
Introduction to planning

We now look at how an agent might construct a plan enabling it to
achieve a goal.

Aims:

� to examine the difference between on the one hand, problem-
solving by search, which we have already addressed, and on the
other hand, specialised planning algorithms;

� to look in detail at the basic partial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.

Copyright c

�

Sean Holden 2002-2005.



Problem solving is different to planning

In search problems we:

� Represent states: and a state representation contains every-
thing that’s relevant about the environment.

� Represent actions: by describing a new state obtained from a
current state.

� Represent goals: all we know is how to test a state either to see
if it’s a goal, or using a heuristic.

� A sequence of actions is a ‘plan’: but we only consider se-
quences of consecutive actions.



Problem solving is different to planning

Representing a problem such as: ‘obtain a copy of the course text
book’ is hopeless:

� There are far too many possible actions at each step.

� A heuristic can only help you rank states. In particular it does not
help you ignore useless actions.

� We are forced to start at the initial state, but you have to work out
how to get the book—that is, go to the library, borrow it from a
friend etc—before you can start to do it.



Planning algorithms work differently

Difference 1:

� planning algorithms use a language, often first order logic (FOL)
(or a subset of FOL) to represent states, goals, and actions;

� states and goals are described by sentences;

� actions are described by stating their preconditions and their ef-
fects.

So if you know the goal includes (maybe among other things)

Have(AI book)

and action Borrow(x) has an effect Have(x) then you know that
a plan including

Borrow(AI book)

might be good.



Planning algorithms work differently

Difference 2:

� Planners can add actions at any relevant point at all, not just at
the end of a sequence starting at the start state.

� This makes sense: I may determine that Have(Car keys) is a
good state to be in without worrying about what happens before
or after finding them.

� By making an important decision, like requiring Have(Car keys),
early on we may reduce branching and backtracking.

� State descriptions are not complete—Have(Car keys) describes
a class of states—and this adds flexibility.



Planning algorithms work differently

Difference 3:

It is assumed that most elements of the environment are indepen-
dent of most other elements.

� A goal including several requirements can be attacked with a
divide-and-conquer approach.

� Each individual requirement can be fulfilled using a subplan...

� ...and the subplans then combined.

This works provided there is not significant interaction between the
subplans.



Running example: gorilla-based mischief

We will use the following simple example problem, which as based
on a similar one due to Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing
Society wish to attach an inflatable gorilla to the spire of a famous
College. To do this they need to leave home and obtain:

� An inflatable gorilla: these can be purchased from all good joke
shops.

� Some rope: available from a hardware store.

� A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?



The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals with no functions.

At

�

Home

� � �Have

�

Gorilla

�

� �Have

�

Rope

�

� �Have

�

Kit

�
Goals: are conjunctions of literals where variables are assumed ex-
istentially quantified.

At

�
�
� �

Sells
�
�
� Gorilla

�

A planner finds a sequence of actions that makes the goal true when
performed. This is different to a theorem-prover.



The STRIPS language

STRIPS uses operators specifying:

� An action description: what the action does.

� A precondition: what must be true before the operator can be
used. A conjunction of positive literals.

� An effect : what is true after the operator has been used. A con-
junction of literals.



The STRIPS language

For example:

Go

� � �

At

� � � � Path

� � � �
�

At

� � � � �At

� � �

Op

�

Action: Go

�
�
�
�

Pre: At

�
�
� �

Path
�
�
�

�
�

Effect: At
�
�
� � �At

�
�
� �

All variables are universally quantified.



The space of situations

Standard search algorithms could be used with STRIPS to construct
sequences of actions working forward from the start state. This is:

� a situation space planner;

� a progression planner. It searches from initial state to goal.

A regression planner exploits the new language by searching back-
ward from the goal.

This can still be too inefficient.



The space of plans

Alternatively we can search in plan space:

� start with an empty plan;

� operate on it to obtain new plans;

� continue until we obtain a plan that solves the problem.

Operations on plans can be:

� adding a step;

� instantiating a variable;

� imposing an ordering that places a step in front of another;

� and so on.



The space of plans

Incomplete plans are called partial plans.

Refinement operators add constraints to a partial plan.

All other operators are called modification operators.



Representing a plan: partial order planners

When putting on your shoes and socks:

� it does not matter whether you deal with your left or right foot first;

� it does matter that you place a sock on before a shoe, for any
given foot.

It makes sense in constructing a plan, not to make any commitment
to which side is done first if you don’t have to.



Representing a plan: partial order planners

Principle of least commitment : do not commit to any specific choices
until you have to. This can be applied both to ordering and to instan-
tiation of variables.

A partial order planner allows plans to specify that some steps must
come before others but others have no ordering.

A linearision of such a plan imposes a specific sequence on the ac-
tions therein.



Representing a plan: partial order planners

A plan consists of:

1. A set

� � � �
� � � � � � �
�
�
�

of steps. Each of these is one of the avail-
able operators.

2. A set of ordering constraints. An ordering constraint

� � � � 	 de-
notes the fact that step

� � must happen before step

� 	.

� � � � 	 �

� 
 and so on has the obvious meaning.
� � � � 	 does not mean

that

� � must immediately precede

� 	.

3. A set of variable bindings � � � where � is a variable and � is
either a variable or a constant.

4. A set of causal links or protection intervals

� �
 � � 	. This denotes

the fact that the purpose of
� � is to achieve the precondition � for

� 	.



Representing a plan: partial order planners

The initial plan has:

� two steps, called Start and Finish;

� a single ordering constraint Start �

Finish;

� no variable bindings;

� no causal links.

In addition to this:

� the step Start has no preconditions, and its effect is the start
state for the problem;

� the step Finish has no effect, and its precondition is the goal;

� neither Start or Finish has an associated action.



Solutions to planning problems

A solution to a planning problem is any complete and consistent par-
tially ordered plan.

Complete: each precondition of each step is achieved by another
step in the solution.

A precondition � for

�

is achieved by a step

� �

if:

1. the precondition is an effect of the step

� � � � and � � Effects

� � � �

and;

2. there is no other step that can cancel the precondition:

no

� � �

exists where

� � � � � � � � and � � � Effects

� � � � �



Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in
the proposed ordering. That is:

1. for binding constraints, we never have � � � and � � � for dis-
tinct constants

�

and

�

;

2. for the ordering, we never have

� � � � and
� � � �.



An example of partial-order planning

Returning to the roof-climber’s shopping expedition.

Here is the basic approach:

� start with only the Start and Finish steps in the plan;

� at each stage add a new step;

� always add a new step such that a currently non-achieved pre-
condition is achieved;

� backtrack when necessary.



An example of partial-order planning

Here is the initial plan:

Start

Finish

At(Home)

�

Sells(JS,G)

�

Sells(HS,R)

�

Sells(HS,FA)

At(Home)

�

Have(G)

�

Have(R)
�

Have(FA)

Thin arrows denote ordering.



An example of partial-order planning

There are two actions available:

Go

� � �

At

� � � � �At

� � �

Buy

� � �

At

� � � � Sells

� � � �
�

Have

� � �

At

� � �

A planner might begin, for example, by adding a Buy(G) action in
order to achieve the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one
available to a planner. It has been chosen for illustrative purposes.



An example of partial-order planning

Start

Buy(G)

At

� � � � Sells

� � � G

�

Finish

At(Home) � Have(G) � Have(R) � Have(FA)

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)

Thick arrows denote causal links.

Here, the new Buy step achieves the Have(G) precondition of Fin-
ish.

Thick arrows can be thought of as having a thin arrow underneath.



An example of partial-order planning

The planner can now introduce a second causal link from Start to
achieve the Sells

�
�
� G

�

precondition of Buy(G).

Start

Buy(G)

At(JS) � Sells
�

JS,G

�

Finish

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)

At(Home) � Have(G) � Have(R) � Have(FA)



An example of partial-order planning

The planner’s next obvious move is to introduce a Go step to achieve
the At(HS) precondition of Buy(G).

Start

Buy(G)

At(JS) � Sells

�

JS,G

�

Go(JS)

Finish

At(Home) � Have(G) � Have(R) � Have(FA)

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)At

� � �



An example of partial-order planning

Initially the planner can continue quite easily in this manner:

� Add a causal link from Start to Go(JS) to achieve the At

�
�
�

precondition.

� Add the step Buy(R) with an associated causal link to the Have(R)
precondition of Finish.

� Add a causal link from Start to Buy(R) to achieve the Sells(HS,R)
precondition.



An example of partial-order planning

Start

Buy(G)

At(JS) � Sells

�

JS,G

�

Go(JS)

Finish

At(Home) � Have(G) � Have(R) � Have(FA)

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)At(Home)

Buy(R)

At(HS) � Sells(HS,R)

At this point it starts to get tricky...

The At(HS) precondition in Buy(R) is not achieved.



An example of partial-order planning

Start

Buy(G)

At(JS) � Sells

�

JS,G

�

Go(JS)

Finish

At(Home) � Have(G) � Have(R) � Have(FA)

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)At(Home)

Buy(R)

Sells(HS,R) � At(HS)

Go(HS)

At

� � �

�At

� � �

The At(HS) precondition is easy to achieve.

But if we introduce a causal link from Start to Go(HS) then we risk
invalidating the precondition for Go(JS).



An example of partial-order planning

A step that might invalidate (sometimes the word clobber is em-
ployed) a previously achieved precondition is called a threat.

A planner can try to fix a threat by introducing an ordering constraint.

c

cc

�c

�c

�c

Threat Demotion Promotion



An example of partial-order planning

The planner could backtrack and try to achieve the At

�
�
�

precondi-
tion using the existing Go(JS) step.

Start

Buy(G)

At(JS) � Sells

�

JS,G

�

Go(JS)

Finish

At(Home) � Have(G) � Have(R) � Have(FA)

At(Home) � Sells(JS,G) � Sells(HS,R) � Sells(HS,FA)At(Home)

Buy(R)

Go(HS)

At(JS)

�At(JS)

Sells(HS,R) � At(HS)

This involves a threat, but one that can be fixed using promotion.



The algorithm

plan partial_order_plan(start,finish,ops)
{

plan=empty_plan(start,finish);

while(true)
{
if (solution(plan))

return plan;
else
{

(step,pre)=get_subgoal(plan);
choose_op(plan,ops,step,pre);
resolve_threats(plan);

}
}

}



The algorithm

(step,pre) get_subgoal(plan)
{

pick some step from steps in plan for which
a precondition pre is not yet achieved;

return (step,pre);
}



The algorithm

choose_op(plan,ops,step,pre)
{

choose S from ops or current steps in plan
having effect pre;

if (no S exists)
fail;

include a causal link from S to step in the plan;
include S < step in the plan;
if(S doesn’t yet appear in the plan)
{
add S;
add Start < S < Finish;

}
}



The algorithm

resolve_threats(plan)
{

for (all steps S threatening some causal link from
S’ to S’’)
{
choose

1. add S < S’ to the plan (promotion)
2. add S’’ < S’ to the plan (demotion)

if (the plan is not consistent)
fail;

}
}



Possible threats

If at any stage an effect �At

�
�
�

appears, is it a threat to At(JS)?

Such an occurrence is called a possible threat and an algorithm can
be made to deal with it in three different ways:

1. use an equality constraint to resolve immediately;

2. use an inequality constraint to resolve immediately;

3. leave the choice of �’s value until later.

35


