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1 Review of analysis

1.1 Limits, continuity and differentiability

1.1.1 The limit of a function

If we can make a real-valued function f(x) as near as we like to a given number ` by making x
sufficiently close to a number a then ` is said to be the limit of f(x) as x→ a, written

lim
x→a

f(x) = ` . (1)

The variable x is allowed to approach a from either direction. However, in many cases the
limits will be different depending on whether x approaches a from the left or from the right. In
such cases we write

lim
x→a−

f(x) = `′ and lim
x→a+

f(x) = `′′ (2)

to denote the left and right limits, respectively. In all cases where the two separate limits are
equal ( `′ = `′′ = `, say) we write

lim
x→a

f(x) = ` . (3)

–4
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2

4
y

–4 –2 2 4x

Figure 1: Infinite limits

In some cases a function may become arbitrarily large when x approaches some number a.
When this occurs we write

lim
x→a

f(x) =∞ . (4)

In other words we allow the possibility that ` =∞. Similarly, we allow ` = −∞. For example,
consider the case of f(x) = 1

x and a = 0, illustrated in Figure 1. In this case we have

lim
x→0−

f(x) = −∞ and lim
x→0+

f(x) =∞ . (5)

Note that the notion of limit of f(x) as x→ a does not depend on the value of the function f
at a, namely f(a). Indeed, the function need not even be defined at x = a for limx→a f(x) to
exist. Furthermore, if f(x) is defined for x = a the function value may be different from either
its left or right limit at x = a. For example, consider the function, f(x) defined as follows and
illustrated in Figure 2

f(x) =

{
1 x ≥ 0 ,

0 x < 0
. (6)

More rigorously we can define the limit of a function f(x) as x → a to be ` whenever for
any number ε > 0 there exists a number δ > 0 such that

|f(x)− `| < ε when |x− a| < δ . (7)
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Let f(x) and g(x) be two functions and a any number such that

lim
x→a

f(x) and lim
x→a

g(x) (8)

both exist then the following three properties hold.

Theorem 1
lim
x→a
{f(x) + g(x)} = lim

x→a
f(x) + lim

x→a
g(x) (9)

Theorem 2
lim
x→a
{f(x)g(x)} =

{
lim
x→a

f(x)
}
·
{

lim
x→a

g(x)
}

(10)

Theorem 3

lim
x→a

{
f(x)

g(x)

}
=

limx→a f(x)

limx→a g(x)
(11)

whenever limx→a g(x) 6= 0.

1.1.2 Continuity

Having defined the notion of a limit of a function we can proceed to consider the notion of
continuity. A real-valued function f(x) is said to be continuous at x = a if the following three
conditions hold

(1) limx→a f(x) exists,

(2) f(x) is defined at x = a, and

(3) limx→a f(x) = f(a).

A function that is not continuous at x = a is discontinuous at a and a is then a point of
discontinuity for the function f . Generally, if the graph of a function has a break in it at some
value of x it is discontinuous at that point. For example, the functions illustrated in Figures 1
and 2 are both discontinuous at x = 0. The first function (f(x) = 1/x) becomes infinite at
the point of discontinuity and is said to have an infinite discontinuity at x = 0; the second
function remains finite at the discontinuity and is said to have a finite discontinuity at x = 0,
accordingly. The function

f(x) = x− [x] (12)

has an infinite number of finite discontinuities occuring whenever x is integer, as illustrated in
Figure 3.
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Figure 2: Limit with undefined function value
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1.1.3 Differentiability

If, for a given value of x,
f(x+ δx)− f(x)

δx
(13)

tends to a finite limit as δx → 0 then this limit, denoted by df
dx (or sometimes f ′(x)), is called

the derivative (or differential coefficient) of f for the value x. The function is then said to be
differentiable at x. The function is said to be differentiable if the derivative exists at every value
of x.

Consider the function y = f(x) illustrated in Figure 4. Let P be a typical point on the graph
with coordinates (x, y). Suppose that Q is some neighbouring point with coordinates (x+δx, y+
δy). The expression

f(x+ δx)− f(x)

δx
(14)

is then the slope of the straight line joining points P and Q. If, as the point Q is allowed to
approach the point P , the expression (14) approaches a limiting value, the curve has a tangent
at P whose gradient is f ′(x).

The definition of the differential coefficient as a limit allows us not only to determine its
value (when it exists) but also to derive the well known rules for differentiating the product and
quotient of two functions, namely

d

dx
(fg) = f

dg

dx
+ g

df

dx
, (15)

d

dx

(
f

g

)
=
g dfdx − f

dg
dx

g2
, (16)

where f and g are two differentiable functions of x.
A necessary (but not sufficient) condition for a function f to be differentiable at some

point x is that f is continuous at that point. For (f(x + δx) − f(x))/δx can tend to a finite
limit as δx → 0 only if f(x + δx) − f(x) → 0, that is, if f is continuous at x. Can you find a
function that at some point is continous but is not differentiable?

1.2 Power series and transcendental functions

Before we consider power series and transcendental functions we must briefly review the con-
vergence of infinite series.
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Figure 3: A function with an infinite number of (finite) discontinuities
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1.2.1 Convergence of infinite series

If a1, a2, a3, . . .is a sequence of numbers then the sum of the first n numbers is called the nth
partial sum and is represented by

Sn = a1 + a2 + a3 + . . .+ an =
n∑

r=1

ar . (17)

If the partial sums S1, S2, . . . converge to a finite limit, S, say, where

S = lim
n→∞

Sn (18)

then S is defined as the sum of the infinite series

a1 + a2 + . . . =
∞∑

r=1

ar , (19)

and the infinite series is said to be convergent. Alternatively, if the sequence of partial sums
tends to an infinite limit, or oscillates without tending to a limit the series is said to be divergent.

Example The geometric series

∞∑

r=0

apr = a(1 + p+ p2 + . . .) (20)

for some constant value a (a 6= 0) has partial sums (p 6= 1)

Sn = a
1− pn+1

1− p . (21)

Hence, if |p| < 1

S = lim
n→∞

Sn =
a

1− p (22)

and the series is convergent. However, the series is divergent when |p| ≥ 1 since the partial
sum Sn either increases without limit as n → ∞ (p ≥ 1), or oscillates either finitely (p = −1)
or infinitely (p < −1).

There are a variety of tests for the convergence of series such as the comparison test and the
ratio test. One such test that we shall need is d’Alembert’s ratio test which takes the following
form. If

∑∞
r=1 ar is a series of positive or negative terms then the infinite series is convergent if

lim
r→∞

∣∣∣∣
ar+1

ar

∣∣∣∣ = k < 1 , (23)

Q

P
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Figure 4: The slope of a function
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and is divergent if

lim
r→∞

∣∣∣∣
ar+1

ar

∣∣∣∣ = k > 1 . (24)

Note that the test does not allow us to decide between convergence and divergence at the
boundary case when k = 1.

1.2.2 Power series

Power series are an important type of infinite series given by

∞∑

r=0

arx
r = a0 + a1x+ a2x

2 + . . . (25)

where a0, a1, a2, . . . are constants. The values of x for which the power series converges can be
found from d’Alembert’s ratio test. Using this test, the series is convergent if

lim
r→∞

∣∣∣∣
ar+1x

r+1

arxr

∣∣∣∣ = |x| lim
r→∞

∣∣∣∣
ar+1

ar

∣∣∣∣ = k < 1 . (26)

This condition is more conveniently express as |x| < R where R is the radius of converence
defined as

R = lim
r→∞

∣∣∣∣
ar
ar+1

∣∣∣∣ , (27)

provided the limit exists. That is to say the series is convergent provided x lies in the (open)
interval

−R < x < R . (28)

This interval is called the interval (or range) of convergence.
When k = 1, d’Alembert’s ratio test gives us no information and consequently the series

may converge or diverge if |x| = R. Again, from d’Alembert’s ratio test, we know that the series
diverges for any value of x outside the interval of convergence.

1.2.3 Transcendental functions

The following functions, members of a class of functions known as transcendental functions, are
defined within their intervals of convergence by the following power series.

sinx := x− x3

3!
+
x5

5!
− x7

7!
+ · · · for all x (29)

cosx := 1− x2

2!
+
x4

4!
− x6

6!
+ · · · for all x (30)

loge(1 + x) := x− x2

2
+
x3

3
− x4

4
+ · · · for −1 < x ≤ 1 (31)

ex := 1 + x+
x2

2!
+
x3

3!
+ · · · for all x (32)

sinhx :=
ex − e−x

2
= x+

x3

3!
+
x5

5!
+ · · · for all x (33)

coshx :=
ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · for all x (34)

Power series possess a number of useful properties. The sum, difference or product of two
power series with common intervals of convergence leads to a third power series which converges
for the common interval of convergence of the original two series. If two power series converge
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for a common interval of convergence then one series may be subsituted into the other to give a
third series which converges in that common interval. The transcendental functions make good
examples to illustrate these properties. Consider, for example the series for ee

−x
. This may be

obtained by subsituting y = e−x and using the power series for ey. Hence,

ee
−x

= 1+

(
1− x+

x2

2!
− . . .

)
+

1

2!

(
1− x+

x2

2!
− . . .

)2

+
1

3!

(
1− x+

x2

2!
− . . .

)3

+ · · · . (35)

1.3 Taylor series

We now consider an important result which enables functions to be expanded in power series
in x in a given interval.

Theorem 4 (Taylor’s theorem) If f(x) is a continuous function of x with continuous deriva-
tives f ′(x), f ′′(x), . . . up to and including f (n)(x) in a given interval a ≤ x ≤ b, and if f (n+1)(x)
exists in a < x < b then

f(x) = f(a) +
(x− a)

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) + En(x) , (36)

where

En(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(ξ) (37)

and a < ξ < x.

The term En is a remainder term and represents the error involved in approximating f(x)
by the polynomial

f(a) +
(x− a)

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) . (38)

Theorem 5 If limn→∞En(x) = 0 then f(x) may be represented by the power series

f(x) = f(a) +
(x− a)

1!
f ′(a) +

(x− a)2

2!
f ′′(a) + · · · =

∞∑

r=0

(x− a)r

r!
f (r)(a) . (39)

By changing x to a+ x we have the equivalent form

f(a+ x) = f(a) +
x

1!
f ′(a) +

x2

2!
f ′′(a) + · · · =

∞∑

r=0

xr

r!
f (r)(a) . (40)

The Taylor series only represents the function f(x) in the interval of convergence. The form
of the coefficients in Taylor’s series may be verified in the following manner. Let

f(x) = A0 +A1(x− a) +A2(x− a)2 +A3(x− a)3 + · · · (41)

where A0, A1, A2, . . . are constants. Differentiating term by term we have

f ′(x) = A1 + 2A2(x− a) + 3A3(x− a)2 + · · · (42)

f ′′(x) = 2A2 + 3 · 2A3(x− a) + 4 · 3A4(x− a)2 + · · · (43)

f ′′′(x) = 3!A3 + 4!A4(x− a) + · · · , (44)

and, in general,
f (n)(x) = n!An + (n+ 1)!An+1(x− a) + · · · . (45)
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Putting x = a now gives

f(a) = A0 f ′(a) = A1 (46)

f ′′(a) = 2!A2 f ′′′(a) = 3!A3 (47)

f (n)(a) = n!An (48)

which yields values for the constants A0, A1, A2, . . . precisely as given by Taylor’s theorem. A
special case of the Taylor series is the Maclaurin series given by taking a = 0.

1.4 Complex variables

We are familiar with the real numbers and the associated notions of a limit, continuity and
differentiation. The complex numbers are a useful generalization of real numbers. A complex
number, denoted z, is defined as an ordered pair of real numbers (x, y) together with the
imaginary number i =

√
−1 where

z = (x, y) = x+ iy . (49)

The (real) numbers x and y are called the real and imaginary parts of z, respectively. The
main advantage of such a construction is that equations which have no solutions amongst real
numbers, for example,

z2 + 1 = 0 (50)

z2 − 2z + 2 = 0 (51)

now have solutions in terms of complex numbers. We can readily see that z = ±i solves the
first equation and z = 1± i solves the second.

We can see from the definition of the imaginary number i that powers of i may be simply
expressed in terms of ±1 and i itself. For example, we have that

i2 = −1 , i3 = i2i = −i , i4 = (i2)2 = 1 , (52)

and

i−1 =
1

i
=

i

i2
= −i , i−2 = −1 , i−3 =

1

i3
=

1

−i = i . (53)

0
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0.8
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θ

r

P : z = x+ iy

Figure 5: The Argand diagram

Given the definition of a complex number as an ordered pair of real numbers, there is a
natural (1-1) correspondence between the infinite set of complex numbers and the points of a
plane. The x-axis represents the real part of any complex number and the y-axis represents
the imaginary part. For example, the point P with co-ordinates (2, 3) uniquely represents the
complex number z = 2 + 3i. We can refer to the x-axis as the real axis and the y-axis as the

7



imaginary axis and the whole diagram is called the Argand diagram. We can also use polar
co-ordinates r and θ to represent any non-zero complex number z = x+ iy 6= 0 given by

x = r cos θ, y = r sin θ (54)

so that
z = x+ iy = r (cos θ + i sin θ) . (55)

The number r is called the modulus of z and is written |z| (or sometimes mod z). The
angle θ is called the argument of z (denoted arg(z)). Note that θ is not unique since the
angles θ + 2kπ (k any integer) are also arguments for z. We call the principal value of the
argument (denoted Arg(z)) that value of θ which satisfies the inequalities

−π < θ ≤ π . (56)

Using the Argand diagram we can see that

|z| = r =
√
x2 + y2 . (57)

Note that we do not define a value for arg(0).

–1

–0.5

0

0.5

1

y

0.2 0.4 0.6 0.8 1xPSfrag replacements

z = x+ iy

z∗ = x− iy

Figure 6: The complex conjugate

Associated with any complex number z = x+ iy is its complex conjugate, z∗, defined by

z∗ = x− iy (58)

and illustrated in Figure 6. Note that
|z| = |z∗| (59)

and in the Argand diagram z∗ is the mirror image of z in the real axis.
If z1 = x1 + iy1 and z2 = x2 + iy2 then the sum and difference of z1 and z2 are defined as

z1 + z2 = (x1 + x2) + i(y1 + y2) (60)

z1 − z2 = (x1 − x2) + i(y1 − y2) . (61)

It is interesting to see how this looks on an Argand diagram. If P represents z1 and Q repre-
sents z2 then the point R, forming the parallelogram OPRQ represents z1 + z2. To see this,
note that the point represented by R has real and imaginary parts given by x1 +x2 and y1 +y2,
respectively.

The product of z1 and z2 is defined as

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) . (62)

The division of two complex numbers is defined in an analagous way so that

z2

z1
=
x2 + iy2

x1 + iy1
=

(x2 + iy2)(x1 − iy1)

(x1 + iy1)(x1 − iy1)
=
x1x2 + y1y2

x2
1 + y2

1

+ i
x1y2 − y1x2

x2
1 + y2

1

(63)
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provided x2
1 + y2

1 = |z1|2 6= 0.
We can also use the power series definitions of the transcendental functions to define the

following functions applied to complex argument z.

ez := 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · (64)

sin z := z − z3

3!
+
z5

5!
− z7

7!
+ · · · (65)

cos z := 1− z2

2!
+
z4

4!
− z6

6!
+ · · · . (66)

These series converge for 0 ≤ |z| <∞. Using these series we see that

eiθ = cos θ + i sin θ (67)

for any real number θ. In summary, we have the following relationships

z = reiθ (68)

where

r = |z| =
√
zz∗ (69)

θ = Arg(z) . (70)
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2 Fourier series

2.1 Introduction and general properties

We have seen that the Taylor and Maclaurin series allow us to represent certain functions as
power series. Such functions must be continuous and infinitely differentiable within the interval
of convergence of the power series. We will now consider how functions which may be neither
differentiable nor continuous at certain points can be represented by a trigonometric series of
the form

a0

2
+
∞∑

r=1

(ar cos rx+ br sin rx) , (71)

where a0, ar and br are constants for r = 1, 2, . . .. Since this trigonometric series is unchanged
by replacing x by x + 2kπ, where k is an integer, it must represent a periodic function in x of
period 2π. Consequently, it is sufficient to consider any interval of length 2π and we choose the
interval

−π < x ≤ π . (72)

Let f(x) be an arbitrary function defined in this interval. Suppose the coefficients a0, ar, br are
given by

a0 =
1

π

∫ π

−π
f(x) dx , (73)

ar =
1

π

∫ π

−π
f(x) cos rx dx , r = 1, 2, 3, . . . , (74)

br =
1

π

∫ π

−π
f(x) sin rx dx , r = 1, 2, 3, . . . (75)

then the resulting trigonometric series is called the Fourier series of f(x) and the coefficients
are the Fourier coefficients. The sum of a Fourier series is not necessarily equal to the function
from which it is derived and the conditions under which the Fourier series of f(x) converges
to f(x) in the sense that

f(x) =
a0

2
+
∞∑

r=1

(ar cos rx+ br sin rx) (76)

depend on the particular function chosen. The following theorem states a set of sufficient
conditions (known as the Dirichlet’s conditions) which f(x) must satisfy for (76) to be valid.

Theorem 6 Suppose f(x) is defined arbitrarily in the interval −π < x ≤ π and extended to
other values of x by the periodicity condition f(x+ 2kπ) = f(x) where k is an integer. Then, if
in −π < x ≤ π, f(x) is continuous except for a finite number of points of finite discontinuities,
and has only a finite number of maxima and minima, its Fourier series converges to f(x) at all
points in this interval where f(x) is continuous. At a point of finite discontinuity, say x = x0,
the Fourier series converges to the value

1

2
lim
δ→0
{f(x0 + δ) + f(x0 − δ)} , (77)

which is just the mean of the two limiting values of f(x) as x approaches x0 from the right and
left-hand sides.

Functions satisfying the Dirichlet conditions (as stated in the theorem) are called piecewise
regular functions.
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2.1.1 Derivation of Fourier coefficients

If r and s are positive integers or zero then it follows by simple integration that

∫ π

−π
cos rx cos sx dx =





0 for r 6= s

2π for r = s = 0

π for r = s > 0

(78)

∫ π

−π
sin rx sin sx dx =





0 for r 6= s

0 for r = s = 0

π for r = s > 0

(79)

∫ π

−π
sin rx cos sx dx = 0 for all r and s (80)

∫ π

−π
cos rx dx =

{
0 for r > 0

2π for r = 0
(81)

∫ π

−π
sin rx dx = 0 for all r . (82)

Using these results and multiplying both sides of

f(x) =
a0

2
+
∞∑

r=1

(ar cos rx+ br sin rx) (83)

by cos sx and integrating from x = −π to π yields expressions for a0 and ar (r = 1, 2, 3, . . .).
Similarly, multiplying both sides by sin sx and integrating from x = −π to π yields expressions
for br (r = 1, 2, 3, . . .).

Note that we can merge the expressions for a0 and ar into the single formula

ar =
1

π

∫ π

−π
f(x) cos rx dx , (84)

as r takes values r = 0, 1, 2, . . ..

2.1.2 Even and odd functions

If f(x) is either an even or odd function of x in the interval −π < x ≤ π then the Fourier
coefficients are simplified.

If f(x) is an even function, that is f(x) = f(−x), then

a0 =
1

π

∫ π

−π
f(x) dx =

2

π

∫ π

0
f(x) dx , (85)

ar =
1

π

∫ π

−π
f(x) cos rx dx =

2

π

∫ π

0
f(x) cos rx dx for r = 1, 2, 3 , (86)

br =
1

π

∫ π

−π
f(x) sin rx dx = 0 for all r . (87)

Hence if f(x) is an even function its Fourier series reduces to a series where all the sine terms
vanish.
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Alternatively, if f(x) is an odd function, that is f(x) = −f(−x), then

a0 =
1

π

∫ π

−π
f(x) dx = 0 , (88)

ar =
1

π

∫ π

−π
f(x) cos rx dx = 0 for all r , (89)

br =
1

π

∫ π

−π
f(x) sin rx dx =

2

π

∫ π

0
f(x) sin rx dx , for r = 1, 2, 3, . . . . (90)

Hence if f(x) is an odd function its Fourier series reduces to a series where all the cosine terms
vanish.

2.1.3 Change of interval

Instead of expanding a function in the interval −π < x ≤ π let us instead work with the more
general interval −T < x ≤ T , where T is any given positive number. Suppose then that f(x) is
a piecewise regular function in −T < x ≤ T (that is, it satisifies Dirichlet’s conditions) which
is defined outside this interval by the periodicity condition f(x + 2Tk) = f(x), where k is an
integer. Thus, putting z = πx/T we have that

f(x) = f

(
Tz

π

)
= F (z) , (91)

where now F (x) is a periodic function of z of period 2π. Hence in −π < z ≤ π

F (z) =
a0

2
+
∞∑

r=1

(ar cos rz + br sin rz) , (92)

where

ar =
1

π

∫ π

−π
F (z) cos rz dz , (r = 0, 1, 2, . . .) , (93)

br =
1

π

∫ π

−π
F (z) sin rz dz , (r = 1, 2, 3, . . .) . (94)

Consequently, putting z = πx/T in these expressions we have that

f(x) =
a0

2
+
∞∑

r=1

(
ar cos

πxr

T
+ br sin

πxr

T

)
(95)

where

ar =
1

T

∫ T

−T
f(x) cos

πxr

T
dx , (r = 0, 1, 2, , . . .) , (96)

br =
1

T

∫ T

−T
f(x) sin

πxr

T
dx , (r = 1, 2, 3, . . .) . (97)

2.1.4 Compact complex representation

Finally, using the relation
eiθ = cos θ + i sin θ (98)

we may express f(x) in the alternative form

f(x) =

∞∑

r=−∞
cre

irx (99)
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where

cr =
1

2
(ar − ibr) and c−r =

1

2
(ar + ibr) for r > 0 (100)

and

c0 =
1

2
a0 . (101)

With these definitions

cr =
1

2π

∫ π

−π
f(x)e−irx dx for r = 0,±1,±2, . . . . (102)

Note that the coefficients, cr, are complex numbers and that for each positive integer r =
1, 2, 3, . . . we have two coefficients: cr and c−r. Assuming f(x) is a real-valued function, these
two coefficients are complex conjugates

c−r = c∗r for r > 0 . (103)

2.2 Examples

2.2.1 The square wave

Consider the square wave function given by

f(x) =

{
−1 −π < x < 0 ,

1 0 < x < π .
(104)

In this case f(x) is an odd function and this implies that ar = 0 for all r ≥ 0. The terms br,
r = 1, 2, 3, . . . are given by

bk =
2

π

∫ π

0
sin rx dx (105)

=
2

rπ
(1− cos rπ) (106)

=

{
4
rπ r odd ,

0 r even .
(107)

Hence the Fourier series expansion of the square wave function is

f(x) =
4

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
. (108)

Figure 7 illustrates the way in which the leading terms of the Fourier series approximates
the square wave. Notice how the Fourier series finds it hard not to overshoot near points of
discontinuity in the function.

2.2.2 The sawtooth wave

Consider the Fourier series representing the sawtooth function f(x) = x in the interval −1 <
x < 1. Here f(x) is an odd function so ar = 0 for all r ≥ 0 and we have a series of cosine
terms alone. Using the change of interval expressions with the interval −1 < x < 1 we have
for r = 1, 2, . . . that

br =

∫ 1

−1
x sinπrx dx (109)

= − 2

πr
(−1)r . (110)
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Figure 7: The square wave function and Fourier series of 5, 10 and 100 non-zero terms
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Hence in the interval −1 < x < 1

f(x) = x =
2

π

(
sinπx− 1

2
sin 2πx+

1

3
sin 3πx− · · ·

)
. (111)

At x = ±1, finite discontinuities occur. Hence at these points the series does not represent x
but converges to the value

1

2
lim
δ→0
{f(x0 + δ) + f(x0 − δ)} =

1

2
{1 + (−1)} = 0 . (112)

Figure 8 shows the manner in which adding more terms improves the approximation to the
sawtooth function.
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Figure 8: The sawtooth function and Fourier series of 5, 10 and 100 non-zero terms
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3 Basis functions and decompositions

3.1 Expansions and basis functions

Taylor’s series shows us ways to represent a function (for example, sin(x)) in terms of a power
series where each term is of the form crx

r. Fourier series, in a similar way, seek to represent
certain functions by expressing them as a series of terms using the functions

1, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . . (113)

and we have seen that the resulting series may also be written more compactly as

f(x) =
∞∑

r=−∞
cre

irx . (114)

These are just two examples of a general approach where we seek to represent a function f(x)
in terms of linear combinations of certain other functions so that

f(x) =
∑

k

ckΨk(x) (115)

where the chosen functions Ψk(x) are called the expansion basis functions. Thus for the Fourier
series example the basis functions are the complex exponentials

Ψk(x) = eiµkx (116)

where k = 0,±1,±2, . . . and the frequency of the kth basis function is µk = k. Recall that we can
change the length of the period from 2π and this will change the frequency used for the kth basis
function. If the period is 2T then the frequency of the kth basis function becomes µk = πk/T .

This approach proves to be very useful because it allows us to choose some universal set of
functions and then represent many other functions in terms of just a set of numerical coefficients.

In the case of systems analysis a major benefit of doing this is that knowledge of how
members of the chosen universal set of basis functions behave in the system gives us knowledge
about how arbitrary input functions will be treated by the system.

3.2 Orthogonality, inner products and completeness

If the basis functions satisfy the rule that the integral of the conjugate product of any two
distinct basis functions equals zero, that is,

∫ ∞

−∞
Ψ∗k(x)Ψj(x) dx = 0 (k 6= j) (117)

then the set of basis functions is called orthogonal.
Such integrals are called inner products, often denoted using angle brackets

< Ψk(x), Ψj(x) > :=

∫ ∞

−∞
Ψ∗k(x)Ψj(x) dx . (118)

If, in addition to orthogonality, the set of basis functions has the property that the inner
product of every basis function with itself is equal to one, that is,

< Ψj(x), Ψj(x) >=

∫ ∞

−∞
Ψ∗j (x)Ψj(x) dx = 1 (119)
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then the set of basis functions is said to be orthonormal.
The coefficients ck can be conveniently determined by means of inner products of orthonor-

mal basis functions with the given function f(x). We find that, in general

ck =< Ψk(x), f(x) > . (120)

This operation resembles that of taking the projection of a vector in a given coordinate direction.
We say that a set of basis functions is complete when all functions of interest can be repre-

sented by an expansion of the form ∑

k

ckΨ(x) . (121)

In other words, the space of basis functions spans the required set of functions. More rigorously,
we can say that a set of basis functions is complete if no nontrivial function of interest, f(x), is
orthogonal to all the basis functions Ψk(x). That is,

< f(x), Ψk(x) >= 0 for all k (122)

implies that f is the trivial function f(x) = 0 for all x.
The set of basis functions of the form eikx (k = 0,±1,±2, . . .) is known to be complete for

the space of piecewise regular functions of period 2π.
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4 Representation of signals

4.1 Fourier transforms and their inverses

4.1.1 Introduction and general properties

We have seen that the Fourier series allows us to represent a periodic function within the limited
range −π < x ≤ π (or, more generally, −T < x ≤ T ). We now look at the representation of
aperiodic functions over the infinite range −∞ < x < ∞. Physically, this means resolving a
single pulse or wave packet into sinusoidal waves.

Formally, the Fourier series representation can be extended to the infinite range so that

f(x) =

∫ ∞

−∞
F (µ)eiµx dµ (123)

where F (µ) is given by the relation

F (µ) =
1

2π

∫ ∞

−∞
f(x)e−iµx dx . (124)

The function F (µ) is known as the Fourier transform of f(x). Equation (123) allows us to find
the inverse function, f(x), given a Fourier transform F (µ).

Several properties of Fourier transforms may be obtained directly from the definition.

Shift Shifting the original function f(x) by some displacement α merely multiplies its Fourier
transform by the factor e−iµα. Thus the Fourier transform of the shifted function f(x−α)
is F (µ)e−iµα.

Scale If the scale of the original function f(x) changes (shrinks or expands) by a factor α,
becoming f(αx), then the Fourier transform of the scaled function is 1

|α|F (µ/α).

Differentiation Computing the derivative of a function corresponds to a multipication oper-
ation on the Fourier transform, specifically,

(
d

dx

)m
f(x) has Fourier transform (iµ)mF (µ) (125)

where m is the order of the derivative.

4.1.2 Convolution

Suppose the function f(x) has Fourier transform F (µ) and the function g(x) has Fourier trans-
form G(µ). The convolution of f(x) with g(x), which is denoted f ∗ g, combines these two
functions to generate a third function h(x) whose value at x is equal to the integral of the
product of functions f and g after they undergo a relative shift by the amount x

h(x) =
1

2π

∫ ∞

−∞
f(α)g(x− α) dα . (126)

Thus the convolution is a way of combining two functions which in a sense uses one to blur the
other, making all possible relative shifts between two functions when computing the integral of
their product to obtain the corresponding output values.

Convolution is an extremely important operation in systems theory because it is one basis
of describing how any linear system h(t) acts on any input s(t) to generate the corresponding
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output r(t). The output is just given by the convolution of the input with the characteristic
system response function, so that,

r(t) = h(t) ∗ s(t) . (127)

It may be shown that the Fourier transform, H(µ), of the convolution h(x) is given by

H(µ) = F (µ)G(µ) (128)

where F (µ) and G(µ) are the Fourier transforms of f(x) and g(x), respectively.
This is a very useful results since it is much easier to multiply two functions F (µ) and G(µ)

together than to convolve f(x) and g(x) together to obtain h(x).

4.2 Wavelets

4.2.1 Brief introduction

Wavelets are a further method of representing functions which have received much interest in
applied fields over the last several decades.

The approach fits into the general scheme of expansion using basis functions. Here we
expand the functions f(x) in terms of a doubly-infinite series

f(x) =
∞∑

j=−∞

∞∑

k=−∞
djkΨjk(x) (129)

where Ψjk(x) are the basis functions.
The basis functions are all closely related and arise from shifting and scaling operations

applied to a single function, Ψ(x), known as the mother wavelet. The basis functions are given
for integers j and k by

Ψjk(x) = Ψ(2jx− k) . (130)

A common example that we shall study here is the Haar wavelet whose mother function is
both localised and oscillatory defined by

Ψ(x) =





1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

(131)

The Haar mother wavelet is illustrated in Figure 9.

–1

–0.5

0

0.5

1

y

–2 –1 1 2x

Figure 9: The Haar mother wavelet

The Haar mother wavelet oscillates and has a width (or scale) of one. The dyadic dilates
of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . . (132)
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have widths
. . . , 22, 21, 1, 2−1, 2−2, . . . (133)

respectively. Since the dilate Ψ(2jx) has width 2−j , its translates

Ψ(2j − k) = Ψ(2j(x− k2−j)), k = 0,±1,±2, . . . (134)

will cover the whole x-axis. The collection of coefficients djk are termed the discrete wavelet
transform of the function f(x).

How should we intrepret the values djk? Since the Haar basis function Ψ(2jx− k) vanishes
except when

0 ≤ 2jx− k < 1 , that is k2−j ≤ x < (k + 1)2−j (135)

we see that djk gives us information about the bahaviour of f near the point x = k2−j measured
on the scale of 2−j . For example, the coefficients d−10,k, k = 0,±1,±2, . . . correspond to
variations of f that take place over intervals of length 210 = 1024 while the coefficients d10,k k =
0,±1,±2, . . . correspond to fluctuations of f over intervals of length 2−10. These observations
help explain how the discrete wavelet transform can be an exceptionally efficient scheme for
representing functions.

4.2.2 Comparison between wavelet and Fourier analysis

Some of the practical motivations underlying the use of expansion basis functions such as Fourier
analysis or wavelet analysis are

(1) improved understanding,

(2) denoising signals, and

(3) data compression.

By representation of signals or functions in other forms these tasks become easier. The
approach taken with Fourier analysis represents signals in terms of trigonometric functions and
as such is particularly suited to situations where the signal is relatively smooth and is not of
limited extent.

Much naturally arising data has been found to be better represented using wavelets which
are better able to cope with discontinuities and where the signal is of local extent. Generally, the
efficiency of the representation depends on the types of signal involved. If your signal contains

(1) discontinuities (in both the signal and its derivatives), or

(2) varying frequency behaviour

then wavelets are likely to represent the signal more efficiently than is possible with Fourier
analysis. One of the most useful features of wavelets is the ease with which a scientist can select
the basis functions adapted for the given problem. The Haar mother wavelet is perhaps the
simplest of a very wide class of possible wavelet systems used in practice today.

Many applied fields have started to make use of wavelets including astronomy, acoustics,
signal and image processing, neurophysiology, music, magnetic resonance imaging, speach dis-
crimination, optics, fractals, turbulence, earthquake prediction, radar, human vision, etc.
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