems large enough to make
this argument valid, but it is remarkable how often this slightly sloppy argument works well in the
real world.

8



operations that can be performed with it and a number of consistency conditions
which must always hold. One example of this will be the structure “Sorted Vec-
tor” which might be thought of as just a normal array of numbers but subject to the
extra constraint that the numbers must be in ascending order. Having such a data
structure may make some operations (for instance finding thelargest, smallest and
median numbers present) easier, but setting up and preserving the constraint (in
that case ensuring that the numbers are sorted) may involve work.

Frequently the construction of an algorithm involves the design of data struc-
tures that provide natural and efficient support for the mostimportant steps used
in the algorithm, and this data structure then calls for further code design for the
implementation of other necessary but less frequently performed operations.

5.5 Abstract Data Types

When designing Data Structures and Algorithms it is desirable to avoid making
decisions based on the accident of how you first sketch out a piece of code. All
design should be motivated by the explicit needs of the application. The idea of
an Abstract Data Type (ADT) is to support this (the idea is generally considered
good for program maintainablity as well, but that is no greatconcern for this
particular course). The specification of an ADT is a list of the operations that may
be performed on it, together with the identities that they satisfy. This specification
doesnotshow how to implement anything in terms of any simpler data types. The
user of an ADT is expected to view this specification as the complete description
of how the data type and its associated functions will behave— no other way of
interrogating or modifying data is available, and the response to any circumstances
not covered explicitly in the specification is deemed undefined.

To help make this clearer, here is a specification for an Abstract Data Type
called STACK:

make empty stack(): manufactures an empty stack.

is empty stack(s): s is a stack. Returns TRUE if and only if it is empty.

push(x, s): x is an integer,s is a stack. Returns a non-empty stack which can be
used withtop andpop. is empty stack(push(x, s)) = FALSE.

top(s): s is a non-empty stack; returns an integer.top(push(x, s)) = x.

9



pop(s): s is a non-empty stack; returns a stack.pop(push(x, s)) = s.4

The idea here is that the definition of an ADT is forced to collect all the essen-
tial details and assumptions about how a structure must behave (but the expecta-
tions about common patterns of use and performance requirements are generally
kept separate). It is then possible to look for different ways of mechanising the
ADT in terms of lower level data structures. Observe that in the STACK type
defined above there is no description of what happens if a usertries to compute
top(make empty stack()). This is therefore undefined, and an implementation
would be entitled to doanything in such a case — maybe some semi-meaningful
value would get returned, maybe an error would get reported or perhaps the com-
puter would crash its operating system and delete all your files. If an ADT wants
exceptional cases to be detected and reported this must be specified just as clearly
as it specifies all other behaviour.

The ADT for a stack given above does not make allowance for thepushopera-
tion to fail, although on any real computer with finite memoryit must be possible
to do enough successive pushes to exhaust some resource. This limitation of a
practical realisation of an ADT is not deemed a failure to implement the ADT
properly: an algorithms course does not really admit to the existence of resource
limits!

There can be various different implementations of the STACK data type, but
two are especially simple and commonly used. The first represents the stack as
a combination of an array and a counter. Thepush operation writes a value into
the array and increments the counter, whilepop does the converse. In this case
the push andpop operations work by modifying stacks in place, so after use of
push(s) the originals is no longer available. The second representation of stacks
is as linked lists, where pushing an item just adds an extra cell to the front of a
list, and popping removes it.

Examples given later in this course should illustrate that making an ADT out
of even quite simple sets of operations can sometimes free one from enough pre-
conceptions to allow the invention of amazingly varied collections of implemen-
tations.

4There are real technical problems associated with the “=” sign here, but since this is a course
on data structures not an ADTs it will be glossed over. One problem relates to whethers is in
fact still valid afterpush(x, s) has happened. Another relates to the idea that equality on data
structures should only relate to their observable behaviour and should not concern itself with any
user-invisible internal state.

10



5.6 Models of Memory

Through most of this course there will be a tacit assumption that the computers
used to run algorithms will always have enough memory, and that this memory can
be arranged in a single address space so that one can have unambiguous memory
addresses or pointers. Put another way, one can set up a single array of integers
that is as large as you ever need.

There are of course practical ways in which this idealisation may fall down.
Some archaic hardware designs may impose quite small limitson the size of any
one array, and even current machines tend to have but finite amounts of memory,
and thus upper bounds on the size of data structure that can behandled.

A more subtle issue is that a truly unlimited memory will needintegers (or
pointers) of unlimited size to address it. If integer arithmetic on a computer works
in a 32-bit representation (as is at present very common) then the largest integer
value that can be represented is certainly less than232 and so one can not sensibly
talk about arrays with more elements than that. This limit represents only a few
gigabytes of memory: a large quantity for personal machinesmaybe but a problem
for large scientific calculations on supercomputers now, and one for workstations
quite soon. The resolution is that the width of integer subscript/address calcula-
tion has to increase as the size of a computer or problem does,and so to solve
a hypothetical problem that needed an array of size10100 all subscript arithmetic
would have to be done using 100 decimal digit precision working.

It is normal in the analysis of algorithms to ignore these problems and assume
that element of an arraya[i] can be accessed in unit time however large the
array is. The associated assummption is that integer arithmetic operations needed
to compute array subscripts can also all be done at unit cost.This makes good
practical sense since the assumption holds pretty well truefor all problems that
any particular machine has room enough to solve.

5.7 Models of Arithmetic

The normal model for computer arithmetic used here will be that each arithmetic
operation takes unit time, irrespective of the values of thenumbers being com-
bined and regardless of whether fixed or floating point numbers are involved. The
nice way thatΘ notation can swallow up constant factors in timing estimates gen-
erally justifies this. Again there is a theoretical problem that can safely be ignored
in almost all cases — an the specification of an algorithm (or an Abstract Data
Type) there may be some integers, and in the idealised case this will imply that

11



the procedures described apply to arbitrarily large integers. Including ones with
values that will be many orders of magnitude larger than native computer arith-
metic will support directly. In the fairly rare cases where this might arise cost
analysis will need to make explicit provision for the extra work involved in doing
multiple-precision arithmetic, and then timing estimateswill generally depend not
only on the number of values involved in a problem but on the number of digits
(or bits) needed to specify each value.

5.8 Worst, Average and Amortised costs

Usually the simplest way of analysing an algorithms is to findthe worst case per-
formance. It may help to imagine that somebody else is proposing the algorithm,
and you have been challenged to find the very nastiest data that can be fed to it to
make it perform really badly. In doing so you are quite entitled to invent data that
looks very unusual or odd, provided it comes within the stated range of applica-
bility of the algorithm. For many algorithms the “worst case” is approached often
enough that this form of analysis is useful for realists as well as pessimists!

Average case analysis ought by rights to be of more interest to most people
(worst case costs may be really important to the designers ofsystems that have
real-time constraints, especially if there are safety implications in failure). But
before useful average cost analysis can be performed one needs a model for the
probabilities of all possible inputs. If in some particularapplication the distri-
bution of inputs is significantly skewed that could invalidate analysis based on
uniform probabilities. For worst case analysis it is only necessary to study one
limiting case; for average analysis the time taken for everycase of an algorithm
must be accounted for and this makes the mathematics a lot harder (usually).

Amortised analysis is applicable in cases where a data structure supports a
number of operations and these will be performed in sequence. Quite often the
cost of any particular operation will depend on the history of what has been done
before, and sometimes a plausible overall design makes mostoperations cheap
at the cost of occasional expensive internal re-organisation of the data. Amor-
tised analysis treats the cost of this re-organisation as the joint responsibility of
all the operations previously performed on the data structure and provide a firm
basis for determining if it was worth-while. Again it is typically more technically
demanding than just single-operation worst-case analysis.

A good example of where amortised analysis is helpful is garbage collec-
tion (see later) where it allows the cost of a single large expensive storage re-
organisation to be attributed to each of the elementary allocation transactions that

12



made it necessary. Note that (even more than is the case for average cost analysis)
amortised analysis is not appropriate for use where real-time constraints apply.

6 Simple Data Structures

This section introduces some simple and fundamental data types. Variants of all
of these will be used repeatedly in later sections as the basis for more elaborate
structures.

6.1 Machine data types: arrays, records and pointers

It first makes sense to agree that boolean values, characters, integers and real
numbers will exist in any useful computer environment. It will generally be as-
sumed that integer arithmetic never overflows and the floating point arithmetic
can be done as fast as integer work and that rounding errors donot exist. There
are enough hard problems to worry about without having to face up to the exact
limitations on arithmetic that real hardware tends to impose! The so called “pro-
cedural” programming languages provide for vectors or arrays of these primitive
types, where an integer index can be used to select out out a particular element of
the array, with the access taking unit time. For the moment itis only necessary to
consider one-dimensional arrays.

It will also be supposed that one can declare record data types, and that some
mechanism is provided for allocating new instances of records and (where appro-
priate) getting rid of unwanted ones5. The introduction of record types naturally
introduces the use of pointers. Note that languages like ML provide these facility
but not (in the core language) arrays, so sometimes it will beworth being aware
when the fast indexing of arrays is essential for the proper implementation of an
algorithm. Another issue made visible by ML is that of updatability: in ML the
special constructorref is needed to make a cell that can have its contents changed.
Again it can be worthwhile to observe when algorithms are making essential use
of update-in-place operations and when that is only an incidental part of some
particular encoding.

This course will not concern itself much about type security(despite the im-
portance of that discipline in keeping whole programs self-consistent), provided
that the proof of an algorithm guarantees that all operations performed on data are
proper.

5Ways of arranging this are discussed later

13



6.2 “LIST” as an abstract type

The type LIST will be defined by specifying the operations that it must support.
The version defined here will allow for the possibility of re-directing links in the
list. A really full and proper definition of the ADT would needto say something
rather careful about when parts of lists are really the same (so that altering one
alters the other) and when they are similar in structure but distinct. Such issues
will be ducked for now. Also type-checking issues about the types of items stored
in lists will be skipped over here, although most examples that just illustrate the
use of lists will use lists of integers.

make empty list(): manufactures an empty list.

is empty list(s): s is a list. Returns TRUE if and only ifs is empty.

cons(x, s): x is anything,s is a list. is empty list(cons(x, s)) = FALSE.

first(s): s is a non-empty list; returns something.first (cons(x, s)) = x

rest(s): s is a non-empty list; returns a list.rest(cons(x, s)) = s.

set rest(s, s′): s ands′ are both lists, withs non-empty. After this callrest(s) =
s′, regardless of whatrest(s) was before.

You may note that the LIST type is very similar to the STACK typementioned
earlier. In some applications it might be useful to have a variant on the LIST
data type that supported aset first operation to update list contents (as well as
chaining) in place, or aequal test to see if two non-empty lists were manufactured
by the same call to theconsoperator. Applications of lists that do not needset rest
may be able to use different implementations of lists.

6.3 Lists implemented using arrays and using records

A simple and natural implementation of lists is in terms of a record structure. In
C one might write

typedef struct Non_Empty_List
{ int first; /* Just do lists of integers here */

struct List *rest; /* Pointer to rest */
} Non_Empty_List;

typedef Non_Empty_List *List;

14



where all lists are represented as pointers. In C it would be very natural to use the
special NULL pointer to stand for an empty list. I have not shown code to allocate
and access lists here.

In ML the analogous declaration would be

datatype list = empty |
non_empty of int * ref list;

fun make_empty_list() = empty;
fun cons(x, s) = non_empty(x, ref s);
fun first(non_empty(x, _)) = x;
fun rest(non_empty(_, s)) = !s;

where there is a little extra complication to allow for the possibility of updating
the rest of a list.

A rather different view, and one more closely related to realmachine archi-
tectures, will store lists in an array. The items in the arraywill be similar to the
C Non Empty List record structure shows above, but therest field will just
contain an integer. An empty list will be represented by the value zero, while any
non-zero integer will be treated as the index into the array where the two compo-
nents of a non-empty list can be found. Note that there is no need for parts of a list
to live in the array in any especially neat order — several lists can be interleaved
in the array without that being visible to users of the ADT.

Controlling the allocation of array items in applications such as this is the
subject of a later section.

If it can be arranged that the data used to represent the first and rest compo-
nents of a non-empty list are the same size (for instance bothmight be held as
32-bit values) the array might be just an array of storage units of that size. Now
if a list somehow gets allocated in this array so that successive items in it are
in consecutive array locations it seems that about half the storage space is being
wasted with therest pointers. There have been implementations of lists that try
to avoid that by storing a non-empty list as a first element (asusual) plus a boolean
flag (which takes one bit) with that flag indicating if the nextitem stored in the
array is a pointer to the rest of the list (as usual) or is in fact itself the rest of the
list (corresponding to the list elements having been laid out neatly in consecutive
storage units).

The variations on representing lists are described here both because lists are
important and widely-used data structures, and because it is instructive to see how
even a simple-looking structure may have a number of different implementations
with different space/time/convenience trade-offs.

15



The links in lists make it easy to splice items out from the middle of lists or
add new ones. Scanning forwards down a list is easy. Lists provide one natural
implementation of stacks, and are the data structure of choice in many places
where flexible representation of variable amounts of data iswanted.

6.4 Double-linked Lists

A feature of lists is that from one item you can progress alongthe list in one
direction very easily, but once you have taken therest of a list there is no way of
returning (unless of course you independently remember where the original head
of your list was). To make it possible to traverse a list in both directions one could
define a new type called DLL (for Double Linked List) containing operators

LHS end: a marker used to signal the left end of a DLL.

RHS end: a marker used to signal the right end of a DLL.

rest(s): s is DLL other than RHSend, returns a DLL.

previous(s): s is a DLL other than LHSend; returns a DLL. Provided the rest
and previous functions are applicable the equations rest(previous(s)) = s
and previous(rest(s)) = s hold.

Manufacturing a DLL (and updating the pointers in it) is slightly more delicate
than working with ordinary uni-directional lists. It is normally necessary to go
through an intermediate internal stage where the conditions of being a true DLL
are violated in the process of filling in both forward and backwards pointers.

6.5 Stack and queue abstract types

The STACK ADT was given earlier as an example. Note that the item removed
by thepop operation was the most recent one added bypush. A QUEUE6 is in
most respects similar to a stack, but the rules are changed sothat the item accessed
by top and removed bypop will be the oldest one inserted bypush [one would
re-name these operations on a queue from those on a stack to reflect this]. Even if
finding a neat way of expressing this in a mathematical description of the QUEUE
ADT may be a challenge the idea is not. Looking at their ADTs suggests that

6sometimes referred to a FIFO: First In First Out.

16



stacks and queues will have very similar interfaces. It is sometimes possible to
take an algorithm that uses one of them and obtain an interesting variant by using
the other.

6.6 Vectors and Matrices

The Computer Science notion of a vector is of something that supports two oper-
ations: the first takes an integer index and returns a value. The second operation
takes an index and a new value and updates the vector. When a vector is created
its size will be given and only index values inside that pre-specified range will be
valid. Furthermore it will only be legal to read a value afterit has been set — i.e.
a freshly created vector will not have any automatically defined initial contents.
Even something this simple can have several different possible realisations.

At this stage in the course I will just think about implementing vectors as as
blocks of memory where the index value is added to the base address of the vector
to get the address of the cell wanted. Note that vectors of arbitrary objects can
be handled by multiplying the index value by the size of the objects to get the
physical offset of an item in the array.

There are two simple ways of representing two-dimensional (and indeed ar-
bitrary multi-dimensional) arrays. The first takes the viewthat ann by m array
is just a vector withn items, where each item is a vector of lengthm. The other
representation starts with a vector of lengthn which has as its elements the ad-
dresses of the starts of a collection of vectors of lengthm. One of these needs a
multiplication (bym) for every access, the other has a memory access. Although
there will only be a constant factor between these costs at this low level it may
(just about) matter, but which works better may also depend on the exact nature
of the hardware involved.

There is scope for wondering about whether a matrix should bestored by rows
or by columns (for large arrays and particular applicationsthis may have a big
effect on the behaviour of virtual memory systems), and how special cases such
as boolean arrays, symmetric arrays and sparse arrays should be represented.

6.7 Graphs

If a graph hasn vertices then it can be represented by an “adjacency matrix”,
which is a boolean matrix with entrygi,j true only if the the graph contains an
edge running from vertexi to vertexj. If the edges carry data (for instance the
graph might represent an electrical network with the edges being resistors joining

17



various points in it) then the matrix might have integer elements (say) instead of
boolean ones, with some special value reserved to mean “no link”.

An alternative representation would represent each vertexby an integer, and
have a vector such that elementi in the vector holds the head of a list of all the
vertices connected directly to edges radiating from vertexi.

The two representations clearly contain the same information, but they do not
make it equally easily available. For a graph with only a few edges attached to
each vertex the list-based version may be more compact, and it certainly makes it
easy to find a vertex’s neighbours, while the matrix form gives instant responses to
queries about whether a random pair of vertices are joined, and (especially when
there are very many edges, and if the bit-array is stored packed to make full use
of machine words) can be more compact.

7 Ideas for Algorithm Design

Before presenting collections of specific algorithms this section presents a num-
ber of ways of understanding algorithm design. None of theseare guaranteed to
succeed, and none are really formal recipes that can be applied, but they can still
all be recognised among the methods documented later in the course.

7.1 Recognise a variant on a known problem

This obviously makes sense! But there can be real inventiveness in seeing how a
known solution to one problem can be used to solve the essentially tricky part of
another. See the Graham Scan method for finding a convex hull as an illustration
of this.

7.2 Reduction to a simpler problem

Reducing a problem to a smaller one tends to go hand in hand withinductive
proofs of the correctness of an algorithm. Almost all the examples of recursive
functions you have ever seen are illustrations of this approach. In terms of plan-
ning an algorithm it amounts to the insight that it is not necessary to invent a
scheme that solves a whole problem all in one step — just some process that is
guaranteed to make non-trivial progress.

18



7.3 Divide and Conquer

This is one of the most important ways in which algorithms have been developed.
It suggests that a problem can sometimes be solved in three steps:

1. divide: If the particular instance of the problem that is presentedis very
small then solve it by brute force. Otherwise divide the problem into two
(rarely more) parts, usually all of the sub-components being the same size.

2. conquer: Use recursion to solve the smaller problems.

3. combine: Create a solution to the final problem by using information from
the solution of the smaller problems.

In the most common and useful cases both the dividing and combining stages
will have linear cost in terms of the problem size — certainlyone expects them to
be much easier tasks to perform than the original problem seemed to be. Merge-
sort will provide a classical illustration of this approach.

7.4 Estimation of costs via recurrence formulae

Consider particularly the case of divide and conquer. Suppose that for a problem
of sizen the division and combining steps involveO(n) basic operations7. Sup-
pose furthermore that the division stage splits an originalproblem of sizen into
two sub-problems each of sizen/2. Then the cost for the whole solution process
is bounded byf(n), a function that satisfies

f(n) = 2f(n/2) + kn

wherek is a constant (k > 0) that relates to the real cost of the division and
combination steps. This recurrence can be solved to getf(n) = Θ(n log(n)).

More elaborate divide and conquer algorithms may lead to either more than
two sub-problems to solve, or sub-problems that are not justhalf the size of the
original, or division/combination costs that are not linear in n. There are only a
few cases important enough to include in these notes. The first is the recurrence
that corresponds to algorithms that at linear cost (constant of proportionalityk)
can reduce a problem to one smaller by a fixed factorα:

g(n) = g(αn) + kn

7I useO here rather thanΘ because I do not mind much if the costs are less than linear.

19



whereα < 1 and againk > 0. This has the solutiong(n) = Θ(n). If α is close to
1 the constant of proportionality hidden by theΘ notation may be quite high and
the method might be correspondingly less attractive than might have been hoped.

A slight variation on the above is

g(n) = pg(n/q) + kn

with p andq integers. This arises when a problem of sizen can be split intop
sub-problems each of sizen/q. If p = q the solution grows liken log(n), while
for p > q the growth function isnβ with β = log(p)/ log(q).

A different variant on the same general pattern is

g(n) = g(αn) + k, α < 1, k > 0

where now afixedamount of work reduces the size of the problem by a factorα.
This leads to a growth functionlog(n).

7.5 Dynamic Programming

Sometimes it makes sense to work up towards the solution to a problem by build-
ing up a table of solutions to smaller versions of the problem. For reasons best
described as “historical” this process is known as dynamic programming. It has
applications in various tasks related to combinatorial search — perhaps the sim-
plest example is the computation of Binomial Coefficients by building up Pascal’s
triangle row by row until the desired coefficient can be read off directly.

7.6 Greedy Algorithms

Many algorithms involve some sort of optimisation. The ideaof “greed” is to
start by performing whatever operation contributes as muchas any single step can
towards the final goal. The next step will then be the best stepthat can be taken
from the new position and so on. See the procedures noted later on for finding
minimal spanning sub-trees as examples of how greed can leadto good results.

7.7 Back-tracking

If the algorithm you need involves a search it may be that backtracking is what is
needed. This splits the conceptual design of the search procedure into two parts —
the first just ploughs ahead and investigate what it thinks isthe most sensible path

20



to explore. This first part will occasionally reach a dead end, and this is where
the second, the backtracking, part comes in. It has kept extra information around
about when the first part made choices, and it unwinds all calculations back to
the most recent choice point then resumes the search down another path. The
language Prolog makes an institution of this way of designing code. The method
is of great use in many graph-related problems.

7.8 Hill Climbing

Hill Climbing is again for optimisation problems. It first requires that you find
(somehow) some form of feasible (but presumably not optimal) solution to your
problem. Then it looks for ways in which small changes can be made to this so-
lution to improve it. A succession of these small improvements might lead even-
tually to the required optimum. Of course proposing a way to find such improve-
ments does not of itself guarantee that a global optimum willever be reached:
as always the algorithm you design is not complete until you have proved that it
always ends up getting exactly the result you need.

7.9 Look for wasted work in a simple method

It can be productive to start by designing a simple algorithmto solve a problem,
and then analyse it to the extent that the critically costly parts of it can be identi-
fied. It may then be clear that even if the algorithm is not optimal it is good enough
for your needs, or it may be possible to invent techniques that explicitly attack its
weaknesses. Shellsort can be viewed this way, as can the various elaborate ways
of ensuring that binary trees are kept well balanced.

7.10 Seek a formal mathematical lower bound

The process of establishing a proof that some task must take at least a certain
amount of time can sometimes lead to insight into how an algorithm attaining the
bound might be constructed. A properly proved lower bound can also prevent
wasted time seeking improvement where none is possible.

21



8 The TABLE Data Type

This section is going to concentrate on finding information that has been stored
in some data structure. The cost of establishing the data structure to begin with
will be thought of as a secondary concern. As well as being important in its own
right, this is a lead-in to a later section which extends and varies the collection of
operations to be performed on sets of saved values.

8.1 Operations that must be supported

For the purposes of this description we will have just one table in the entire uni-
verse, so all the table operations implicitly refer to this one. Of course a more
general model would allow the user to create new tables and indicate which ones
were to be used in subsequent operations, so if you want you can imagine the
changes needed for that.

clear table(): After this the contents of the table are considered undefined.

set(key, value): This stores a value in the table. At this stage the types that keys
and values have is considered irrelevant.

get(key): If for some key value k an earlier use of set(k, v) has been performed
(and no subsequent set(k, v′) followed it) then this retrieves the stored value
v.

Observe that this simple version of a table does not provide away of asking if
some key is in use, and it does not mention anything about the number of items that
can be stored in a table. Particular implementations will may concern themselves
with both these issues.

8.2 Performance of a simple array

Probably the most important special case of a table is when the keys are known to
be drawn from the set of integers in the range0, ..., n for some modestn. In that
case the table can be modelled directly by a simple vector, and bothsetandget
operations have unit cost. If the key values come from some other integer range
(saya, ..., b) then subtractinga from key values gives a suitable index for use with
a vector.

22



If the number of keys that are actually used is much smaller than the range
(b−a) that they lie in this vector representation becomes inefficient in space, even
though its time performance is good.

8.3 Sparse Tables — linked list representation

For sparse tables one could try holding the data in a list, where each item in the
list could be a record storing a key-value pair. The get function can just scan along
the list searching for the key that is wanted; if one is not found it behaves in an
undefined way. But now there are several options for the set function. The first
natural one just sticks a new key-value pair on the front of the list, assured that get
will be coded so as to retrieve the first value that it finds. Thesecond one would
scan the list, and if a key was already present it would updatethe associated value
in place. If the required key was not present it would have to be added (at the
start or the end of the list?). If duplicate keys are avoided order in which items in
the list are kept will not affect the correctness of the data type, and so it would be
legal (if not always useful) to make arbitrary permutationsof the list each time it
was touched.

If one assumes that the keys passed togetare randomly selected and uniformly
distributed over the complete set of keys used, the linked list representation calls
for a scan down an average of half the length of the list For theversion that always
adds a new key-value pair at the head of the list this cost increases without limit
as values are changed. The other version has to scan the list when performingset
operations as well asgets.

8.4 Binary search in sorted array

To try to get rid of some of the overhead of the linked list representation, keep the
idea of storing a table as a bunch of key-value pairs but now put these in an array
rather than a linked list. Now suppose that the keys used are ones that support
an ordering, and sort the array on that basis. Of course therenow arise questions
about how to do the sorting and what happens when a new key is mentioned for
the first time — but here we concentrate on the data retrieval part of the process.
Instead of a linear search as was needed with lists, we can nowprobe the middle
element of the array, and by comparing the key there with the one we are seeking
can isolate the information we need in one or the other half ofthe array. If the
comparison has unit cost the time needed for a complete look-up in a table withn

23



elements will satisfy
f(n) = f(n/2) + Θ(1)

and the solution to this shows us that the complete search canbe done inΘ(log(n)).

8.5 Binary Trees

Another representation of a table that also provideslog(n) costs is got by building
a binary tree, where the tree structure relates very directly to the sequences of
comparisons that could be done during binary search in an array. If a tree ofn
items can be built up with the median key from the whole data set in its root, and
each branch similarly well balanced, the greatest depth of the tree will be around
log(n) [Proof?]. Having a linked representation makes it fairly easy to adjust the
structure of a tree when new items need to be added, but details of that will be left
until later. Note that in such a tree all items in the left sub-tree come before the
root in sorting order, and all those in the right sub-tree come after.

8.6 Hash Tables

Even if the keys used do have an order relationship associated with them it may
be worthwhile looking for a way of building a table without using it. Binary
search made locating things in a table easier by imposing a very good coherent
structure — hashing places its bet the other way, on chaos. A hash functionh(k)
maps a key onto an integer in the range 1 toN for someN , and for a good hash
function this mapping will appear to have hardly any pattern. Now if we have an
array of sizeN we can try to store a key-value pair with keyk at locationh(k) in
the array. Two variants arise. We can arrange that the locations in the array hold
little linear lists that collect all keys that has to that particular value. A good hash
function will distribute keys fairly evenly over the array,so with luck this will lead
to lists with average lengthn/N is n keys are in use.

The second way of using hashing is to use the hash valueh(k) as just a first
preference for where to store the given key in the array. On adding a new key if
that location is empty then well and good — it can be used. Otherwise a succes-
sion of other probes are made of the hash table according to some rule until either
the key is found already present or an empty slot for it is located. The simplest
(but not the best) method of collision resolution is to try successive array locations
on from the place of the first probe, wrapping round at the end of the array.

24



The worst case cost of using a hash table can be dreadful. For instance given
some particular hash function a malicious user could selectkeys so that they all
hashed to the same value. But on average things do pretty well.If the number of
items stored is much smaller than the size of the hash table both adding and re-
trieving data should have constant (i.e.Θ(1)) cost. Now what about some analysis
of expected costs for tables that have a realistic load?

9 Free Storage Management

One of the options given above as a model for memory and basic data structures on
a machine allowed for records, with some mechanism for allocating new instances
of them. In the language ML such allocation happens without the user having to
think about it; in C the library functionmalloc would probably be used, while
C++ and the Modula family of languages will involve use of a keyword new.

If there is really no worry at all about the availability of memory then alloca-
tion is very easy — each request for a new record can just position it at the next
available memory address. Challenges thus only arise when this is not feasible,
i.e. when records have limited life-time and it is necessaryto re-cycle the space
consumed by ones that have become defunct.

Two issues have a big impact on the difficulty of storage management. The
first is whether or not the system gets a clear direct indication when each previously-
allocated record dies. The other is whether the records usedare all the same size
or are mixed. For one-sized records with known life-times itis easy to make a
linked list of all the record-frames that are available for re-use, to add items to this
“free-list” when records die and to take them from it again when new memory is
needed. The next two sections discuss the allocation and re-cycling of mixed-size
blocks, then there is a consideration of ways of discoveringwhen data structures
are not in use even in cases where no direct notification of data-structure death is
available.

9.1 First Fit and Best Fit

Organise all allocation within a single array of fixed size. Parts of this array will be
in use as records, others will be free. Assume for now that we can keep adequate
track of this. The “first fit” method of storage allocation responds to a request
for n units of memory by using part of the lowest block of at leastn units that
is marked free in the array. “Best Fit” takes space from the smallest free block

25



with size at leastn. After a period of use of either of these schemes the pool of
memory can become fragmented, and it is easy to get in a state where there is
plenty of unused space, but no single block is big enough to satisfy the current
request.

Questions: How should the information about free space in the pool be kept?
When a block of memory is released how expensive is the processof updating
the free-store map? If adjacent blocks are freed how can their combined space be
fully re-used? What are the costs of searching for the first or best fits? Are there
patters of use where first fit does better with respect to fragmentation than best
fit, and vice versa? What pattern of request-sizes and requests would lead to the
worst possible fragmentation for each scheme, and how bad isthat?

9.2 Buddy Systems

The main message from a study of first and best fit is that fragmentation can be a
real worry. Buddy systems address this by imposing constraints on both the sizes
of blocks of memory that will be allocated and on the offsets within the array
where various size blocks will be fitted. This will carry a space cost (rounding
up the original request size to one of the approved sizes). A buddy system works
by considering the initial pool of memory as a single big block. When a request
comes for a small amount of memory and a block that is just the right size is not
available then an existing bigger block is fractured in two.For the exponential
buddy system that will be two equal sub-blocks, and everything works neatly in
powers of 2. The pay-off arises when store is to be freed up. Ifsome block has
been split and later on both halves are freed then the block can be re-constituted.
This is a relatively cheap way of consolidating free blocks.

Fibonacci buddy systems make the size of blocks members of the Fibonacci
sequence. This gives less padding waste than the exponential version, but makes
re-combining blocks slightly more tricky.

9.3 Mark and Sweep

The first-fit and buddy systems reveal that the major issue forstorage allocation
is not when records are created but when they are discarded. Those schemes
processed each destruction as it happened. What if one waits until a large number
of records can be processed at once? The resulting strategy is known as “garbage
collection”. Initial allocation proceeds in some simple way without taking any ac-
count of memory that has been released. Eventually the fixed size pool of memory

26



used will all be used up. Garbage collection involves separating data that is still
active from that which is not, and consolidating the free space into usable form.

The first idea here is to have a way of associating a mark bit with each unit
of memory. By tracing through links in data structures it should be possible to
identify and mark all records that are still in use. Then almost by definition the
blocks of memory that are not marked are not in use, and can be re-cycled. A
linear sweep can both identify these blocks and link them into a free-list (or what-
ever) and re-set the marks on active data ready for the next time. There are lots of
practical issues to be faced in implementing this sort of thing!

Each garbage collection has a cost that is probably proportional to the heap
size8, and the time between successive garbage collections is proportional to the
amount of space free in the heap. Thus for heaps that are very lightly used the
long-term cost of garbage collection can be viewed as a constant-cost burden on
each allocation of space, albeit with the realisation of that burden clumped to-
gether in big chunks. For almost-full heaps garbage collection can have very high
overheads indeed, and a practical system should report a “store full” failure some-
what before memory is completely choked to avoid this.

9.4 Stop and Copy

Mark and Sweep can still not prevent fragmentation. Howeverimagine now that
when garbage collection becomes necessary you can (for a short time) borrow
a large block of extra memory. The “mark” stage of a simple garbage collector
visits all live data. It is typically easy to alter that to copy live data into the new
temporary block of memory. Now the main trick is that all pointers and cross
references in data structures have to be updated to reflect the new location. But
supposing that can be done, at the end of copying all live datahas been relocated to
a compact block at the start of the new memory space. The old space can now be
handed back to the operating system to re-pay the memory-loan, and computing
can resume in the new space. Important point: the cost of copying is related to the
amount of live data copied, and not to to the size of the heap and the amount of
dead data, so this method is especially suited to large heapswithin which only a
small proportion of the data is alive (a condition that also makes garbage collection
infrequent). Especially with virtual memory computer systems the “borrowing”

8Without giving a more precise explanation of algorithms anddata structures involved this has
to be a rather woolly statement. There are also so called “generational” garbage collection methods
that try to relate costs to the amount of data changed since the previous garbage collection, rather
than to the size of the whole heap

27



of extra store may be easy — and good copying algorithms can arrange to make
almost linear (good locality) reference to the new space.

9.5 Ephemeral Garbage Collection

This topic will be discussed briefly, but not covered in detail. It is observed with
garbage collection schemes that the probability of storageblocks surviving is very
skewed — data either dies young or lives (almost) for ever. Garbage collecting
data that is almost certainly almost all still alive seems wasteful. Hence the idea
of an “ephemeral” garbage collector that first allocates data in a short-term pool.
Such structure that survives the first garbage collection migrates down a level to a
pool that the garbage collector does not inspect so often, and so on. The bulk of
stable data will migrate to a static region, while most garbage collection effort is
expended on volatile data. A very occasional utterly full garbage collection might
purge junk from even the most stable data, but would only be called for when (for
instance) a copy of the software or data was to be prepared fordistribution.

10 Sorting

This is a big set-piece topic: any course on algorithms is bound to discuss a num-
ber of sorting methods. The volume 3 of Knuth is dedicated to sorting and the
closely related subject of searching, so don’t think it is a small or simple topic!
However much is said in this lecture course there is a great deal more that is
known.

10.1 Minimum cost of sorting

If I have n items in an array, and I need to end up with them in ascending order,
there are two low-level operations that I can expect to use inthe process. The
first takes two items and compares them to see which should come first. To start
with this course will concentrate on sorting algorithms where theonly informa-
tion about where items should end up will be that deduced by making pairwise
comparisons. The second critical operation is that of rearranging data in the array,
and it will prove convenient to express that in terms of “interchanges” which swap
the contents of two nominated array locations.

28



In extreme cases either comparisons or interchanges9 may be hugely expen-
sive, leading to the need to design methods that optimise oneregardless of other
costs. It is useful to have a limit on how good a sorting methodcould possibly be
measured in terms of these two operations.

Assertion: If there aren items in an array thenΘ(n) exchanges suffice to put
the items in order. In the worst caseΘ(n) exchanges are needed. Proof: identify
the smallest item present, then if it is not already in the right place one exchange
moves it to the start of the array. A second exchange moves thenext smallest item
to place, and so on. After at worstn − 1 exchanges the items are all in order. The
bound isn − 1 not n because at the very last stage the biggest item has to be in
its right place without need for a swap, but that level of detail is unimportant to
Θ notation. Conversely consider the case where the original arrangement of the
data is such that the item that will need to end up at positioni is stored at position
i + 1 (with the natural wrap-around at the end of the array). Sinceevery item is in
the wrong position I must perform exchanges that touch each position in the array,
and that certainly means I needn/2 exchanges, which is good enough to establish
theΘ(n) growth rate. Tighter analysis should show that a fulln − 1 exchanges
are in fact needed in the worst case.

Assertion: Sorting by pairwise comparison, assuming that all possible arrange-
ments of the data are equally likely as input, necessarily costs at leastΘ(n log(n))
comparisons. Proof: there aren! permutations ofn items, and in sorting we in
effect identify one of these. To discriminate between that many cases we need at
leastdlog2(n!)e binary tests. Stirling’s formula tells us thatn! is roughlynn, and
hence thatlog(n!) is aboutn log(n). Note that this analysis is applicable to any
sorting method that uses any form of binary choice to order items, that it provides
a lower bound on costs but does not guarantee that it can be attained, and that it
is talking about worst case costs and average costs when all possible input orders
are equally probable.

10.2 Stability of sorting methods

Often data to be sorted consists of records containing a key value that the ordering
is based upon plus some additional data that is just carried around in the rearrang-
ing process. In some applications one can have keys that should be considered
equal, and then a simple specification of sorting might not indicate what order the

9Often if interchanges seem costly it can be useful to sort a vector of pointers to objects rather
than a vector of the objects themselves — exchanges in the pointer array will be cheap.

29



corresponding records should end up in in the output list. “Stable” sorting de-
mands that in such cases the order of items in the input is preserved in the output.
Some otherwise desirable sorting algorithms are not stable, and this can weigh
against them. If the records to be sorted are extended to holdan extra field that
stores their original position, and if the ordering predicate used while sorting is
extended to use comparisons on this field to break ties then anarbitrary sorting
method will rearrange the data in a stable way. This clearly increases overheads a
little.

10.3 Simple sorting

We saw earlier that an array withn items in it could be sorted by performing
n − 1 exchanges. This provides the basis for what is perhaps the simplest sorting
algorithm — at each step it finds the smallest item in the remaining part of the
array and swaps it to its collect position. This has as a sub-algorithm the prob-
lem of identifying the smallest item in an array. The sub-problem is easily solved
by scanning linearly through the array comparing each successive item with the
smallest one found earlier. If there arem items to scan then the minimum finding
clearly costsm − 1 comparisons. The whole insertion sort process does this on
sub-arrays of sizen, n − 1, ..., 1. Calculating the total number of comparisons
involved requires summing an arithmetic progression: after lower order terms and
constants have been discarded we find that the total cost isΘ(n2). This very sim-
ple method has the advantage (in terms of how easy it is to analyse) that the num-
ber of comparisons performed does not depend at all on the initial organisation of
the data.

Now suppose that data movement is very cheap, but comparisons are very
expensive. Suppose that part way through the sorting process the firstk items in
our array are neatly in ascending order, and now it is time to consider itemk + 1.
A binary search in the initial part of the array can identify where the new item
should go, and this search can be done indlog2(k)e comparisons10. Then some
number of exchange operations (at mostk) put the item in place. The complete
sorting process performs this process fork from 1 ton, and hence the total number
of comparisons performed will be

dlog(1)e + dlog(2)e + ...dlog(n − 1)e

10From now on I will not bother to specify what base my logarithms use — after all it only
makes a constant-factor difference.

30



which is bounded bylog((n − 1)!) + n. This effectively attains the lower bound
for general sorting by comparisons that we set up earlier. Butremember that is
has high (typically quadratic) data movement costs).

One final simple sort method is worth mentioning. Sinking sort is a perhaps
a combination of the worst features of the above two schemes.When the firstk
items of the array have been sorted the next is inserted in place by letting it sink
to its rightful place: it is compared against itemk, and if less a swap moved it
down. If such a swap is necessary it is compared against position k−1, and so on.
This clearly has worst case costsΘ(n2) in both comparisons and data movement.
It does however compensate a little: if the data was originally already in the right
order then sinking sort does no data movement at all and only doesn comparisons,
and is optimal. Sinking sort is the method of practical choice when most items in
the input data are expected to be close to the place that they need to end up.

10.4 Shell’s Sort

Shell’s Sort is an elaboration on sinking sort that looks at its worst aspects and
tries to do something about them. The idea is to precede by something that will
get items to roughly the correct position, in the hope that the sinking sort will then
have linear cost. The way that Shellsort does this is to do a collection of sorting
operations on subsets of the original array. Ifs is some integer then a stride-s sort
will sort s subsets of the array — the first of these will be the one with elements at
positions1, s + 1, 2s + 1, 3s + 1, ..., the next will use positions2, s + 2, 2s + 2, ...
and so on. Such sub-sorts can be performed for a sequence of values ofs starting
large and gradually shrinking so that the last pass is a stride-1 sort (which is just an
ordinary sinking sort). Now the interesting questions are whether the extra sorting
passes pay their way, what sequences of stride values shouldbe used, and what
will the overall costs of the method amount to?

It turns out that there are definitely some bad sequences of strides, and that a
simple way of getting a fairly good sequence is to use the one which ends...13, 4, 1
wheresk−1 = 3sk +1. For this sequence it has been shown that Shell’s sort’s costs
grow at worst asn1.5, but the exact behaviour of the cost function is not known,
and is probably distinctly better than that. This must be oneof the smallest and
most practically useful algorithms that you will come across where analysis has
got really stuck — for instance the sequence of strides givenabove is known not
to be the best possible, but nobody knows what the best sequence is.

Although Shell’s Sort does not meet theΘ(n log(n)) target for the cost of
sorting, it is easy to program and its practical speed on reasonable size problems

31



is fully acceptable.

10.5 Quicksort

The idea behind Quicksort is quite easy to explain, and when properly imple-
mented and with non-malicious input data the method can fully live up to its
name. However Quicksort is somewhat temperamental. It is remarkable easy
to write a program based on the Quicksort idea that is wrong invarious subtle
cases (eg. if all the items in the input list are identical), and although in almost
all cases Quicksort turns in a time proportional ton log(n) (with a quite small
constant of proportionality) for worst case input data it can be as slow asn2. It is
strongly recommended that you study the description of Quicksort in one of the
textbooks and that you look carefully at the way in which codecan be written to
avoid degenerate cases leading to accesses off the end of arrays etc.

The idea behind Quicksort is to select some value from the array and use
that as a “pivot”. A selection procedure partitions the values so that the lower
portion of the array holds values less than the pivot and the upper part holds only
larger values. This selection can be achieved by scanning infrom the two ends
of the array, exchanging values as necessary. For ann element array it takes
aboutn comparisons and data exchanges to partition the array. Quicksort is then
called recursively to deal with the low and high parts of the data, and the result is
obviously that the entire array ends up perfectly sorted.

Consider first the ideal case, where each selection manages tosplit the array
into two equal parts. Then the total cost of Quicksort satisfiesf(n) = 2f(n/2) +
kn, and hence grows asn log(n). But in the worst case the array might be split
very unevenly — perhaps at each step only one item would end upless than the
selected pivot. In that case the recursion (nowf(n) = f(n − 1) + kn) will go
aroundn deep, and the total costs will grow to be proportional ton2.

One way of estimating the average cost of Quicksort is to suppose that the
pivot could equally probably have been any one of the items inthe data. It is even
reasonable to use a random number generator to select an arbitrary item for use as
a pivot to ensure this! Then it is easy to set up a recurrence formula that will be
satisfied by the average cost:

c(n) =
1

n

n∑

i=1

(c(i − 1) + c(n − i)) + kn

where the sum adds up the expected costs corresponding to allthe (equally proba-
ble) ways in which the partitioning might happen. This is a jolly equation to solve,

32



and after a modest amount of playing with it it can be established that the average
cost for Quicksort isΘ(n log(n)).

Quicksort provides a sharp illustration of what can be a problem when se-
lecting an algorithm to incorporate in an application. Although its average per-
formance (for random data) is good it does have a quite unsatisfatory (albeit un-
common) worst case. It should therefore not be used in applications where the
worst-case costs could have safety implications. The decision about whether to
use Quicksort for average good speed of a slightly slower butguaranteedn log(n)
method can be a delicate one.

10.6 Heap Sort

Despite its good average behaviour there are circumstanceswhere one might want
a sorting method that is guaranteed to run in timen log(n) whatever the input. De-
spite the fact that such a guarantee may cost some modest increase in the constant
of proportionality.

Heapsort is such a method, and is described here not only because it is a rea-
sonable sorting scheme, but because the data structure it uses (called a heap, a use
of this term quite unrelated to the use of the tern “heap” in free-storage manage-
ment) has many other applications.

Consider an array that has values stored in it subject to the constraint that the
value at positionk is greater than (or equal to) those at positions2k and2k + 111.
The data in such an array is referred to as a heap. The root of the heap is the item
at location 1, and it is clearly the largest value in the heap.

Heapsort consists of two phases. The first takes an array fullor arbitrarily
ordered data and rearranges it so that the data forms a heap. Amazingly this can
be done in linear time. The second stage takes the top item from the heap (which
as we saw was the largest value present) and swaps it to to the last position in the
array, which is where that value needs to be in the final sortedoutput. It then has to
rearrange the remaining data to be a heap with one fewer elements. Repeating this
step will leave the full set of data in order in the array. Eachheap reconstruction
step has a cost proportional to the logarithm of the amount ofdata left, and thus
the total cost of heapsort ends up bounded byn log(n).

Further details of both parts of heapsort can be found in the textbooks and will
be given in lectures.

11supposing that those two locations are still within the bounds of the array

33



10.7 Binary Merge in memory

Quicksort and Heapsort both work in-place, i.e. they do not need any large amounts
of space beyond the array in which the data resides12. If this constraint can be
relaxed than a fast and simple alternative is available in the form of Mergesort.
Observe that given a pair of arrays each of lengthn/2 that have already been
sorted, merging the data into a single sorted list is easy to do in aroundn steps.
The resulting sorted array has to be separate from the two input ones.

This observation leads naturally to the familiarf(n) = 2f(n/2) + kn recur-
rence for costs, and this time there are no special cases or oddities. Thus Mergesort
guarantees a cost ofn log(n), is simple and has low time overheads, all at the cost
of needing the extra space to keep partially merged results.

10.8 Radix sorting

To radix-sort from the most significant end, look at the most significant digit in
the sort key, and distribute that data based on just that. Recurse to sort each clump,
and the concatenation of the sorted sub-lists is fully sorted array. One might see
this as a bit like Quicksort but distributing n ways instead of just into two at the
selection step, and preselecting pivot values to use.

To sort from the bottom end, first sort your data taking into account just the
last digit of the key. As will be seen later this can be done in linear time using
a distribution sort. Now use a stable sort method to sort on the next digit of the
key up, and so on until all digits of the key have been handled.This method was
popular with punched cards, but is less widely used today!

10.9 Order statistics (eg. median finding)

The median of a collection of values is the one such that as many items are smaller
than that value as are larger. In practise when we look for algorithms to find a
median it us productive to generalise to find the item that ranks at positionk in
the data. For a total ofn items the median corresponds to taking the special case
k = n/2. Clearlyk = n andk = n correspond to looking for minimum and
maximum values.

One obvious way of solving this problem is to sort that data — then the item
with rankk is trivial to read off. But that costsn log(n) for the sorting.

12There is scope for a lengthy discussion of the amount of stackneeded by Quicksort here.

34



Two variants on Quicksort are available that solve the problem. One has linear
cost in the average case, but has a quadratic worst-case cost; it is fairly simple. The
other is more elaborate to code and has a much higher constantof proportionality,
but guarantees linear cost. In cases where guaranteed performance is essential the
second method may have to be used.

The simpler scheme selects a pivot and partitions as for Quicksort. Now sup-
pose that the partition splits the array into two parts, the first having sizep, and
imagine that we are looking for the item with rankk in the whole array. Ifk < p
then we just continue be looking for the rank-k item in the lower partition. Oth-
erwise we look for the item with rankk − p in the upper. The cost recurrence for
this method (assuming, unreasonably, that each selection stage divides out values
neatly into two even sets) isf(n) = f(n/2)+ kn, and the solution to this exhibits
linear growth.

The more elaborate method works hard to ensure that the pivotused will not
fall too close to either end of the array. It starts by clumping the values into groups
each of size 5. It selects the median value from each of these little sets. It then
calls itself recursively to find the median of then/5 values it just picked out. This
is then the element it uses as a pivot. The magic here is that the pivot chosen will
haven/10 medians lower than it, and each of those will have two more smaller
values in their sets. So there must be3n/10 values lower than the pivot, and
equally3n/10 larger. This limits the extent to which things are out of balance. In
the worst case after one reduction step we will be left with a problem7/10 of the
size of the original. The total cost now satisfies

f(n) = An/5 + f(n/5) + f(7n/10) + Bn

whereA is the (constant) cost of finding the median of a set of size 5, and Bn is
the cost of the selection process. Becausen/5 + 7n/10 < n the solution to this
recurrence grows just linearly withn.

10.10 Faster sorting

If the condition that sorting must be based on pair-wise comparisons is dropped
it may sometimes be possible to do better thann log(n). Two particular cases are
common enough to be of at least occasional importance. The first is when the
values to be sorted are integers that line in a known range, where this range is
smaller than the number of values to be processed. Then necessarily there will be
duplicates in the list. If no data is involved at all beyond the integers, one can set

35



up an array whose size is determined by the range of integers that can appear (not
be the amount of data to be sorted) and initialise it to zero. The for each item in
the input data,w say, the value at positionw in the array is incremented. At the
end the array contains information about how many instancesof each value were
present in the input, and it is easy to create a sorted output list with the correct
values in it. The costs are obviously linear. If additional data beyond the keys is
present (as will usually happen) then once the counts have been collected a second
scan through the input data can use the counts to indicate where in the output array
data should be moved to. This does not compromise the overalllinear cost.

Another case is when the input data is guaranteed to be uniformly distributed
over some known range (for instance it might be real numbers in the range0.0 to
1.0). Then a numeric calculation on the key can predict with reasonable accuracy
where a value must be placed in the output. If the output arrayis treated somewhat
like a hash table, and this prediction is used to insert itemsin it, then apart from
some local effects of clustering that data has been sorted.

10.11 Parallel processing sorting networks

This is another topic that will just be mentioned here, but which gets full coverage
in some of the textbooks. Suppose you want to sort data using hardware rather
than software (this could be relevant in building some high performance graphics
engine, and it could also be relevant in routing devices for some networks). Sup-
pose further that the values to be sorted appear on a bundle ofwires, and that a
primitive element available to you has two such wires as inputs and transfers its
two inputs to output wires either directly or swapped, depending on their relative
values. How many of these elements are needed to sort that data onn wires?
How should they be connected? How many of the elements does each signal flow
through, and thus how much delay is involved in the sorting process?

11 Storage on external media

For the next few sections the cost model used for memory access is adjusted to
take account of reality. It will be assumed that we still havea reasonable sized
conventional main memory on our computer and that accesses to that have unit
cost. But it will be supposed that the bulk of the data to be handled does not fit
into main memory and so resides on tape or disc, and that it is necessary to pay
attention to the access costs that this implies.

36



11.1 Cost assumptions for tapes and discs

When Knuth’s series of books were written magnetic tapes formed the mainstay
of large-scale computer storage. Since then discs have become larger, cheaper
and more reliable, and tape-like devices are really only used for archival storage.
Thus the discussions here will ignore the large and entertaining but archaic body
of knowledge about how best to sort data using two, three or four tape drives that
can or can not read and write data backwards as well as forwards.

The main assumption to be made about external storage will bethat it is
slow — so slow that using it well becomes almost the only important issue for
an algorithm. The next characteristic will be that sequential access and read-
ing/writing fairly large blocks of data at once will be the best way to maximise
data transfer. Seeking from one place on a disc to another will be deemed expen-
sive.

There will probably be an underlying expectation in this discussion that the
amount of data to be handled is roughly between 10 Mbytes and 10 Gbytes. Much
less data than that does not justify thinking about externalprocessing, while much
larger amounts may raise additional problems (and may be infeasible, at least this
year).

11.2 B-trees

With data structures kept on disc it is sensible to make the unit of data fairly large
- perhaps some size related to the natural unit that your discuses (a sector or track
size). Minimising the total number of separate disc accesses will be more impor-
tant than getting the ultimately best packing density. There are of course limits,
and use of over-the-top data blocks will use up too much fast main memory and
cause too much unwanted data to be transferred between disc and main memory
along with each necessary bit.

B-trees are a good general-purpose disc data structure. The idea starts by gen-
eralising the idea of a sorted binary tree to a tree with a veryhigh branching factor.
The expected implementation is that each node will be a disc block containing al-
ternate pointers to sub-trees and key values. This will tendto define the maximum
branching factor that can be supported in terms of the natural disc block size and
the amount of memory needed for each key. When new items are added to a B-tree
it will often be possible to add the item within an existing block without overflow.
Any block that becomes full can be split into two, and the single reference to it
from its parent block expands to the two references to the newhalf-empty blocks.

37



For B-trees of reasonable branching factor any reasonable amount of data can be
kept in a quite shallow tree — although the theoretical cost of access grows with
the logarithm of the number of data items stored in practicalterms it is constant.

The algorithms for adding new data into a B-tree arrange that the tree is guar-
anteed to remain balanced (unlike the situation with the simplest sorts of trees),
and this means that the cost of accessing data in such a tree can be guaranteed
to remain low even in the worst case. The ideas behind keepingB-trees bal-
anced are a generalisation of those used for 2-3-4-trees (that are discussed later in
these notes) but note that the implementation details may besignificantly differ-
ent, firstly because the B-tree will have such a large branching factor and secondly
all operations will need to be performed with a view to the fact that the most costly
step is reading a disc block (2-3-4-trees are used as in-memory data structures so
you could memory program steps rather than disc accesses when evaluating and
optimising an implemantation).

11.3 Dynamic Hashing (Larsen)

This is a really neat way in which quite modest in-store indexinformation can
make it possible to retrieve any item in just one disc access.Start by viewing all
available disc blocks as buckets in a hash table. Take the keyto be located, and
compute a hash function of it — in an ideal world this could be used to indicate
which disc block should be read. Of course several items can probably be stored
in each disc block, so a certain number of hash clashes will not matter at all.
Provided no disc block ever becomes full this satisfies our goal of single disc-
transfer access.

Further ingenuity is needed to cope with full disc blocks while still avoiding
extra disc accesses. The idea applied is to use a small in-store table that will
indicate if the data is in fact stored in the disc block first indicated. To achieve
this instead of computing just one hash function on the key itis necessary to
compute two. The second one is referred to as a signature. Foreach disc block we
record in-store the value of the largest signature of any item in that block. Now
a comparison of our signature with the value stored in this table allows us to tell
(without going to the disc) if the required data is present onits first choice disc
block.

If not then we go back to the key and use a second choice pair of hash functions
to produce a new potential location and signature, and againour in-store table
indicates if the data is stored there. By having a sequence of hash functions that
will eventually propose every possible disc block this sortof searching should

38



eventually terminate. Note that if the data involved is not on the disc at all we
find that out when we read the disc block that it would be on if itwere present.
Unless the disc is almost full it will probably only take a fewhash calculations
and in-store checks to locate data, and remember that a very great deal of in-store
calculation can be justified to save even one disc access.

As has been seen, recovering data stored this way is quite easy. What about
adding new records? Well, one can start by following throughthe steps that locate
and read the disc block that the new data would seem to live on.If the data is
already stored there it can be updated. If it is not there but the disc block has
free space then the new record can be added (and that may require that the main
signature table be updated if the new data has a larger signature than any one
previously used on that block). Otherwise the block overflows. The item in it
with largest signature (which may be the new record, or may beone that was
there already) is moved to an in-store buffer, the signaturetable entry is reduced
correspondingly and the block is written back to disc. That leave some record
to be re-inserted elsewhere in the table, and of course the signature table shows
that it can not live in the block that has just been inspected.The insertion process
continues by looking to see where the next available choice for storing that record
would be.

Once again for lightly loaded discs insertion is not liable to be especially ex-
pensive, but as the system gets close to being full a single insertion could cause
major rearrangements. Note however that most large databases have very many
instances of read or update-in-place operations than of ones that add new items.
For instance CD-ROM technology provides a case where reducing the number of
(slow) read operations can be vital, but where the cost of creating the initial data
structures that go on the disc is almost irrelevant.

11.4 External Sorting

There are three major observations here. The first is that it will make very good
sense to do as much sorting as possible internally (using your favourite in-store
method), so a major part of any external sorting method is liable to be breaking the
data up into store-sized chunks and sorting each of those. The second point is that
variants on merge-sort fit in very well with the sequential access patterns that work
well with disc drives. The final point is that with truly largeamounts of data it will
almost certainly be the case that the raw data has well known statistical properties
(including the possibility that it is known that it is almostin order already, being
just a modified of previous data that had itself been sorted earlier), and these

39



should be exploited fully.

12 Variants on the SET Data Type

There are very many places in the design of larger algorithmswhere it is necessary
to have ways of keeping sets of objects. In different cases different operations will
be important, and finding ways if which various sub-sets of the possible operations
can be best optimised leads to the discussion of a large rangeof sometimes quite
elaborate representations and procedures. It would be possible to fill a whole long
lecture course with a discussion of the options, but here just some of the more
important (and more interesting) will be covered.

12.1 Operations that might be supported

In the followingS stands for a set,k is a key andx is an item present in the set. It
is supposed that each item contains a key, and that the keys are totally ordered. In
cases where some of the operations (for instancemaximum andminimum ) are
not used these conditions might be relaxed.

makeemptyset(), isemptyset(S): basic primitives for creating and testing for
empty sets.

chooseany(S): if S is non-empty this should return an arbitrary item fromS.

insert(S, x): Modify the setS so as to add a new itemx.

search(S, k): Discover if an item with keyk is present in the set, and if so return
it. If not return that fact.

delete(S, x): x is an item present in the setS. ChangeS to removex from it.

minimum(S): return the item fromS that has the smallest key.

maximum(S): return the item fromS that has the largest key.

successor(S, x): x is in S. Find the item inS that has the next larger key than
the key ofx. If x was the largest item in the heap indicate that fact.

predecessor(S, x): as for successor, but finds the next smaller key.

40



union(S, S ′): combine the two setsS andS ′ to form a single set combining all
their elements. The originalS andS ′ may be destroyed by this operation.

12.2 Tree Balancing

For insert, searchanddeleteit is very reasonable to use binary trees. Each node
will contain an item and references to two sub-trees, one forall items lower than
the stored one and one for all that are higher. Searching sucha tree is simple.
The maximum and minimum values in the tree can be found in the leaf nodes
discovered by following all left or right pointers (respectively) from the root.

To insert in a tree one searches to find where the item ought to be and then
insert there. Deleting a leaf node is easy. To delete a non-leaf feels harder, and
there will be various options available. One will be to exchange the contents of the
non-leaf cell with either the largest item in its left subtree or the smallest item in its
right subtree. Then the item for deletion is in a leaf position and can be disposed of
without further trouble, meanwhile the newly moved up object satisfies the order
requirements that keep the tree structure valid.

If trees are created by inserting items in random order they usually end up
pretty well balanced, and all operations on them have cost proportional to their
depth, which will belog(n). A worst case is when a tree is made by inserting
items in ascending order, and then the tree degenerates intoa list. It would be nice
to be able to re-organise things to prevent that from happening. In fact there are
several methods that work, and the trade-offs between them relate to the amount
of space and time that will be consumed by the mechanism that keeps things
balanced. The next section describes one of the more sensible compromises.

12.3 2-3-4 Trees

Binary trees had one key and two pointers in each node. The leaves of the tree
are indicated by null pointers. 2-3-4 trees generalise thisto allow nodes to contain
more keys and pointers. Specifically they also allow 3-nodeswhich have 2 keys
and 3 pointers, and 4-nodes with 3 keys and 4 pointers. As withregular binary
trees the pointers are all to sub-trees which only contain key values limited by the
keys in the parent node.

Searching a 2-3-4 tree is almost as easy as searching a binarytree. Any con-
cern about extra work within each node should be balanced by the realisation that
with a larger branching factor 2-3-4 trees will generally beshallower than pure
binary trees.

41



Inserting into a 2-3-4 node also turns out to be fairly easy, and what is even
better is that it turns out that a simple insertion process automatically leads to
balanced trees. Search down through the tree looking for where the new item
must be added. If the place where it must be added is a 2-node ora 3-node then
it can be stuck in without further ado, converting that node to a 3-node or 4-node.
If the insertion was going to be into a 4-node something has tobe done to make
space for it. The operation needed is to decompose the 4-nodeinto a pair of 2-
nodes before attempting the insertion — this then means thatthe parent of the
original 4-node will gain an extra child. To ensure that there will be room for this
we apply some foresight. While searching down the tree to find where to make
an insertion if we ever come across a 4-node we split it immediately, thus by the
time we go down and look at its offspring and have our final insertion to perform
we can be certain that there are no 4-nodes in the tree betweenthe root and where
we are. If the root node gets to be a 4-node it can be split into three 2-nodes, and
this is the only circumstance when the height of the tree increases.

The key to understanding why 2-3-4 trees remain balanced is the recognition
that splitting a node (other than the root) does not alter thelength of any path from
the root to a leaf of a tree. Splitting the root increases the length of all paths by
1. Thus at all times all paths through the tree from root to a leaf have the same
length. The tree has a branching factor of at least 2 at each level, and so all items
in a tree withn items in will be at worstlog(n) down from the root.

I will not discuss deletions from trees here, although once you have mastered
the details of insertion it should not seem (too) hard.

It might be felt wasteful and inconvenient to have trees withthree different
sorts of nodes, or ones with enough space to be 4-nodes when they will often
want to be smaller. A way out of this concern is to represent 2-3-4 trees in terms
of binary trees that are provided with one extra bit per node.The idea is that a
“red” binary node is used as a way of storing extra pointers, while “black” nodes
stand for the regular 2-3-4 nodes. The resulting trees are known as red-black trees.
Just as 2-3-4 trees have the same number (k say) of nodes from root to each leaf,
red-black trees always havek black nodes on any path, and can have from 0 tok
red nodes as well. Thus the depth of the new tree is at worst twice that of a 2-3-4
tree. Insertions and node splitting in red-black trees justhas to follow the rules
that were set up for 2-3-4 trees.

Searching a red-black tree involves exactly the same steps as searching a nor-
mal binary tree, but the balanced properties of the red-black tree guarantee loga-
rithmic cost. The work involved in inserting into a red-black tree is quite small
too. The programming ought to be straightforward, but if youtry it you will prob-

42



ably feel that there seem to be uncomfortably many cases to deal with, and that
it is tedious having to cope with both each case and its mirrorimage. But with a
clear head it is still fundamentally OK.

12.4 Priority Queues and Heaps

If we concentrate on the operationsinsert, minimum anddeletesubject to the
extra condition that the only item we ever delete will be the one just identified as
the minimum one in our set, then the data structure we have is known as a priority
queue.

A good representation for a priority queue is a heap (as in Heapsort), where
the minimum item is instantly available and the other operations can be performed
in logarithmic time.

Re-arranging a heap to allow for an insertion or deletion is something I do not
intend to document in these notes, but will cover in lectures. It is well described
in the textbooks.

12.5 More elaborate representations

So called “Binomial Heaps” and “Fibonacci Heaps” have as their main charac-
teristic that they provide efficient support for theunion operation. If this is not
needed then ordinary heaps should probably be used instead.Attaining the best
available computing times for various other algorithms mayrely on the perfor-
mance of datastructures as elaborate as these, so it is important at least to know
that they exist and where full details are documented. Thoseof you who find all
the material in this course both fun and easy should look these methods up in a
textbook and try to produce a good implementation!

13 Pseudo-random numbers

This is a topic where the obvious best reference is Knuth (volume 1). If you
look there you will find an extended discussion of the philosophical problem of
having a sequence that is in fact totally deterministic but that you treat as if it
was unpredictable and random. You will also find perhaps the most important
point of all stressed: a good pseudo-random number generator is not just some
complicated piece of code that generates a sequence of values that you can not
predict anything about. On the contrary it is probably a rather simple piece of

43



code where it is possible to predict a very great deal about the statistical properties
of the sequence of numbers that it returns.

13.1 Generation of sequences

In many cases the programming language that you use will comewith a standard
library function that generates “random” numbers. In the past (sometimes even
the recent past) various such widely distributed generators have been very poor.
Experts and specialists have known this, but ordinary usershave not. If you can
use a random number source provided by a well respected purveyor of high qual-
ity numerical or system functions then you should probably use that rather than
attempting to manufacture your own. But even so it is desirable that computer
scientists should understand how good random number generators can be made.

A very simple class of generators defines a sequenceai by the ruleai+1 =
(Aai + B) mod C whereA, B andC are very carefully selected integer con-
stants. From an implementation point of view many people would really like to
haveC = 232 and thereby use some artefact of their computer’s arithmetic to
perform themodC operation. Achieving the same calculation efficiently but not
relying on low-level machine trickery is not especially easy. The selection of the
multiplier A is critical for the success of one of these congruential generators —
and a proper discussion of suitable values belongs either ina long section in a
textbook or in a numerical analysis course. Note that the entire state of a typical
linear congruential generator is captured in the current seed value, which for effi-
cient implementation is liable to be 32 bits long. A few yearsago this would have
been felt a big enough seed for most reasonable uses. With today’s faster com-
puters it is perhaps marginal. Beware also that with linear congruential generators
the high order bits of the numbers computed are much more “random” than the
low order ones (typically the lowest bit will just alternate0, 1, 0, 1, 0, 1, ...).

There are various ways that have been proposed for combiningthe output from
several congruential generators to produce random sequences that are better than
any of the individual generators alone. These too are not thesort of thing for
amateurs to try to invent!

A simple-to-program method that is very fast and appears to have a reputation
for passing the most important statistical tests involves arecurrence of the form

ak = ak−b + ak−c

for offsetsb andc. The arithmetic on the right hand side needs to be done modulo
some even number (again perhaps232?). The valuesb = 31, c = 55 are known

44



to work well, and give a very long period13 There are two potential worries about
this sort of method. The first is that the state of the generator is a full c words,
so setting or resetting the sequence involves touching all that data. Secondly al-
though additive congruential generators have been extensively tested and appear
to behave well, many details of their behaviour are not understood — our theo-
retical understanding of the multiplicative methods and their limitations is much
better.

13.2 Probabilistic algorithms

This section is provided to get across the point that random numbers may form
an essential part of some algorithms. This can at first seem incontradiction to the
description of an algorithm as a systematic procedure with fully analysed behav-
iour. The worry is resolved by accepting a proper statistical analysis of behaviour
as valid.

We have already seen one example of a random numbers in an algorithms
(although at the time it was not stressed) where it was suggested that Quicksort
could select a (pseudo-) random item for use as a pivot. That made the cost of the
whole sorting process insensitive to the input data, and average case cost analysis
just had to average over the explicit randomness fed into pivot selection. Of course
that still does not correct Quicksort’s bad worst-case cost— it just makes the worst
case depend on the luck of the (pseudo-)random numbers rather than on the input
data.

Probably the best known example of an algorithm which uses randomness in
a more essential way is the Miller-Rabin test to see if a numberis prime. This test
is easy to code (except that to make it meaningful you would need to set it up to
work with multiple-precision arithmetic, since testing ordinary machine-precision
integers to see if they are prime is too easy a task to give to this method). Its
justification relies upon more mathematics than I want to include in this course.
But the overview is that it works by selecting a sequence of random numbers.
Each of these is used in turn to test the target number — if any of these tests
indicate that the target isnot prime then this is certainly true. But the test used is
such that if the input number was in fact composite then each independent random
test had a chance of at least1/2 of detecting that. So afters tests that all fail to
detect any factors there is only a2−s chance that we are in error if we report the

13provided at least one of the initial values is odd the least significant bits of theak form a
bit-sequence that has a cycle of length about255.

45



number to be prime. One might then select a value ofs such that the chances
of undetected hardware failure exceed the chances of the understood randomness
causing trouble!

14 Data Compression

File storage on distribution discs and archive tapes generally uses compression to
fit more data on limited size media. Picture data (for instance Kodak’s Photo CD
scheme) can benefit greatly from being compressed. Data traffic over links (eg. fax
transmissions over the phone lines and various computer-to-computer protocols)
can be effectively speeded up if the data is sent in compressed form. This course
will give a sketch of three of the most basic and generally useful approaches to
compression. Note that compression will only be possible ifthe raw data involved
is in some way redundant, and the foundation of good compression is an under-
standing of the statistical properties of the data you are working with.

14.1 Huffman

In an ordinary document stored on a computer every characterin a piece of text
is represented by an eight-bit byte. This is wasteful because some characters (‘ ’
and ‘e’, for instance) occur much more frequently than others (‘z’ and ‘#’ for
instance). Huffman coding arranges that commonly used symbols are encoded
into short bit sequences, and of course this means that less common symbols have
to be assigned long sequences.

The compression should be thought of as operating on abstract symbols, with
letters of the alphabet just a particular example. Suppose that the relative frequen-
cies of all symbols are known in advance14, then one tabulates them all. The two
least common symbols are identified, and merged to form a little two-leaf tree.
This tree is left in the table and given as its frequency the sum of the frequencies
of the two symbols that it replaces. Again the two table entries with smallest fre-
quencies are identified and combined (this feels like the sort of application that
calls out for a priority queue). At the end the whole table will have been reduced
to a single entry, which is now a tree with the original symbols as its leaves. Un-
common symbols will appear deep in the tree, common ones higher up. Huffman
coding uses this tree to code and decode texts. To encode a symbol a string of bits

14this may either be because the input text is from some source whose characteristics are well
known, or because a pre-pass over the data has collected frequency information.

46



is generated corresponding to the combination of left/right selections that must be
made in the tree to reach that symbol. Decoding is just the converse — received
bits are used as navigation information in the tree, and whena leaf is reached that
symbol is emitted and processing starts again at the top of the tree.

A full discussion of this should involve commentary on just how the code
table set up process should be implemented, how the encodingmight be changed
dynamically as a message with varying characteristics is sent, and analysis and
proofs of how good the compression can be expected to be.

14.2 Arithmetic Coding

One problem for Huffman coding is that each symbol encodes into a whole num-
ber of bits. As a result one can waste on average more than halfa bit for each
symbol sent. Arithmetic coding addresses this problem. It starts by declaring that
the whole message top be sent will be encoded as a number in therange0.0 to
1.0. It then inspects the first character to be sent. Based upon theprobabilities of
different characters appearing it will have split the initial range into a collection of
sub-ranges each having a width proportional to the probability of that particular
character arising. Processing a character reduces the initial range(0.0, 1.0) to one
of these smaller sub-ranges,(a, b) say. Now this range is divided into bits which
have widths proportional to the probabilities of the next characters that might
arise, and one of these gets selected. As can be seen the message text defines a
nest of little intervals. One should (to start with) imaginethe entire input message
being processed to narrow things down to some very tiny interval in the range0.0
to 1.0. Now just enough bits of the binary representation of this number get sent
to allow the decoder to identify unambiguously what the input message was.

Of course one wants the conversion to binary to interleave with character en-
coding, and it is essential that quite limited precision arithmetic be adequate for
both coding and decoding. The full details involved in making this all work are of
course a little delicate!

Note that arithmetic coding could easily allow one to have different predictions
of symbol probabilities in different parts of a message. Forinstance after a ‘q’
one could make it odds-on that the next character would be ‘u’. Modelling such
conditional probabilities is at least as important in data compression as the bit-
twiddling final encoding.

47



14.3 LZ

This method, which has become very popular lately, is based on the observation
that in many types of data it is common for strings to be repeated. For instance
in a program the names of a user’s variables will tend to appear very often, as
will language keywords (and things such as repeated spaces). The idea behind LZ
(Lempel-Zif) is to send messages using a greatly extended alphabet (maybe up to
16 bit characters) and to allocate all the extra codes that this provides to stand for
strings that have appeared earlier in the text.

It suffices to allocate a new code to each pair of tokens that get put into the
compressed file. This is because after a while these tokens will themselves stand
for increasingly long strings of characters, so single output units can correspond
to arbitrary length strings. At the start of a file while only afew extra tokens have
been introduced one uses (say) 9-bit output characters, increasing the width used
as more pairs have been seen.

Because the first time any particular pair of characters is used it gets sent
directly (the single-character replacement is used on all subsequent occasions15)
a decoder naturally sees enough information to build its owncopies of the coding
tables without needing any extra information.

If at any stage the coding tables become too big the entire compression process
can be restarted using initially empty ones.

15 Algorithms on graphs

The general heading “graphs” covers a number of useful variations. Perhaps the
simplest case is that of a general directed graph — this has a set of vertices, and
a set of ordered pairs of vertices that are taken to stand for (directed) edges. Note
that it is common to demand that the ordered pairs of verticesare all distinct, and
this rules out having parallel edges. In some cases it may also be useful either
to assume that for each vertexv that the edge(v, v) is present, or to demand that
no edges joining any vertex to itself can appear. If in a graphevery edge(v1, v2)
that appears is accompanied by an edge joining the same vertices but in the other
sense, i.e.(v2, v1), then the graph is said to beundirected, and the edges are then
though of as unordered pairs of vertices. A chain of edges in agraph form apath,
and if each pair of vertices in the entire graph have a path linking them then the

15A special case arises when the second occurrence appears immediately, which I will skip over
in these abbreviated notes

48



graph isconnected. A non-trivial path from a vertex back to itself is called acycle.
Graphs without cycles have special importance, and the abbreviationDAG stands
for Directed Acyclic Graph. An undirected graph without cycles in it is atree. If
the vertices of a graph can be split into two sets, A and B say, and each edge of the
graph has one end in A and the other in B then the graph is said tobebipartite.
The definition of a graph can be extended to allow values to be associated with
each edge — these will often be called weights or distances. Graphs can be used
to represent a great many things, from road networks to register-use in optimis-
ing compilers to databases to timetable constraints. The algorithms using them
discussed here are only the tip of an important iceberg.

15.1 Depth-first and breadth-first searching

Many problems involving graphs are solved by systematically searching. Even
when the underlying structure is a graph the structure of a search can be regarded
as a tree. The two main strategies for inspecting a tree are depth-first and breadth-
first. Depth-first search corresponds to the most natural recursive procedure for
walking over the tree. A feature is that (from any particularnode) the whole of
one sub-tree is investigated before the other is looked at atall.

The recursion in depth-first search could naturally be implemented using a
stack. If that stack is replaced by a queue but the rest of the code is unaltered you
get a version of breadth-first search where all nodes at a distancek from the root
get inspected before any at depthk + 1 are visited. Breadth-first search can often
avoid getting lost in fruitless scanning of deep parts of thetree, but the queue that
it uses often requires much more memory than depth-first search’s stack.

15.2 Minimum Spanning Subtree

Given a connected undirected graph withn edges where the edges have all been
labelled with “lengths”, the problem of finding a minimum spanning tree is that
of finding the shortest sub-graph that links all vertices. This must necessarily be
a tree. For suppose it were not, then it would contain a cycle.Removing any one
edge from the cycle would leave the graph strictly smaller but still connecting all
the vertices.

One algorithm that finds minimal spanning subtrees involvesgrowing a sub-
graph by adding (at each step) that edge of the full graph that(a) joins a new vertex
onto the sub-graph we have already and (b) is the shortest edge with that property.

49



The main questions about this are first how do we prove that it works correctly,
and second how do we implement it efficiently.

15.3 Single Source shortest paths

This starts with a (directed) graph with the edges labelled with lengths. Two
vertices are identified, and the challenge is to find the shortest route through the
graph from one to the other. An amazing fact is that for sparsegraphs the best
ways of solving this known may do as much work as a procedure that sets out to
find distances from the source toall the other points in the entire graph. One of the
things that this illustrates is that our intuition on graph problems may mis-direct if
we think in terms of particular applications (for instance distances in a road atlas
in this case) but then try to make statements about arbitrarygraphs.

The approved algorithm for solving this problem is a form of breadth-first
search from the source, visiting other vertices in order of the shortest distance
from the source to each of them. This can be implemented usinga priority queue
to control the order in which vertices are considered. When, in due course, the
selected destination vertex is reached the algorithm can stop. The challenge of
finding the very best possible implemementation of the queue-like structures re-
quired here turns out to be harder than one might hope!

If all edges in the graph have the same length the priority queue management
for this procedure collapses into something rather easier.

15.4 Connectedness

For this problem I will start by thinking of my graph as if it isrepresented by an
adjacency matrix. If the bits in this matrix are{ai,j} then I want to consider the
interpretation of the graph with matrix elements defined by

bi,k = ai,k ∨
∨

j

ai,j ∧ aj,k

where∧ and∨ indicateand and or operations. A moment or two of thought
reveals that the new matrix shows edges wherever there is a link of length one or
two in the original graph.

Repeating this operation would allow us to get all paths of length up to4, 8, 16, ...
and eventually all possible paths. But we can in fact do betterwith a program that
is very closely related:

50



for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
a[i,j] = a[i,j] | (a[i,k] & a[k,j]);

is very much like the variant on matrix multiplication givenabove, but solves the
whole problem in one pass. Can you see why, and explain it clearly?

15.5 All Points shortest paths

Try taking the above discussion of connectedness analysis and re-working it with
max and min operations instead of booleanand and or. See how this can be
used to fill in the shortest distances between all pairs of points. What value must
be used in matrix elements corresponding to pairs of graph vertices not directly
joined by an edge?

15.6 Bipartite Graphs and matchings

A matching in a bipartite graph is a collection of edges such that each vertex of
the graph is included in at most one of the selected edges. A maximal matching is
then obviously as large a subset of the edges that has this property as is possible.
Why might one want to find a matching? Well bipartite graphs andmatchings can
be used to represent many resource allocation problems.

Weighted matching problems are where bipartite graphs havethe edges la-
belled with values, and it is necessary to find the matching that maximises the
sum of weights on the edges selected.

Simple direct search through all possible combinations of edges would pro-
vide a direct way of finding maximal matchings, but would havecosts growing
exponentially with the number of edges in the graph — even forsmall graphs it is
not a feasible attack.

A way of solving the (unweighted) matching problem uses “augmenting paths”,
a term you can look up in AHU or CLR.

16 Algorithms on strings

This topic is characterised by the fact that the basic data structure involved is al-
most vanishingly simple — just a few strings. Note however that some “string”

51



problems may use sequences of items that are not just simple characters: search-
ing, matching and re-writing can still be useful operationswhatever the elements
of the “strings” are. For instance in hardware simulation there may be need for
operations that work with strings of bits. The main problem addressed will one
that treats one string as a pattern to be searched for and another (typically rather
longer) as a text to scan. The result of searching will eitherbe a flag to indicate
that the text does not contain a substring identical to the pattern, or a pointer to the
first match. For this very simple form of matching note that the pattern is a simple
fixed string: there are no clever options or wildcards. This is like a simple search
that might be done in a text editor.

16.1 Simple String Matching

If the pattern isn characters long and the text ism long, then the simplest possible
search algorithm would test for a match at positions 1, 2, 3, ... in turn, stopping
on a match or at the end of the text. In the worst case testing for a match at any
particular position may involve checking alln characters of the pattern (the mis-
match could occur on the last character). If no match is foundin the entire text
there will have been tests atm − n places, so the total cost might ben × (m −
n) = Θ(mn). This worst case could be attained if the pattern was something like
aaaa...aaab and the text was just a long stringaaa...aaa, but in very many
applications the practical cost grows at a rate more likem + n, basically because
most mis-matches occur can be detected after looking at onlya few characters.

16.2 Precomputation on the pattern

Knuth-Morris-Pratt: Start matching your pattern against the start of the text. If
you find a match then very good — exit! But if not, and if you have matchedk
out of yourn characters then you know exactly what the firstk characters of the
text are. Thus when you come to start a match at the next position in effect you
have already inspected the firstk − 1 places, and you should know if they match.
If they do then you just need to continue from there on. Otherwise you can try a
further-up match. In the most extreme case of mis-matches after a failure in the
first match at positionn you can move the place that you try the next match on by
n places. Now then: how can that insight be turned into a practical algorithm?

Boyer-Moore: The simple matching algorithm started checking the first char-
acter of the pattern against the first character of the text. Now consider making
the first test be thenth character of each. If these characters agree then go back

52



to positionn − 1, n − 2 and so on. If a mis-match is found then the characters
seen in the text can indicate where the next possible alignment of pattern against
text could be. In the best case of mis-matches it will only be necessary to inspect
everynth character of the text. Once again these notes just providea clue to an
idea, and leave the details (and the analysis of costs) to textbooks and lectures.

Rabin-Karp: Some of the problem with string matching is that testing if the
pattern matches at some point has possible costn (the length of the pattern). It
would be nice if we could find a constant cost test that was almost as reliable. The
Rabin-Karp idea involves computing a hash function of the pattern, and organising
things in such a way that it is easy to compute the same hash function on eachn
character segment of the text. If the hashes match there is a high probability
that the strings will, so it is worth following through with afull blow by blow
comparison. With a good hash function there will almost never be false matches
leading to unnecessary work, and the total cost of the searchwill be proportional
to m+n. It is still possible (but very very unlikely) for this process to deliver false
matches at almost all positions and cost as much as a naive search would have.

16.3 Knuth-Bendix completion of a set of re-write rules

This subsection describes a problem and notes that it has a solution, but the full
details are considered outside the scope of this course. Consider a collection of
string re-write rules, each rule taking the form of a pair of fixed strings, one a
pattern and the other a (shorter) replacement string. A textwill be processed using
these rules by searching in it for one of the strings on the left side of a rewrite. If
a match is found the string found is replaced in the text by theone from the right
hand side of the relevant rewrite. This process is continueduntil no matching
strings remain in the text.

In some cases it could be that several patterns apply to the text, or one pattern
could match in several different places. Which re-write is performed first might
alter the entire course of the rest of the processing. For some sets of rewrite rules it
is possible to show that even though selecting different rewrites has a local effect
on the reduction process in the end it does not matter — when rewriting terminates
the final text will be independent of any earlier choices made.

The first challenge this raises is that of finding an algorithmto test if a collec-
tion of rewrites has this desirable property (confluence). It turns out to be possible
to do even better, and take sets of reduction rules that startoff ill-behaved and de-
rive from them rule-sets thatalwaysyield the shortest result that could have been
obtained using the original rules. The outline of how to do this is reasonably easy

53



to give, but the proofs that the procedure terminates and that the expanded rewrite
set behaves as desired is rather harder!

17 Geometric Algorithms

A major feature of geometric algorithms is that one often feels the need to sort
items, but sorting in terms ofx co-ordinates does not help with a problem’s struc-
ture in they direction and vice versa: in general there often seems no obvious
way of organising the data. The topics included here are justa sampling that
show off some of the techniques that can be applied and provide some basic tools
to build upon. Many more geometric algorithms are presentedin the computer
graphics courses. Large scale computer aided design and therealistic rendering
of elaborate scenes will call for plenty of carefully designed data structures and
algorithms.

17.1 Use of lines to partition a plane

Representation of a line by an equation. Does it matter what form of the equation
is used? Testing if a point is on a line. Deciding which side ofa line a point is,
and the distance from a point to a line. Interpretation of scalar and vector products
in 2 and 3 dimensions.

17.2 Do two line-segments cross?

The two end-points of line segmenta must be on opposite side of the lineb, and
vice versa. Special and degenerate cases: end of one line is on the other, collinear
but overlapping lines, totally coincident lines. Crude clipping to provide cheap
detection of certainly separate segments.

17.3 Is a point inside a polygon

Represent a polygon by a list of vertices in order. What does it mean to be “inside”
a star polygon (eg. a pentagram)? Even-odd rule. Special cases. Winding number
rule. Testing a single point to see if it is inside a polygon vs. marking all interior
points of a figure.

54



17.4 Convex Hull of a set of points

What is the convex hull of a collection of points in the plane? Note that sensible
ways of finding one may depend on whether we expect most of the original points
to be on or strictly inside the convex hull. Input and output data structures to be
used. The package-wrapping method, and itsn2 worst case. The Graham Scan.
Initial removal of interior points as an heuristic to speed things up.

17.5 Closest pair of points

Given a rectangular region of the plane, and a collection of points that lie within
this region, how can you find the pair of points that are closest to one another?
Suppose there aren points to begin with, what cost can you expect to pay?

Try the “divide and conquer” approach. First, ifn is 3 or less just compute
the roughlyn2/2 pair-wise lengths between points and find the closest two points
by brute-force. Otherwise find a vertical line that partitions the points into two
almost equal sets, one to its left and one to its right. Apply recursion to solve each
of these sub-problems. Suppose that the closest pair of points found in the two
recursive calls were a distanceδ apart, then either that pair will be the globally
closest pair or the true best pair straddles the dividing line. In the latter case the
best pair must lie within a vertical strip of width2δ, so it is just necessary to scan
points in this strip. It is already known that points that areone the same side of the
original dividing line are at leastδ apart, and this fact makes it possible to speed
up scanning the strip. With careful support of the data structures needed internally
(which includes keeping lists of the points sorted by bothx andy co-ordinate) the
running time of the strip-scanning can be made linear inn, which leads to the
recurrence

f(n) = 2f(n/2) + kn

for the overall costf(n) of this algorithm, and this is enough to show that the
problem can be solved inΘ(n log(n)). Note (as always) that the sketch given here
explains the some of the ideas of the algorithm, but not all the important details,
which you can check out in textbooks or (maybe) lectures!

18 Conclusion

One of the things that is not revealed very directly by these notes is just how
much detail will appear in the lectures when each topic is covered. The various

55



textbooks recommended range from informal hand-waving with little more detail
than these notes up to heavy pages of formal proof and performance analysis.
In general you will have to attend the lectures16 to discover just what level of
coverage is given, and this will tend to vary slightly from year to year.

The algorithms that are discussed here (and indeed many of the ones that have
got squeezed out for lack of time) occur quite frequently in real applications, and
they can often arise as computational hot-spots where quitesmall amounts of code
limit the speed of a whole large program. Many applications call for slight varia-
tions of adjustments of standard algorithms, and in other cases the selection of a
method to be used should depend on insight into patterns of use that will arise in
the program that is being designed.

A recent issue in this field involves the possibility of some algorithms being
covered (certainly in the USA, and less clearly in Europe) bypatents. In some
cases the correct response to such a situation is to take a license from the patent
owners, in other cases even a claim to a patent may cause you towant to invent
your very own new and different algorithm to solve your problem in a royalty-free
way.

16Highly reccomended anyway!

56


