MODULE 6q - Exceptions

THE TRY-CATCH CONSTRUCT

Three different exceptions are referred to in the program below. They
are the ArrayIndexOutOfBoundsException which is built-into Java and
two others, BadLuckException and BadZeroException, which are declared

(as classes) in the program.

public class TryCatch
{ private static int[] a = {12,22,0,19,13,29};
private static int p=0;

public static void main(String[] args)
{ while (true)
{ try
{ System.out.printf("%d%n", read());
¥
catch(ArrayIndexOutOfBoundsException e)
{ System.out.printf ("Finished’n");
break;
}
catch(BadLuckException e)

{ System.out.printf("---> %s%n", e.getMessage());

// catch 1

// catch 2

continue;
X
b
¥
private static int read() throws ArrayIndexOutOfBoundsException,
BadLuckException
{ int n=0;
try
{n=alp+t];
if (n==0)
throw new BadZeroException();
if (n==13)

throw new BadLuckException();
}
catch(BadZeroException e)
{ System.out.printf("---> ");
}
return n;

}

class BadLuckException extends Exception
{ public String getMessage()
{ return "unlucky thirteen";

3

class BadZeroException extends Exception
{ public String getMessage()

// catch 3



{ return "Zero";
}
}

// This yields:

//

// 12

// 22

// ===>0

// 19

// ---> unlucky thirteen
// 29

// Finished

TRY IT OUT

Key the program in, compile it and run it. It ought to give the results
which appear as comments at the end of the program.

Next see what happens if, in turn, the catch 1 clause is omitted, the
catch 2 clause is omitted and the catch 3 clause heading is changed to

catch(BadLuckException e)
Note also what happens if the throws clause is, in turn, changed to

throws ArrayIndexOutOfBoundsException
and to
throws BadLuckException

THE TRY-CATCH-FINALLY CONSTRUCT

An adapted version of the above program is given here. It refers to the
same three exceptions but includes a try-catch-finally construct.

public class TryFinally
{ private static int[] a = {12,22,0,19,13,29};
private static int p=0;
private static int totup=0;

public static void main(String[] args)
{ while (true)
{ try
{ System.out.printf ("%d%n", read());
}
catch(ArrayIndexOutOfBoundsException e)
{ System.out.printf ("Finished’n");
break;
}
catch(BadLuckException e)
{ System.out.printf ("---> Ys/n", e.getMessage());
continue;

}



}
System.out.printf ("Read entered %d timesyn", totup);
}

private static int read() throws ArrayIndexOutOfBoundsException,

BadLuckException
{ int n=0;
try
{n=alp+t];
if (n==0)
throw new BadZeroException();
if (n==13)

throw new BadLuckException();
}
catch(BadZeroException e)
{ System.out.printf("---> ");
}
finally
{ totupt++;
}

return n;

class BadLuckException extends Exception
{ public String getMessage()
{ return "unlucky thirteen";

}

class BadZeroException extends Exception
{ public String getMessage()

{ return "Zero";

b
X

// This yields:

//

// 12

// 22

// =—==>0

// 19

// ---> unlucky thirteen
// 29

// Finished

// Read entered 7 times

TRY IT OUT

Edit the previous program so that is appears as this new version,
compile it and run it. It ought to give the results shown.



TRY THIS JIFFY PROGRAM TOO

public class HelloC
{ public static void main(String[] args) throws InterruptedException
{ System.out.printf ("Hello%n");
Thread.sleep(3000L);
System.out.printf ("Worldn") ;
}

JAVA COLLECTIONS

Java has many facilities for processing collections of items. A simple
requirement is an array that will expand and contract as items are are
added or removed and the Java class Arraylist in the java.util package
achieves this. Class Arraylist implements the interface Collection.
Each element is of type Object so it is fully polymorphic.

In the following example the ArraylList notes is set up and six items are
added to it. One is then removed. The iterator() method in an ArraylList
object returns an Iterator object which is assigned to the Iterator
variable it. An Iterator enables every item in the collection to be
processed. Look up ArraylList and Iterator and try this program out.

import java.util.ArrayList;
import java.util.Iterator;

public class ArrayListIntro
{ public static void main(String[] args)
{ ArraylList notes = new ArrayList();

notes.add("Watch");

notes.add("Clock");

notes.add("Sundial");

notes.add(new Integer(42)); // Primitive types must be wrapped
notes.add(new Float(3.142f)); // up to turn them into objects.
notes.add("Clock");

notes.remove("Sundial");

System.out.printf ("The number of notes is ’%d/n", notes.size());
System.out.printf ("The selected entry is %s¥%n", notes.get(3));

Iterator it = notes.iterator();

while (it.hasNext())
System.out.printf ("/%s¥n", it.next());

}

// This yields:

//

// The number of notes is 5

// The selected entry is 3.142



// Watch
// Clock
// 42

// 3.142
// Clock

Class HashSet also implements the interface Collection. As its name
implies a HashSet is a set so repeated elements are not permitted and
order is not defined. An attempt to access element three, say, fails.
Look up HashSet and try this program out.

import java.util.HashSet;
import java.util.Iterator;

public class HashSetIntro
{ public static void main(String[] args)
{ HashSet notes = new HashSet();

notes.add("Watch");
notes.add("Clock");
notes.add("Sundial");
notes.add(new Integer(42));
notes.add(new Float(3.142f));
notes.add("Clock");
notes.remove("Sundial");

System.out.printf ("The number of notes is ’d/n", notes.size());
// System.out.printf(notes.get(3)); ... won’t compile

Iterator it = notes.iterator();

while (it.hasNext())
System.out.printf ("%s¥n", it.next());

3

// This yields:

//

// The number of notes is 4
// Clock

// 3.142

// 42

// Watch

THE HashMap CLASS

Class HashMap does not implement the Collection interface but it
can be thought of as a close relation. A HashMap is rather like
an ArrayList but instead of the elements being indexed by integers
they are indexed by keys. Sometimes the term ‘association list’
is used to describe a HashMap.

Notice that the put() method is used instead of an add() method
to incorporate a new entry and the put() method takes two arguments.



The first is the key and the second is the value. Each is of Object
type but in the following example type String is always used for the
key.

There is no iterator() method in a HashMap object but the keySet()
method returns an object which is a set of keys and this DOES have
an iterator() method which is duly assigned to the variable it.

Look up HashMap and try this program out.

import java.util.HashMap;
import java.util.Iterator;

public class HashMapIntro
{ public static void main(String[] args)
{ HashMap notes = new HashMap();

notes.put("Please", "Watch");
notes.put("Come", "Clock");
notes.put("To", "Sundial");
notes.put("Our", new Integer(42));
notes.put("Christmas", new Float(3.142f));
notes.put("Party", "Clock");
notes.remove("To");

System.out.printf ("The number of notes is ’%d/n", notes.size());

System.out.printf("The selected entry is %skn", notes.get("Come"));

Iterator it = notes.keySet().iterator();

while (it.hasNext())
System.out.printf ("%s/%n", notes.get(it.next()));

3

// This yields:

//

// The number of notes is 5

// The selected entry is Clock
// 42

// Clock

// Clock

// 3.142

// Watch



