
Parsing (and generation)

Syntactic structure in analysis:

• as a step in assigning semantics

• checking grammaticality

• corpus-based investigations, lexical
acquisition etc

This lecture:

1. generative grammar

2. a simple context free grammar of a fragment
of English

3. random generation

4. simple chart parsing

5. refinements to chart parsing

6. why not FSAs?

Next lecture — beyond simple CFGs

1



Generative grammar

a formally specified grammar that can generate
all and only the acceptable sentences of a
natural language

Internal structure:

the big dog slept

can be bracketed

((the (big dog)) slept)

constituent a phrase whose components ‘go
together’ . . .

weak equivalence grammars generate the
same strings

strong equivalence grammars generate the
same strings with same brackets

2



Context free grammars

1. a set of non-terminal symbols (e.g., S, VP),
conventionally written in uppercase;

2. a set of terminal symbols (i.e., the words),
conventionally written in lowercase;

3. a set of rules (productions), where the left
hand side (the mother) is a single
non-terminal and the right hand side is a
sequence of one or more non-terminal or
terminal symbols (the daughters);

S -> NP VP
V -> fish

4. a start symbol, conventionally S, which is a
member of the set of non-terminal symbols.

Note: exclude empty productions (complicate
parsing, arguable linguistic status).

NOT: NP -> ε

3



A simple CFG for a fragment of English

S -> NP VP
VP -> VP PP
VP -> V
VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP

;;; lexicon
V -> can
V -> fish
NP -> fish
NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it
NP -> they
P -> in

4



they fish
(S (NP they) (VP (V fish)))

they can fish
(S (NP they) (VP (V can) (VP (V fish))))
(S (NP they) (VP (V can) (NP fish)))

they fish in rivers
(S (NP they) (VP (VP (V fish))

(PP (P in) (NP rivers))))

they fish in rivers in December
(S (NP they)

(VP (VP (V fish))
(PP (P in) (NP (NP rivers)

(PP (P in) (NP December))))))
(S (NP they)

(VP (VP (VP (V fish))
(PP (P in) (NP (NP rivers))))

(PP (P in) (NP December))))

5



Parse trees

they can fish in December
S

NP VP

they V VP

can VP PP

V

fish

P NP

in December
(S (NP they)

(VP (V can)
(VP (VP (V fish))

(PP (P in)
(NP December)))))

6



Using a grammar as a random generator

Expand cat category sentence-record:
Let possibilities be a set containing all
lexical items which match category and
all rules with left-hand side category
If possibilities is empty,
then fail
else

Randomly select a possibility chosen
from possibilities
If chosen is lexical,
then append it to sentence-record
else

expand cat on each rhs category in
chosen (left to right) with the
updated sentence-record

return sentence-record

7



Expand cat S ()
possibilities = S -> NP VP
chosen = S -> NP VP

Expand cat NP ()
possibilities = it, they, fish
chosen = fish
sentence-record = (fish)
Expand cat VP (fish)
possibilities =VP -> V,

VP -> V VP,
VP -> V NP

chosen = VP -> V

Expand cat V (fish)
possibilities = fish, can
chosen = fish
sentence-record = (fish fish)

8



Chart parsing

chart store partial results of parsing

edge representation of a rule application

Edge data structure:

[id,left vtx, right vtx,mother category, dtrs]

. they . can . fish .
0 1 2 3

Fragment of chart:

id l r ma dtrs

3 1 2 V (can)
4 2 3 NP (fish)
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (3 5)
8 1 3 VP (3 4)

9



A bottom-up passive chart parser

Parse:
Initialize the chart
For each word word, let from be left vtx,
to right vtx and dtrs be (word)

For each category category
lexically associated with word

Add new edge from, to, category, dtrs
Output results for all spanning edges

Add new edge from, to, category, dtrs:
Put edge in chart: [id,from,to, category,dtrs]
For each rule lhs -> cat1 . . . catn−1,category

Find sets of contiguous edges
[id1,from1,to1, cat1,dtrs1] . . .

[idn−1,fromn−1,from, catn−1,dtrsn−1]
(such that to1 = from2 etc)
For each set of edges,

Add new edge from1, to, lhs, (id1 . . . id)

10



id l r ma dtrs

1 0 1 NP (they)
2 1 2 V (can)
3 1 2 VP (2)
4 0 2 S (1 3)
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (2 6)
8 0 3 S (1 7)
9 2 3 NP (fish)
10 1 3 VP (2 9)
11 0 3 S (1 10)

11



Parse
word = they
categories = NP
Add new edge 0, 1, NP, (they)

they can fish
1

Matching grammar rules are:

VP -> V NP
PP -> P NP

No matching edges corresponding to V or P
word = can
categories = V
Add new edge 1, 2, V, (can)

they can fish
1 2

Matching grammar rules are:

VP -> V

set of edge lists = {(2)}

12



Add new edge 1, 2, VP, (2)

they can fish
1 2

3

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP VP
= {(1, 3)}

Add new edge 0, 2, S, (1, 3)

they can fish
1 2

3
4

No matching grammar rules for S

No edges matching V VP

word = fish
categories = V, NP

13



Add new edge 2, 3, V, (fish)

they can fish
1 2

3
4

5

Matching grammar rules are:

VP -> V

set of edge lists = {(5)}
Add new edge 2, 3, VP, (5)

they can fish
1 2

3
4

5
6

Matching grammar rules are:

S -> NP VP
VP -> V VP

No edges match NP
set of edge lists for V VP = {(2, 6)}

14



Add new edge 1, 3, VP, (2, 6)

they can fish
1 2

3
4

5
6

7

Matching grammar rules are:
S -> NP VP
VP -> V VP

set of edge lists for NP VP = {(1, 7)}
Add new edge 0, 3, S, (1, 7)

they can fish
1 2

3
4

5
6

7

8

No matching grammar rules for S
No edges matching V

15



Add new edge 2, 3, NP, (fish)

they can fish
1 2

3
4

5
6

7

8 9

Matching grammar rules are:

VP -> V NP
PP -> P NP

set of edge lists corresponding to V NP =
{(2, 9)}

16



Add new edge 1, 3, VP, (2, 9)

they can fish
1 2

3
4

5
6

7

8 9
10

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP VP
= {(1, 10)}

17



Add new edge 0, 3, S, (1, 10)

they can fish
1 2

3
4

5
6

7

8 9
10

11

No matching grammar rules for S

No edges corresponding to V VP

No edges corresponding to P NP

No further words in input

18



Spanning edges are 8 and 11: Output results
for 8

(S (NP they) (VP (V can)
(VP (V fish))))

Output results for 11

(S (NP they) (VP (V can)
(NP fish)))

Note: sample chart parsing code in Java is
downloadable from the course web page.

19



Packing

• exponential number of parses means
exponential time

• body can be cubic time: don’t add
equivalent edges

about to add:

[id,l vtx, right vtx,ma cat, dtrs]

and there is an existing edge:

[id-old,l vtx, right vtx,ma cat, dtrs-old]

we simply modify the old edge to record the
new dtrs:

[id-old,l vtx, right vtx,ma cat, dtrs-old t dtrs]

20



id l r ma dtrs
1 0 1 NP {(they)}
2 1 2 V {(can)}
3 1 2 VP {(2)}
4 0 2 S {(1 3)}
5 2 3 V {(fish)}
6 2 3 VP {(5)}
7 1 3 VP {(2 6)}
8 0 3 S {(1 7)}
9 2 3 NP {(fish)}

instead of:

10 1 3 VP {(2 9)}

we have:

7 1 3 VP {(2 6), (2 9)}

21



Active chart parsing

id l r ma exp dtrs
1 0 1 NP (they)
2 0 1 S VP (1 ?)
3 0 1 NP PP (1,?)
4 1 2 V (fish)
5 1 2 VP PP (4,?)
6 1 2 VP (4)
7 1 2 VP NP (4,?)
8 1 2 VP VP (4,?)
9 0 2 S (2,6)

• store partial rule applications

• record expected input as well as seen

• one active can create more than one passive.
e.g., they fish in Scotland — edge 2
completed by fish and fish in Scotland. NP is
combined with rule once not twice.

• active edges can be packed

22



Ordering the search space

• agenda: order edges in chart by priority

• top-down parsing: predict possible edges

Producing n-best parses:

•manual weight assignment

• probabilistic CFG — trained on a treebank

– automatic grammar induction
– automatic weight assignment to existing

grammar

• beam-search

23



Why not FSA?

centre-embedding:

A→ αAβ

and which generate grammars of the form
anbn.

For instance:

the students the police arrested
complained

However:

? the students the police the journalists
criticised arrested complained

Limits on human memory / processing ability

24



More importantly for practical application:

1. FSM grammars are very redundant: difficult
to build and maintain

2. FSM grammars don’t support composition
of semantics

but FSMs useful for:

1. tokenizers (dates, times etc)

2. named entity recognition in information
extraction etc

3. approximating CFGs in speech recognition

25


