
10 — BIVARIATE DISTRIBUTIONS

After some discussion of the Normal distribution, consideration is given to handling two
continuous random variables.

The Normal Distribution

The probability density function f(x) associated with the general Normal distribution is:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (10.1)

The range of the Normal distribution is −∞ to +∞ and it will be shown that the total
area under the curve is 1. It will also be shown that µ is the mean and that σ2 is the
variance. A graphical representation of the Normal distribution is:

X

f(x) ↑

↑
0 x→µ

It is immediately clear from (10.1) that f(x) is symmetrical about x = µ. This value of x
is marked. When µ = 0 the curve is symmetrical about the vertical axis. The value of σ2

governs the width of the hump and it turns out that the inflexion points (one each side of

the peak) are at x = µ± σ where σ =
√
σ2 is the standard deviation.

When integrating expressions which incorporate the probability density function, it is
essential to know the following standard result (a derivation is presented on page 10.10):

∫ +∞

−∞
e−x

2

dx =
√
π (10.2)

This result makes it easy to check that the total area under the curve is 1:

Total Area =
1√

2πσ2

∫ +∞

−∞
e−

(x−µ)2

2σ2 dx

Let t =
x− µ√

2σ2
so dx =

√
2σ2 dt. Then:

Total Area =
1√

2πσ2

∫ +∞

−∞
e−t

2√
2σ2 dt =

1√
π

∫ +∞

−∞
e−t

2

dt =
1√
π
.
√
π = 1
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From the symmetry of the probability density function (10.1) it is clear that the expectation
E(X) = µ but to give a further illustration of the use of the standard result (10.2) the
expectation is here evaluated by integration:

E(X) =
1√

2πσ2

∫ +∞

−∞
x.e−

(x−µ)2

2σ2 dx

Let t =
x− µ√

2σ2
so x =

√
2σ2 t+ µ and dx =

√
2σ2 dt. Then:

E(X) =
1√

2πσ2

∫ +∞

−∞
(
√

2σ2t+ µ).e−t
2√

2σ2 dt

=

√
2σ2

π

∫ +∞

−∞
t.e−t

2

dt+
µ√
π

∫ +∞

−∞
e−t

2

dt

=

√
2σ2

π

[
−1

2
e−t

2

]+∞

−∞
+

µ√
π
.
√
π

=

√
2σ2

π
[0− 0] + µ

= µ

The variance, for once, is conveniently evaluated from the formula V(X) = E
(
(X − µ)2

)
:

V(X) = E
(
(X − µ)2

)
=

1√
2πσ2

∫ +∞

−∞
(x− µ)2.e−

(x−µ)2

2σ2 dx

Let t =
x− µ√

2σ2
so x− µ =

√
2σ2 t and dx =

√
2σ2 dt. Then:

V(X) =
1√

2πσ2

∫ +∞

−∞
2σ2t2.e−t

2√
2σ2 dt

= − σ2

√
π

∫ +∞

−∞
t
d

dt

(
e−t

2)
dt

The integrand has been put into a form ready for integration by parts:

V(X) = − σ2

√
π

[
t.e−t

2

]+∞

−∞
+

σ2

√
π

∫ +∞

−∞
e−t

2

dt

= − σ2

√
π

[0− 0] +
σ2

√
π
.
√
π

= σ2
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Standard Form of the Normal Distribution

The general Normal distribution is described as:

Normal(µ, σ2) or simply N(µ, σ2)

The smaller the variance σ2 the narrower and taller the hump of the probability density
function.

A particularly unfortunate difficulty with the Normal distribution is that integrating the
probability density function between arbitrary limits is intractable. Thus, for arbitrary a
and b, it is impossible to evaluate:

P(a 6 X < b) =
1√

2πσ2

∫ b

a

e−
(x−µ)2

2σ2 dx

The traditional way round this problem is to use tables though these days appropriate
facilities are built into any decent spreadsheet application.

Unsurprisingly, tables are not available for a huge range of possible (µ, σ2) pairs but the
special case when the mean is zero and the variance is one, the distribution Normal(0,1),
is well documented. The probability distribution function for Normal(0,1) is often referred
to as Φ(x):

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 t

2

dt

Tables of Φ(x) are readily available so, given a random variable X distributed Normal(0,1),
it is easy to determine the probability that X lies in the range a to b. This is:

P(a 6 X < b) = Φ(b)− Φ(a)

It is now straightforward to see how to deal with the general case of a random variable X
distributed Normal(µ, σ2). To determine the probability that X lies in the range a to b
first reconsider:

P(a 6 X < b) =
1√

2πσ2

∫ b

a

e−
(x−µ)2

2σ2 dx

Let t =
x− µ
σ

so dx = σ dt. Then:

P(a 6 X < b) =
1√

2πσ2

∫ b−µ
σ

a−µ
σ

e−
1
2 t

2

σ dt =
1√
2π

∫ b−µ
σ

a−µ
σ

e−
1
2 t

2

dt

The integration is thereby transformed into that for the distribution Normal(0,1) and is
said to be in standard form. Noting the new limits:

P(a 6 X < b) = Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
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The Central Limit Theorem

No course on probability or statistics is complete without at least a passing reference to
the Central Limit Theorem. This is an extraordinarily powerful theorem but only the most
token of introductory remarks will be made about it here.

Suppose X1, X2, . . . Xn are n independent and identically distributed random variables
each with mean µ and variance σ2. Consider two derived random variables Y and Z which
are respectively the sum and mean of X1, X2, . . . Xn:

Y = X1 +X2 + · · ·+Xn and Z =
X1 +X2 + · · ·+Xn

n

From the rules for Expectation and Variance discussed on pages 4.6 and 4.8 it is simple to
determine the Expectation and Variance of Y and Z:

E(Y ) = nµ, V(Y ) = nσ2 and E(Z) = µ, V(Z) =
σ2

n

The Central Limit Theorem addresses the problem of how the derived random variables Y
and Z are distributed and asserts that, as n increases indefinitely, both Y and Z tend to
a Normal distribution whatever the distribution of the individual Xi. More specifically:

Y tends to N(nµ, nσ2) and Z tends to N

(
µ,
σ2

n

)

In many cases Y and Z are approximately Normal for remarkably small values of n.

Bivariate Distributions — Reference Discrete Example

It has been noted that many formulae for continuous distributions parallel equivalent
formulae for discrete distributions. In introducing examples of two continuous random
variables it is useful to employ a reference example of two discrete random variables.

Consider two discrete random variables X and Y whose values are r and s respectively
and suppose that the probability of the event {X = r} ∩ {Y = s} is given by:

P(X = r, Y = s) =





r + s

48
, if 0 6 r, s 6 3

0, otherwise

The probabilities may be tabulated thus:

Y s →
0 1 2 3

X 0 0
48

1
48

2
48

3
48

6
48

1 1
48

2
48

3
48

4
48

10
48 P(X = r)

r 2 2
48

3
48

4
48

5
48

14
48 ↓

↓ 3 3
48

4
48

5
48

6
48

18
48

6
48

10
48

14
48

18
48

P(Y = s) →
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The following is a graphical representation of the same function:

Y 3
2

1

0

0

1

X
2

3

The probabilities exist for only integer values of r and s so the effect is of a kind of
pegboard. Different lengths of peg correspond to different probabilities.

Axiom II requires the sum of all the entries in the table (which is the total length of the
pegs) to be 1.

The table also includes the marginal sums which separately tabulate the probabilities
P(X = r) and P(Y = s).

Bivariate Distributions — Continuous Random Variables

When there are two continuous random variables, the equivalent of the two-dimensional
array is a region of the x–y (cartesian) plane. Above the plane, over the region of interest,
is a surface which represents the probability density function associated with a bivariate
distribution.

Suppose X and Y are two continuous random variables and that their values, x and y
respectively, are constrained to lie within some region R of the cartesian plane. The
associated probability density function has the general form fXY(x, y) and, regarding this
function as defining a surface over region R, axiom II requires:

∫∫

R

fXY(x, y) dx dy = 1

This is equivalent to requiring that the volume under the surface is 1 and corresponds to
the requirement that the total length of the pegs in the pegboard is 1.
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As an illustration, consider a continuous analogy of the reference example of two discrete
random variables.

Suppose X and Y are two continuous random variables and that their values x and y are
constrained to lie in the unit square 0 6 x, y < 1. Suppose further that the associated
bivariate probability density function is:

fXY(x, y) =

{
x+ y, if 0 6 x, y < 1

0, otherwise

This probability density function can be regarded as defining a surface over the unit square.
Continuous functions cannot satisfactorily be tabulated but it is not difficult to depict a
graphical representation of fXY(x, y):

Y
1.0

0.0

0.0

X

1.0

Note that when x = y = 1 the value of fXY(x, y) is 2, an impossible value for a probability
but a perfectly possible value for a probability density function. Probabilities correspond
to volumes now and it is easy to check that the total volume under the surface is 1. Given
that region R represents the specified unit square:

∫∫

R

fXY(x, y) dx dy =

∫ 1

0

∫ 1

0

(x+ y) dx dy =

∫ 1

0

[x2

2
+ yx

]1
0
dy

=

∫ 1

0

(1

2
+ y
)
dy =

[y
2

+
y2

2

]1
0

= 1

In the general case where the probability density function is fXY(x, y), the probability that
(x, y) lies in a particular sub-region Rs of R is given by:

P(X,Y lies in Rs) =

∫∫

Rs

fXY(x, y) dx dy
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In the example case, suppose that the sub-region Rs is defined by the half-unit square
0 6 x, y < 1

2 :

P(X,Y lies in Rs) =

∫ 1
2

0

∫ 1
2

0

(x+ y) dx dy =

∫ 1
2

0

[x2

2
+ yx

] 1
2

0
dy

=

∫ 1
2

0

(1

8
+
y

2

)
dy =

[y
8

+
y2

4

] 1
2

0
=

1

8

In the reference discrete example (where the values of both random variables are confined
to the range 0 to 3) this result loosely corresponds to determining P(X,Y < 1 1

2 ):

P(X,Y < 1 1
2 ) =

1∑

r=0

1∑

s=0

P(X = r, Y = s) =
0

48
+

1

48
+

1

48
+

2

48
=

4

48
=

1

12

Why is the answer different?

The Equivalent of Marginal Sums

With two discrete random variables, the marginal sums P(X = r) and P(Y = s) are given
by the relationships:

P(X = r) =
∑

s

P(X = r, Y = s) and P(Y = s) =
∑

r

P(X = r, Y = s)

A pair of continuous random variables X and Y governed by a bivariate distribution
function fXY(x, y) will, separately, have associated probability density functions fX(x) and
fY(y). By analogy with the discrete case, these functions are given by the relationships:

fX(x) =

∫ ymax

ymin

fXY(x, y) dy and fY(y) =

∫ xmax

xmin

fXY(x, y) dx

The limits of integration merit a moment’s thought. The region, R, over which fXY(x, y) is
defined is not, in general, a square. Accordingly, the valid range of y depends on x and, in
consequence, the limits ymin and ymax will depend on x. Likewise, the limits xmin and xmax

will depend on y.

In the example case, where R is the unit square, there is no difficulty about the limits:

fX(x) =

∫ 1

0

(x+ y) dy =
[
xy +

y2

2

]1
0

= x+
1

2

and:

fY(y) =

∫ 1

0

(x+ y) dx =
[x2

2
+ yx

]1
0

= y +
1

2
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The Equivalent of Marginal Sums and Independence

With two discrete random variables, the two sets of marginal sums each sum to 1. With
continuous random variables, integrating each of the functions fX(x) and fY(y) must
likewise yield 1. It is easy to verify that this requirement is satisfied in the present case:

∫ 1

0

(
x+

1

2

)
dx =

[x2

2
+
x

2

]1
0

= 1 and

∫ 1

0

(
y +

1

2

)
dy =

[y2

2
+
y

2

]1
0

= 1

With two discrete random variables, marginal sums are used to test for independence. Two
variables variables X and Y are said to be independent if:

P(X = r, Y = s) = P(X = r) .P(Y = s) for all r, s

By analogy, two continuous random variables X and Y are said to be independent if:

fXY(x, y) = fX(x) . fY(y)

In the present case:

fXY(x, y) = x+ y and fX(x) . fY(y) =
(
x+

1

2

)(
y +

1

2

)
= xy +

x+ y

2
+

1

4

Clearly two continuous random variables X and Y whose probability density function is
x + y are not independent but the function just derived can be dressed up as bivariate
probability density function whose associated random variables are independent:

fXY(x, y) =

{
(4xy + 2x+ 2y + 1)/4 if 0 6 x, y < 1

0, otherwise

Illustration — The Uniform Distribution

Suppose X and Y are independent and that both are distributed Uniform(0,1). Their
associated probability density functions are:

fX(x) =

{
1, if 0 6 x < 1

0, otherwise
and fY(y) =

{
1, if 0 6 y < 1

0, otherwise

Given this trivial case, the product is clearly the bivariate distribution function:

fXY(x, y) =

{
1, if 0 6 x, y < 1

0, otherwise

The surface defined by fXY(x, y) is a unit cube so it is readily seen that:

∫∫

R

fXY(x, y) dx dy = 1
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Illustration — The Normal Distribution

Suppose X and Y are independent and that both are distributed Normal(0,1). Their
associated probability density functions are:

fX(x) =
1√
2π

e−
1
2x

2

and fY(y) =
1√
2π

e−
1
2y

2

In this case the product leads to the probability density function:

fXY(x, y) =
1√
2π

e−
1
2x

2

.
1√
2π

e−
1
2y

2

=
1

2π
e−

1
2 (x2+y2) (10.3)

The surface approximates that obtained by placing a large ball in the centre of a table and
then draping a tablecloth over the ball.

Glossary

The following technical terms have been introduced:

standard form bivariate distribution

Exercises — X

1. Find the points of inflexion of the probability density function associated with a
random variable which is distributed Normal(µ, σ2). Hence find the points at which
the tangents at the points of inflection intersect the x-axis.

2. The Cauchy distribution has probability density function:

f(x) =
c

1 + x2
where −∞ < x < +∞

Evaluate c. Find the probability distribution function F (x). Calculate P(0 6 x < 1).

3. Two continuous random variables X and Y have the following bivariate probability
function which is defined over the unit square:

fXY(x, y) =

{
(9− 6x− 6y + 4xy)/4 if 0 6 x, y < 1

0, otherwise

(a) Given that R is the unit square, verify that
∫∫
R
fXY(x, y) dx dy = 1.

(b) Determine fX(x) and fY(y).

(c) Hence state whether or not the two random variables are independent.
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ADDENDUM — AN IMPORTANT INTEGRATION

For arbitrary limits a and b it is impossible to evaluate
∫ b
a
e−x

2

dx but evaluation is possible
if a = −∞ and b = +∞ and an informal analysis is presented below.

As a preliminary observation note that:

∫ ∞

0

e−x
2

dx =

√∫ ∞

0

e−x2 dx

∫ ∞

0

e−y2 dy =

√∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy

The item under the square root sign can be integrated by the substitution of two new
variables r and θ using the transformation functions:

x = r cos θ and y = r sin θ

Further discussion of integration by the substitution of two new variables will be given on
pages 12.1 and 12.2. In the present case, the integration is transformed thus:

∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy =

∫ π
2

0

∫ ∞

0

e−r
2

rdr dθ

The first pair of limits reflects integration over a square constituting the quadrant of the
cartesian plane in which x and y are both positive. The second pair of limits reflects
integration over a quarter circle in the same quadrant. Since the function being integrated
is strongly convergent as x and y or r increase, it is valid to equate the two integrations.

The right-hand integration is straightforward:

∫ π
2

0

∫ ∞

0

e−r
2

rdr dθ =

∫ π
2

0

[−e−r2

2

]∞
0
dθ =

∫ π
2

0

1

2
dθ =

[θ
2

]π
2

0
=
π

4

Accordingly: ∫ ∞

0

e−x
2

dx =

√
π

4
=

√
π

2

This leads, by symmetry, to the standard result quoted as (10.2):

∫ +∞

−∞
e−x

2

dx =
√
π
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