PERL(1)

NAME

Perl Programmers Reference Guide

perl — Practical Extraction and Report Language

SYNOPSIS

perl [=sTuU][—hv][-V[:configvat]
[—cw] [—d[:debuggef] [-D[number/lis}]
[-pna][—Fpattern] [—l[octal]] [—O[octall]
[=Idir][=-m[-]module] [-M[-]'module..]

[-P1[-S][—x[dir]]
[—i[extensiofh] [—e’command’] [——][programfile] [argumen{...

PERL(1)

If you're new to Perl, you should start with perlintro, which is a general intro for beginners and provides

some background to help you navigate the rest of Perl's extensive documentation.
For ease of access, the Perl manual has been split up into several sections.

Overview

perl
perlintro
perltoc

Tutorials

perlreftut
perldsc
perllol

perlrequick
perlretut

perlboot
perltoot
perltooc
perlbot

perlistyle

perltrap
perldebtut

perlfaq
perlfaql
perlfaq2
perlfaq3
perlfaq4
perlfaq5
perlfaq6
perlfaq7
perlfaq8
perlfaq9

Reference Manual

perl v5.8.0

Perl overview (this section)
Perl introduction for beginners

Perl documentation table of contents

Perl references short introduction

Perl data structures intro
Perl data structures: arrays of arrays

Perl regular expressions quick start
Perl regular expressions tutorial

Perl OO tutorial for beginners
Perl OO tutorial, part 1
Perl OO tutorial, part 2
Perl OO tricks and examples

Perl style guide

Perl traps for the unwary
Perl debugging tutorial

Perl frequently asked questions
General Questions About Perl
Obtaining and Learning about Perl
Programming Tools

Data Manipulation

Files and Formats

Regexes

Perl Language Issues

System Interaction

Networking

2003-08-13

PERL(1)

perlsyn
perldata
perlop
perisub
perlfunc
perlopentut
perlpacktut
perlpod
perlpodspec
perlrun
perldiag
perllexwarn
perldebug
perlvar
perire
perlref
perlform
perlob]
perltie
perldbmfilter

perlipc
perlfork
perlnumber

perlthrtut
perlothrtut

perlport
perllocale
perluniintro
perlunicode
perlebcdic

perlsec

perimod
perimodlib
perimodstyle
perimodinstall
perlnewmod

perlutil
perlcompile
perlfilter

Perl Programmers Reference Guide PERL(1)

Perl syntax

Perl data structures

Perl operators and precedence

Perl subroutines

Perl built-in functions
Perl open() tutorial
Perl pack() and unpack() tutorial

Perl plain old documentation

Perl plain old documentation format specification
Perl execution and options

Perl diagnostic messages

Perl warnings and their control

Perl debugging

Perl predefined variables

Perl regular expressions, the rest of the story
Perl references, the rest of the story

Perl formats

Perl objects

Perl objects hidden behind simple variables

Perl DBM filters

Perl interprocess communication
Perl fork() information
Perl number semantics

Perl threads tutorial
Old Perl threads tutorial

Perl portability guide
Perl locale support
Perl Unicode introduction
Perl Unicode support
Considerations for running Perl on EBCDIC platforms

Perl security

Perl modules: how they work
Perl modules: how to write and use
Perl modules: how to write modules with style
Perl modules: how to install from CPAN
Perl modules: preparing a new module for distribution

utilities packaged with the Perl distribution
Perl compiler suite intro
Perl source filters

Internals and C Language Interface

perlembed
perldebguts
perixstut
perixs
perliclib
perlguts
perlcall

perlapi
perlintern

perliol
perlapio

perlhack

Perl ways to embed perl in your C or C++ application
Perl debugging guts and tips
Perl XS tutorial
Perl XS application programming interface
Internal replacements for standard C library functions
Perl internal functions for those doing extensions
Perl calling conventions from C

Perl API listing (autogenerated)

Perl internal functions (autogenerated)

C API for Perl’'s implementation of 10 in Layers
Perl internal IO abstraction interface

Perl hackers guide

2003-08-13 perl v5.8.0

PERL(1)

Miscellaneous

Perl Programmers Reference Guide PERL(1)

perlbook Perl book information
perltodo Perl things to do

perlhist Perl history records

perldelta Perl changes since previous version
perl573delta Perl changes in version 5.7.3
perl572delta Perl changes in version 5.7.2
perl571delta Perl changes in version 5.7.1
perl570delta Perl changes in version 5.7.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

Language-Specific

pericn Perl for Simplified Chinese (in EUC-CN)
perlip Perl for Japanese (in EUC-JP)

perlko Perl for Korean (in EUC-KR)

perltw Perl for Traditional Chinese (in Big5)

Platform-Specific

perlaix Perl notes for AIX

perlamiga Perl notes for AmigaOS
perlapollo Perl notes for Apollo DomainOS
perlbeos Perl notes for BeOS
perlbs2000 Perl notes for POSIX-BC BS2000
perice Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldgux Perl notes for DG/UX

perldos Perl notes for DOS

perlepoc Perl notes for EPOC
perlfreebsd Perl notes for FreeBSD
perlhpux Perl notes for HP-UX
perlhurd Perl notes for Hurd

perlirix Perl notes for Irix

perlmachten Perl notes for Power MachTen
perlmacos Perl notes for Mac OS (Classic)
perimint Perl notes for MINT
perimpeix Perl notes for MPE/iX
perinetware Perl notes for NetWare
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for 0S/400
perlplan9 Perl notes for Plan 9

perlgnx Perl notes for QNX
perlsolaris Perl notes for Solaris

perltru64 Perl notes for Tru64

perluts Perl notes for UTS

perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS

perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

By default, the manpages listedoabare installed in théusr/local/maniirectory.

Extensive additional documentation for Perl modules is available. The default configuration for perl will
place this additional documentation in thusr/local/lib/perl5/mandirectory (or else in thenansubdirec-
tory of the Perl library directory). Some of this additional documentation is distributed standard with Perl,

perl v5.8.0 2003-08-13 3

PERL(1) Perl Programmers Reference Guide PERL(1)

but you'll also find documentation for third-party modules there.

You should be able to view Perl's documentation with yoan(1) program by including the proper direc-
tories in the appropriate start-up files, or in MNPATH environment variable. To find out where the con-
figuration has installed the manpages, type:

perl -V:man.dir

If the directories have a common stem, sucliuaglocal/man/manind/usr/local/man/man3you need
only to add that stemiysr/local/man to your man(1) configuration files or yourANPATH environment
variable. If they do not share a stem, you'll have to add both stems.

If that doesn’t work for some reason, you can still use the supgpdiddocscript to view module informa-
tion. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you're not sure where you should look for
help, try the-w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is a language optimized for scanning arbitrary text files, extracting information from those text files,
and printing reports based on that information. It's also a good language for many system management
tasks. The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best featureseaf &yk, andsh, so people

familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh Pascal, and eveBASIC-PLUS) Expression syntax corresponds closely to C expression
syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if you've got the
memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And the
tables used by hashes (sometimes called “associative arrays”) grow as necessary to prevent degraded per-
formance. Perl can use sophisticated pattern matching techniques to scan large amounts of data quickly.
Although optimized for scanning text, Perl can also deal with binary data, and can make dbm files look like
hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism that prevents
many stupid security holes.

If you have a problem that would ordinarily usedor awk or sh, but it exceeds their capabilities or must
run a little faster, and you don’t want to write the silly thing in C, then Perl may be for you. There are also
translators to turn yowgedandawk scripts into Perl scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete rewrite that provides the following addi-
tional benefits:

* modularity and reusability using innumerable modules
Described in perlmod, perlmodlib, and perimodinstall.
+ embeddable and extensible
Described in perlembed, perixstut, perlxs, perlcall, perlguts, and xsubpp.
e roll-your-own magic variables (including multiple simultaneo@v implementations)
Described in perltie and AnyDBM_ File.
» subroutines can now be overridden, autoloaded, and prototyped
Described in perlsub.
» arbitrarily nested data structures and anonymous functions
Described in perlreftut, perlref, perldsc, and perllol.
* object-oriented programming
Described in perlobj, perlboot, perltoot, perltooc, and perlbot.
e support for light-weight processes (threads)

Described in perlthrtut and threads.

4 2003-08-13 perl v5.8.0

PERL(1) Perl Programmers Reference Guide PERL(1)

» support for Unicode, internationalization, and localization
Described in perluniintro, perllocale and Locale::Maketext.
» lexical scoping
Described in perlsub.
* regular expression enhancements
Described in perlre, with additional examples in perlop.
» enhanced debugger and interactive Perl environment, with integrated editor support
Described in perldebtut, perldebug and perldebguts.
e POSIX1003.1 compliant library
Described irPOSIX
Okay, that'sdefinitelyenough hype.

AVAILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See “Supported
Platforms” in perlport for a listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Perl developers,
please write to perl-thanks@perl.org .

FILES
"@INC" locations of perl libraries

SEE ALSO
azp awk to perl translator
s2p sed to perl translator

http://www.perl.com/ the Perl Home Page

http://www.cpan.org/ the Comprehensive Perl Archive

http://www.perl.org/ Perl Mongers (Perl user groups)
DIAGNOSTICS

Theuse warnings pragma (and thew switch) produces some lovely diagnostics.

See perldiag for explanations of all Perl's diagnostics. 0de diagnostics pragma automatically
turns Perl’s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In a script passed to Perewaitches, eacheis counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as “Insecure dependency”.
See perlsec.

Did we mention that you should definitely consider using-thewitch?

BUGS
The-w switch is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type east{jigand
floating-point output witlsprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn'’t apply teysread(andsyswrite())

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still

a few arbitrary limits: a given variable name may not be longer than 251 characters. Line numbers dis-
played by diagnostics are internally stored as short integers, so they are limited to a maximum of 65535
(higher numbers usually being affected by wraparound).

perl v5.8.0 2003-08-13 5

PERL(1) Perl Programmers Reference Guide PERL(1)

You may mail your bug reports (be sure to include full configuration information as output by the myconfig

program in the perl source tree, orgsrl -V) to perlbug@perl.org . If you've succeeded in compiling
perl, theperlbug script in theutils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone | said that.
NOTES

The Perl motto is “There’s more than one way to do it.” Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

2003-08-13 perl v5.8.0

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

NAME
perlsyn — Perl syntax

DESCRIPTION
A Perl script consists of a sequence of declarations and statements. The sequence of statements is executed
just once, unlike irsedandawk scripts, where the sequence of statements is executed for each input line.
While this means that you must explicitly loop over the lines of your input file (or files), it also means you
have much more control over which files and which lines you look at. (Actually, I'm lying—it is possible
to do an implicit loop with either then or —p switch. It's just not the mandatory default like it issad
andawk.)

Perl is, for the most part, a free-form language. (The only exception to this is format declarations, for
obvious reasons.) Text from"#&" character until the end of the line is a comment, and is ignored. If you
attempt to usé* */ C-style comments, it will be interpreted either as division or pattern matching,
depending on the context, anekrf comments just look like a null regular expression, so don't do that.

Declarations

The only things you need to declare in Perl are report formats and subroutines—and even undefined
subroutines can be handled throughfOLOAD. A variable holds the undefined valus@ef) until it has

been assigned a defined value, which is anything otherutindaef . When used as a numbendef is

treated a®; when used as a string, it is treated the empty stfingand when used as a reference that isn't
being assigned to, it is treated as an error. If you enable warnings, you'll be notified of an uninitialized
value whenever you treahdef as a string or a number. Well, usually. Boolean contexts, such as:

my $a;

if ($a) {}
are exempt from warnings (because they care about truth rather than definedness). Operatorstsuch as
——,+=, —=, and.=, that operate on undefined left values such as:

my $a;

$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements — declarations all take effect at compile time. Typically all the declarations are put
at the beginning or the end of the script. However, if you're using lexically-scoped private variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine without defining it by sayingame , thus:

sub myname;
$me = myname $0 or die "can’t get myname";

Note thatmyname(functions as a list operator, not as a unary operator; so be carefuldo usstead of
[(Min this case. However, if you were to declare the subroutirilasmyname ($) , thenmyname
would function as a unary operator, so eittieror ([Jwould work.

Subroutines declarations can also be loaded up withethére statement or both loaded and imported
into your namespace withuse statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

Simple statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged there if the block takes up more than one line, because you
may eventually add another line.) Note that there are some operatasgdl¢ anddo {} that look

like compound statements, but aren’t (they're just TERMs in an expression), and thus need an explicit

perl v5.8.0 2003-08-13 7

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

termination if used as the last item in a statement.

Any simple statement may optionally be followed bySIGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach EXPR

Theif andunless modifiers have the expected semantics, presuming you're a speaker of English. The
foreach maodifier is an iterator: For each value BXPR it aliases$_to the value and executes the
statement. Thewhile and untii modifiers have the usuaWwhile loop" semantics (conditional
evaluated first), except when applied toda-BLOCK (or to the deprecatedo—-SUBROUTINE
statement), in which case the block executes once before the conditional is evaluated. This is so that you
can write loops like:

do {
$line = <STDIN>;

} until $line eq".\n";
See “do” in perlfunc. Note also that the loop control statements described latex@illvork in this

construct, because modifiers don't take loop labels. Sorry. You can always put another block inside of it
(for next) or around it (fodast) to do that sort of thing. Farext , just double the braces:
do {{
next if $x == $y;
do something here
} until $x++ > $z;

Forlast , you have to be more elaborate:

LOOP: {
do {
last if $x = $y**2;
do something here
} while $x++ <= $z;
}

Compound statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct 88LOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK
LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKSs, not statements. This means that the
curly brackets areequired-—no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

8 2003-08-13 perl v5.8.0

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

if (lopen(FOQ)) { die "Can’t open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can't open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom’ : die "Can't open $FOO: $!";
a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always bounded by curly brackets, there is
never any ambiguity about whidh anelse goes with. If you use@nless in place ofif , the sense of
the test is reversed.

The while statement executes the block as long as the expression is true (does not evaluate to the null
string™ or 0 or "0"). TheLABEL is optional, and if present, consists of an identifier followed by a
colon. TheLABEL identifies the loop for the loop control statememéxt , last , andredo . If the

LABEL is omitted, the loop control statement refers to the innermost enclosing loop. This may include
dynamically looking back your call-stack at run time to finduRBEL. Such desperate behavior triggers a
warning if you use these warnings pragma or the-w flag. Unlike aforeach statement, avhile

statement never implicitly localises any variables.

If there is acontinue BLOCK, it is always executed just before the conditional is about to be evaluated
again, just like the third part offar loop in C. Thus it can be used to increment a loop variable, even
when the loop has been continued via tlext statement (which is similar to the €bntinue
statement).

Loop Control
Thenext command is like theontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /"#/; # discard comments

}

Thelast command is like théreak statement in C (as used in loops); it immediately exits the loop in
guestion. Theontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header

}

The redo command restarts the loop block without evaluating the conditional againcoftiaue
block, if any, isnot executed. This command is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file liletc/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (sAN\$//) {
$_ =<

redo unless eof();

}

now process $

}

which is Perl short-hand for the more explicitly written version:

perl v5.8.0 2003-08-13 9

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =" sN\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line

}

Note that if there were aontinue block on the abve code, it would get executed only on lines
discarded by the regex (since redo skips the continue block). A continue block is often used to reset line
counters ofpat? one-time matches:

inspired by :1,$g/fred/s//WILMA/

while (<>) {
2(fred)? && S//WILMA $1 WILMAY;
?(barney)? && S//BETTY $1 BETTY/;
?(homer)? && s//IMARGE $1 MARGE/,

} continue {
print "SARGV $.: $_";
close ARGV if eof(); # reset $.
reset if eof(); # reset ?pat?
}

If the wordwhile is replaced by the wondntil , the sense of the test is reversed, but the conditional is
still tested before the first iteration.

The loop control statements don’'t work ini&n or unless |, since they aren't loops. You can double the
braces to make them such, though.

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last", but doesn’t document as well
do something here

b

This is caused by the fact that a block by itself acts as a loop that executes once, see “Basic BLOCKs and
Switch Statements”.

The form while/if BLOCK BLOCK , available in Perl 4, is no longer available. Replace any
occurrence off BLOCK by if (do BLOCK)
For Loops
Perl's C—stylefor loop works like the correspondinghile loop; that means that this:
for ($i = 1; $i < 10; $i++) {

}
is the same as this:
$i=1,;
while ($i < 10) {
} con't.i.nue{
$i++;
}

There is one minor difference: if variables are declared mitin the initialization section of thiar , the

lexical scope of those variables is exactlyftre loop (the body of the loop and the control sections).

Besides the normal array index loopifigr, can lend itself to many other interesting applications. Here's
one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file descriptor
causing your program to appear to hang.

10 2003-08-13 perl v5.8.0

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do something

}

Foreach Loops

Theforeach loop iterates over a normal list value and sets the variatiteto be each element of the list

in turn. If the variable is preceded with the keyworg then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former value
upon exiting the loop. If the variable was previously declared muithit uses that variable instead of the
global one, but it's still localized to the loop.

The foreach keyword is actually a synonym for tHer keyword, so you can usreach for
readability orfor for brevity. (Or because the Bourne shell is more familiar to you ¢eBrso writing
for comes more naturally.) WAR is omitted,$ _is set to each value.

If any element ofIST is an Ivalue, you can modify it by modifyin@dR inside the loop. Conversely, if any
element ofLIST is NOT an Ivalue, any attempt to modify that element will fail. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you're looping over.

If any part ofLIST is an arrayforeach will get very confused if you add or rewe elements within the
loop body, for example witeplice . So don't do that.

foreach probably won't do what you expect AR is a tied or other special variable. Don't do that
either.

Examples:
for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM’) {
print $count, "\n"; sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:\\n:]*/, SENV{TERMCAP})) {
print “ltem: $item\n";

}

Here’s how a C programmer might code up a particular algorithm in Perl:
for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > Sary2[$i]) {
last; # can’t go to outer :-(
}

$ary1[$i] += $ary2[$i];
}

this is where that last takes me
}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {

INNER: for my $jet (@ary2) {
next OUTER if $wid > $jet;
$wid += $jet;

}

See how much easier this is? It's cleaner, safer, and faster. It's cleaner because it's less noisy. It's safer

perl v5.8.0 2003-08-13 11

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

because if code gets added between the inner and outer loops later on, the new code won't be accidentally
executed. Thaext explicitly iterates the other loop rather than merely terminating the inner one. And
it's faster because Perl executdei@ach statement more rapidly than it would the equivafent loop.

Basic BLOCKSs and Switch Statements

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note thatNbis tisie in

eval{} , sub{} , or contrary to popular belieflo{} blocks, which doNOT count as loops.) The
continue block is optional.

TheBLOCK construct is particularly nice for doing case structures.
SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }

if (/"def/) { $def = 1, last SWITCH; }
if (/"xyz/) { $xyz = 1, last SWITCH; }

$nothing = 1;
}
There is no officialswitch statement in Perl, because there are already several ways to write the
equivalent.

However, starting from Perl 5.8 to get switch and case one can use the Switch extension and say:
use Switch;

after which one has switch and case. It is not as fast as it could be because it's not really part of the
language (it's done using source filters) but it is available, and it's very flexible.

In addition to the abovBLOCK construct, you could write

SWITCH: {
$abc = 1, last SWITCH if /"abc/;
$def = 1, last SWITCH if I"def/;
$xyz = 1, last SWITCH if I"xyz/;
$nothing = 1;

}

(That's actually not as strange as it looks once you realize that you can use loop control “operators” within
an expression, That'’s just the normal C comma operator.)

or
SWITCH: {
["abc/ && do { $abc = 1; last SWITCH; };
["def/ && do { $def = 1; last SWITCH,; };
I"xyz/ && do { $xyz = 1, last SWITCH; };
$nothing = 1;
}
or formatted so it stands out more as a “prop#itch statement:
SWITCH: {
["abc/ && do {
$abc = 1;
last SWITCH,;
%
["def/ && do {
$def = 1;
last SWITCH,;
%

12 2003-08-13 perl v5.8.0

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

I"xyzl/ && do{
$xyz = 1;
last SWITCH,;
3

$nothing = 1;

}

or

SWITCH: {
["abc/ and $abc = 1, last SWITCH,;
/"def/ and $def = 1, last SWITCH,
I"xyz/ and $xyz = 1, last SWITCH,;
$nothing = 1;

}

or even, horrors,

if (/"abc/)
{ $abc=1}

elsif (/"def/)
{ $def=1}

elsif (/"xyz/)
{ $xyz=1}

else

{ $nothing=11}

A common idiom for aswitch statement is to udereach 's aliasing to make a temporary assignment
to $_ for convenient matching:

SWITCH: for ($where) {

/In Card Names/ && do { push @flags, '-e’; last; };
/Anywhere/ && do { push @flags, -h’; last; };
/In Rulings/ && do { last; };

die "unknown value for form variable where: ‘$where’™;

Another interesting approach to a switch statement is arrangelfoblack to return the proper value:

$amode = do {
if ($flag & O_RDONLY) {"r"} # XXX:isn't this 0?
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a": "w"}
elsif ($flag & O_RDWR) {
if ($flag & O_CREAT) { "w+"}

else { ($flag & O_APPEND) ? "a+": "r+"}
}
%
Or
print do {
($flags & O_WRONLY) ? "write-only"
($flags & O_RDWR) ? "read-write"
"read-only";
%

Or if you are certain that all th&& clauses are true, you can use something like this, which “switches” on
the value of thédTTP_USER_AGENd@nvironment variable.

perl v5.8.0 2003-08-13 13

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

14

#!/usr/bin/perl
pick out jargon file page based on browser
$dir = "http://www.wins.uva.nl/"mes/jargon’;
for (BENV{HTTP_USER_AGENT}) {
$page = /Mac/ && 'm/Macintrash.html’
(1 /Win(dows)?NT/ && 'elevilandrude.html’
M /Win [MSIEOWebTV/ && 'm/MicroslothWindows.html’

1 /Linux/ && ’l/Linux.html’

M /HP-UX/ && ’'h/HP-SUX.html’

11 /SunOsS/ && ’'s/ScumOS.html’

N 'a/AppendixB.html’;

}
print "Location: $dir/$page\015\012\015\012";

That kind of switch statement only works when you know&Reclauses will be true. If you don't, the
previous?: example should be used.

You might also consider writing a hash of subroutine references instead of synthesmwitcha
statement.

Goto

Although not for the faint of heart, Perl does supporgato statement. There are three forms:
goto —LABEL, goto —EXPR, andgoto —-&NAME. A loop’s LABEL is not actually a valid target for a
goto ; it's just the name of the loop.

Thegoto —LABEL form finds the statement labeled witABEL and resumes execution there. It may not

be used to go into any construct that requires initialization, such as a subroutifereach loop. It

also can't be used to go into a construct that is optimized away. It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines, but it's usually better to use some other construct
such adast ordie . The author of Perl has never felt the need to use this fogmtof (in Perl, that

is — C is another matter).

The goto —EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed goto s per FORTRAN, but isn't necessarily recommended if you're optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto —&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used BYTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (except that any
modifications to@_in the current subroutine are propagated to the other subroutine.) Aftprtthe not
evencaller() will be able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the structured control flow mechanisms
of next , last , orredo instead of resorting togoto . For certain applications, the catch and throw pair
ofeval{} anddie()for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it's expecting the beginning
of a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

=headl Here There Be Pods!

Then that text and all remaining text up through and including a line beginningauithwill be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in
=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

2003-08-13 perl v5.8.0

PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph.
This means that the following secret stuff will be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn't rely upon thearn() being podded out forever. Not all pod translators are well-
behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)

Much like the C preprocessor, Perl can process line directives. Using this, one can control Perl’s idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is the same as for most C preprocessors: it matches the regular
expression #\s*line\s+(\d+)\s*(?:\s"([™"]+)") ?\s*$/ with $1 being the line number

for the next line, an82 being the optional filename (specified within quotes).

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers will only show the
last source line to appear at a particular line number in a given file. Care should be taken not to cause line
number collisions in code you'd like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl

line 200 "bzzzt"

the ‘#' on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

line 200 "bzzzt"

eval qg[\n#line 2001 "\ndie 'foo’]; print $@;
__END__

foo at - line 2001.

% perl

eval gq[\n#line 200 "foo bar"\ndie 'foo’]; print $@;
__END__

foo at foo bar line 200.

% perl

line 345 "goop"

eval "\n#line". LINE__ .’™._ FILE__ ."\"\ndie 'foo™;
print $@;

__END__

foo at goop line 345.

perl v5.8.0 2003-08-13 15

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

NAME

perldata — Perl data types

DESCRIPTION

16

Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars, known as
“hashes”. Normal arrays are ordered lists of scalars indexed by number, starting with 0 and with negative
subscripts counting from the end. Hashes are unordered collections of scalar values indexed by their
associated string key.

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refers. The rest of the name tells you the particular value to which it
refers. Usually this name is a singtkentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by
(or by the slightly archait); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (see “Packages” in perimod for details). It's possible to substitute

for a simple identifier, an expression that produces a reference to the value at runtime. This is described in
more detail below and in perlref.

Perl also has its own built-in variables whose names don't follow these rules. They have strange names so
they don't accidentally collide with one of your normal variables. Strings that match parenthesized parts of
a regular expression are saved under names containing only digits affe(stbe perlop and perlre). In
addition, several special variables that provide windows into the inner working of Perl have names
containing punctuation characters and control characters. These are documented in perlvar.

Scalar values are always named with '$’, even when referring to a scalar that is part of an array or a hash.
The '$’ symbol works semantically like the English word “the” in that it indicates a single value is
expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb’} # the 'Feb’ value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@’, which works much like the word
“these” or “those” does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a’,'c’} # same as ($days{'a’},$days{'c’})

Entire hashes are denoted by "%’
%days # (keyl, vall, key2, val2 ..))

In addition, subroutines are named with an initial '&’, though this is optional when unambiguous, just as
the word “do” is often redundant in English. Symbol table entries can be named with an initial ', but
you don't really care about that yet (if ever :-).

Every variable type has its own namespace, as do several non-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scalar variable, an array, or a hash — or, for that matter, for
a filehandle, a directory handle, a subroutine name, a format name, or a label. This mekine tlzad

@foo are two different variables. It also means thfaio[1] is a part of@foo, not a part offfoo . This

may seem a bit weird, but that's okay, because it is weird.

Because variable references always start with '$’, '@’, or '%’, the “reserved” words aren't in fact reserved
with respect to variable names. Thane reserved with respect to labels and filehandles, however, which
don’t have an initial special character. You can't have a filehandle named “log”, for instance. Hint: you
could say open(LOG,logfile”) rather than open(log,’logfile’) . Using uppercase
filehandles also improves readability and protects you from conflict with future reserved wordss Case
significant——"FOQ", “Foo”, and “foo” are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the
appropriate type. For a description of this, see perlref.

Names that start with a digit may contain only more digits. Names that do not start with a letter,

2003-08-13 perl v5.8.0

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

underscore, digit or a caret (i.e. a control character) are limited to one characte$%@g$3$. (Most of
these one character names have a predefined significance to Perl. For i§§taadbe current process
id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. There are two major contexts: list and scalar. Certain operations return list
values in contexts wanting a list, and scalar values otherwise. If this is true of an operation it will be
mentioned in the documentation for that operation. In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural. Some words in English work this way, like
“fish” and “sheep”.

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> operator, which responds by reading one line from
STDIN and passing it back to the integer operation, which will then find the integer value of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to read every line available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the right-hand side in scalar context, while assignment to an
array or hash evaluates the righthand side in list context. Assignment to a list (or slice, which is just a list
anyway) also evaluates the righthand side in list context.

When you use these warnings pragma or Perl'ssw command-line option, you may see warnings
about useless uses of constants or functions in “void context”. Void context just means the value has been
discarded, such as a statement containing tng"; or getpwuid(0); . It still counts as scalar
context for functions that care whether or not they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void, scalar, or list context.
Most subroutines do not need to bother, though. That's because both scalars and lists are automatically
interpolated into lists. See “wantarray” in perlfunc for how you would dynamically discern your function’s
calling context.

Scalar values

All data in Perl is a scalar, an array of scalars, or a hash of scalars. A scalar may contain one single value in
any of three different flavors: a number, a string, or a reference. In general, conversion from one form to
another is transparent. Although a scalar may not directly hold multiple values, it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars aren't necessarily one thing or another. There’s no place to declare a scalar variable to be of type
“string”, type “number”, type “reference”, or anything else. Because of the automatic conversion of
scalars, operations that return scalars don't need to care (and in fact, cannot care) whether their caller is
looking for a string, a number, or a reference. Perl is a contextually polymorphic language whose scalars
can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly—typed, uncastable
pointers with builtin reference-counting and destructor invocation.

A scalar value is interpreted aRUE in the Boolean sense if it is not the null string or the number O (or its
string equivalent, “0”). The Boolean context is just a special kind of scalar context where no conversion to
a string or a number is ever performed.

There are actually two varieties of null strings (sometimes referred to as “empty” strings), a defined one
and an undefined one. The defined version is just a string of length zero, stich @ke undefined

version is the value that indicates that there is no real value for something, such as when there was an error,
or at end of file, or when you refer to an uninitialized variable or element of an array or hash. Although in
early versions of Perl, an undefined scalar could become defined when first used in a place expecting a

perl v5.8.0 2003-08-13 17

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

18

defined value, this no longer happens except for rare cases of autovivification as explained in perlref. You
can use thdefined(Joperator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and thendef()operator to produce an undefined value.

To find out whether a given string is a valid non-zero number, it's sometimes enough to test it against both
numeric 0 and also lexical “0" (although this will caus& noises). That's because strings that aren’t
numbers count as 0, just as they dauvk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";
}

That method may be best because otherwise you won't IFE&t notations likeNaN or Infinity

properly. At other times, you might prefer to determine whether string data can be used numerically by
calling thePOSIX::strtod()function or by inspecting your string with a regular expression (as documented
in perlre).

warn "has nondigits" if N\D/,
warn "not a natural number" unless /"\d+$/; # rejects -3
warn "not an integer" unless /"-\d+$/; # rejects +3
warn "not an integer" unless /[+-]?\d+$/;
warn "not a decimal number" unless /"-?2\d+\.2\d*$/; # rejects .2
warn "not a decimal number" unless /*-?(?:\d+(?:\.\d*)? O\d+)$/;
warn "not a C float"
unless /"([+-]?)(?=\d OAd)\d*(\\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of @uays by evaluatingb#days |,

as incsh However, this isn't the length of the array; it's the subscript of the last element, which is a
different value since there is ordinarily a Oth element. Assigni§gdays actually changes the length of

the array. Shortening an array this way destroys intervening values. Lengthening an array that was
previously shortened does not recover values that were in those elements. (It used to do so in Perl 4, but we
had to break this to make sure destructors were called when expected.)

You can also gain some minuscule measure of efficiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element that is off the end of the array. You can truncate an
array down to nothing by assigning the null list () to it. The following are equivalent:

@whatever = ();
$#whatever = -1,

If you evaluate an array in scalar context, it returns the length of the array. (Note that this is not true of
lists, which return the last value, like the C comma operator, nor of built-in functions, which return
whatever they feel like returning.) The following is always true:

scalar(@whatever) == $#whatever - $[+ 1;

Version 5 of Perl changed the semantic$[of files that don't set the value 8f no longer need to worry
about whether another file changed its value. (In other words, $feisfdeprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1;
Some programmers choose to use an explicit conversion so as to leave nothing to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the hash is empty. If there are any key/value pairs,
it returns true; more precisely, the value returned is a string consisting of the number of used buckets and
the number of allocated buckets, separated by a slash. This is pretty much useful only to find out whether
Perl's internal hashing algorithm is performing poorly on your data set. For example, you stick 10,000
things in a hash, but evaluatifgHASHN scalar context reveald/16" , which means only one out of
sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn’t supposed to
happen.

You can preallocate space for a hash by assigning t&etys()function. This rounds up the allocated
buckets to the next power of two:

2003-08-13 perl v5.8.0

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified in any of the following floating point or integer formats:

12345

12345.67

.23E-10 # a very small number
3.14 15 92 # a very important number
4 294 967 296 # underscore for legibility
Oxff # hex

Oxdead_beef # more hex

0377 # octal

0b011011 # binary

You are allowed to use underscores (underbars) in numeric literals between digits for legibility. You could,
for example, group binary digits by threes (as for a Unix-style mode argument such as 0b110_100_100) or
by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double quotes. They work much like quotes in the
standard Unix shells: double-quoted string literals are subject to backslash and variable substitution; single-
guoted strings are not (except for and\\). The usual C-style backslash rules apply for making
characters such as newline, tab, etc., as well as some more exotic forms. See “Quote and Quote-like
Operators” in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. 'Oxff’) are not automatically converted
to their integer representation. Thex()andoct() functions make these conversions for you. See “hex” in
perlfunc and “oct” in perlfunc for more details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, arrays, and array or hash slices. (In other words, names beginning with
$ or @, followed by an optional bracketed expression as a subscript.) The following code segment prints
out "The price is $100."

$Price ='$100’; # not interpreted
print "The price is $Price.\n"; # interpreted

As in some shells, you can enclose the variable name in braces to disambiguate it from following
alphanumerics (and underscores). You must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, since these would be otherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/peri\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl would have looked f@wdospeak , a$who::0 , and a$who’s variable. The
last two would be th80 and thebs variables in the (presumably) non-existent packelge

In fact, an identifier within such curlies is forced to be a string, as is any simple identifier within a hash
subscript. Neither need quoting. Our earlier exanmhdays{'Feb’} can be written a$days{Feb}

and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression.

A literal of the formv1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. This form, known as v-strings, provides an alternative, more readable way to construct strings,
rather than use the somewhat less readable interpolation"fefi\x{14}\x{12c}\x{fa0}" .

This is useful for representing Unicode strings, and for comparing version “numbers” using the string
comparison operatorsmp, gt , It etc. If there are two or more dots in the literal, the leadimgay be
omitted.

perl v5.8.0 2003-08-13 19

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

20

print v9786; # prints UTF-8 encoded SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by botiguire anduse for doing a version check. TV special variable

also contains the running Perl interpreter’s version in this form. See “$°V” in perlvar. Note that using the
v-strings for IPv4 addresses is not portable unless you also useth&ton(finet_ntoa()routines of the
Socket package.

The special literals __FILE__, LINE__, and _ PACKAGE_ _ represent the current filename, line
number, and package name at that point in your program. They may be used only as separate tokens; they
will not be interpolated into strings. If there is no current package (due to an packgge; directive),
__PACKAGE__is the undefined value.

The two control characters "D and “Z, and the tokens _ _END___and __DATA__ may be used to indicate
the logical end of the script before the actual end of file. Any following text is ignored.

Text after __DATA __ but may be read via the fileharReCKNAME::DATA where PACKNAMES the
package that was current when the _DATA___ token was encountered. The filehandle is left open pointing
to the contents after _ _DATA__. It is the program’s responsibilitgltse DATA when it is done
reading from it. For compatibility with older scripts written before _ DATA__ was introduced, _ END__
behaves like __DATA__ in the toplevel script (but not in files loaded reiguire or do) and leaves the
remaining contents of the file accessiblemi@n::DATA .

See SelfLoader for more description of __DATA__, and an example of its use. Note that you cannot read
from the DATA filehandle in aBEGIN block: the BEGIN block is executed as soon as it is seen (during
compilation), at which point the corresponding __DATA __ (or __END_) token has not yet been seen.

A word that has no other interpretation in the grammar will be treated as if it were a quoted string. These
are known as “barewords”. As with filehandles and labels, a bareword that consists entirely of lowercase
letters risks conflict with future reserved words, and if you useuskewarnings pragma or the-w

switch, Perl will warn you about any such words. Some people may wish to outlaw barewords entirely. If

you say

use strict 'subs’;

then any bareword that wouldOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this by
sayingno strict 'subs’
Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the$" variable $LIST_SEPARATORIn English), space by default. The following are
equivalent:

$temp = join($", @ARGV);

system “"echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted ash{foo}[bar]/ (where[bar] is a character class for the
regular expression) or d${foo[bar]}/ (where[bar] is the subscript to arra@foo)? If @foo

doesn'’t otherwise exist, then it's obviously a character clas@fdb exists, Perl takes a good guess about
[bar] , and is almost always right. If it does guess wrong, or if you're just plain paranoid, you can force
the correct interpretation with curly braces as above.

If you're looking for the information on how to use here-documents, which used to be here, that’s been
moved to “Quote and Quote-like Operators” in perlop.

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is simply the value of the
final element, as with the C comma operator. For example,

2003-08-13 perl v5.8.0

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

@foo = (cc’, *-E’, $bar);
assigns the entire list value to ar@foo, but
$foo = ('cc’, -E’, $bar);

assigns the value of variatfibar to the scalar variablfoo . Note that the value of an actual array in
scalar context is the length of the array; the following assigns the val&®&to

@foo = (cc’, *-E’, $bar);

$foo = @foo; # $foo gets 3
You may have an optional comma before the closing parenthesis of a list literal, so that you can say:
@foo = (
1|
2|
3|
);

To use a here-document to assign an array, one line per element, you might use an approach like this:

@sauces = <<End_Lines =~ m/(\S.x\S)/qg;
normal tomato
spicy tomato
green chile
pesto
white wine
End_Lines

LISTs do automatic interpolation of sublists. That is, whersa is evaluated, each element of the list is
evaluated in list context, and the resulting list value is interpolatedLigfo just as if each individual
element were a memberldBT. Thus arrays and hashes lose their identity in a LIST —the list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements @foo followed by all the elements a®bar, followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch . To make a list reference that doeSTinterpolate, see perlref.

The null list is represented by (). Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with the facts that the opening and closing parentheses are optional (except
when necessary for precedence) and lists may end with an optional comma to mean that multiple commas
within lists are legal syntax. The li$t,3 is a concatenation of two lists, and3, the first of which ends

with that optional commal,,3 is (1,),(3) is 1,3 (And similarly for1,,,3 is (1,),(,),3 is

1,3 and so on.) Not that we'd advise you to use this obfuscation.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8];, # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = ('a’,’b’,’c’,’d’,’e’,')[$digit-10];
A '"reverse comma operator".
return (pop(@foo),pop(@f00))[0];
Lists may be assigned to only when each element of the list is itself legal to assign to:
(%$a, $b, $c) = (1, 2, 3);
($map{red’}, $map{’blue’}, Smap{'green’}) = (0x00f, 0x0f0, 0xf00);
An exception to this is that you may assigrutmef in a list. This is useful for throwing away some of

perl v5.8.0 2003-08-13 21

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

22

the return values of a function:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $xto 3, not 2
$x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpfrete8@as

It's also the source of a useful idiom for executing a function or performing an operation in list context and
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar context. For example, this code:

$count = () = $string =" \d+/g;

will place into$count the number of digit groups found $string . This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the string. The list assignment in scalar context will translate that into the number of
elements (here, the number of times the pattern matched) and assign$®ibaairto . Note that simply

using

$count = $string =~ N\d+/g;

would not have worked, since a pattern match in scalar context will only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be usefubyif)ar local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a key and a value:

same as map assignment above
%map = ('red’,0x00f,’blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are often interchangeable, that's not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into key/value pairs. That's why it's good to use references sometimes.

It is often more readable to use tire operator between key/value pairs. Hweoperator is mostly just a

more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to be
interpreted as a string —if it's a bareword that would be a legal identifier. This makes it nice for initializing
hashes:

%map = (
red => OxO0O0f,
blue => 0x0f0,
green => 0xf00,
);
or for initializing hash references to be used as records:
$rec ={
witch =>'Mable the Merciless’,
cat => 'Fluffy the Ferocious’,
date => '10/31/1776’,
2

or for using call-by-named-parameter to complicated functions:

2003-08-13 perl v5.8.0

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

$field = $query->radio_group(
name => ’'group_name’,
values => ['eenie’,’meenie’,'minie’],
default => 'meenie’,
linebreak => 'true’,
labels => \%labels

);
Note that just because a hash is initialized in that order doesn’t mean that it comes out in that order. See
“sort” in perlfunc for examples of how to arrange for an output ordering.

Slices

A common way to access an array or a hash is one scalar element at a time. You can also subscript a list to
get a single element from it.

$whoami = SENV{"USER"}; # one element from the hash
$parent = $ISA[O]; # one element from the array
$dir = (getpwnam("daemon™))[7]; # likewise, but with list

A slice accesses several elements of a list, an array, or a hash simultaneously using a list of subscripts. It's
more convenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @folks[0,-1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @ENV{"USER", "HOME"}, # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice
Since you can assign to a list of variables, you can also assign to an array or hash slice.
@daysJ[3..5] = qw/Wed Thu Fri/;

@colors{’red’,’blue’,’green’}
= (0xff0000, 0x0000ff, 0x00ff00);
@folks[0, -1] = @folks|[-1, 0];
The previous assignments are exactly equivalent to
($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{’red’}, $colors{’blue’}, $colors{’green’})

= (Oxff0000, 0x0000ff, 0x00ff00);
($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash that it's slidomgaah construct will alter
some — or even all — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }
foreach (@hash{keys %hash}) {

s/M\s+//; # trim leading whitespace
s\s+$//; # trim trailing whitespace
s/(w+)Au\L$1/g; # "titlecase" words
}
A slice of an empty list is still an empty list. Thus:
@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (0,1)[2,3]; # @c has no elements
But:
@a = (1)[1,0]; # @a has two elements

@b = (1,undef)[1,0,2]; # @b has three elements
This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%-8s %s\n", $user, $home;
}

perl v5.8.0 2003-08-13 23

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

24

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignment. The null list contains no elements, so when the password file is exhausted, the
result is 0, not 2.

If you're confused about why you use an '@’ there on a hash slice instead of a '%’, think of it like this.
The type of bracket (square or curly) governs whether it's an array or a hash being looked at. On the other
hand, the leading symbol ('$’ or '@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type calledy@eglobto hold an entire symbol table entry. The type prefix of a
typeglob is &, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:
*this = *that;

makes$this an alias fosthat , @this an alias for@that , %this an alias fof6that , &this an alias
for &that, etc. Much safer is to use a reference. This:

local *Here::blue =\$There::green;

temporarily make$Here::blue an alias foi$There::green , but doesn’t makeé@Here::blue an

alias for @There::.green , or %Here::blue an alias for%There::;green , etc. See “Symbol
Tables” in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehandles. If you need to
use a typeglob to save away a filehandle, do it this way:

$fh = *STDOUT;
or perhaps as a real reference, like this:
$fth = *STDOUT;
See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle usidgdhi§) operator. These last until their block
is exited, but may be passed back. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}

$fh = newopen('/etc/passwd’);

Now that we have the*foo{THING} notation, typeglobs aren't used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles into or out of
functions. That's becaus#tlANDLE{IO} only works if HANDLE has already been used as a handle. In
other words,*FH must be used to create new symbol table enttfe®{THING} cannot. When in

doubt, useéFH.

All functions that are capable of creating filehandiese(() opendir() pipe() socketpair() sysopen()

socket() andaccept() automatically create an anonymous filehandle if the handle passed to them is an
uninitialized scalar variable. This allows the constructs suchopen(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that will conveniently be closed automatically
when the scope ends, provided there are no other references to them. This largely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

2003-08-13 perl v5.8.0

PERLDATA(1) Perl Programmers Reference Guide PERLDATA(1)

sub myopen {
open my $fh, "@_"
or die "Can’t open’'@_": $!";

return $fh;
}
{
my $f = myopen("</etc/motd");
print <$f>;
$f implicitly closed here
}
Note that if an initialized scalar variable is used instead the result is differgntfh="2zz’;
open($fh, ...) is equivalent tmpen(*{'zzz'}, ...) . use strict 'refs’ forbids such
practice.

Another way to create anonymous filehandles is with the Symbol module or with the 10::Handle module
and its ilk. These modules have the advantage of not hiding different types of the same name during the
local(). See the bottom ofdpen(} in perlfunc for an example.

SEE ALSO
See perlvar for a description of Perl’'s built-in variables and a discussion of legal variable names. See

perlref, perlsub, and “Symbol Tables” in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

perl v5.8.0 2003-08-13 25

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

NAME

perlop — Perl operators and precedence

SYNOPSIS

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Operators borrowed from C keep the same precedence relationship with each other, even where C's
precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left ->

nonassoc ++ -

right **

right I ™\ and unary + and -

left = r

left *[% X

left + -

left << >>

nonassoc named unary operators
nonassoc <><=>=1It gt le ge

nonassoc == l=<=>eqg ne cmp
left &

left o-

left &&

left ™

nonassoc .

right ?:

right = +=-=*=efc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators are covered in precedence order.
Many operators can be overloaded for objects. See overload.

DESCRIPTION

26

Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl. They include variables, quote and quote-like operators, any
expression in parentheses, and any function whose arguments are parenthesized. Actually, there aren’t
really functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. These are all documented in perlfunc.

If any list operatorrint(), etc.) or any unary operatahdir(), etc.) is followed by a left parenthesis as the
next token, the operator and arguments within parentheses are taken to be of highest precedence, just like a
normal function call.

In the absence of parentheses, the precedence of list operators ptioh assort , or chmod is either
very high or very low depending on whether you are looking at the left side or the right side of the operator.
For example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324
the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated

after. In other words, list operators tend to gobble up all arguments that follow, and then act like a simple
TERM with regard to the preceding expression. Be careful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.

print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. See “Named Unary Operators” for more discussion of
this.

Also parsed as terms are @ {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdts and{} .

See also “Quote and Quote-like Operators” toward the end of this section, as well as “I/O Operators”.

The Arrow Operator

"—>" s an infix dereference operator, just as it is in C afid £the right side is eitherp..] ,{...} ,

ora(...) subscript, then the left side must be either a hard or symbolic reference to an array, a hash, or a
subroutine respectively. (Or technically speaking, a location capable of holding a hard reference, if it's an
array or hash reference being used for assignment.) See perlreftut and perliref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method name or
a subroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

Auto-increment and Auto-decrement

“++" and “—="work as in C. That s, if placed before a variable, they increment or decrement the variable
before returning the value, and if placed after, increment or decrement the variable after returning the value.

The auto-increment operator has a little extra builtin magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has been used in only string contexts since it was set, and has a value that is not the empty string

and matches the pattefija—zA-Z]*[0-9]*\z/ , the increment is done as a string, preserving each
character within its range, with carry:

print ++($foo = '99’); # prints '100’

print ++($foo = 'a0’); # prints 'al’

print ++($foo = 'Az’); # prints 'Ba’

print ++($foo = 'zz’); # prints 'aaa’

The auto-decrement operator is not magical.

Exponentiation

Binary “**" is the exponentiation operator. It binds even more tightly than unary minus, so -2**4 is
—(2**4), not (-2)**4. (This is implemented using Ciwow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators
Unary “I" performs logical negation, i.e., “not”. See alswt for a lower precedence version of this.

Unary “=" performs arithmetic negation if the operand is numeric. If the operand is an identifier, a string
consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returned. One effect of these rules is that
—bareword is equivalent td—-bareword"

Unary “™ performs bitwise negation, i.e., 1's complement. For exampi€6 & "027 is 0640. (See

also “Integer Arithmetic” and “Bitwise String Operators”.) Note that the width of the result is
platform—dependent: "0 is 32 bits wide on a 32-bit platform, but 64 bits wide on a 64-bit platform, so if
you are expecting a certain bit width, remember use the & operator to mask off the excess bits.

Unary “+” has no effect whatsoever, even on strings. It is useful syntactically for separating a function
name from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (See examplesabunder “Terms and List Operators (Leftward)”.)

perl v5.8.0 2003-08-13 27

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

28

Unary “\" creates a reference to whatever follows it. See perlreftut and perlref. Do not confuse this
behavior with the behavior of backslash within a string, although both forms deycitre notion of
protecting the next thing from interpolation.

Binding Operators

Binary “="" binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by default. This operator makes that kind of operation work on some other string. The right argument
is a search pattern, substitution, or transliteration. The left argument is what is supposed to be searched,
substituted, or transliterated instead of the def&ult When used in scalar context, the return value
generally indicates the success of the operation. Behavior in list context depends on the particular operator.
See “Regexp Quote-Like Operators” for details.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. This can be less efficient than an explicit search, because the
pattern must be compiled every time the expression is evaluated.

Binary “I"™ is just like “="" except the return value is negated in the logical sense.

Multiplicative Operators
Binary “*” multiplies two numbers.
Binary “/” divides two numbers.

Binary “%” computes the modulus of two numbers. Given integer oper@adend$b: If $b is positive,

then$a % $b is $a minus the largest multiple &b that is not greater thea. If $b is negative, then

$a % $b is $a minus the smallest multiple &b that is not less thada (i.e. the result will be less than

or equal to zero). Note that whase integer is in scope, “%" gives you direct access to the modulus
operator as implemented by your C compiler. This operator is not as well defined for negative operands,
but it will execute faster.

Binary “x” is the repetition operator. In scalar context or if the left operand is not enclosed in parentheses,
it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses, it repeats the list.

print -’ x 80; # print row of dashes
print "\t" x ($tab/8), ' ' x ($tab%8); # tab over
@ones = (1) x 80; # a listof80 1's
@ones = (5) x @ones; # setall elements to 5

Additive Operators
Binary “+” returns the sum of two numbers.
Binary “~" returns the difference of two numbers.

Binary “.” concatenates two strings.

Shift Operators

Binary “<<” returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers. (See also “Integer Arithmetic”.)

Binary “>>" returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers. (See also “Integer Arithmetic”.)

Note that both “<<” and “>>" in Perl are implemented directly using “<<” and “>>" in C. Ifise

integer (see “Integer Arithmetic”) is in force then signed C integers are used, else unsigned C integers
are used. Either way, the implementation isn't going to generate results larger than the size of the integer
type Perl was built with (32 bits or 64 bits).

The result of overflowing the range of the integers is undefined because it is undefined also in C. In other
words, using 32-bit integerd, << 32 is undefined. Shifting by a negative number of bits is also
undefined.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

Named Unary Operators

The various named unary operators are treated as functions with one argument, with optional parentheses.
These include the filetest operators, life —M etc. See perlfunc.

If any list operatorrint(), etc.) or any unary operatahdir(), etc.) is followed by a left parenthesis as the
next token, the operator and arguments within parentheses are taken to be of highest precedence, just like a
normal function call. For example, because named unary operators are higher precedémte than

chdir $foo ([die; # (chdir $foo) [die
chdir($foo) (O die; # (chdir $foo) [die
chdir ($foo) (O die; # (chdir $foo) [die
chdir +($foo) (O die; # (chdir $foo) [die

but, because * is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)
See also “Terms and List Operators (Leftward)”.

Relational Operators

Binary “<” returns true if the left argument is numerically less than the right argument.

Binary “>" returns true if the left argument is numerically greater than the right argument.

Binary “<=" returns true if the left argument is numerically less than or equal to the right argument.
Binary “>=" returns true if the left argument is numerically greater than or equal to the right argument.
Binary “It" returns true if the left argument is stringwise less than the right argument.

Binary “gt” returns true if the left argument is stringwise greater than the right argument.

Binary “le” returns true if the left argument is stringwise less than or equal to the right argument.
Binary “ge” returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary “=="returns true if the left argument is numerically equal to the right argument.
Binary “I=" returns true if the left argument is numerically not equal to the right argument.

Binary “<=>"returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the right argument. If your platform supports NaNs (not—-a—numbers) as numeric values,
using them with “<=>" returns undef. NaN is not “<”, “==", “>" “<=" or “>=" anything (even NaN),

so those 5 return false. NaN != NaN returns true, as does NaN != anything else. If your platform doesn’t
support NaNs then NaN is just a string with numeric value 0.

perl -le '$a = NaN; print "No NaN support here" if $a == $a’
perl -le '$a = NaN; print "NaN support here" if $a != $a’

Binary “eq” returns true if the left argument is stringwise equal to the right argument.
Binary “ne” returns true if the left argument is stringwise not equal to the right argument.

Binary “cmp” returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to,
or greater than the right argument.

“It”, “le”, “ge”, “gt” and “cmp” use the collation (sort) order specified by the current locale iise
locale isin effect. See perllocale.

perl v5.8.0 2003-08-13 29

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

30

Bitwise And

Binary “&” returns its operands ANDed together bit by bit. (See also “Integer Arithmetic” and “Bitwise
String Operators”.)

Note that “&” has lower priority than relational operators, so for example the brackets are essential in a
test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or

Binary “[T' returns its operands ORed together bit by bit. (See also “Integer Arithmetic” and “Bitwise
String Operators”.)

Binary “*" returns its operands XORed together bit by bit. (See also “Integer Arithmetic” and “Bitwise
String Operators”.)

Note that ‘0 and “™" have lower priority than relational operators, so for example the brackets are
essential in a test like

print "false\n" if (8 0 2) 1= 10;

C-style Logical And

Binary “&&” performs a short-circuit logicalAND operation. That is, if the left operand is false, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

C-style Logical Or

Binary “[I7 performs a short-circuit logicaDR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is evaluated.

The (10 and && operators differ from C’s in that, rather than returning 0 or 1, they return the last value
evaluated. Thus, a reasonably portable way to find out the home directory (assuming it's not “0") might
be:

$home = SENV{'HOME'} 1 $ENV{LOGDIR} [
(getpwuid($<))[7] [die "You're homeless\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates for assignment:

@a=@b [@c; # this is wrong
@a = scalar(@b) M @c; # really meant this
@a=@b? @b: @c; # this works fine, though

As more readable alternatives&& and[T1when used for control flow, Perl providasd andor operators
(see below). The short-circuit behavior is identical. The precedence of “and” and “or” is much lower,
however, so that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would have been written like this:

unlink("alpha", "beta", "gamma")
[(gripe(), next LINE);

Using “or” for assignment is unlikely to do what you want; see below.

Range Operators

Binary “.." is the range operator, which is really two different operators depending on the context. In list
context, it returns an list of values counting (up by ones) from the left value to the right value. If the left
value is greater than the right value then it returns the empty array. The range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used as the expresseatin loops, but older
versions of Perl might burn a lot of memory when you write something like this:

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

for (1..1_000_000) {
code
}

The range operator also works on strings, using the magical auto—increment, see below.

In scalar context, “..” returns a boolean value. The operator is bistable, like a flip—flop, and emulates the
line-range (comma) operator skd awk, and various editors. Each “..” operator maintains its own
boolean state. It is false as long as its left operand is false. Once the left operand is true, the range operator
stays true until the right operand is tra&TERwhich the range operator becomes false again. It doesn't
become false till the next time the range operator is evaluated. It can test the right operand and become
false on the same evaluation it became true (ask), but it still returns true once. If you don’'t want it to

test the right operand till the next evaluation, aseid) just use three dots (“...") instead of two. In all other

“« n

regards, “..." behaves just like “..” does.

The right operand is not evaluated while the operator is in the “false” state, and the left operand is not
evaluated while the operator is in the “true” state. The precedence is a little lowerilaaad &&. The

value returned is either the empty string for false, or a sequence number (beginning with 1) for true. The
sequence number is reset for each range encountered. The final sequence number in a range has the string
“EQ” appended to it, which doesn't affect its numeric value, but gives you something to search for if you
want to exclude the endpoint. You can exclude the beginning point by waiting for the sequence number to
be greater than 1. If either operand of scalar “.."” is a constant expression, that operand is implicitly
compared to thé. variable, the current line number. Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines
nextlineif (1 ../"$/); # skip header lines
s> 1if (I'$/ .. eof()); # quote body

parse mail messages
while (<>) {
$in_header= 1 .. I'$/,
$in_body = I"$/.. eof();
do something based on those
} continue {
close ARGV if eof; # reset $. each file
}

As a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @fool[0 .. $#foo]; # an expensive no-op
@foo = @foo[$#foo-4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = (A’ .. 'Z");
to get all normal letters of the English alphabet, or

$hexdigit= (0 .. 9,’a’ .. 'f)[$num & 15];
to get a hexadecimal digit, or

@z2 =('01'..'31); print $z2[$mday];
to get dates with leading zeros. If the final value specified is not in the sequence that the magical increment
would produce, the sequence goes until the next value would be longer than the final value specified.
Conditional Operator

Ternary “?:" is the conditional operator, just as in C. It works much like an if-then—else. If the argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned. For
example:

perl v5.8.0 2003-08-13 31

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

32

printf "I have %d dog%s.\n", $n,
($n==1)72":"s",

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$a=%0k ?$b: $c; # getascalar
@a=%0k? @b: @c; # getanarray
$a=%0k? @b: @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that you can
assign to them):

($a_or_b ? $a : $b) = $c;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$a%2?%a+=10:%a+=2
Really means this:
(32 % 2) ? ($a +=10) : $a) +=2
Rather than this:
($a% 2) ? ($a +=10) : ($a +=2)
That should probably be written more simply as:
$a+=($a % 2)?10: 2;

Assignment Operators
“="is the ordinary assignment operator.
Assignment operators work as in C. That s,
$a +=2;
is equivalent to
$a=%a+ 2,

although without duplicating any side effects that dereferencing the Ivalue might trigger, such @e(from
Other assignment operators work similarly. The following are recognized:
*k— += *= &= <<= &&=
= /= = >>= e
= Op= "=
X=
Although these are grouped by family, they all have the precedence of assignment.

Unlike in C, the scalar assignment operator produces a valid Ivalue. Modifying an assignment is equivalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a copy of something, like this:

($tmp = $global) =" tr [A-Z] [a-Z];
Likewise,

($a+=2)*=3;
is equivalent to

$a +=2;
$a *=3;
Similarly, a list assignment in list context produces the list of Ivalues assigned to, and a list assignment in

scalar context returns the number of elements produced by the expression on the right hand side of the
assignment.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

Comma Operator

Binary “,” is the comma operator. In scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. This is just like C's comma operator.

In list context, it's just the list argument separator, and inserts both its arguments into the list.

The => digraph is mostly just a synonym for the comma operator. It's useful for documenting arguments
that come in pairs. As of release 5.001, it also forces any word to the left of it to be interpreted as a string.
List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical operators “and”, “or”,
and “not”, which may be used to evaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can’t open: $!\n";

See also discussion of list operators in “Terms and List Operators (Leftward)”.

Logical Not

Unary “not” returns the logical negation of the expression to its right. It's the equivalent of “!I" except for
the very low precedence.

Logical And

Binary “and” returns the logical conjunction of the two surrounding expressions. It's equivalent to &&
except for the very low precedence. This means that it short—circuits: i.e., the right expression is evaluated
only if the left expression is true.

Logical or and Exclusive Or

Binary “or” returns the logical disjunction of the two surrounding expressions. It's equivaléhiercept
for the very low precedence. This makes it useful for control flow

print FH $data or die "Can’t write to FH: $!";

This means that it short—circuits: i.e., the right expression is evaluated only if the left expression is false.
Due to its precedence, you should probably avoid using this for assignment, only for control flow.

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # really means this
$a=%b [$c; # better written this way

However, when it's a list-context assignment and you're trying to U& for control flow, you probably
need “or” so that the assignment takes higher precedence.

@info = stat($file) (O die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary “xor” returns the exclusive-OR of the two surrounding expressions. It cannot short circuit, of
course.

C Operators Missing From Perl

Here is what C has that Perl doesn't:

unary & Address-of operator. (But see the “\" operator for taking a reference.)

unary * Dereference-address operator. (Perl’s prefix dereferencing operators are typed: $, @, %, and &.)
(TYPE) Type-casting operator.

perl v5.8.0 2003-08-13 33

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. In the following
table, &} represents any pair of delimiters you choose.

Customary Generic Meaning Interpolates
" af} Literal no
qaq{} Literal yes
“ ax{} Command yes*
aw{} Word list no
/1 m{} Pattern match yes*
ar{} Pattern yes*
s{{} Substitution yes*
tr{}{} Transliteration no (but see below)
<<EOF here-doc yes*

* unless the delimiter is ".

Non-bracketing delimiters use the same character fore and aft, but the four sorts of brackets (round, angle,
square, curly) will all nest, which means that

g{foo{bar}baz}

is the same as
'foo{bar}baz’

Note, however, that this does not always work for quoting Perl code:
$s={ if(aeq"}") ... }; # WRONG

is a syntax error. Thd@ext::Balanced module (fromCPAN, and starting from Perl 5.8 part of the
standard distribution) is able to do this properly.

There can be whitespace between the operator and the quoting characters, excépswleéry used as
the quoting characteg#foo# is parsed as the strifigo , while q #foo# is the operatoq followed by
a comment. Its argument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The following escape sequences are available in constructs that interpolate and in transliterations.

\t tab (HT, TAB)
\n newline (NL)
\r return (CR)

\f form feed (FF)

\b backspace (BS)
\a alarm (bell) (BEL)

\e escape (ESC)
\033 octal char (ESC)
\x1b hex char (ESC)
\x{263a} wide hex char (SMILEY)
\c[control char (ESC)

\N{name} named Unicode character
The following escape sequences are available in constructs that interpolate but not in transliterations.

\l lowercase next char

\u uppercase next char

\L lowercase till \E

\U uppercase till \E

\E end case modification

\Q quote non-word characters till \E

If use locale is in effect, the case map used\by, \L , \u and\U is taken from the current locale.
See perllocale. If Unicode (for exampldl{} or wide hex characters of 0x100 or beyond) is being used,

34 2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

the case map used Ky, \L ,\u and\U is as defined by Unicode. For documentatiotNghame} , see
charnames.

All systems use the virtudin" to represent a line terminator, called a “newline”. There is no such thing

as an unvarying, physical newline character. Itis only an illusion that the operating system, device drivers,
C libraries, and Perl all conspire to preserve. Not all systems't®ad asASCIl CRand"\n" asASCII

LF. For example, on a Mac, these are reversed, and on systems without line terminator,"printimgay

emit no actual data. In general, U§8' when you mean a “newline” for your system, but use the literal
ASCIl when you need an exact character. For example, most networking protocols expect and prefer a
CR+LF ("\015\012" or"\cM\cJ") for line terminators, and although they often accept"\@§t2"

they seldom tolerate jusiO15" . If you get in the habit of usingyn" for networking, you may be
burned some day.

For constructs that do interpolate, variables beginning withdr * @ are interpolated. Subscripted
variables such a8a[3] or $href->{key}[0] are also interpolated, as are array and hash slices. But
method calls such &obj—>meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the \#llyesofis
equivalent to interpolatingin $", @array . “Punctuation” arrays such a@-+are only interpolated
if the name is enclosed in brac@g+}.

You cannot include a literab or @within a \Q sequence. An unescapé&lor @ interpolates the
corresponding variable, while escaping will cause the literal st¥intp be inserted. You'll need to write
something liken\QusenE\@\Qhost/

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. If this is not what you want, WQeto interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of interpolation. In
particular, contrary to the expectations of shell programmers, back-quatesTdtaterpolate within double
guotes, nor do single quotes impede evaluation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-like operators that apply to pattern matching and related activities.

?PATTERN?
This is just like thepattern/ search, except that it matches only once between calls to the
reset()operator. This is a useful optimization when you want to see only the first occurrence of
something in each file of a set of files, for instance. ly patterns local to the current
package are reset.

while (<>) {
if (77%7?) {
blank line between header and body
}
} continue {
reset if eof; # clear ?? status for next file
}

This usage is vaguely deprecated, which means it just might possibly be removed in some distant
future version of Perl, perhaps somewhere around the year 2168.

m/PATTERN/cgimosx

/PATTERN/cgimosx
Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via th€" or I” operator, theb_ string is searched. (The string
specified with=" need not be an Ivalue —it may be the result of an expression evaluation, but
remember the=" binds rather tightly.) See also perlre. See perllocale for discussion of
additional considerations that apply whese locale is in effect.

Options are:

perl v5.8.0 2003-08-13 35

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

c Do not reset search position on a failed match when /g is in effec
g Match globally, i.e., find all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

If “/" is the delimiter then the initialmis optional. With them you can use any pair of
non—alphanumeric, non-whitespace characters as delimiters. This is particularly useful for
matching path names that contain “/”, to avaits (leaning toothpick syndrome). If “?” is the
delimiter, then the match-only-once rule PPATTERN?applies. If “" is the delimiter, no
interpolation is performed on tHATTERN.

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every
time the pattern search is evaluated, except for when the delimiter is a single quote. (Note that
$(, $) , and$Oare not interpolated because they look like end-of-string tests.) If you want such
a pattern to be compiled only once, adfb aafter the trailing delimiter. This avoids expensive
run-time recompilations, and is useful when the value you are interpolating won't change over the
life of the script. However, mentioninp constitutes a promise that you won't change the
variables in the pattern. If you change them, Perl won't even notice. See also
“gr/STRING/imosx”.

If the PATTERN evaluates to the empty string, the Isistcessfullynatched regular expression is
used instead. In this case, only thendc flags on the empty pattern is honoured - the other
flags are taken from the original pattern. If no match has previously succeeded, this will (silently)
act instead as a genuine empty pattern (which will always match).

If the /g option is not usedn// in list context returns a list consisting of the subexpressions
matched by the parentheses in the pattern, $&,,%2, $3...). (Note that her&1 etc. are also

set, and that this differs from Perl 4's behavior.) When there are no parentheses in the pattern, the
return value is the lisfl) for success. With or without parentheses, an empty list is returned
upon failure.

Examples:

open(TTY, 'ldevitty’);
<TTY> ="/"yli && foo(); # do foo if desired

if (/Version: *([0-9.]*)/) { $version = $1; }
next if m# /usr/spool/uucp#;

poor man’s grep
$arg = shift;
while (<>) {
print if /$arg/o; # compile only once
}

if ($F1, $F2, $Etc) = ($f00 =~ I"(\S+)\s+(S+N\s*(*)1))

This last example splitdfoo into the first two words and the remainder of the line, and assigns
those three fields F1, $F2, and$Etc . The conditional is true if any variables were assigned,
i.e., if the pattern matched.

The/g modifier specifies global pattern matching—that is, matching as many times as possible
within the string. How it behaves depends on the context. In list context, it returns a list of the
substrings matched by any capturing parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, each executionrof/lg finds the next match, returning true if it matches, and
false if there is no further match. The position after the last match can be read or set using the
pos()function; see “pos” in perlfunc. A failed match normally resets the search position to the
beginning of the string, but you can avoid that by adding/themodifier (e.g.m//gc).

36 2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

Modifying the target string also resets the search position.

You can intermixm//g matches withmAG.../g , where\G is a zero-width assertion that
matches the exact position where the previollg , if any, left off. Without the/g modifier,
the\G assertion still anchors abs() but the match is of course only attempted once. Usng
without/g on a target string that has not previously hdg anatch applied to it is the same as
using the\A assertion to match the beginning of the string. Note also that, curiéntiy,only
properly supported when anchored at the very beginning of the pattern.

Examples:

list context
($one, $five, Sfifteen) = (‘uptime’ =~ /(\d+\.\d+)/g);

scalar context
$/ ="
while (defined($paragraph = <>)) {
while ($paragraph =" /[a-z][")*[.!?]+[")]*\s/g) {
$sentences++;
}

}

print "$sentences\n®;

using m//gc with \G

$_ ="ppoogppqq";
while ($i++ < 2) {

print "1: ™
print $1 while /(0)/gc; print ™, pos=", pos, "\n";
print "2: ™
print $1 if AG(qg)/gc; print ™, pos=", pos, "\n";
print "3: ™;

print $1 while /(p)/gc; print ™, pos=", pos, "\n";

}
print "Final: '$1’, pos=",pos,"\n" if AG(.)/;

The last example should print:

=

:'00’, pos=4
2:'q’, pos=5
3:'pp’, pos=7
1.7, pos=7
2:'q", pos=8
3.7, pos=8
Final: 'q’, pos=8

Notice that the final match matchgdnstead ofp, which a match without th& anchor would
have done. Also note that the final match did not upgase — pos is only updated on &
match. If the final match did indeed matph it's a good bet that you're running an older
(pre-5.6.0) Perl.

A useful idiom forlex -like scanners i$\G.../gc . You can combine several regexps like
this to process a string part—by—part, doing different actions depending on which regexp matched.
Each regexp tries to match where the previous one leaves off.

perl v5.8.0 2003-08-13 37

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

$ =<<EOL
$url = new URI::URL "http://iwww/"; die if $url eq "xXx";
EOL
LOOP:
{
print(" digits"), redo LOOP if A\G\d+\b],.;]?\s*/gc;
print(" lowercase"), redo LOOP if AG[a-z]+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if A\G[A-Z]+\b],.;]?\s*/gc;
print(" Capitalized"), redo LOOP if A\G[A-Z][a-z]+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if N\G[A-Za-z]+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP if N\G[A-Za-z0-9]+\b],.;]?\s*/gc
print(" line-noise"), redo LOOP if A\G["A-Za-z0-9]+/gc;
print ". That's all\n";
}

Here is the output (split into several lines):

line-noise lowercase line-noise lowercase UPPERCASE line-noise
UPPERCASE line-noise lowercase line-noise lowercase line-noise
lowercase lowercase line-noise lowercase lowercase line-noise
MiXeD line-noise. That's all!

g/STRING/

'STRING’
A single—quoted, literal string. A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it.""!;
$bar = q('This is it.");
$baz ="\n’; # a two-character string

gq/STRING/
“STRING’
A double—-quoted, interpolated string.

$.=qq
(*** The previous line contains the naughty word "$1".\n)
if \b(tcl fava [python)\b/i; # :-)
$baz ="\n"; # a one-character string
gr/STRING/imosx

This operator quotes (and possibly compiles)SITRINGas a regular expressiorsTRINGis
interpolated the same way BATTERNin m/PATTERN/. If “" is used as the delimiter, no
interpolation is done. Returns a Perl value which may be used instead of the corresponding
/STRING/imosx expression.

For example,

$rex = qr/imy.STRING/is;
s/$rex/fool;

is equivalent to
s/my.STRING/foolis;
The result may be used as a subpattern in a match:

$re = qr/$pattern/;

$string =" /[foo${re}bar/; # can be interpolated in other patterns
$string =" $re; # or used standalone

$string =" /$re/; # or this way

Since Perl may compile the pattern at the moment of executigr()abperator, usingjr() may
have speed advantages in some situations, notably if the regr(} isfused standalone:

38 2003-08-13 perl v5.8.0

PERLOP(1)

Perl Programmers Reference Guide PERLOP(2)

sub match {
my $patterns = shift;
my @compiled = map gr/$_/i, @$patterns;
grep {
my $success = 0;
foreach my $pat (@compiled) {
$success = 1, last if /$pat/;
}

$success;
} @_;

}

Precompilation of the pattern into an internal representation at the monomit afoids a need
to recompile the pattern every time a maftgpat/ is attempted. (Perl has many other internal
optimizations, but none would be triggered in thevabexample if we did not usgr() operator.)

Options are:

i Do case-insensitive pattern matching.
m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

See perlre for additional information on valid syntax $0RING, and for a detailed look at the
semantics of regular expressions.

gx/STRING/
‘STRING'

perl v5.8.0

A string which is (possibly) interpolated and then executed as a system commalfinisth

or its equivalent. Shell wildcards, pipes, and redirections will be honored. The collected standard
output of the command is returned; standard error is unaffected. In scalar context, it comes back
as a single (potentially multi-line) string, or undef if the command failed. In list context, returns

a list of lines (however you've defined lines with $/$KNPUT_RECORD_SEPARATQRTr an

empty list if the command failed.

Because backticks do not affect standard error, use shell file descriptor syntax (assuming the shell
supports this) if you care to address this. To capture a comma8mBERR and STDOUT
together:

$output = ‘cmd 2>&1%;

To capture a command&TDOUT but discard itSSTDERR:
$output = ‘cmd 2>/dev/null’;

To capture a command&TDERRDbut discard itSTDOUT (ordering is important here):
$output = ‘cmd 2>&1 1>/dev/null’;

To exchange a command¥DOUT and STDERRIn order to capture th8TDERRbut leave its
STDOUTto come out the ol§ TDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&-;

To read both a command3®DOUT and itsSTDERRseparately, it's easiest and safest to redirect
them separately to files, and then read from those files when the program is done:

system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");

Using single-quote as a delimiter protects the command from Perl’s double-quote interpolation,
passing it on to the shell instead:

$perl_info = gx(ps $$); # that's Perl's $$
$shell_info = gx’ps $%'; # that's the new shell's $$

How that string gets evaluated is entirely subject to the command interpreter on your system. On
most platforms, you will have to protect shell metacharacters if you want them treated literally.

2003-08-13 39

PERLOP(1)

Perl Programmers Reference Guide PERLOP(2)

This is in practice difficult to do, as it's unclear how to escape which characters. See perlsec for a
clean and safe example of a marfoak() andexec()to emulate backticks safely.

On some platforms (notably DOS-like ones), the shell may not be capable of dealing with
multiline commands, so putting newlines in the string may not get you what you want. You may
be able to evaluate multiple commands in a single line by separating them with the command
separator character, if your shell supports that (ean many Unix shells& on the WindowsNT

cmd shell).

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before starting the
child process, but this may not be supported on some platforms (see perlport). To be safe, you
may need to se$ (PAUTOFLUSH in English) or call theautoflush() method of
I0::Handle on any open handles.

Beware that some command shells may place restrictions on the length of the command line.
You must ensure your strings don't exceed this limit after any necessary interpolations. See the
platform-specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell commands
called vary between systems, and may in fact not be present at all. As one exantpfe the
command under theOSIX shell is very different from théype command undebOS. That

doesn’'t mean you should go out of your way to avoid backticks when they're the right way to get
something done. Perl was made to be a glue language, and one of the things it glues together is
commands. Just understand what you're getting yourself into.

See “I/O Operators” for more discussion.

gW/STRING/

Evaluates to a list of the words extracted oBTRING, using embedded whitespace as the word
delimiters. It can be understood as being roughly equivalent to:

split(’, g/STRING/);

the difference being that it generates a real list at compile time. So this expression:
gw(foo bar baz)

is semantically equivalent to the list:
'foo’, 'bar’, 'baz’

Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with comma or to put comments into a multi-
line gw-string. For this reason, these warnings pragma and thew switch (that is, the
$"W variable) produces warnings if tS& RING contains the “,” or the “#” character.

s/IPATTERN/REPLACEMENT/egimosx

40

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (specifically, the empty
string).

If no string is specified via the or!™ operator, thé_ variable is searched and modified. (The
string specified with=" must be scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an Ivalue.)

If the delimiter chosen is a single quote, no interpolation is done on eitheATNERN or the
REPLACEMENT. Otherwise, if the?PATTERN contains a $ that looks like a variable rather than an
end-of-string test, the variable will be interpolated into the pattern at run—time. If you want the
pattern compiled only once the first time the variable is interpolated, uge tbption. If the

pattern evaluates to the empty string, the last successfully executed regular expression is used
instead. See perlre for further explanation on these. See perllocale for discussion of additional
considerations that apply whese locale s in effect.

Options are:

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

e Evaluate the right side as an expression.
g Replace globally, i.e., all occurrences.

i Do case-insensitive pattern matching.

m Treat string as multiple lines.

0 Compile pattern only once.

s Treat string as single line.

X Use extended regular expressions.

Any non-alphanumeric, non-whitespace delimiter may replace the slashes. If single quotes are
used, no interpretation is done on the replacement string/éthenodifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text is not
evaluated as a command. If tReTTERN s delimited by bracketing quotes, tREPLACEMENT

has its own pair of quotes, which may or may not be bracketing quotes(f®gj)(bar) or
s<foo>/bar/ . A /e will cause the replacement portion to be treated as a full-fledged Perl
expression and evaluated right then and there. It is, however, syntax checked at compile—time. A
seconde modifier will cause the replacement portion todwal ed before being run as a Perl
expression.

Examples:
s/\bgreen\b/mauve/q; # don't change wintergreen
$path ="s [usr/bin [ustr/local/bin 0
s/Login: $foo/Login: $bar/; # run-time pattern
($foo = $bar) =" s/this/that/; # copy first, then change
$count = ($paragraph =" s/Mister\b/Mr./g); # get change-count
$ =’abcl23xyz’;

sh\d+/$&*2/e; # yields 'abc246xyz’
s\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’

s\w/$& x 2/egq; # yields 'aabbcc 224466xxyyzz’
s/%(.)/$percent{$1}/q; # change percent escapes; no /e
s/%(.)/$percent{$1} O $&/ge; # exprnow, so /e
s/"=(\w+)/&pod($1)/ge; # use function call

expand variables in $_, but dynamics only, using
symbolic dereferencing
sN$(\w+)/${$1}/g;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/eq;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to the variable name, and then evaluated
s/(\$\w+)/$1/eeq;

Delete (most) C comments.
$program ="'s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.
} llgsx;
sINs*(*?)\s*$/$1/; # trim white space in $_, expensively
for ($variable) { # trim white space in $variable, cheap
siM\s+/1;
si\s+$//;

}
sICTH *(C1%/$2 $1/; # reverse 1st two fields

perl v5.8.0 2003-08-13 41

PERLOP(1)

Perl Programmers Reference Guide PERLOP(2)

Note the use of $ instead of \ in the last example. Uslddwe use the \digit> form in only
the left hand side. Anywhere else it'sdigit>.

Occasionally, you can’t use just/@ to get all the changes to occur that you might want. Here
are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?"\d)/$1,$2/g;

expand tabs to 8-column spacing
1 while sh\t+/"’ x (length($&)*8 - length($)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

42

Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or deleted. If no
string is specified via the =" or |” operator, the string is transliterated. (The string specified

with =~ must be a scalar variable, an array element, a hash element, or an assignment to one of
those, i.e., an Ivalue.)

A character range may be specified with a hyphen,tr&9-J/0-9/ does the same
replacement a$r/ACEGIBDFHJ/0246813579/ . For sed devotees,y is provided as a
synonym fortr . If the SEARCHLISTis delimited by bracketing quotes, tREPLACEMENTLIST
has its own pair of quotes, which may or may not be bracketing quote§;[&-tZ][a-z] or
tr(+\-*/)/ABCD/

Note thattr doesnot do regular expression character classes sutth as [:lower:] . The
<tr> operator is not equivalent to the(1l) utility. If you want to map strings between
lower/upper cases, see “Ic” in perlfunc and “uc” in perlfunc, and in general consider usirsg the
operator if you need regular expressions.

Note also that the whole range idea is rather unportable between character sets—and even within
character sets they may cause results you probably didn't expect. A sound principle is to use only

ranges that begin from and end at either alphabets of equal case (a—e, A-E), or digits (0-4).

Anything else is unsafe. If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
S Squash duplicate replaced characters.

If the /c modifier is specified, th&EARCHLIST character set is complemented. |If thie

modifier is specified, any characters specifieBRCHLISTnot found inREPLACEMENTLIST

are deleted. (Note that this is slightly more flexible than the behavior ofts@regrams, which

delete anything they find in tFTREARCHLIST, period.) If the/s modifier is specified, sequences

of characters that were transliterated to the same character are squashed down to a single instance
of the character.

If the /d modifier is used, th®@EPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if theREPLACEMENTLIST is shorter than th&EARCHLIST, the final character is
replicated till it is long enough. If th@EPLACEMENTLIST is empty, theSEARCHLIST is
replicated. This latter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:
$ARGV[1] =" tr/A-Z/a-zl, # canonicalize to lower case
$ent = tr/*/*/, # count the starsin $_
$cnt = $sky =" tr/*/*/, # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla-zA-ZIls; # bookkeeper -> bokeper

2003-08-13 perl v5.8.0

PERLOP(1)

<<EOF

perl v5.8.0

Perl Programmers Reference Guide PERLOP(2)

($HOST = $host) =" tr/a-z/A-Z/;

trla-zA-Z/ Ics; # change non-alphas to single space
tr \200-\377]
[\000-\177]; # delete 8th bit

If multiple transliterations are given for a character, only the first one is used:
tr/AAAIXYZ/
will transliterate any A to X.

Because the transliteration table is built at compile time, neitheiSEARCHLIST nor the
REPLACEMENTLISTare subjected to double quote interpolation. That means that if you want to
use variables, you must useeaval(}

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

A line-oriented form of quoting is based on the shell “here—document” syntax. Followdsg a

you specify a string to terminate the quoted material, and all lines following the current line down
to the terminating string are the value of the item. The terminating string may be either an
identifier (a word), or some quoted text. If quoted, the type of quotes you use determines the
treatment of the text, just as in regular quoting. An unquoted identifier works like double quotes.
There must be no space between<keand the identifier, unless the identifier is quoted. (If you

put a space it will be treated as a null identifier, which is valid, and matches the first empty line.)
The terminating string must appear by itself (unquoted and with no surrounding whitespace) on
the terminating line.

print <<EOF,;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

print << ‘EOC"; # execute commands
echo hi there
echo lo there
EOC

print <<"foo", <<"bar"; # you can stack them
| said foo.
foo
| said bar.
bar

myfunc(<< "THIS", 23, <<'THAT);
Here's a line
or two.
THIS
and here’s another.
THAT

Just don't forget that you have to put a semicolon on the end to finish the statement, as Perl
doesn’t know you're not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want your here-docs to be indented with the rest of the code, you'll needaweteading

2003-08-13 43

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

44

whitespace from each line manually:

($quote = <<’FINIS’) = s/\s+//gm;
The Road goes ever on and on,
down from the door where it began.
FINIS

If you use a here-doc within a delimited construct, such af/ag , the quoted material must
come on the lines following the final delimiter. So instead of

s/this/<<E . 'that’
the other
E

. 'more 'leg;

you have to write

s/this/<<E . 'that’
. 'more 'leg;

the other

E

If the terminating identifier is on the last line of the program, you must be sure there is a newline
after it; otherwise, Perl will give the warnir@an'’t find string terminator “ END” anywhere
before EOF....

Additionally, the quoting rules for the identifier are not related to Perl’'s quoting rules()—
qq() , and the like are not supported in place’ofand™ , and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs

When presented with something that might have several different interpretations, Perl usesmhe

(that's “Do What | Mean”) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect the ambivalence of what they write. But from time
to time, Perl’'s notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most common reason to
learn this is to unravel labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules are likely to contradict the user's
expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because their results are the same, we
consider them individually. For different quoting constructs, Perl performs different numbers of passes,
from one to five, but these passes are always performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, whether it be a multicharacter delimiter
"\nEOF\n" in the <<EOF construct, @ that terminates aq// construct, d which terminates
qq[] construct, or & which terminates a fileglob started with

When searching for single-character non-pairing delimiters, suchcasnbinations o\ andV are
skipped. However, when searching for single-character pairing delimitdr,liég@mbinations of\ ,

\] , and\[are all skipped, and nestg¢] are skipped as well. When searching for multicharacter
delimiters, nothing is skipped.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

For constructs with three-part delimiters//{ , y/// , andtr///), the search is repeated once
more.

During this search no attention is paid to the semantics of the construct. Thus:
"$hash{"$foo/$bhar"}"
or:

m/
bar # NOT a comment, this slash / terminated m//!
X

do not form legal quoted expressions. The quoted part ends on thedirdt , and the rest happens
to be a syntax error. Because the slash that terminatedvas followed by eéSPACE the example
above is notm//x , but rathem// with no/x maodifier. So the embeddedis interpreted as a literal
#.

Removal of backslashes before delimiters
During the second pass, text between the starting and ending delimiters is copied to a safe location,
and thée\ is removed from combinations consisting\o&nd delimiter — or delimiters, meaning both
starting and ending delimiters will should these differ. This removal does not happen for multi-
character delimiters. Note that the combinatlonis left intact, just as it was.

Starting from this step no information about the delimiters is used in parsing.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter-independent. There are four
different cases.

<<'EOF' ,m” ,s™ ., tll ,ylll
No interpolation is performed.

"oall
The only interpolation is removal dffrom pairs\\ .

et qall L, gxdl o <file*glob>
\Q,\U,\u,\L,\I (possibly paired withE) are converted to corresponding Perl constructs.
Thus, "$foo\Qbaz$bar" is converted to$foo . (quotemeta("baz" . $bar))
internally. The other combinations are replaced with appropriate expansions.

Let it be stressed thathatever falls betweehQ and |E is interpolated in the usual way.
Something like\Q\E" has no\E inside. instead, it ha®), \\ , andE, so the result is the

same as for\\\E" . As a general rule, backslashes betwé®n and \E may lead to
counterintuitive results. SJ\QWW\E" is converted toquotemeta("\t") , which is the
same as\\\t" (sinceTAB is not alphanumeric). Note also that:

$str ="\t';

return "\Q$str";
may be closer to the conjectunadentionof the writer of \Q\t\\E"

Interpolated scalars and arrays are converted internally foithe and. catenation operations.
Thus,"$foo XXX '@arr™ becomes:

$foo . " XXX ™. (join $", @arr) . "";
All operations abveare performed simultaneously, left to right.

Because the result 8iQ STRING \E" has all metacharacters quoted, there is no way to insert
a literal $ or @inside a\Q\E pair. If protected by, $ will be quoted to becamé&\$" ; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision on where the interpolated scalar
ends. For instance, whethar$b —> {c}" really means:

"a".$b." > {c};

or:

perl v5.8.0 2003-08-13 45

PERLOP(1)

Perl Programmers Reference Guide PERLOP(2)

"a".$b->{c}

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or brackets. because the outcome may be determined by voting
based on heuristic estimators, the result is not strictly predictable. Fortunately, it's usually correct
for ambiguous cases.

?RE?, /RE/ , m/RE/, s/RE/foo/
Processing ofQ, \U,\u ,\L ,\l , and interpolation happens (almost) as wijtjt/ constructs,
but the substitution of followed by RE-special chars (includihg is not performed. Moreover,
inside (?{BLOCK}) , (?# comment) , and a#—comment in a/x -regular expression, no
processing is performed whatsoever. This is the first step at which the presence/xof the
modifier is relevant.

Interpolation has several quirk$$] $(, and $) are not interpolated, and constructs
$var[SOMETHING] are voted (by several different estimators) to be either an array element or
$var followed by anRE alternative. This is where the notatigfarr[$bar]} comes handy:
/${arr[0-9]}/ is interpreted as array elemen®, not as a regular expression from the
variable$arr followed by a digit, which would be the interpretatior/$drr[0-9]/ . Since
voting among different estimators may occur, the result is not predictable.

It is at this step thatl is begrudgingly converted 1 in the replacement text af// to
correct the incorrigiblesedhackers who haven't picked up the saner idiom yet. A warning is
emitted if theuse warnings pragma or the-w command-Iline flag (that is, tf&W variable)
was set.

The lack of processing ok creates specific restrictions on the post-processed text. If the
delimiter is/ , one cannot get the combinatitn into the result of this step. will finish the
regular expressiorl/ will be stripped to/ on the previous step, and will be left as is.
Because/ is equivalent toV/ inside a regular expression, this does not matter unless the
delimiter happens to be character special toRa@ngine, such as istfoo*bar* , m[foo] ,

or ?foo? ; or an alphanumeric char, as in:

m m ~ a \s*b mmx;

In the RE above, which is intentionally obfuscated for illustration, the delimiter the modifier

is mx, and after backslash-removal tR& is the same as fan/ ~ a s* b /mx). There's

more than one reason you're encouraged to restrict your delimiters to non—alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

Interpolation of regular expressions

46

Previous steps were performed during the compilation of Perl code, but this one happens at run
time — although it may be optimized to be calculated at compile time if appropriate. After
preprocessing described above, and possibly after evaluation if catenation, joining, casing translation,
or metaquoting are involved, the resultsigngis passed to theE engine for compilation.

Whatever happens in thlRE engine might be better discussed in perlre, but for the sake of continuity,
we shall do so here.

This is another step where the presence ofifthe modifier is relevant. Th&E engine scans the
string from left to right and converts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings {&s)wathelse they
generate special nodes in the finite automaton (as\lwith Characters special to tiR& engine (such
as[) generate corresponding nodes or groups of nohs..) comments are ignored. All the rest
is either converted to literal strings to match, or else is ignored (as is whitespade-siypie
comments if/x is present).

Parsing of the bracketed character class consfrutt, , is rather different than the rule used for the

rest of the pattern. The terminator of this construct is found using the same rules as for finding the
terminator of &} —delimited construct, the only exception being thammediately following[is

treated as though preceded by a backslash. Similarly, the terming®r. §f is found using the

same rules as for finding the terminator ¢f a-delimited construct.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

It is possible to inspect both the string giverR®engine and the resulting finite automaton. See the
argumentslebug /debugcolor in theuse re pragma, as well as Perfr command-line switch
documented in “Command Switches” in perlrun.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this step are
not documented and are subject to change without notice. This step is performed over the finite
automaton that was generated during the previous pass.

It is at this stage thafplit() silently optimized”/ to mean/m .

I/O Operators
There are several I/0O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that command is the value of the backtick string, like
in a shell. In scalar context, a single string consisting of all output is returned. In list context, a list of
values is returned, one per line of output. (You ca$kdb use a different line terminator.) The command

is executed each time the pseudo-literal is evaluated. The status value of the command is re@rned in
(see perlvar for the interpretation &?). Unlike in csh no translation is done on the return
data— newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretation. To pass a literal dollar-sign through to the shell you need to hide it with
a backslash. The generalized form of backtickapi . (Because backticks always undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that file (the newline, if
any, included), oundef at end-of-file or on error. Whe®/ is set toundef (sometimes known as file-
slurp mode) and the file is empty, it retufhsthe first time, followed byndef subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation where an automatic
assignment happens. If and only if the input symbol is the only thing inside the conditionahidé a
statement (even if disguised afo&(;;) loop), the value is automatically assigned to the global variable

$_, destroying whatever was there previously. (This may seem like an odd thing to you, but you'll use the
construct in almost every Perl script you write.) ®hevariable is not implicitly localized. You'll have to

put alocal $_; before the loop if you want that to happen.

The following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }

while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);

print while <STDIN>;

This also behaves similarly, but avoifls :
while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit) is then tested to
see whether it is defined. The defined test avoids problems where line has a string value that would be
treated as false by Perl, for example a " or a "0" with no trailing newline. If you really mean for such
values to terminate the loop, they should be tested for explicitly:

while (($_=<STDIN>) ne'0) { ... }
while (<STDIN>) {lastunless $_; ... }

In other boolean contexts;filehandle > without an explicitdefined test or comparison elicit a
warning if theuse warnings pragma or thew command-line switch (th& W variable) is in effect.

The filehandlesSTDIN, STDOUT, and STDERR are predefined. (The filehandle&din , stdout , and

stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additional filehandles may be created with dpen()function, amongst others. See perlopentut
and “open” in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all input lines is

perl v5.8.0 2003-08-13 47

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

48

returned, one line per list element. It's easy to grow to a rather large data space this way, so use with care.
<FILEHANDLE> may also be spellegadline(*FILEHANDLE) . See “readline” in perlfunc.

The null filehandle <> is special: it can be used to emulate the behawed ahdawk. Input from <>

comes either from standard input, or from each file listed on the command line. Here’s how it works: the
first time <> is evaluated, tt@ARGH¥Irray is checked, and if it is emp8ARGV|[0] is set to “~", which

when opened gives you standard input. @WARGYrray is then processed as a list of filenames. The loop

while (<>) {

}

is equivalent to the following Perl-like pseudo code:

unshift@ARGV, ’-') unless @ARGV;,
while (JARGYV = shift) {

open(ARGV, $ARGV);

while (<ARGV>) {

}

code for each line

code for each line

}

except that it isn't so cumbersome to say, and will actually work. It really does shi@ARG¥rray and
put the current filename into tlARGVvariable. It also uses filehandkRGV internally——<> is just a
synonym for ARGV>, which is magical. (The pseudo codeabdoesn’'t work because it treataRGV>
as non—-magical.)

You can modify@ARGYefore the first <> as long as the array ends up containing the list of filenames you
really want. Line numbersp() continue as though the input were one big happy file. See the example in
“eof” in perlfunc for how to reset line numbers on each file.

If you want to se@ ARGY6 your own list of files, go right ahead. This s@#&RGY6 all plain text files if
no @ARGWas given:

@ARGYV = grep { -f && -T } glob("*) unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters compressed arguments
throughgzip:

@ARGV =map {/\.(gz (Z)$/ ? "gzip -dc < $_ O:$ } @ARGYV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on the
front like this:

while ($_ = $SARGVI0], /™-/) {

shift;

last if /"--$/;

if (/"-D(.*)/) { $debug = $1}

if (/"-v/) { $verbose++ }

.. # other switches
}
while (<>) {

.. # code for each line
}

The <> symbol will returrundef for end-of-file only once. If you call it again after this, it will assume
you are processing anoth@ARGYst, and if you haven't ss@ ARGWvill read input fromSTDIN.

If what the angle brackets contain is a simple scalar variable (e.g., <$foo>), then that variable contains the
name of the filehandle to input from, or its typeglob, or a reference to the same. For example:

$fh = *STDIN;
$line = <$th>;
If what's within the angle brackets is neither a filehandle nor a simple scalar variable containing a

filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or the next filename in the list is returned, depending on context. This distinction

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

is determined on syntactic grounds alone. That me#rs is always aeadline()from an indirect handle,
but <$hash{key}> is always aglob(). That's becaus&x is a simple scalar variable, lhash{key}
is not—it's a hash element.

One level of double-quote interpretation is done first, but you cant$fo> because that's an indirect
filehandle as explained in the previous paragraph. (In older versions of Perl, programmers would insert
curly brackets to force interpretation as a filename gt8ffoo}> . These days, it's considered cleaner to

call the internal function directly agob($foo) , which is probably the right way to have done it in the

first place.) For example:

while (<*.c>) {
chmod 0644, $_;
}

is roughly equivalent to:
open(FOO, "echo *.c O tr -s * \t\r\f "W012\\012\\012\\012" m);
while (<FOO0>) {
chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the staRdardslob extension. Of course,
the shortest way to do the@i is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All values must be read
before it will start over. In list context, this isn’'t important because you automatically get them all anyway.
However, in scalar context the operator returns the next value each time it's calladebrwhen the list

has run out. As with filehandle reads, an autorrdgfmed is generated when the glob occurs in the test
part of awhile , because legal glob returns (e.g. a file cal@dvould otherwise terminate the loop.
Again,undef is returned only once. So if you're expecting a single value from a glob, it is much better to
say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning false.

If you're trying to do variable interpolation, it's definitely better to use ghu() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");

@files = glob($files[$i]);

Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time whenever it determines that all
arguments to an operator are static and have no side effects. In particular, string concatenation happens at
compile time between literals that don’t do variable substitution. Backslash interpolation also happens at
compile time. You can say

'Now is the time for all’ . "\n" .
'good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (-s $file > 5+ 100 * 2**16) { }
}

the compiler will precompute the number which that expression represents so that the interpreter won't
have to.

perl v5.8.0 2003-08-13 49

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

50

Bitwise String Operators
Bitstrings of any size may be manipulated by the bitwise operatofs &).

If the operands to a binary bitwise op are strings of different sizasd” ops act as though the shorter
operand had additional zero bits on the right, while &hep acts as though the longer operand were
truncated to the length of the shorter. The granularity for such extension or truncation is one or more bytes.

ASCII-based examples

print"jp\n"~"ah"; # prints "JAPH\n"

print "JA" d" ph\n" # prints "japh\n"
print "japh\nJunk" &’ ' # prints "JAPH\n";
print’p N$' " " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you're supplying bitstrings: If an operand is a
number, that will imply anumeric bitwise operation. You may explicitly show which type of operation
you intend by usin§' or 0+, as in the examples below.

$foo= 150 O 105; # yields 255 (0x96 O 0x69 is OxFF)
$foo =150’ O 105; # yields 255

$foo= 150 O 105 # vyields 255

$foo ='150’ 0 105 # yields string '155’ (under ASCII)

$baz = 0+$foo & O+$bar; # both ops explicitly numeric

$biz = "$foo" ~ "$bar"; # both ops explicitly stringy

See “vec” in perlfunc for information on how to manipulate individual bits in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying
use integer;

you may tell the compiler that it's okay to use integer operations (if it feels like it) from here to the end of
the enclosin®LOCK. An innerBLOCK may countermand this by saying

no integer;

which lasts until the end of thBt OCK. Note that this doesn’t mean everything is only an integer, merely
that Perl may use integer operations if it is so inclined. For example, evenusaditteger , if you
take thesqrt(2) , you'll still get1.4142135623731 or so.

Used on numbers, the bitwise operators (“&11, “™", “™, “<<”, and “>>") always produce integral
results. (But see also “Bitwise String Operators”.) Howewuse integer still has meaning for them.
By default, their results are interpreted as unsigned integers,usd ifiteger is in effect, their results
are interpreted as signed integers. For examPleysually evaluates to a large integral value. However,
use integer; "0 is —1 on twos-complement machines.

Floating-point Arithmetic

While use integer provides integer-only arithmetic, there is no analogous mechanism to provide
automatic rounding or truncation to a certain number of decimal places. For rounding to a certain number
of digits, sprintf() or printf() is usually the easiest route. See perlfag4.

Floating-point numbers are only approximations to what a mathematician would call real numbers. There
are infinitely more reals than floats, so some corners must be cut. For example:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact equality of floating-point equality or inequality is not a good idea. Here's a (relatively
expensive) work-around to compare whether two floating-point numbers are equal to a particular number of
decimal places. See Knuth, volumhgfor a more robust treatment of this topic.

2003-08-13 perl v5.8.0

PERLOP(1) Perl Programmers Reference Guide PERLOP(2)

sub fp_equal {
my ($X, $Y, $SPOINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

ThePOSIXmodule (part of the standard perl distribution) implemeatt), floor(), and other mathematical

and trigonometric functions. The Math::Complex module (part of the standard perl distribution) defines
mathematical functions that work on both the reals and the imaginary numbers. Math::Complex not as
efficient asPOSIX, butPOSIX can't work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers

The standard Math::Bigint and Math::BigFloat modules provide variable-precision arithmetic and
overloaded operators, although they're currently pretty slow. At the cost of some space and considerable
speed, they avoid the normal pitfalls associated with limited-precision representations.

use Math::Biglint;
$x = Math::BigInt->new('123456789123456789’);
print $x * $x;

prints +15241578780673678515622620750190521

There are several modules that let you calculate with (bound only by memory and cpu-time) unlimited or
fixed precision. There are also some non-standard modules that provide faster implementations via external
C libraries.

Here is a short, but incomplete summary:

Math::Fraction big, unlimited fractions like 9973 / 12967
Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations

Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Biginteger uses an external C library

Math::Cephes uses external Cephes C library (no big numbers)
Math::Cephes::Fraction fractions via the Cephes library

Math::GMP another one using an external C library

Choose wisely.

perl v5.8.0 2003-08-13 51

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

NAME

perlsub — Perl subroutines

SYNOPSIS

To declare subroutines:
sub NAME; # A “"forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME : ATTRS; # with attributes
sub NAME(PROTO) : ATTRS; # with attributes and prototypes
sub NAME BLOCK # A declaration and a definition.
sub NAME(PROTO) BLOCK # ditto, but with prototypes
sub NAME : ATTRS BLOCK # with attributes

sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes
To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes

$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is optional with parentheses.

NAME LIST; # Parentheses optional if predeclared/imported.

&NAME(LIST); # Circumvent prototypes.

&NAME; # Makes current @__ visible to called subroutine.
DESCRIPTION

52

Like many languages, Perl provides for user-defined subroutines. These may be located anywhere in the
main program, loaded in from other files via thee require , oruse keywords, or generated on the fly
usingeval or anonymous subroutines. You can even call a function indirectly using a variable containing
its name or &£ODE reference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functions likewise return to their caller one single flat list of scalars. Any
arrays or hashes in these call and return lists will collapse, losing their identities — but you may always use
pass-by-reference instead to avoid this. Both call and return lists may contain as many or as few scalar
elements as you'd like. (Often a function without an explicit return statement is called a subroutine, but
there’s really no difference from Perl’'s perspective.)

Any arguments passed in show up in the a@y Therefore, if you called a function with two arguments,

those would be stored # [0] and$_[1] . The array@_is a local array, but its elements are aliases for

the actual scalar parameters. In particular, if an ele®e is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function was called, that element is created only when (and if) it is modified or a reference
to it is taken. (Some earlier versions of Perl created the element whether or not the element was assigned
to.) Assigning to the whole arr@®_removes that aliasing, and does not update any arguments.

The return value of a subroutine is the value of the last expression evaluated. More expiititisn a
statement may be used to exit the subroutine, optionally specifying the returned value, which will be
evaluated in the appropriate context (list, scalar, or void) depending on the context of the subroutine call. If
you specify no return value, the subroutine returns an empty list in list context, the undefined value in scalar
context, or nothing in void context. If you return one or more aggregates (arrays and hashes), these will be
flattened together into one large indistinguishable list.

Perl does not have named formal parameters. In practice all you do is assigmy(p #st of these.
Variables that aren’t declared to be private are global variables. For gory details on creating private
variables, see “Private Variables viay()’ and “Temporary Values vidocal()”. To create protected
environments for a set of functions in a separate package (and probably a separate file), see “Packages” in
perimod.

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;

}
return $max;
}
$bestday = max($mon,$tue, $wed,$thu, $fri);
Example:

get aline, combining continuation lines
that start with whitespace

sub get_line {
$thisline = $lookahead; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {
if ($lookahead =" /" \t}/) {
$thisline .= $lookahead,;

}
else {
last LINE;
}
}
return $thisline;
}
$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {
}

Assigning to a list of private variables to name your arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{$key};
}

Because the assignment copies the values, this also has the effect of turning call-by-reference into
call-by-value. Otherwise a function is free to do in-place modification® ond change its caller's
values.

upcase_in($vl, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@) {tr/a-z/A-Z/ }
}

You aren't allowed to modify constants in this way, of course. If an argument were actually literal and you
tried to change it, you'd take a (presumably fatal) exception. For example, this won't work:

upcase_in("frederick");

It would be much safer if thapcase in() function were written to return a copy of its parameters
instead of changing them in place:

($v3, $v4) = upcase($vl, $v2); # this doesn’t change $v1 and $v2
sub upcase {
return unless defined wantarray; # void context, do nothing
my @parms = @_;
for (@parms) { trla-z/A-Z/ }
return wantarray ? @parms : $parms|0];

}

Notice how this (unprototyped) function doesn't care whether it was passed real scalars or arrays. Perl sees

perl v5.8.0 2003-08-13 53

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

all arguments as one big, long, flat parameter lig®in This is one area where Perl’'s simple argument-
passing style shines. Thepcase() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

upcase(@listl, @list2);
upcase(split /:/, $var);

@newlist
@newlist

Do not, however, be tempted to do this:
(@a, @b) = upcase(@listl, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return. So all you have
managed to do here is stored everything@aand made@bempty. See “Pass by Reference” for
alternatives.

A subroutine may be called using an expl&prefix. The& is optional in modern Perl, as are parentheses
if the subroutine has been predeclared. &hs not optional when just naming the subroutine, such as
when it's used as an argumentdefined()or undef() Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using&ssibref() or &{$subref}()
constructs, although ti#subref->() notation solves that problem. See perlref for more about all that.

Subroutines may be called recursively. If a subroutine is called using fbem, the argument list is
optional, and if omitted, n@ _array is set up for the subroutine: ti@ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@) !!

foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the& form make the argument list optional, it also disables any prototype checking on
arguments you do provide. This is partly for historical reasons, and partly for having a convenient way to
cheat if you know what you're doing. See Prototypes below.

Functions whose names are in all upper case are reserved to the Perl core, as are modules whose names are
in all lower case. A function in all capitals is a loosely-held convention meaning it will be called indirectly

by the run-time system itself, usually due to a triggered event. Functions that do special, pre-defined things
include BEGIN, CHECKINIT , ENQ AUTOLOAPCLONEandDESTRO¥—plus all functions mentioned

in perltie.

Private Variables viamy()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it

my $x : Foo =$y; # similar, with an attribute applied

WARNING : The use of attribute lists omy declarations is still evolving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(iflunlessl/elsif/else), loop (or/foreach/while/until/continue), subroutinegval ,

or do/require/use 'd file. If more than one value is listed, the list must be placed in parentheses. All
listed elements must be legal Ivalues. Only alphanumeric identifiers may be lexically scoped —magical
built-ins like$/ must currently béocal ize withlocal instead.

Unlike dynamic variables created by tlweal operator, lexical variables declared witly are totally
hidden from the outside world, including any called subroutines. This is true if it's the same subroutine
called from itself or elsewhere — every call gets its own copy.

This doesn't mean that my variable declared in a statically enclosing lexical scope would be invisible.
Only dynamic scopes are cut off. For example bl@px() function below has access to the lexi$al

54 2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

variable because both theyand thesub occurred at the same scope, presumably file scope.
my $x = 10;
sub bumpx { $x++ }

An eval() , however, can see lexical variables of the scope it is being evaluated in, so long as the names
aren’'t hidden by declarations within theal() itself. See perlref.

The parameter list tmy() may be assigned to if desired, which allows you to initialize your variables. (If
no initializer is given for a particular variable, it is created with the undefined value.) Commonly this is
used to name input parameters to a subroutine. Examples:

$arg = "fred"”; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **=1/3;
return $arg;

}

The myis simply a modifier on something you might assign to. So when you do assign to variables in its
argument listmy doesn’'t change whether those variables are viewed as a scalar or an array. So

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while
my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:
my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,
my $x = $x;

can be used to initialize a néx with the value of the olx, and the expression
my $x = 123 and $x == 123

is false unless the olsk happened to have the valli23.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

while (my $line = <>) {
$line = Ic $line;

} continue {
print $line;

}

the scope offline extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similarly, in the conditional

perl v5.8.0 2003-08-13 55

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

56

if ((my $answer = <STDIN>) =" /"yes$/i) {
user_agrees();

} elsif ($answer =" /'no$/i) {
user_disagrees();

} else {
chomp $answer;
die $answer’ is neither 'yes’ nor 'no™;

}

the scope offanswer extends from its declaration through the rest of that conditional, including any
elsif andelse clauses, but not beyond it.

NOTE: The behaviour of any statement modified with a statement modifier conditional or loop construct
(e.g.my $x if ...) is undefined The value of theny variable may beundef , any previously
assigned value, or possibly anything else. Don't rely on it. Future versions of perl might do something
different from the version of perl you try it out on. Here be dragons.

Theforeach loop defaults to scoping its index variable dynamically in the mannecaf . However,
if the index variable is prefixed with the keywarg;, or if there is already a lexical by that name in scope,
then a new lexical is created instead. Thus in the loop

formy $i (1, 2, 3) {
some_function();
}

the scope offi extends to the end of the loop, but not beyond it, rendering the vafkie inhccessible
within some_function()

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
uses to package variables, which are always global, if you say

use strict 'vars’;

then any variable mentioned from there to the end of the enclosing block must either refer to a lexical
variable, be predeclared wiaur or use vars , or else must be fully qualified with the package name. A
compilation error results otherwise. An inner block may countermand thiswitkrict 'vars’

A myhas both a compile-time and a run-time effect. At compile time, the compiler takes notice of it. The
principal usefulness of this is to quigse strict 'vars’ , but it is also essential for generation of
closures as detailed in perlref. Actual initialization is delayed until run time, though, so it gets executed at
the appropriate time, such as each time through a loop, for example.

Variables declared witlmy are not part of any package and are therefore never fully qualified with the
package name. In particular, you're not allowed to try to make a package variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax
my$_; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using the fully
qualified:: notation even while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;
print "$x and $::x\n";

That will print out20 and10.

You may declareny variables at the outermost scope of a file to hide any such identifiers from the world
outside that file. This is similar in spirit to C's static variables when they are used at the file level. To do
this with a subroutine requires the use of a closure (an anonymous function that accesses enclosing
lexicals). If you want to create a private subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

my $secret_version = '1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can see the

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

subroutine, because its name is not in any package’s symbol table. Remember thaREaLhMcalled
$some_pack::secret_version or anything; it's just $secret_version , unqualified and
unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of
some package to be found. See “Function Templates” in perlref for something of a work-around to this.

Persistent Private Variables

Just because a lexical variable is lexically (also called statically) scoped to its enclosing\abclor do
FILE, this doesn’t mean that within a function it workselia C static. It normally works more like a C
auto, but with implicit garbage collection.

Unlike local variables in C or+ Perl’s lexical variables don’t necessarily get recycled just because their
scope has exited. If something more permanent is still aware of the lexical, it will stick around. So long as
something else references a lexical, that lexical won't be freed —which is as it should be. You wouldn't
want memory being free until you were done using it, or kept around once you were done. Automatic
garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a pointer
to a C auto is a grave error. It also gives us a way to simulate C's function statics. Here's a mechanism for
giving a function private variables with both lexical scoping and a static lifetime. If you do want to create
something like C's static variables, just enclose the whole function in an extra block, and put the static
variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate fileatmire or use, then this is probably just fine.
If it's all in the main program, you'll need to arrange for thgto be executed early, either by putting the
whole block abve your main program, or more likely, placing merelB&GIN sub around it to make sure
it gets executed before your program starts to run;

sub BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}

}

See “Package Constructors and Destructors” in perlmod about the special triggered furBHEGHN,
CHECKINIT andEND

If declared at the outermost scope (the file scope), then lexicals work somewhat like C's file statics. They
are available to all functions in that same file declared below them, but are inaccessible from outside that
file. This strategy is sometimes used in modules to create private variables that the whole module can see.

Temporary Values vialocal()

WARNING : In general, you should be usingyinstead ofocal , because it's faster and safer. Exceptions

to this include the global punctuation variables, filehandles and formats, and direct manipulation of the Perl
symbol table itself. Format variables often Useal though, as do other variables whose current value
must be visible to called subroutines.

Synopsis:

perl v5.8.0 2003-08-13 57

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

local $foo; # declare $foo dynamically local
local (@wid, %get); # declare list of variables local
local $foo = "flurp"; # declare $foo dynamic, and init it
local @oof = @bar; # declare @oof dynamic, and init it
local *FH; # localize $FH, @FH, %FH, &FH
local *merlyn = *randal; # now $merlyn is really $randal, plus
@merlyn is really @randal, etc
local *merlyn = 'randal’; # SAME THING: promote 'randal’ to *randal

local *merlyn =\$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be “local” to the enclosing bloekal , or do FILE ——-and to

any subroutine called from within that blocl local just gives temporary values to global (meaning
package) variables. It doestcreate a local variable. This is known as dynamic scoping. Lexical scoping
is done withmy, which works more like C's auto declarations.

If more than one variable is givenlacal |, they must be placed in parentheses. All listed elements must

be legal Ivalues. This operator works by saving the current values of those variables in its argument list on
a hidden stack and restoring them upon exiting the block, subroutine, or eval. This means that called
subroutines can also reference the local variable, but not the global one. The argument list may be assigned
to if desired, which allows you to initialize your local variables. (If no initializer is given for a particular
variable, it is created with an undefined value.) Commonly this is used to name the parameters to a
subroutine. Examples:

for$i(0..9){
$digits{$i} = $i;
}

assume this function uses global %digits hash
parse_num();

now temporarily add to %digits hash

if ($basel?) {
(NOTE: not claiming this is efficient!)
local %digits = (%digits, 't' => 10, 'e’ => 11);
parse_num(); # parse_num gets this new %digits!

old %digits restored here

Becausdocal is a run-time operator, it gets executed each time through a loop. In releases of Perl
previous to 5.0, this used more stack storage each time until the loop was exited. Perl now reclaims the
space each time through, but it's still more efficient to declare your variables outside the loop.

A local is simply a modifier on an Ivalue expression. When you assigrnidcah ized variable, the
local doesn’'t change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while
local $foo = <STDIN>;
supplies a scalar context.

A note aboutlocal() and composite types is in order. Something likeal(%foo) works by
temporarily placing a brand new hash in the symbol table. The old hash is left alone, but is hidden
“behind” the new one.

This means the old variable is completely invisible via the symbol table (i.e. the hash entryfao the
typeglob) for the duration of the dynamic scope within whichlabal() = was seen. This has the effect

of allowing one to temporarily occlude any magic on composite types. For instance, this will briefly alter a
tied hash to some other implementation:

58 2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

tie %oahash, 'APackage’;

[.]

{
local %ahash;
tie %oahash, 'BPackage’;
[..called code will see %ahash tied to 'BPackage’..]
{
local %ahash;
[..%ahash is a normal (untied) hash here..]
}
}

[..%ahash back to its initial tied self again..]

WARNING The code example ale does not currently work as described. This will be fixed in a future
release of Perl; in the meantime, avoid code that relies on any particular behaviour of localising tied arrays
or hashes (localising individual elements is still okay). See “Localising Tied Arrays and Hashes Is
Broken” in perldelta for more details.

As another example, a custom implementatio®&NVmight look like this:

{

local %ENV;

tie %ENV, '"MyOwnEnv’;

[..do your own fancy %ENV manipulation here..]
}

[..normal %ENV behavior here..]

It's also worth taking a moment to explain what happens wherdogal ize a member of a composite
type (i.e. an array or hash element). In this case, the elemeadlis izedby nameThis means that when
the scope of thibcal() ends, the saved value will be restored to the hash element whose key was named
in thelocal() , or the array element whose index was named inidbal() . If that element was
deleted while théocal() was in effect (e.g. by delete() from a hash or ahift() of an array), it
will spring back into existence, possibly extending an array and filling in the skipped elements with
undef . For instance, if you say
%hash = ('This’ =>'is’, 'a’ => 'test’);
@ary = (0..5);
{
local($ary[5]) = 6;
local($hash{’a’}) = 'drill’;
while (my $e = pop(@ary)) {
print "$e . . .\n";
last unless $e > 3;

}

if (@ary) {
$hash{'only a’} = 'test’;
delete $hash{'a’};

}

}
print join(" ’, map { "$_ $hash{$_}"} sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",

join(, ’, map { defined $_ ? $_: 'undef } @ary),"\n";

Perl will print

6 ...

4 ...

3...

This is a test only a test.

The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior ofocal() on non-existent members of composite types is subject to change in future.

perl v5.8.0 2003-08-13 59

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

60

Lvalue subroutines

WARNING : Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiable value from a subroutine. To do this, you have to declare the subroutine
to return an Ivalue.

my $val;

sub canmod : Ivalue {
return $val; this doesn’t work, don't say "return”

$val;

}

sub nomod {
$val;

}

canmod() =5; # assigns to $val
nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:
(data(2,3)) = get_data(3,4);

and in:
(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines aeXPERIMENTAL
They appear to be convenient, but there are several reasons to be circumspect.

You can't use the return keyword, you must pass out the value before falling out of subroutine scope.
(see comment in example above). This is usually not a problem, but it disallows an explicit return out
of a deeply nested loop, which is sometimes a nice way out.

They violate encapsulation. A normal mutator can check the supplied argument before setting the
attribute it is protecting, an Ivalue subroutine never gets that chance. Consider;

my $some_array_ref = []; # protected by mutators ?7?
sub set_arr { # normal mutator
my $val = shift;

die("expected array, you supplied ", ref $val)
unless ref $val eq '"ARRAY’;
$some_array_ref = $val;
}
sub set_arr_Iv:Ivalue{ # Ivalue mutator
$some_array_ref;

}

set_arr_Iv cannot stop this !
set arr Iv()={a=>1};

Passing Symbol Table Entries (typeglobs)

WARNING : The mechanism described in this section was originally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, the new reference
mechanism is generally easier to work with. See below.

Sometimes you don't want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer to

all objects of a particular name by prefixing the name with a $@w: . This is often known as a
“typeglob”, because the star on the front can be thought of as a wildcard match for all the funny prefix

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name, including
any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refer to whatever
* value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}

}

doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this mechanism
by referring explicitly to$_[0] etc. You can modify all the elements of an array by passing all the
elements as scalars, but you have to use*timechanism (or the equivalent reference mechanism) to
push , pop, or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don’'t want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, because normally thaST mechanism will merge all the array values so that you can't extract out the
individual arrays. For more on typeglobs, see “Typeglobs and Filehandles” in perldata.

When to Still Uselocal()

Despite the existence afy, there are still three places where theal operator still shines. In fact, in
these three places, yowstuselocal instead ofmy.

1. You need to give a global variable a temporary value, espetially

The global variables, lik@ARGr the punctuation variables, mustlbeal ized withlocal()
This block reads ietc/motd and splits it up into chunks separated by lines of equal signs, which are
placed in@Fields .

{
local @ARGYV = ("/etc/motd");
local $/ = undef;
local $_ =<>;
@Fields = split /"\s*=+\s*$/,
}

It particular, it's important tdocal ize $_ in any routine that assigns to it. Look out for implicit
assignments iwhile conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own mustlasal() on a complete typeglob. This can be
used to create new symbol table entries:

sub ioqueue {
local (*READER, *WRITER); # not my!
pipe (READER, WRITER) or die "pipe: $!";
return *READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

perl v5.8.0 2003-08-13 61

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

{

local *grow = \&shrink; # only until this block exists

grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too
}
grow(); # get the real grow() again

See “Function Templates” in perlref for more about manipulating functions by name in this way.
3. You want to temporarily change just one element of an array or hash.

You canlocal ize just one element of an aggregate. Usually this is done on dynamics:

{
local $SIG{INT} = 'IGNORE’;

funct(); # uninterruptible

}

interruptibility automatically restored here

But it also works on lexically declared aggregates. Prior to 5.005, this operation could on occasion
misbehave.

Pass by Reference

If you want to pass more than one array or hash into a function— or return them from it—and have them
maintain their integrity, then you're going to have to use an explicit pass—by-reference. Before you do that,
you need to understand references as detailed in perlref. This section may not make much sense to you
otherwise.

Here are a few simple examples. First, let's pass in several arrays to a function anghopaliof then,
returning a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);
sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}

return @retlist;
}

Here’s how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %S$href) {
$seen{Sk}++;
}

}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we're using just the normal list return mechanism. What happens if you want to pass or return a
hash? Well, if you're using only one of them, or you don't mind them concatenating, then the normal
calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or
(%a, %b) = func(%c, %d);

That syntax simply won't work. It sets ju@aor %aand clears th@bor %h Plus the function didn’t get

62 2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

passed into two separate arrays or hashes: it got one long@stas always.

If you can arrange for everyone to deal with this through references, it’s cleaner code, although not so nice
to look at. Here's a function that takes two array references as arguments, returning the two array elements
in order of how many elements they have in them:

($aref, $bref) = func(\@c, \@d);
print "@%$aref has more than @$bref\n";
sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
} else {
return ($dref, $cref);
}

}

It turns out that you can actually do this also:
(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {
local (*c, *d) = @_;
if (@c > @d) {
return \@c, \@d);
} else{
return \@d, \@c);
}

}

Here we're using the typeglobs to do symbol table aliasing. It's a tad subtle, though, and also won't work if
you're usingmy variables, because only globals (even in disguidecad s) are in the symbol table.

If you're passing around filehandles, you could usually just use the bare typeglot§TIROUT but
typeglobs references work, too. For example:

splutter(*STDOUT);
sub splutter {
my $fh = shift;
print $th "her um well a hmmm\n";
}
$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}

If you're planning on generating new filehandles, you could do this. Notice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;
}
Prototypes

Perl supports a very limited kind of compile-time argument checking using function prototyping. If you
declare

sub mypush (\@@)

thenmypush() takes arguments exactly likgish() does. The function declaration must be visible at
compile time. The prototype affects only interpretation of new-style calls to the function, where new-style
is defined as not using ti@echaracter. In other words, if you call it like a built-in function, then it behaves

perl v5.8.0 2003-08-13 63

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

64

like a built-in function. If you call it like an old-fashioned subroutine, then it behaves like an old-fashioned
subroutine. It naturally falls out from this rule that prototypes have no influence on subroutine references
like \&foo or on indirect subroutine calls lik{$subref} or $subref->()

Method calls are not influenced by prototypes either, because the function to be called is indeterminate at
compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like built-in functions,
here are prototypes for some other functions that parse almost exactly like the corresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;9$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off, $off
sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (\@) mypop @array

sub mysplice \@$$@) mysplice @array, @array, 0, @pushme
sub mykeys (\%) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start with that
character. The value passed as pa@ofvill be a reference to the actual argument given in the subroutine
call, obtained by applying to that argument.

You can also backslash several argument types simultaneously by usifhg thetation:
sub myref \[$@%&*])
will allow calling myref()as
myref $var
myref @array
myref %hash

myref &sub

myref *glob
and the first argument afyref()will be a reference to a scalar, an array, a hash, a code, or a glob.
Unbackslashed prototype characters have special meanings. Any unback@aslédats all remaining
arguments, and forces list context. An argument represent®ddrges scalar context. A& requires an

anonymous subroutine, which, if passed as the first argument, does not requiué tkeyword or a
subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will be available to the subroutine either as a simple scalar, or (in the latter
two cases) as a reference to the typeglob. If you wish to always convert such arguments to a typeglob
reference, us8ymbol::qualify_to_ref(as follows:

use Symbol 'qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);

}

A semicolon separates mandatory arguments from optional arguments. It is redundar@befgrehich
gobble up everything else.

Note how the last three examples in the tablevalare treated specially by the parsemygrep() is
parsed as a true list operataryrand() is parsed as a true unary operator with unary precedence the same
asrand() , andmytime() is truly without arguments, just likeme() . That s, if you say

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

mytime +2;
you'll getmytime() + 2, notmytime(2) , which is how it would be parsed without a prototype.
The interesting thing abow is that you can generate new syntax with it, provided it's in the initial

position:
sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if (@) {
local $_=$@;
&$catch;
}
}
sub catch (&) {$_[0] }
try {
die "phooey";
} catch {
/phooey/ and print "unphooey\n";
2

That prints"unphooey” . (Yes, there are still unresolved issues having to do with visibilitg@ of I'm
ignoring that question for the moment. (But note that if we n@kéexically scoped, those anonymous
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here’s a reimplementation of the Pgmép operator:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechanism’s main goal is to let module writers provide better diagnostics for module users. Larry feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that's easy to
swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional warning — “lllegal

character in prototype...". Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgraded to a fatal error in a future version of Perl
once the majority of offending code is fixed.

It's probably best to prototype new functions, not retrofit prototyping into older ones. That's because you
must be especially careful about silent impositions of differing list versus scalar contexts. For example, if
you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func(split /:/);

Then you've just supplied an automatitalar in front of their argument, which can be more than a bit
surprising. The old@foo which used to hold one thing doesn'’t get passed in. Insheac() now gets
passed in 4; that is, the number of elements@foo. And thesplit gets called in scalar context so it

perl v5.8.0 2003-08-13 65

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

66

starts scribbling on you@_ parameter list. Ouch!

This is all very powerful, of course, and should be used only in moderation to make the world a better
place.

Constant Functions

Functions with a prototype ¢ are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made with@utCalls made usind are never inlined. (Semnstant.pm

for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159} # Not exact, but close.
sub PI () {4 * atan21,1} # As good as it gets,
and it's inlined, too!
sub ST _DEV () {0}
sub ST_INO () {1}
sub FLAG_FOO () {1<<8}
sub FLAG_BAR () {1<<9}
sub FLAG_MASK () { FLAG_FOO 0O FLAG_BAR}
sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }

sub BAZ_VAL () {
if (OPT_BAZ) {

return 23;
}
else {
return 42;
}
}
sub N () {int(BAZ_VAL)/3}
BEGIN {
my $prod = 1;
for (1..N) { $prod *=$_}
sub N_FACTORIAL () { $prod }
}

If you redefine a subroutine that was eligible for inlining, you'll get a mandatory warning. (You can use
this warning to tell whether or not a particular subroutine is considered constant.) The warning is
considered severe enough not to be optional because previously compiled invocations of the function will
still be using the old value of the function. If you need to be able to redefine the subroutine, you need to
ensure that it isn't inlined, either by dropping tfje prototype (which changes calling semantics, so
beware) or by thwarting the inlining mechanism in some other way, such as

sub not_inlined () {
23if §];
}

Overriding Built-in Functions

Many built-in functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module —ordinary predeclaration isn’t good
enough. However, these subs pragma lets you, in effect, predeclare subs via the import syntax, and
these names may then override built-in ones:

use subs 'chdir’, 'chroot’, ‘chmod’, 'chown’;
chdir $somewhere;
sub chdir{... }

To unambiguously refer to the built-in form, precede the built-in name with the special package qualifier

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

CORE::. For example, sayinGORE::open() always refers to the built-iapen() , even if the current
package has imported some other subroutine cé&lbgen() from elsewhere. Even though it looks like a
regular function call, it isn’'t: you can't take a reference to it, such as the incC&f@ORE::open might
appear to produce.

Library modules should not in general export built-in namesdp@n or chdir as part of their default
@EXPORTist, because these may snheak into someone else’s namespace and change the semantics
unexpectedly. Instead, if the module adds that nam@EXPORT_QHKhen it's possible for a user to

import the name explicitly, but not implicitly. That is, they could say

use Module 'open’;

and it would import thepen override. But if they said
use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the package that
requests the import. There is a second method that is sometimes applicable when you wish to override a
built-in everywhere, without regard to namespace boundaries. This is achieved by importing a sub into the
special namespac€EORE::GLOBAL:: . Here is an example that quite brazenly replacesgtbb

operator with something that understands regular expressions.

package REGIob;
require Exporter;

@ISA ="Exporter’;
@EXPORT_OK ="glob’;

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =" s/"GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg->export($where, $sym, @_);
}

sub glob {
my $pat = shift;
my @got,
local *D;
if (opendir D, ".") {
@got = grep /$pat/, readdir D;
closedir D;

}
return @got;

}
1
And here’s how it could be (ab)used:

#use REGIlob 'GLOBAL_glob’; # override glob() in ALL namespaces
package Foo;

use REGIob 'glob’; # override glob() in Foo:: only

print for <"[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a contrived, even dangerous example. By ovegidingglobally, you would

be forcing the new (and subversive) behavior for gtab operator forevery namespace, without the
complete cognizance or cooperation of the modules that own those namespaces. Naturally, this should be
done with extreme caution —if it must be done at all.

The REGlob example abve does not implement all the support needed to cleanly override gleths
operator. The built-irglob has different behaviors depending on whether it appears in a scalar or list
context, but ouREGIob doesn't. Indeed, many perl built-in have such context sensitive behaviors, and
these must be adequately supported by a properly written override. For a fully functional example of
overridingglob , study the implementation &ile::DosGlob in the standard library.

perl v5.8.0 2003-08-13 67

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

68

When you override a built—in, your replacement should be consistent (if possible) with the built-in native
syntax. You can achieve this by using a suitable prototype. To get the prototype of an overridable built-in,
use theprototype function with an argument ofCORE::builtin_name" (see “prototype” in
perlfunc).

Note however that some built-ins can't have their syntax expressed by a prototype (systems or
chomp). If you override them you won't be able to fully mimic their original syntax.

The built-insdo, require andglob can also be overridden, but due to special magic, their original
syntax is preserved, and you don’t have to define a prototype for their replacements. (You can't override
thedo BLOCK syntax, though).

require has special additional dark magic: if you invoke yoequire replacement asequire
Foo::Bar , it will actually receive the argumetfoo/Bar.pm" in @. See “require” in perlfunc.

And, as you'll have noticed from the previous example, if you ovegide , the <*> glob operator is
overridden as well.

In a similar fashion, overriding thesadline function also overrides the equivalent I/O operator
<FILEHANDLE>.

Finally, some built-ins (e.gexists orgrep) can't be overridden.

Autoloading

If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal error complaining
that the subroutine doesn't exist. (Likewise for subroutines being used as methods, when the method
doesn't exist in any base class of the class’s package.) Howeve AU BBLOABuUbroutine is defined in

the package or packages used to locate the original subroutine, th&tJTr@LOABubroutine is called

with the arguments that would have been passed to the original subroutine. The fully qualified name of the
original subroutine magically appears in the gloBAUTOLOADvariable of the same package as the
AUTOLOADoutine. The name is not passed as an ordinary argument because, er, well, just because, that's
why...

Many AUTOLOADoutines load in a definition for the requested subroutine «sialf), then execute that
subroutine using a special form gbto() that erases the stack frame of tkhdTOLOADoutine without a

trace. (See the source to the standard module documented in AutoLoader, for example.) But an
AUTOLOADoutine can also just emulate the routine and never define it. For example, let’s pretend that a
function that wasn’t defined should just invalyestem with those arguments. All you'd do is:

sub AUTOLOAD {
my $program = $SAUTOLOAD;
$program =" s/.*:://,
system($program, @ _);
}
date();
who(am’, 'i");
IsC-I);
In fact, if you predeclare functions you want to call that way, you don’t even need parentheses:

use subs gw(date who Is);

date;

who "am", "i";

Is -I;
A more complete example of this is the standard Shell module, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoader, and the document on adding C functions to Perl code in perlIxs.

2003-08-13 perl v5.8.0

PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Subroutine Attributes

A subroutine declaration or definition may have a list of attributes associated with it. If such an attribute
list is present, it is broken up at space or colon boundaries and treated as thsegit@butes had

been seen. See attributes for details about what attributes are currently supported. Unlike the limitation
with the obsolescentse attrs , thesub : ATTRLIST syntax works to associate the attributes with a
pre—declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other than the '
character). They may have a parameter list appended, which is only checked for whether its parentheses

(CC,))) nest properly.
Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive ;
sub plugh () : Ugly(\(") :Bad ;
sub xyzzy : 5x5{...}

Examples of invalid syntax:
sub fnord : switch(10,foo() ; # ()-string not balanced

sub snoid : Ugly(() ; # ()-string not balanced

sub xyzzy : 5x5 ; # "5x5" not a valid identifier

sub plugh : Y2::north ; # "Y2::north" not a simple identifier
sub snurt : foo + bar ; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. In particular, the second example of valid syntaxeaturrently looks like this in terms of
how it's parsed and invoked:

use attributes _ PACKAGE__, \&plugh, q[Ugly(\(")], 'Bad’;
For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.
SEE ALSO
See “Function Templates” in perlref for more about references and closures. See perlxs if you'd like to
learn about calling C subroutines from Perl. See perlembed if you'd like to learn about calling Perl
subroutines from C. See perlmod to learn about bundling up your functions in separate files. See

perlmodlib to learn what library modules come standard on your system. See perltoot to learn how to make
object method calls.

perl v5.8.0 2003-08-13 69

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

NAME

perlfunc — Perl builtin functions

DESCRIPTION

70

The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators. These differ in their precedence relationship with a following
comma. (See the precedence table in perlop.) List operators take more than one argument, while unary
operators can never take more than one argument. Thus, a comma terminates the argument of a unary
operator, but merely separates the arguments of a list operator. A unary operator generally provides a scalar
context to its argument, while a list operator may provide either scalar or list contexts for its arguments. If

it does both, the scalar arguments will be first, and the list argument will follow. (Note that there can ever
be only one such list argument.) For instargm@ice() has three scalar arguments followed by a list,
whereagjethostbynameg)as four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown witl8T as an argument. Such a list may consist of any combination of
scalar arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single-dimensional list value. Elementd.t8Tthe
should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but occasionally
surprising) rule is this: Itookslike a function, therefore its a function, and precedence doesn’t matter.
Otherwise it's a list operator or unary operator, and precedence does matter. And whitespace between the
function and left parenthesis doesn’'t count— so you need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.

print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.

print ((1+2)+4); # Prints 7.
If you run Perl with the-w switch it can warn you about this. For example, the third lim¥@produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at - line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators. These
include such functions dsne andendpwent . For exampletime+86_ 400 always meansme() +
86_400.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated in a
scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following important rule: Therents rule that relates the behavior of an expression in list
context to its behavior in scalar context, or vice versa. It might do two totally different things. Each
operator and function decides which sort of value it would be most appropriate to return in scalar context.
Some operators return the length of the list that would have been returned in list context. Some operators
return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In general, they do what you want, unless you want consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can't get a list likg,2,3) into being in scalar context, because the compiler knows

the context at compile time. It would generate the scalar comma operator there, not the list construction
version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls of the same namizo@ik@),
fork (2), closedir(2), etc.) all return true when they succeed andef otherwise, as is usually mentioned
in the descriptions below. This is different from the C interfaces, which refuam failure. Exceptions to
this rule arewait , waitpid , andsyscall . System calls also set the spe@al variable on failure.
Other functions do not, except accidentally.

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Perl Functions by Category

Here are Perl's functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARSs or strings

chomp, chop, chr, crypt , hex, index , Ic, Icfirst , length , oct, ord, pack,
g/STRING/ , qg/STRING/ , reverse , rindex , sprintf , substr , tr/// , uc, ucfirst
il

Regular expressions and pattern matching
m// , pos, quotemeta ,s/// ,split ,study ,qr//

Numeric functions
abs, atan2 , cos, exp, hex, int ,log ,oct ,rand ,sin ,sqrt ,srand

Functions for rea@ARRAYs
pop, push, shift , splice ,unshift

Functions for list data
grep ,join , map, qw/STRING/ , reverse ,sort ,unpack

Functions for rea%oHASHes
delete ,each,exists ,keys,values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,
getc , print , printf | read , readdir , rewinddir , seek, seekdir , select , syscall ,
sysread ,sysseek ,syswrite ,tell ,telldir ,truncate , warn, write

Functions for fixed length data or records
pack ,read , syscall ,sysread ,syswrite ,unpack ,vec

Functions for filehandles, files, or directories
-X, chdir , chmod, chown, chroot , fcntl , glob , ioctl , link , Istat , mkdir , open,
opendir ,readlink ,rename, rmdir ,stat ,symlink ,sysopen ,umask, unlink , utime

Keywords related to the control flow of your perl program
caller , continue , die , do, dump, eval , exit , goto , last , next , redo , return , sub,
wantarray

Keywords related to scoping
caller ,import ,local ,my,our,package ,use

Miscellaneous functions
defined ,dump, eval ,formline ,local ,my,our,reset ,scalar ,undef ,wantarray

Functions for processes and process groups
alarm , exec, fork , getpgrp , getppid , getpriority , kil pipe , gx/STRING/ ,
setpgrp , setpriority , sleep , system , times , wait , waitpid

Keywords related to perl modules
do, import , no, package , require , use

Keywords related to classes and object-orientedness
bless , dbmclose , dbmopen, package , ref ,tie ,tied ,untie ,use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt , listen , recv ,
send, setsockopt , shutdown , socket , socketpair

System V interprocess communication functions
msgctl , msgget , msgrev , msgsnd, semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam, getpwuid , setgrent , setpwent

perl v5.8.0 2003-08-13 71

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Fetching network info

endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber
getprotoent , getservbyname , getservbyport , getservent , sethostent

setnetent , setprotoent , Setservent

Time-related functions
gmtime , localtime , time , times

Functions new in perl5
abs, bless , chomp, chr , exists , formline , glob , import , Ic , Icfirst , map, my, no,
our , prototype , gx, qw, readline , readpipe , ref , sub* , sysopen , tie , tied , uc,
ucfirst , untie ,use

* — sub was a keyword in perl4, but in perl5 it is an operator, which can be used in expressions.

Functions obsoleted in perl5
dbmclose , dbmopen

Portability

Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix environments,
the functionality of some Unix system calls may not be available, or details of the available functionality
may differ slightly. The Perl functions affected by this are:

=X, binmode , chmod, chown, chroot , crypt , dbmclose , dbmopen, dump, endgrent |,
endhostent , endnetent , endprotoent , endpwent , endservent , exec, fcntl , flock
fork , getgrent , getgrgid , gethostent , getlogin , getnetbyaddr , getnetbyname |,

getnetent , getppid , getprgp , getpriority , getprotobynumber , getprotoent
getpwent , getpwnam, getpwuid , getservbyport , getservent , getsockopt , glob ,
ioctl , kil , link , Istat , msgctl , msgget, msgrcv , msgsnd, open, pipe , readlink
rename, select , semctl , semget, semop, setgrent , sethostent , setnetent , setpgrp |,
setpriority , setprotoent , setpwent , setservent , setsockopt , shmctl , shmget,
shmread , shmwrite , socket , socketpair , stat , symlink , syscall , sysopen , system ,

times ,truncate ,umask, unlink ,utime , wait , waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

Alphabetical Listing of Perl Functions

—X FILEHANDLE

-X EXPR

-X A file test, where X is one of the letters listed below. This unary operator takes one argument,
either a filename or a filehandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tesf® , except for—t, which testsSTDIN. Unless otherwise
documented, it returnk for true and’ for false, or the undefined value if the file doesn't exist.
Despite the funny names, precedence is the same as any other named unary operator, and the
argument may be parenthesized like any other unary operator. The operator may be any of:

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.

-x File is executable by effective uid/gid.
-0 File is owned by effective uid.

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

72 2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

-f File is a plain file.

-d File is a directory.

-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

-T File is an ASCII text file (heuristic guess).
-B File is a"binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)

Example:
while (<>) {
chomp;
next unless -f$_; # ignore specials
#...
}

The interpretation of the file permission operaters —R, -w, -W —x, and-X is by default

based solely on the mode of the file and the uids and gids of the user. There may be other reasons
you can't actually read, write, or execute the file. Such reasons may be for example network
filesystem access controls, ACLs (access control lists), read-only filesystems, and unrecognized
executable formats.

Also note that, for the superuser on the local filesystems;rtheR, —w, and-Wtests always
return 1, and-x and —X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to dstat()to determine the actual mode of the file, or temporarily set
their effective uid to something else.

If you are using ACLs, there is a pragma caliibetest that may produce more accurate
results than the bamgat() mode bits. When under these filetest 'access’ the above-
mentioned filetests will test whether the permission can (not) be granted usangdls(family

of system calls. Also note that th& and—X may under this pragma return true even if there are

no execute permission bits set (nor any extra execute permission ACLs). This strangeness is due
to the underlying system calls’ definitions. Read the documentation fditeteest pragma

for more information.

Note that-s/a/b/ does not do a negated substitution. Sayiegp($foo) still works as
expected, however —only single letters following a minus are interpreted as file tests.

The -T and-B switches work as follows. The first block or so of the file is examined for odd
characters such as strange control codes or characters with the high bit set. If too many strange
characters (>30%) are found, it's-8 file, otherwise it's aT file. Also, any file containing null

in the first block is considered a binary file.—If or —B is used on a filehandle, the currént

buffer is examined rather than the first block. Beihand-B return true on a null file, or a file

at EOF when testing a filehandle. Because you have to read a file to derthest, on most
occasions you want to use-f against the file first, as imext unless —f $file && -T

$file

If any of the file tests (or either thstat orlstat operators) are given the special filehandle
consisting of a solitary underline, then the stat structure of the previous file test (or stat operator)
is used, saving a system call. (This doesn’t work withand you need to remember tksiat()

and-| will leave values in the stat structure for the symbolic link, not the real file.) (Also, if the
stat buffer was filled by #stat call, =T and -B will reset it with the results oftat _).

2003-08-13 73

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Example:
print "Can do.\n" if -r $a M-w_ [-x_;

stat($filename);

print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;

print "Text\n" if -T _;

print "Binary\n" if -B _;

absVALUE
abs Returns the absolute value of its argumenMALUE is omitted, use$_.

acceptNEWSOCKETGENERICSOCKET
Accepts an incoming socket connect, just asateepi(2) system call does. Returns the packed
address if it succeeded, false otherwise. See the example in “Sockets: Client/Server
Communication” in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $°F. See “$"F” in perlvar.

alarmSECONDS

alarm Arranges to have SIGALRM delivered to this process after the specified number of wallclock
seconds have elapsed. SECONDSIs not specified, the value stored$n is used. (On some
machines, unfortunately, the elapsed time may be up to one second less or more than you
specified because of how seconds are counted, and process scheduling may delay the delivery of
the signal even further.)

Only one timer may be counting at once. Each call disables the previous timer, and an argument
of 0 may be supplied to cancel the previous timer without starting a new one. The returned value
is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may use Perl's four-argument version of
select()leaving the first three arguments undefined, or you might be able to usgstad

interface to accessetitimer(2) if your system supports it. The Time::HiRes module (f@PAN,

and starting from Perl 5.8 part of the standard distribution) may alse yseful.

It is usually a mistake to intermimlarm and sleep calls. 6leep may be internally
implemented in your system witarm)

If you want to usealarm to time out a system call you need to useceal /die pair. You
can't rely on the alarm causing the system call to fail $ithset toEINTR because Perl sets up
signal handlers to restart system calls on some systems. &gihddie always works, modulo
the caveats given in “Signals” in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
g
if (@) {
die unless $@ eq "alarm\n"; # propagate unexpected errors
timed out
}
else {
didn't
}

74 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

atan2 Y, X
Returns the arctangent of Y/X in the range —Fpito

For the tangent operation, you may use Muth::Trig::tan function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME
Binds a network address to a socket, just as the bind system call does. Returns true if it
succeeded, false otherwis®AME should be a packed address of the appropriate type for the
socket. See the examples in “Sockets: Client/Server Communication” in perlipc.

binmodeFILEHANDLE, LAYER
binmodeFILEHANDLE
Arranges forFILEHANDLE to be read or written in “binary” or “text” mode on systems where
the run-time libraries distinguish between binary and text fileSILEHANDLE is an expression,
the value is taken as the name of the filehandle. Returns true on success, otherwise it returns
undef and set$! (errno).

If LAYER is omitted or specified asaw the filehandle is made suitable for passing binary data.
This includes turning off possiblERLF translation and marking it as bytes (as opposed to
Unicode characters). Note that as desipite what may be implig@ragramming Perl” (the
Camel) or elsewhergaw is not the simply inverse ofcrlf — other layers which would
affect binary nature of the stream atsodisabled. See PerllO, perlrun and the discussion about
the PERLIO environment variable.

TheLAYERparameter of the binmode() function is described RSCIPLINE' in “Programming

Perl, 3rd Edition”. However, since the publishing of this book, by many known as “Gainel
the consensus of the naming of this functionality has moved from “discipline” to “layer”. All
documentation of this version of Perl therefore refers to “layers” rather than to “disciplines”.
Now back to the regularly scheduled documentation...

On some systems (in generdbsS and Windows-based systentsipmode()is necessary when
you're not working with a text file. For the sake of portability it is a good idea to always use it
when appropriate, and to never use it when it isn’t appropriate.

In other words: regardless of platform, tmemode(Jon binary files (like for example images).

If LAYER is present it is a single string, but may contain multiple directives. The directives alter
the behaviour of the file handle. WheaYER is present using binmode on text file makes sense.

To markFILEHANDLE asUTF-8, use:utf8

The :bytes , :crlf , and:utf8 , and any other directives of the form. , are called I/O
layers Theopen pragma can be used to establish default I/O layers. See open.

In generalbinmode()should be called aftaypen()but before any 1/0 is done on the filehandle.
Calling binmode()will normally flush any pending buffered output data (and perhaps pending
input data) on the handle. An exception to this is.éimeoding layer that changes the default
character encoding of the handle, see open.:imoding layer sometimes needs to be called
in mid—stream, and it doesn’t flush the stream.

The operating system, device drivers, C libraries, and Perl run-time system all work together to
let the programmer treat a single charadter) @s the line terminator, irrespective of the external
representation. On many operating systems, the native text file representation matches the
internal representation, but on some platforms the external representationisomade up of

more than one character.

Mac 0S, all variants of Unix, and Stream_LF files @MS use a single character to end each line
in the external representation of text (even though that single charaCreRRAGE RETURNON
Mac OS andLINE FEED on Unix and mosVMS files). In other systems likeS/2 DOS and the
various flavors of MS-Windows your program seés aas a simplécJ , but what's stored in
text files are the two charactédvi\cJ . That means that, if you don’'t uséhmode()on these
systems\cM\cJ sequences on disk will be converted\to on input, and anyn in your
program will be converted back YoM\cJ on output. This is what you want for text files, but it

perl v5.8.0 2003-08-13 75

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

can be disastrous for binary files.

Another consequence of usibinmode()(on some systems) is that special end-of-file markers
will be seen as part of the data stream. For systems from the Microsoft family this means that if
your binary data containsZ , the I/O subsystem will regard it as the end of the file, unless you
usebinmode()

binmode()is not only important foreadline()andprint() operations, but also when usiread ()
seek() sysread()syswrite()andtell() (see perlport for more details). See $#teand$\ variables
in perlvar for how to manually set your input and output line-termination sequences.

blessREF,CLASSNAME
blessREF

This function tells the thingy referenced B¥F that it is now an object in thEeLASSNAME
package. IICLASSNAME is omitted, the current package is used. Becaudess is often the

last thing in a constructor, it returns the reference for convenience. Always use the two-argument
version if the function doing the blessing might be inherited by a derived class. See perltoot and
perlobj for more about the blessing (and blessings) of objects.

Consider always blessing objects in CLASSNAMES that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmata. Builtin types have all uppercase
names, so to prevent confusion, you may wish to avoid such package names as well. Make sure
that CLASSNAME is a true value.

See “Perl Modules” in perimod.

callerEXPR

caller

Returns the context of the current subroutine call. In scalar context, returns the caller's package
name if there is a caller, that is, if we're in a subroutinevad orrequire , and the undefined
value otherwise. In list context, returns

($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace. The
value ofEXPRindicates how many call frames to go back before the current one.

($package, $filename, $line, $subroutine, $hasargs,
$wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);

Here $subroutine may be(eval) if the frame is not a subroutine call, but ewal . In
such a case additional elemefiesvaltext — and $is_require are set:$is_require is
true if the frame is created byrequire or use statement$evaltext contains the text of
the eval EXPR statement. In particular, for agval BLOCK statement3$filename s
(eval) , but$evaltext is undefined. (Note also that eacse statement createsrequire
frame inside aneval EXPR frame.) $subroutine may also be(unknown) if this
particular subroutine happens to have been deleted from the symbolfahdargs is true if a
new instance o@_was set up for the framephints and$bitmask contain pragmatic hints
that the caller was compiled with. Ti$hints and$bitmask values are subject to change
between versions of Perl, and are not meant for external use.

Furthermore, when called from within tb8 package, caller returns more detailed information:
it sets the list variabl@DB::args to be the arguments with which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away luefitee had a chance

to get the information. That means tleatler(N) might not return information about the call
frame you expect it do, fod > 1. In particular,@DB::args might have information from the

previous timecaller was called.

chdirEXPR

76

Changes the working directory EXPR, if possible. IfEXPRis omitted, changes to the directory
specified bysENV{HOME} if set; if not, changes to the directory specifiedBBENV{LOGDIR}.
(UndervMs, the variablefBENV{SYS$LOGIN} is also checked, and used if it is set.) If neither is
set,chdir does nothing. It returns true upon success, false otherwise. See the example under
die .

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

chmodLIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number, and which definitely shouédstring of
octal digits:0644 is okay,’0644’ is not. Returns the number of files successfully changed.
See also “oct”, if all you have is a string.

$cnt = chmod 0755, 'foo’, 'bar’;
chmod 0755, @executables;

$mode ='0644’; chmod $mode, 'foo’; # !l sets mode to
#o--W----r-T

$mode ='0644"; chmod oct($mode), 'foo’; # this is better

$mode = 0644; chmod $mode, foo’; # this is best

You can also import the symbol& I* constants from the Fcntl module:
use Fentl :mode’;

chmod S_IRWXUS_IRGRFPB_IXGRPE_IROTHB IXOTH, @executables;
This is identical to the chmod 0755 of the above example.

chompVARIABLE

chomp(LIST)

chomp This safer version of “chop” removes any trailing string that corresponds to the current value of
$/ (also known a$INPUT_RECORD_SEPARATOR the English module). It returns the
total number of characters removed from all its arguments. It's often useddweertra newline
from the end of an input record when you're worried that the final record may be missing its
newline. When in paragraph mod¥ € "™), it removes all trailing newlines from the string.
When in slurp mode${ = undef) or fixed-length record modé&/ is a reference to an integer
or the like, see perlvachomp()won't remove agthing. If VARIABLE is omitted, it chomp$_.
Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/));
..

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys.
You can actually chomp anything that’s an Ivalue, including an assignment:

chomp($cwd = ‘pwd");
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is

returned.

Note that parentheses are necessary when you're chomping anything that is not a simple variable.
This is becausehomp $cwd = ‘pwd’; is interpreted agchomp $cwd) = ‘pwd’; ,

rather than ashomp($cwd = ‘pwd") which you might expect. Similarlghomp $a,

$b is interpreted ashomp($a), $b rather than ashomp($a, $b)

ChOpVARIABLE

chop(LIST)

chop Chops off the last character of a string and returns the character chopped. It is much more
efficient thans/.$//s because it neither scans nor copies the stringARIABLE is omitted,
chops$_. If VARIABLE is a hash, it chops the hash’s values, but not its keys.

You can actually chop anything that's an Ivalue, including an assignment.
If you chop a list, each element is chopped. Only the value of thehiagtis returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, —1)

See also “chomp”.

perl v5.8.0 2003-08-13 77

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

78

chownLIST
Changes the owner (and group) of a list of files. The first two elements of the list must be the
numericuid and gid, in that order. A value of —1 in either position is interpreted by most systems
to leave that value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

Here's an example that looks up nonnumeric uids in the passwd file:

print "User: ";

chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you're the
superuser, although you should be able to change the group to any of your secondary groups. On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption. On
POSIXsystems, you can detect this condition this way:

use POSIX qw(sysconf PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_ PC_CHOWN_RESTRICTED);

chrNUMBER

chr Returns the character represented byNOBMBER in the character set. For exampdey(65)
is "A" in either ASCIl or Unicode, and chr(0x263a) is a Unicode smiley face. Note that
characters from 127 to 255 (inclusive) are by default not encoded in Unicode for backward
compatibility reasons (but see encoding).

For the reverse, use “ord”. See perlunicode and encoding for more about Unicode.

If NUMBER is omitted, use$.

chrootFILENAME

chroot This function works like the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with lay your process and all its children.
(It doesn't change your current working directory, which is unaffected.) For security reasons, this
call is restricted to the superuserFIEENAME is omitted, does ehroot to$.

closeFILEHANDLE

close Closes the file or pipe associated with the file handle, returning true aolybifffers are
successfully flushed and closes the system file descriptor. Closes the currently selected filehandle
if the argument is omitted.

You don't have to clos&ILEHANDLE if you are immediately going to do anothmsen on it,
becausepen will close it for you. (Se@mpen.) However, an explicitlose on an input file
resets the line counte$.(), while the implicit close done gpen does not.

If the file handle came from a piped opeose will additionally return false if one of the other
system calls involved fails or if the program exits with non-zero status. (If the only problem was
that the program exited non-zeBb will be set to0.) Closing a pipe also waits for the process
executing on the pipe to complete, in case you want to look at the output of the pipe afterwards,
and implicitly puts the exit status value of that command$fto

Prematurely closing the read end of a pipe (i.e. before the process writing to it at the other end
has closed it) will result in 8IGPIPEbeing delivered to the writer. If the other end can’t handle
that, be sure to read all the data before closing the pipe.

Example:

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open(OUTPUT, ' [kort >foo’) # pipe to sort

or die "Can't start sort: $!";
#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"

. "Exit status $? from sort";

open(INPUT, 'foo’) # get sort’s results

or die "Can'’t open 'foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually
the real filehandle name.

closedirDIRHANDLE
Closes a directory opened bgendir and returns the success of that system call.

DIRHANDLE may be an expression whose value can be used as an indirect dirhandle, usually the
real dirhandle name.

conneciSOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns true if it
succeeded, false otherwis®AME should be a packed address of the appropriate type for the
socket. See the examples in “Sockets: Client/Server Communication” in perlipc.

continueBLOCK
Actually a flow control statement rather than a function. If there orinue BLOCK
attached to 8LOCK (typically in awhile or foreach), it is always executed just before the
conditional is about to be evaluated again, just like the third parfasf doop in C. Thus it can
be used to increment a loop variable, even when the loop has been continued ngat the
statement (which is similar to thed®ntinue statement).

last , next , orredo may appear within aontinue block. last andredo will behave as
if they had been executed within the main block. So wékt , but since it will execute a
continue block, it may be more entertaining.

while (EXPR) {
redo always comes here
do_something;
} continue {
next always comes here
do_something_else;
then back the top to re-check EXPR
}

last always comes here

Omitting thecontinue section is semantically equivalent to using an empty one, logically
enough. Inthat casaext goes directly back to check the condition at the top of the loop.

COSEXPR

cos Returns the cosine BXPR (expressed in radians). EXPRis omitted, takes cosine §f .
For the inverse cosine operation, you may uséviaih:: Trig::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 - $ _[0]*$ _[0]), $ [0])}

Crypt PLAINTEXT,SALT
Encrypts a string exactly like tharypt(3) function in the C library (assuming that you actually
have a version there that has not been extirpated as a potential munition). Thisvearsgful
for checking the password file for lousy passwords, amongst other things. Only the guys wearing
white hats should do this.

Note thatcrypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) corresponding decrypt function (in other wordsryitté) is a
one-way hash function). As a result, this function isn't all that useful for cryptography. (For that,
see your nearb@PAN mirror.)

perl v5.8.0 2003-08-13 79

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

When verifying an existing encrypted string you should use the encrypted text as the salt (like
crypt($plain, $crypted) eq $crypted). This allows your code to work with the
standarctrypt and with more exotic implementations. In other words, do not assume anything
about the returned string itself, or how many bytes in the encrypted string matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes
from the se{./0-9A-Za-z] , and only the first eight bytes of the encrypted string mattered,
but alternative hashing schemes (lik&D5), higher level security schemes (like C2), and
implementations on non-UNIX platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from the
set [./0-9A-Za-z] (like join ™, (., ', 0.9, 'A..Z,
'a’..’z")[rand 64, rand 64]).

Here's an example that makes sure that whoever runs this program knows their own password:
$pwd = (getpwuid($<))[1];

system "stty -echo";

print "Password: ";
chomp($word = <STDIN>);
print "\n";

system "stty echo";

if (crypt($word, $pwd) ne $pwd) {

die "Sorry...\n";
} else {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

The crypt function is unsuitable for encrypting large quantities of data, not least of all because
you can't get the information back. Look at thy—module/Cryptand by—-module/PGP
directories on your favorit€PAN mirror for a slew of potentially useful modules.

If using crypt() on a Unicode string (whicpotentiallyhas characters with codepointoeb255),

Perl tries to make sense of the situation by trying to downgrade (a copy of the string) the string
back to an eight-bit byte string before callienypt() (on that copy). If that works, good. If not,
crypt() dies withWide character in crypt

dbmcloseHASH

[This function has been largely superseded bwttiee function.]

Breaks the binding betweerd®M file and a hash.

dbmoperHASH,DBNAME,MASK

80

[This function has been largely superseded byi¢hefunction.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or BerkeleyDB file to a hash.HASH is the
name of the hash. (Unlike normapen, the first argument igot a filehandle, even though it
looks like one). DBNAME is the name of the database (without .ttie or .pagextension if any).
If the database does not exist, it is created with protection specifiedd¥ (as modified by the
umask). If your system supports only the oldeBM functions, you may perform only one
dbmopen in your program. In older versions of Perl, if your system had neitBer nor ndbm,
callingdbmopen produced a fatal error; it now falls backsibm(3).

If you don't have write access to tb&M file, you can only read hash variables, not set them. If
you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside areval , which will trap the error.

Note that functions such &eys andvalues may return huge lists when used on labgMm
files. You may prefer to use teach function to iterate over largeBM files. Example:

2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =", unpack(L’,$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whiclbBM library you use by loading that library before you dhimopen()

use DB_File;
dbmopen(%NS_Hist, "$SENV{HOME}/.netscape/history.db")
or die "Can'’t open netscape history file: $!";

definedEXPR
defined Returns a Boolean value telling whettPR has a value other than the undefined vaheef .

perl v5.8.0

If EXPRis not present$_ will be checked.

Many operations returandef to indicate failure, end of file, system error, uninitialized variable,
and other exceptional conditions. This function allows you to distinguistef from other
values. (A simple Boolean test will not distinguish amamngef , zero, the empty string, and
"0" , which are all equally false.) Note that singedef is a valid scalar, its presence doesn't
necessarilyndicate an exceptional conditiopop returnsundef when its argument is an empty
array,or when the element to return happens taihgef .

You may also uselefined(&func) to check whether subroutingfunc has ever been
defined. The return value is unaffected by any forward declaratio&foaf. Note that a
subroutine which is not defined may still be callable: its package may has&JBOLOAD
method that makes it spring into existence the first time that it is called — see perlsub.

Use ofdefined on aggregates (hashes and arrays) is deprecated. It used to report whether
memory for that aggregate has ever been allocated. This behavior may disappear in future
versions of Perl. You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (Y%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key exists
in the hash. Use “exists” for the latter purpose.

Examples:

print if defined $switch{'D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overusiefined , and then are surprised to discover that the number
0 and™ (the zero-length string) are, in fact, defined values. For example, if you say

"ab" =" /a(.*)b/;

The pattern match succeeds, &idis defined, despite the fact that it matched “nothing”. But it
didn’t really match nothing—rather, it matched something that happened to be zero characters
long. This is all very above-board and honest. When a function returns an undefined value, it's
an admission that it couldn’t give you an honest answer. So you shoudéfised only when

you're questioning the integrity of what you're trying to do. At other times, a simple comparison
to0 or™ is what you want.

See also “undef”, “exists”, “ref”.

2003-08-13 81

PERLFUNC(1)

82

Perl Programmers Reference Guide PERLFUNC(1)

deleteEXPR

dieLIST

Given an expression that specifies a hash element, array element, hash slice, or array slice, deletes
the specified element(s) from the hash or array. In the case of an array, if the array elements
happen to be at the end, the size of the array will shrink to the highest element that tests true for
exists()(or O if no such element exists).

Returns each element so deleted or the undefined value if there was no such element. Deleting
from $ENV{} modifies the environment. Deleting from a hash tied @B& file deletes the

entry from theDBM file. Deleting from atie d hash or array may not necessarily return
anything.

Deleting an array element effectively returns that position of the array to its initial, uninitialized
state. Subsequently testing for the same elementexigits()will return false. Note that deleting
array elements in the middle of an array will not shift the index of the ones after them
down — usesplice()for that. See “exists”.

The following (inefficiently) deletes all the values%HASHNd@ARRAY:
foreach $key (keys %HASH) {

delete SHASH{$key};

}

foreach $index (0 .. $#ARRAY) {
delete SARRAY[$index];

}

And so do these:
delete @HASH{keys %HASH};
delete @ARRAY][O .. $#ARRAY];
But both of these are slower than just assigning the empty list or undéfiniAGtdr @ARRAY::

%HASH = (); # completely empty %HASH
undef %HASH; # forget %HASH ever existed
@ARRAY = (); # completely empty @ARRAY
undef @ARRAY; # forget @ARRAY ever existed

Note that theEXPRcan be arbitrarily complicated as long as the final operation is a hash element,
array element, hash slice, or array slice lookup:

delete $ref->[$x][$yl{Skey};
delete @{$ref->[$x][Sy]H{$keyl, $key2, @morekeys};

delete $ref->[$x][$y][$index];
delete @{$ref->[$x][$y]}[$index1, Sindex2, @moreindices];

Outside areval , prints the value ofIST to STDERRand exits with the current value $f
(errno). If$! is 0, exits with the value of$? >> 8) (backtick ‘command’ status). $?
>> 8) is 0, exits with255. Inside aneval(), the error message is stuffed ird@and the
eval is terminated with the undefined value. This makies the way to raise an exception.

Equivalent examples:

die "Can’t cd to spool: $1\n" unless chdir '/usr/spool/news’;
chdir '/usr/spool/news’ or die "Can't cd to spool: $\n"

If the last element dfIST does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Note that the “input line humber”
(also known as “chunk”) is subject to whatever notion of “line” happens to be currently in
effect, and is also available as the special varfbbleSee “$/” in perlvar and “$.” in perlvar.

Hint: sometimes appendirg stopped" to your message will cause it to make better sense
when the string"at foo line 123" is appended. Suppose you are running script
“canasta”.

2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See alsexit(), warn(), and the Carp module.

If LIST is empty andb@already contains a value (typically from a previous eval) that value is
reused after appenditiy...propagated” . This is useful for propagating exceptions:

eval{.. }
die unless $@ =" /Expected exception/;

If LIST is empty and$@ contains an object reference that haPROPAGATHEnethod, that
method will be called with additional file and line number parameters. The return value replaces
the value in$@ ie. as if<$@ = eval { $@- PROPAGATE__FILE__, __LINE__) };>>

were called.

If $@is empty then the strintpied" is used.

die() can also be called with a reference argument. If this happens to be trapped wétahan

$@ contains the reference. This behavior permits a more elaborate exception handling
implementation using objects that maintain arbitrary state about the nature of the exception. Such
a scheme is sometimes preferable to matching particular string values of $@ using regular
expressions. Here's an example:

eval { ... ; die Some::Module::Exception->new(FOO => "bar") };
if (@) {
if (ref($3@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because perl will stringify uncaught exception messages before displaying them, you may want
to overload stringification operations on such custom exception objects. See overload for details
about that.

You can arrange for a callback to be run just beforedike does its deed, by setting the
$SIG{_ _DIE_ _} hook. The associated handler will be called with the error text and can
change the error message, if it sees fit, by catlieg again. See “$SIG{expr}" in perlvar for
details on setting6SIG entries, and “evaBLOCK” for some examples. Although this feature
was meant to be run only right before your program was to exit, this is not currently the
case —the$SIG{_ _DIE_ _} hook is currently called even insidwal(ed blocks/strings! If

one wants the hook to do nothing in such situations, put

die @_if$°S;
as the first line of the handler (see “$°S” in perlvar). Because this promotes strange action at a
distance, this counterintuitive behavior may be fixed in a future release.

doBLOCK

Not really a function. Returns the value of the last command in the sequence of commands
indicated byBLOCK. When modified by a loop modifier, executes 81e&OCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK doesnot count as a loop, so the loop control statemesetg , last , or redo
cannot be used to leave or restart the block. See perlsyn for alternative strategies.

do SUBROUTINHLIST)

perl v5.8.0

A deprecated form of subroutine call. See perlsub.

2003-08-13 83

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

doEXPR
Uses the value dEXPR as a filename and executes the contents of the file as a Perl script. Its
primary use is to include subroutines from a Perl subroutine library.

do 'stat.pl’;
is just like
eval ‘cat stat.pl;

except that it's more efficient and concise, keeps track of the current filename for error messages,
searches th@INClibraries, and updatesINCIif the file is found. See “Predefined Names” in
perlvar for these variables. It also differs in that code evaluateddwifiLENAME cannot see
lexicals in the enclosing scopeyal STRING does. It's the same, however, in that it does
reparse the file every time you call it, so you probably don’t want to do this inside a loop.

If do cannot read the file, it returns undef and $ttgo the error. Ifdo can read the file but
cannot compile it, it returns undef and sets an error mess&@ inf the file is successfully
compiled,do returns the value of the last expression evaluated.

Note that inclusion of library modules is better done with ube andrequire operators,
which also do automatic error checking and raise an exception if there’s a problem.

You might like to usedo to read in a program configuration file. Manual error checking can be
done this way:

read in config files: system first, then user
for $file ("/share/prog/defaults.rc”,
"$ENV{HOMEY}/.someprogrc")

{
unless ($return = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $return;
warn "couldn’t run $file" unless $return;
}
}

dumpLABEL

dump This function causes an immediate core dump. See also t@mmand-line switch in perlrun,
which does the same thing. Primarily this is so that you can usenthemp program (not
supplied) to turn your core dump into an executable binary after having initialized all your
variables at the beginning of the program. When the new binary is executed it will begin by
executing goto LABEL (with all the restrictions thajoto suffers). Think of it as a goto with
an intervening core dump and reincarnationLABEL is omitted, restarts the program from the
top.

WARNING : Any files opened at the time of the dump wilht be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl.

This function is now largely obsolete, partly because it's very hard to convert a core file into an
executable, and because the real compiler backends for generating portable bytecode and
compilable C code have superseded it. That's why you should now invoke it as
CORE::dump() , if you don’t want to be warned against a possible typo.

If you're looking to use dump to speed up your program, consider generating bytecode or native
C code as described in perlcc. If you're just trying to accelera@lacript, consider using the
mod_perl extension toApache or the CPAN module, CGl::Fast. You might also consider
autoloading or selfloading, which at least make your progyapearto run faster.

eachHASH
When called in list context, returns a 2—element list consisting of the key and value for the next
element of a hash, so that you can iterate over it. When called in scalar context, returns only the
key for the next element in the hash.

Entries are returned in an apparently random order. The actual random order is subject to change
in future versions of perl, but it is guaranteed to be in the same order as eitheysher

84 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

values function would produce on the same (unmodified) hash.

When the hash is entirely read, a null array is returned in list context (which when assigned
produces a falsé@} value), andundef in scalar context. The next call éach after that will

start iterating again. There is a single iterator for each hash, shareddactall keys , and

values function calls in the program; it can be reset by reading all the elements from the hash,
or by evaluatinkeys HASH or values HASH . If you add or delete elements of a hash while
you're iterating over it, you may get entries skipped or duplicated, so don't. Exception: It is
always safe to delete the item most recently returnecedmh() , which means that the
following code will work:

while (($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key};, # This is safe
}

The following prints out your environment like tpeintenv(1) program, only in a different order:

while (($key,$value) = each %ENV) {
print "$key=%value\n";
}

See alskeys , values andsort .

eof FILEHANDLE

eof ()

eof Returns 1 if the next read 6ILEHANDLE will return end of file, or ifFILEHANDLE is not open.
FILEHANDLE may be an expression whose value gives the real filehandle. (Note that this
function actually reads a character and thagetc s it, so isn't very useful in an interactive
context.) Do not read from a terminal file (or adif(FILEHANDLE) on it) after end-of-file is
reached. File types such as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read. Usioff) with empty parentheses is
very different. It refers to the pseudo file formed from the files listed on the command line and
accessed via the> operator. Since<> isn't explicitly opened, as a normal filehandle is, an
eof() before<> has been used will caus®@ARGYo be examined to determine if input is
available. Similarly, arof() after<> has returned end-of-file will assume you are processing
another @ARG\ist, and if you haven't se@ ARGWvill read input fromSTDIN; see “I/O
Operators” in perlop.

In awhile (<>) loop, eof oreof(ARGV) can be used to detect the end of eachdd)
will only detect the end of the last file. Examples:

reset line numbering on each input file

while (<>) {
next if /\s*#/; # skip comments
print "$.\t$_";
} continue {
close ARGV if eof; # Not eof()!
}
insert dashes just before last line of last file
while (<>) {
if (eof()) { # check for end of current file
print "-------------- \n";
close(ARGV); # close or last; is needed if we
are reading from the terminal
} .
print;
}

Practical hint: you almost never need to esé¢ in Perl, because the input operators typically
returnundef when they run out of data, or if there was an error.

perl v5.8.0 2003-08-13 85

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

evalEXPR

evalBLOCK
In the first form, the return value &XPR is parsed and executed as if it were a little Perl
program. The value of the expression (which is itself determined within scalar context) is first
parsed, and if there weren't any errors, executed in the lexical context of the current Perl
program, so that any variable settings or subroutine and format definitions remain afterwards.
Note that the value is parsed every time the eval executeXPHis omitted, evaluates . This
form is typically used to delay parsing and subsequent execution of the &xPRfuntil run
time.

In the second form, the code within tBEOCK is parsed only once —at the same time the code
surrounding the eval itself was parsed—and executed within the context of the current Perl
program. This form is typically used to trap exceptions more efficiently than the first (see below),
while also providing the benefit of checking the code wiBli©CK at compile time.

The final semicolon, if any, may be omitted from the valueX#R or within theBLOCK.

In both forms, the value returned is the value of the last expression evaluated inside the
mini—program; a return statement may be also used, just as with subroutines. The expression
providing the return value is evaluated in void, scalar, or list context, depending on the context of
the eval itself. See “wantarray” for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, odia statement is executed, an undefined value is
returned byeval , and$@is set to the error message. If there was no é@is guaranteed to
be a null string. Beware that usirgyal neither silences perl from printing warnings to
STDERR nor does it stuff the text of warning messages &@ To do either of those, you have
to use thebSIG{_ _WARN_} facility, or turn off warnings inside thBLOCK or EXPR using

no warnings ‘all’ . See “warn”, perlvar, warnings and perllexwarn.

Note that, becauseval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such awocket or symlink) is implemented. It is also Perl's exception
trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn't vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@ Examples:

make divide-by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer =} # WRONG

a run-time error
eval '$answer =’; # sets $@

Due to the current arguably broken state oDIE_ _ hooks, when using theval{} form as
an exception trap in libraries, you may wish not to trigger anRIE_ _ hooks that user code
may have installed. You can use theal $SIG{ _DIE _} construct for this purpose, as
shown in this example:

a very private exception trap for divide-by-zero
eval { local $SIG{__DIE__'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that DIE_ _ hooks can calllie again, which has the
effect of changing their error messages:

86 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

_ DIE__ hooks may modify error messages

{
local $SIG{__DIE_ '} =
sub { (my $x = $_[0]) =" s/foo/bar/g; die $x };
eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"
}
Because this promotes action at a distance, this counterintuitive behavior may be fixed in a future
release.

With aneval , you should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$Sx++"; # CASE 5
$Ex++; # CASE 6

Cases 1 and 2 abe behave identically: they run the code contained in the vari@kle
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
'$x’ , which does nothing but return the value$of. (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run—time.) Case
5 is a place where normally yomould like to use double quotes, except that in this particular
situation, you can just use symbolic references instead, as in case 6.

eval BLOCK doesnot count as a loop, so the loop control statemastd , last , or redo
cannot be used to leave or restart the block.

execLIST

exXeCPROGRAM LIST
The exec function executes a system commardl never returns- usesystem instead of
exec if you want it to return. It fails and returns false only if the command does notexiit
is executed directly instead of via your system’s command shell (see below).

Since it's a common mistake to usxec instead ofsystem , Perl warns you if there is a
following statement which isndie , warn, orexit (if ~wis set - but you always do that). If
you really want to follow anexec with some other statement, you can use one of these styles to
avoid the warning:

exec ('foo’) or print STDERR "couldn't exec foo: $!";
{ exec ('foo’) }; print STDERR "couldn’t exec foo: $!";

If there is more than one argumentisT, or if LIST is an array with more than one value, calls
execvf(3) with the arguments ibIST. If there is only one scalar argument or an array with one
element in it, the argument is checked for shell metacharacters, and if there are any, the entire
argument is passed to the system’s command shell for parsing (thie/sh —c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters in the argument, it
is split into words and passed directlyeteecvp , which is more efficient. Examples:

exec 'fbinfecho’, "Your arguments are: ', @ARGV,
exec "sort $outfile O uniq";

If you don't really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
“indirect object” (without a comma) in front of thelST. (This always forces interpretation of
theLIST as a multivalued list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;
exec $shell -sh’; # pretend it's a login shell

or, more directly,

perl v5.8.0 2003-08-13 87

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

exec {'/bin/csh’} '-sh’; # pretend it's a login shell
When the arguments get executed via the system shell, results will be subject to its quirks and
capabilities. See “STRING" in perlop for detalils.
Using an indirect object witlexec or system is also more secure. This usage (which also
works fine withsystem() forces interpretation of the arguments as a multivalued list, even if the
list had just one argument. That way you're safe from the shell expanding wildcards or splitting
up words with whitespace in them.

@args = ("echo surprise");

exec @args; # subject to shell escapes

if @args ==

exec { $args[0] } @args; # safe even with one-arg list
The first version, the one without the indirect object, ran ¢bko program, passing it
"surprise" an argument. The second version didn't—it tried to run a program literally
called“echo surprise’, didn't find it, and se$? to a non-zero value indicating failure.
Beginning with v5.6.0, Perl will attempt to flush all files opened for output before the exec, but
this may not be supported on some platforms (see perlport). To be safe, you may ne&dito set
(PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on any open
handles in order to avoid lost output.
Note thatexec will not call your ENDblocks, nor will it call anyDESTROYnethods in your
objects.

existsEXPR

Given an expression that specifies a hash element or array element, returns true if the specified
element in the hash or array has ever been initialized, even if the corresponding value is
undefined. The element is not autovivified if it doesn't exist.

print "Exists\n" if exists $hash{$key};

print "Defined\n" if defined $hash{$keys};

print "True\n" if $hash{$key};

print "Exists\n" if exists $array[$index];

print "Defined\n" if defined $array[$index];

print "True\n" if $array[$index];
A hash or array element can be true only if it's defined, and defined if it exists, but the reverse
doesn’t necessarily hold true.
Given an expression that specifies the name of a subroutine, returns true if the specified
subroutine has ever been declared, even if it is undefined. Mentioning a subroutine name for
exists or defined does not count as declaring it. Note that a subroutine which does not exist may
still be callable: its package may haveAdTOLOADNnethod that makes it spring into existence
the first time that it is called — see perlsub.

print "Exists\n" if exists &subroutine;

print "Defined\n" if defined &subroutine;
Note that theeXPR can be arbitrarily complicated as long as the final operation is a hash or array
key lookup or subroutine name:

if (exists $ref->{A}->{B}->{$key}) { }

if (exists $hash{A}{B}{$key}) {1}

if (exists $ref->{A}->{B}->[$ix]) { }

if (exists $hash{A{B}[$ix]) {1}

if (exists &{$ref->{AH{BHS$key}})) {}
Although the deepest nested array or hash will not spring into existence just because its existence
was tested, any intervening ones will. THrsef->{"A"} and$ref->{"A"}->{"B"} will
spring into existence due to the existence test for$tey element above. This happens
anywhere the arrow operator is used, including even:

88 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

undef $ref;
if (exists $ref->{"Some key"}) {1}
print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first—or even second — glance appear to be
an Ivalue context may be fixed in a future release.

See “Pseudo-hashes: Using an array as a hash” in perlref for specifics @xibts)acts when
used on a pseudo—hash.

Use of a subroutine call, rather than a subroutine name, as an argumestis{jis an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
Evaluate€XPRand exits immediately with that value. Example:

$ans = <STDIN>;
exit 0 if $ans =" I"[XX]/;

See alsalie . If EXPRis omitted, exits witlD status. The only universally recognized values for
EXPRare0 for success antl for error; other values are subject to interpretation depending on the
environment in which the Perl program is running. For example, exiting>X6UJNAVAILABLE)

from a sendmailincoming-mail filter will cause the mailer to return the item undelivered, but
that’s not true everywhere.

Don't useexit to abort a subroutine if there’s any chance that someone might want to trap
whatever error happened. Udie instead, which can be trapped byesal .

The exit() function does not always exit immediately. It calls any defiabidDroutines first, but
theseENDroutines may not themselves abort the exit. Likewise any object destructors that need
to be called are called before the real exit. If this is a problem, you can call

POSIX:_exit($status) to avoidEND and destructor processing. See perlmod for details.
exXpEXPR
exp Returnse (the natural logarithm base) to the power EXPR If EXPR is omitted, gives
exp($.)

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thécntl (2) function. You'll probably have to say

use Fcntl;

first to get the correct constant definitions. Argument processing and value return works just like
ioctl below. For example:

use Fentl;
fentl($filehandle, F_GETFL, $packed_return_buffer)
or die "can't fcntl F_GETFL: $!";

You don't have to check fodefined on the return fronfnctl . Like ioctl , it maps a0
return from the system call int® but true" in Perl. This string is true in boolean context
andO in numeric context. It is also exempt from the normalwarnings on improper numeric
conversions.

Note thatfcntl ~ will produce a fatal error if used on a machine that doesn’t implefoeth(2).
See the Fcntl module or yofentl(2) manpage to learn what functions are available on your
system.

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. This is
mainly useful for constructing bitmaps feelect and low-levelPOSIXtty-handling operations.
If FILEHANDLE is an expression, the value is taken as an indirect filehandle, generally its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

perl v5.8.0 2003-08-13 89

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";
}

(Filehandles connected to memory objects via new featurepesf may return undefined even
though they are open.)

flock FILEHANDLE,OPERATION
Callsflock(2), or an emulation of it, ORILEHANDLE. Returns true for success, false on failure.
Produces a fatal error if used on a machine that doesn’t impldloek(®), fcntl (2) locking, or
lockf(3). flock is Perl's portable file locking interface, although it locks only entire files, not
records.

Two potentially non-obvious but traditionfibck semantics are that it waits indefinitely until

the lock is granted, and that its lockserely advisory. Such discretionary locks are more
flexible, but offer fewer guarantees. This means that files lockedfiaith may be modified

by programs that do not also udeck . See perlport, your port's specific documentation, or
your system-specific local manpages for details. It's best to assume traditional behavior if you're
writing portable programs. (But if you're not, you should as always feel perfectly free to write
for your own system’s idiosyncrasies (sometimes called “features”). Slavish adherence to
portability concerns shouldn’t get in the way of your getting your job done.)

OPERATIONis one ofLOCK_SH, LOCK_EX, or LOCK_UN, possibly combined withOCK_NB.

These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic names if you
import them from the Fcntl module, either individually, or as a group using the ":flock’ tag.
LOCK_SHrequests a shared lodlQCK_EX requests an exclusive lock, andCK_UN releases a
previously requested lock. KEOCK_NB is bitwise—or'ed withLOCK_SH or LOCK_EX then

flock will return immediately rather than blocking waiting for the lock (check the return status

to see if you got it).

To avoid the possibility of miscoordination, Perl now fluskResEHANDLE before locking or
unlocking it.

Note that the emulation built wittockf(3) doesn't provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semanticddbkf(3) implements. Most

if not all systems implemenribckf(3) in terms offcntl(2) locking, though, so the differing
semantics shouldn't bite too many people.

Note that thefcntl (2) emulation offlock(3) requires thaFILEHANDLE be open with read intent
to useLOCK_SHand requires that it be open with write intent to LBEK_EX.

Note also that some versionsflafck cannot lock things over the network; you would need to
use the more system-specifintl for that. If you like you can force Perl to ignore your

system’sflock(2) function, and so provide its owiantl (2)-based emulation, by passing the

switch—-Ud_flock to theConfigureprogram when you configure perl.

Here's a mailbox appender fBSD systems.
use Fcntl ":flock’; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/SENV{'USER’}")
or die "Can’t open mailbox: $!";

90 2003-08-13 perl v5.8.0

PERLFUNC(1)

fork

format

Perl Programmers Reference Guide PERLFUNC(1)
lock();
print MBOX $msg,"\n\n";
unlock();

On systems that support a rélakck(), locks are inherited acro$srk() calls, whereas those that
must resort to the more capriciotentl() function lose the locks, making it harder to write
servers.

See also DB_File for othdliock()examples.

Does afork (2) system call to create a new process running the same program at the same point.
It returns the child pid to the parent proce3gp the child process, amndef if the fork is
unsuccessful. File descriptors (and sometimes locks on those descriptors) are shared, while
everything else is copied. On most systems suppdiditkg), great care has gone into making it
extremely efficient (for example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking over the last few decades.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before forking the
child process, but this may not be supported on some platforms (see perlport). To be safe, you
may need to se$ (PAUTOFLUSH in English) or call theautoflush() method of
I0::Handle on any open handles in order to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies. On some
systems, you can avoid this by settBgIG{CHLD} to "IGNORE". See also perlipc for more
examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors $K®IN and STDOUT that are

actually connected by a pipe or socket, even if you exit, then the remote server (such as, say, a
CGil script or a backgrounded job launched from a remote shell) won't think you're done. You
should reopen those tdev/nullif it's any issue.

Declare a picture format for use by timite function. For example:

format Something =
Test: @<<<<<<<< @ [IITT1 @>>>>>
$str, $%, '$. int($num)

$str = "widget";

$num = $cost/$quantity;
$” = 'Something’;

write;

See perlform for many details and examples.

formline PICTURELIST

This is an internal function used Wgrmat s, though you may call it, too. It formats (see
perlform) a list of values according to the contentBIGITURE, placing the output into the format
output accumulato$™A (or FACCUMULATOR English). Eventually, when arite is done,

the contents of"A are written to some filehandle, but you could also &8Adyourself and then
set$"A back to™ . Note that a format typically does of@mline per line of form, but the
formline function itself doesn’t care how many newlines are embedded PIGT®RE This
means that the and™ tokens will treat the entireICTUREas a single line. You may therefore
need to use multiple formlines to implement a single record format, just like the format compiler.

Be careful if you put double quotes around the picture, becauggcharacter may be taken to
mean the beginning of an array nanfermline always returns true. See perlform for other
examples.

getcFILEHANDLE

getc

perl v5.8.0

Returns the next character from the input file attachel EBHANDLE, or the undefined value at
end of file, or if there was an error (in the latter chisés set). IfFILEHANDLE is omitted, reads
from STDIN. This is not particularly efficient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit enter. For that, try something more like:

2003-08-13 91

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

92

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system "stty", "-icanon’, 'eol’, "\001";
}

$key = getc(STDIN);
if ($BSD_STYLE) {

system "stty -cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system "stty", 'icanon’, 'eol’, "@’; # ASCII null
}
print "\n";
Determination of whetheBSD_STYLEshould be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purporgBg X
compliance. See also theerm::ReadKey module from your nearestPAN site; details on
CPAN can be found onCPAN" in perimodlib.

getlogin Implements the C library function of the same name, which on most systems returns the current
login from/etc/utmp if any. If null, usegetpwuid

$login = getlogin (O getpwuid($<) O "Kilroy";

Do not considegetlogin for authentication: it is not as securegaspwuid

getpeernam&0OCKET

Returns the packed sockaddr address of other end 8OMKET connection.
use Socket;
$hersockaddr = getpeername(SOCK);
($port, Siaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrpPID
Returns the current process group for the spedied Use aPID of 0 to get the current process
group for the current process. Will raise an exception if used on a machine that doesn't
implementgetpgrp(2). If PID is omitted, returns process group of current process. Note that the
POSIXversion ofgetpgrp does not acceptrRID argument, so onlPID==0 is truly portable.

getppid Returns the process id of the parent process.

Note for Linux users: on Linux, the C functiogstpid() andgetppid() return different
values from different threads. In order to be portable, this behavior is not reflected by the perl-
level functiongetppid() , that returns a consistent value across threads. If you want to call the
underlyinggetppid() , you may use thePAN moduleLinux::Pid

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a usege{feéerity(2).) Will
raise a fatal exception if used on a machine that doesn’t impleyatartority (2).

getpwnanmNAME
getgrnamNAME
gethostbynam&8AME
getnetbynama& AME
getprotobynam@AME
getpwuiduID

getgrgidGID
getservbynamslAME,PROTO

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

gethostbyaddADDR,ADDRTYPE
getnetbyaddADDR,ADDRTYPE
getprotobynumbeXUMBER
getservbyporPORT,PROTO

getpwent

getgrent

gethostent
getnetent
getprotoent
getservent
setpwent

setgrent

sethostenSTAYOPEN
setnetenSTAYOPEN
setprotoenSTAYOPEN
setservenSTAYOPEN
endpwent

endgrent

endhostent
endnetent

endproto

ent

endservent

perl v5.8.0

These routines perform the same functions as their counterparts in the system library. In list
context, the return values from the various get routines are as follows:

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell,$expire) = getpw*

($name,$passwd,$gid, $members) = getgr*

($name,$aliases,$addrtype,$length,@addrs) = gethost*

($name,$aliases,$addrtype,$net) = getnet*

($name, $aliases,$proto) = getproto*

($name,$aliases,$port,$proto) = getserv*

(If the entry doesn't exist you get a null list.)

The exact meaning of tt&gcos field varies but it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the user. Beware, however, that in
many system users are able to change this information and therefore it cannot be trusted and
therefore the$gcos is tainted (see perlsec). Tigpasswd and $shell , user’s encrypted
password and login shell, are also tainted, because of the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you
get the other thing, whatever it is. (If the entry doesn't exist you get the undefined value.) For
example:

$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();

$gid = getgrnam($name);
$name = getgrgid($num);

$name = getgrent();

#etc.

In getpw*() the fields$quota , $comment, and$expire are special cases in the sense that in
many systems they are unsupported. If$heota is unsupported, it is an empty scalar. If itis
supported, it usually encodes the disk quota. If8$bemment field is unsupported, it is an
empty scalar. If it is supported it usually encodes some administrative comment about the user.
In some systems thgquota field may be$change or $age, fields that have to do with
password aging. In some systems$hoemment field may bebclass . The$expire field, if

present, encodes the expiration period of the account or the password. For the availability and the
exact meaning of these fields in your system, please consulggtuwnan{3) documentation

and yourpwd.hfile. You can also find out from within Perl what y"a and$comment

2003-08-13 93

PERLFUNC(1)

94

Perl Programmers Reference Guide PERLFUNC(1)

fields mean and whether you have $expire field by using theConfig module and the
valuesd_pwquota , d_pwage, d_pwchange , d pwcomment, andd_pwexpire . Shadow
password files are only supported if your vendor has implemented them in the intuitive fashion
that calling the regular C library routines gets the shadow versions if you're running under
privilege or if there exists thehadow(3) functions as found in System V (this includes Solaris
and Linux.) Those systems which implement a proprietary shadow password facility are unlikely
to be supported.

The $members value returned bygetgr*() is a space separated list of the login names of the
members of the group.

For thegethost*()functions, if theh_errno variable is supported in C, it will be returned to you

via $? if the function call fails. The@addrs value returned by a successful call is a list of the
raw addresses returned by the corresponding system library call. In the Internet domain, each
address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('C4’,$addr[0]);
The Socket library makes this slightly easier:

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

or going the other way
$straddr = inet_ntoa($iaddr);

If you get tired of remembering which element of the return list contains which return value, by-

name interfaces are provided in standard modulede::stat , Net::hostent ,
Net::netent , Net::protoent , Net::servent , Time::gmtime
Time::localtime , and User::grent . These override the normal built-ins, supplying

versions that return objects with the appropriate names for each field. For example:

use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks like theyre the same method calls (uid), they aren’t, because a
File::stat object is different from &ser::;pwent object.

getsocknam&OCKET

Returns the packed sockaddr address of this end BQWET connection, in case you don't
know the address because you have several different IPs that the connection might have come in
on.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, Smyaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",
scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopSOCKET,LEVEL,OPTNAME

Returns the socket option requested, or undef if there is an error.

globEXPR

glob

In list context, returns a (possibly empty) list of filename expansions on the vaxerR§uch

as the standard Unix shebin/csh would do. In scalar context, glob iterates through such
filename expansions, returning undef when the list is exhausted. This is the internal function
implementing the<*.c> operator, but you can use it directly.HKPR is omitted,$ is used.
The<*.c> operator is discussed in more detail in “I/O Operators” in perlop.

Beginning with v5.6.0, this operator is implemented using the stafdlardslob extension.
See File::Glob for details.

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

gmtimeEXPR
Converts a time as returned by the time function to an 8—element list with the time localized for
the standard Greenwich time zone. Typically used as follows:

0 1 2 3 4 5 6 7
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
gmtime(time);

All list elements are numeric, and come straight out of the C ‘struct $sec , $min, and
$hour are the seconds, minutes, and hours of the specified Bmelay is the day of the
month, and$mon is the month itself, in the randg®.11 with O indicating January and 11
indicating December$year is the number of years since 1900. Thasisar is 123 in year
2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday.
$yday is the day of the year, in the ran@e364 (or0..365 in leap years.)

Note that thebyear element isnot simply the last two digits of the year. If you assume it is,
then you create non-Y2K-compliant programs —and you wouldn’t want to do that, would you?

The proper way to get a complete 4—digit year is simply:
$year += 1900;
And to get the last two digits of the year (e.g., ‘01’ in 2001) do:
$year = sprintf("%02d", $year % 100);
If EXPRis omitted,gmtime() uses the current timgifitime(time)).
In scalar contexgmtime() returns thectime(3) value:
$now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"

Also see thetimegm function provided by thélime::Local module, and thestrftime(3)
function available via theOSIXmodule.

This scalar value isot locale dependent (see perllocale), but is instead a Perl builtin. Also see
theTime::Local = module, and thetrftime(3) andmktimeg(3) functions available via theOSIX
module. To get somewhat similar but locale dependent date strings, set up your locale
environment variables appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that théaand%bescapes, which represent the short forms of the day of the week and the
month of the year, may not necessarily be three characters wide in all locales.

gotoLABEL

gOtoEXPR

goto &NAME
Thegoto—-LABEL form finds the statement labeled WithBEL and resumes execution there. It
may not be used to go into any construct that requires initialization, such as a subroutine or a
foreach loop. It also can’t be used to go into a construct that is optimized away, or to get out
of a block or subroutine given ®ort . It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it's usually better to use some other construct
such adast ordie . The author of Perl has never felt the need to use this foigotof (in
Perl, that is— C is another matter). (The difference being that C does not offer named loops
combined with loop control. Perl does, and this replaces most structured ggde oh other
languages.)

The goto—EXPR form expects a label name, whose scope will be resolved dynamically. This
allows for computedgoto s per FORTRAN, but isn't necessarily recommended if you're
optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

The goto—&NAME form is quite different from the other forms @bto . In fact, it isn't a goto
in the normal sense at all, and doesn't have the stigma associated with other gotos. Instead, it
exits the current subroutine (losing any changes sé&ida}()) and immediately calls in its place

perl v5.8.0 2003-08-13 95

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

96

the named subroutine using the current valu@of This is used bAUTOLOABuUbroutines that

wish to load another subroutine and then pretend that the other subroutine had been called in the
first place (except that any modifications@ in the current subroutine are propagated to the
other subroutine.) After thgoto , not evencaller will be able to tell that this routine was

called first.

NAME needn't be the name of a subroutine; it can be a scalar variable containing a code
reference, or a block which evaluates to a code reference.

grepBLOCK LIST

grepEXPRLIST
This is similar in spirit to, but not the same gep(1) and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates th&LOCK or EXPR for each element dfiST (locally setting$_ to each element) and
returns the list value consisting of those elements for which the expression evaluated to true. In
scalar context, returns the number of times the expression was true.

@foo = grep(!//#/, @bar); # weed out comments
or equivalently,
@foo = grep {{/'#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elements0§the

While this is useful and supported, it can cause bizarre results if the elemergs afe not
variables. Similarly, grep returns aliases into the original list, much as a for loop’s index variable
aliases the list elements. That is, modifying an element of a list returned by grep (for example, in
aforeach , map or anothergrep) actually modifies the element in the original list. This is
usually something to be avoided when writing clear code.

See also “map” for a list composed of the results ofRh@CK or EXPR

hexEXPR
hex InterpretsEXPR as a hex string and returns the corresponding value. (To convert strings that
might start with either 0, 0x, or Ob, see “oct”.) HKPRis omitted, use$_.

print hex 'OxAf’; # prints '175’
print hex 'aF’; # same

Hex strings may only represent integers. Strings that would cause integer overflow trigger a
warning. Leading whitespace is not stripped, unti&).

import There is no builtinmport function. It is just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another moduleuseh&nction calls the
import method for the package used. See also “use”, perlmod, and Exporter.

indexSTRSUBSTR,POSITION

indexSTRSUBSTR
The index function searches for one string within another, but without the wildcard-like behavior
of a full regular-expression pattern match. It returns the position of the first occurrence of
SUBSTR in STR at or afterPOSITION If POSITION is omitted, starts searching from the
beginning of the string. The return value is base@d @r whatever you've set th# variable
to—but don't do that). If the substring is not found, returns one less than the base, ordinarily
-1.

int EXPR

int Returns the integer portion &XPR If EXPR is omitted, use$. You should not use this
function for rounding: one because it truncates towabdgsand two because machine
representations of floating point numbers can sometimes produce counterintuitive results. For
examplejnt(-6.725/0.025) produces —268 rather than the correct —269; that's because it's
really more like —268.99999999999994315658 instead. Usuallgpthetf |, printf |, or the
POSIX::floor andPOSIX::ceil functions will serve you better than wiitit().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements théoctl (2) function. You'll probably first have to say

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

to get the correct function definitions. idctl.ph doesn't exist or doesn’'t have the correct
definitions you'll have to roll your own, based on your C header files suetsyasioctl.h>

(There is a Perl script calld®ph that comes with the Perl kit that may help you in this, but it's
nontrivial.) SCALAR will be read and/or written depending on the FUNCTION —a pointer to the
string value ofSCALAR will be passed as the third argument of the actoetl call. (If

SCALAR has no string value but does have a numeric value, that value will be passed rather than a
pointer to the string value. To guarantee this to be true, 8dd the scalar before using it.) The

pack andunpack functions may be needed to manipulate the values of structures used by
ioctl

The return value abctl (andfcntl) is as follows:

if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

$retval = ioctl(...) o -1;
printf "System returned %d\n", $retval;

The special string 0' but true" is exempt from—w complaints about improper numeric
conversions.

Here's an example of setting a filehandle nafrR&MOTHEo be non-blocking at the system level.
You'll have to negotiat&Jon your own, though.

use Fentl gw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $\n";

$flags = fent(REMOTE, F_SETFL, $flags O O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

join EXPRLIST
Joins the separate stringsLe$T into a single string with fields separated by the valueXa¢fR,
and returns that new string. Example:

$rec = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Beware that unlikeplit , join doesn't take a pattern as its first argument. Compare “split”.

keysHASH
Returns a list consisting of all the keys of the named hash. (In scalar context, returns the number
of keys.) The keys are returned in an apparently random order. The actual random order is
subject to change in future versions of perl, but it is guaranteed to be the same order as either the
values or each function produces (given that the hash has not been modified). As a side
effect, it reset$lASH’s iterator.

Here is yet another way to print your environment:

@keys = keys %ENYV;
@values = values %ENV;
while (@keys) {
print pop(@keys), =", pop(@values), "\n";
}

or how about sorted by key:

foreach $key (sort(keys %ENV)) {
print $key, '=", SENV{$key}, "\n";
}

perl v5.8.0 2003-08-13 97

PERLFUNC(1)

98

Perl Programmers Reference Guide PERLFUNC(1)

The returned values are copies of the original keys in the hash, so modifying them will not affect
the original hash. Compare “values”.

To sort a hash by value, you'll need to usoe function. Here’s a descending numeric sort of
a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys Y%hash) {
printf "%4d %s\n", $hash{$key}, $key;
}

As an lvaluekeys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it——256 of them, in fact, since it rounds

up to the next power of two. These buckets will be retained even if y8ahdsh = () , use
undef %hash if you want to free the storage whiléhash is still in scope. You can'’t shrink

the number of buckets allocated for the hash ukag in this way (but you needn’t worry

about doing this by accident, as trying has no effect).

See als®ach , values andsort .

kill SIGNAL, LIST

Sends a signal to a list of processes. Returns the number of processes successfully signaled
(which is not necessarily the same as the number actually killed).

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

If SIGNAL is zero, no signal is sent to the process. This is a useful way to check that the process
is alive and hasn't changed it¢D. See perlport for notes on the portability of this construct.

Unlike in the shell, ifSIGNAL is negative, it kills process groups instead of processes. (On
System V, a negativeROCESShwumber will also kill process groups, but that’'s not portable.)
That means you usually want to use positive not negative signals. You may also use a signal
name in quotes. See “Signals” in perlipc for details.

lastLABEL

last

Thelast command is like théreak statementin C (as used in loops); it immediately exits the
loop in question. If the ABEL is omitted, the command refers to the innermost enclosing loop.
Thecontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if I"$/; # exit when done with header
#...

}

last cannot be used to exit a block which returns a value suekaq} ,sub{} ordo

{} , and should not be used to exigrap() or map()operation.

Note that a block by itself is semantically identical to a loop that executes oncela3thugsan
be used to effect an early exit out of such a block.

See also “continue” for an illustration of holast , next , andredo work.

Ic EXPR

Ic Returns a lowercased version®fPR This is the internal function implementing tthe escape
in double-quoted strings. Respects curre@t CTYPE locale if use locale in force. See
perllocale and perlunicode for more details about locale and Unicode support.
If EXPRis omitted, use$_.

Icfirst EXPR

Icfirst Returns the value dfEXPR with the first character lowercased. This is the internal function

implementing th&l escape in double-quoted strings. Respects curer@TYPEIlocale ifuse
locale in force. See perllocale and perlunicode for more details about locale and Unicode

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

support.
If EXPRis omitted, use$_.

lengthEXPR

length Returns the length in characters of the valuexeR If EXPRis omitted, returns length & .
Note that this cannot be used on an entire array or hash to find out how many elements these
have. For that, usecalar @array andscalar keys %hash respectively.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success, false otherwise.

listen SOCKET,QUEUESIZE
Does the same thing that the listen system call does. Returns true if it succeeded, false otherwise.
See the example in “Sockets: Client/Server Communication” in perlipc.

local EXPR
You really probably want to be usimgy instead, becaudecal isn't what most people think of
as “local”. See “Private Variables vimy()' in perlsub for details.

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more than
one value is listed, the list must be placed in parentheses. See “Temporary Valoealf)iain
perlsub for details, including issues with tied arrays and hashes.

localtimeEXPR
Converts a time as returned by the time function to a 9—-element list with the time analyzed for the
local time zone. Typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,Syday,$isdst) =
localtime(time);

All list elements are numeric, and come straight out of the C ‘struct $sec , $min, and
$hour are the seconds, minutes, and hours of the specified Bmelay is the day of the
month, and$mon is the month itself, in the rand®.11 with 0 indicating January and 11
indicating December$year is the number of years since 1900. Thasisar is 123 in year
2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday.
$yday is the day of the year, in the ran@e364 (or0..365 in leap years.)$isdst is true

if the specified time occurs during daylight savings time, false otherwise.

Note that thebyear element isnot simply the last two digits of the year. If you assume it is,
then you create non-Y2K-compliant programs —and you wouldn’t want to do that, would you?

The proper way to get a complete 4—digit year is simply:
$year += 1900;
And to get the last two digits of the year (e.g., ‘01’ in 2001) do:
$year = sprintf("%02d", $year % 100);
If EXPRis omitted,localtime() uses the current timéoaltime(time)).
In scalar contexipcaltime() returns thectime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value isot locale dependent, see perllocale, but instead a Perl builtin. Also see the
Time::Local module (to convert the second, minutes, hours, ... back to seconds since the
stroke of midnight the 1st of January 1970, the value returneidniey), and thestrftime(3) and
mktimg(3) functions available via th@0SIX module. To get somewhat similar but locale
dependent date strings, set up your locale environment variables appropriately (please see
perllocale) and try for example:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;

Note that thé¥oaand%h the short forms of the day of the week and the month of the year, may
not necessarily be three characters wide.

perl v5.8.0 2003-08-13 99

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

lock THING
This function places an advisory lock on a shared variable, or referenced object contained in
THING until the lock goes out of scope.

lock() is a “weak keyword” : this means that if you've defined a function by this name (before
any calls to it), that function will be called instead. (However, if you've sail threads
lock() is always a keyword.) See threads.

log EXPR

log Returns the natural logarithm (baef EXPR If EXPRis omitted, returns log &§ . To get the
log of another base, use basic algebra: The base-N log of a number is equal to the natural log of
that number divided by the natural log of N. For example:

sub log10 {
my $n = shift;
return log($n)/log(10);
}
See also “exp” for the inverse operation.
IstatEXPR
Istat Does the same thing as #tat function (including setting the specialfilehandle) but stats a

symbolic link instead of the file the symbolic link points to. If symbolic links are unimplemented
on your system, a normatat is done. For much more detailed information, please see the
documentation for “stat”.

If EXPRis omitted, stat$_.
m// The match operator. See perlop.

mapBLOCK LIST

MapEXPRLIST
Evaluates th&LOCK or EXPR for each element dfiST (locally setting$_ to each element) and
returns the list value composed of the results of each such evaluation. In scalar context, returns
the total number of elements so generated. Evallit®g€K or EXPRin list context, so each
element oLIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And
%hash = map { getkey($_) => $_ } @array;

is just a funny way to write

%hash = ();

foreach $_ (@array) {
$hash{getkey($)}=$_;

}

Note that$_ is an alias to the list value, so it can be used to modify the elements0§the
While this is useful and supported, it can cause bizarre results if the elemergs afe not
variables. Using a reguldoreach loop for this purpose would be clearer in most cases. See
also “grep” for an array composed of those items of the original list for whictBILieeCK or
EXPRevaluates to true.

{ starts both hash references and blocksnap { ... could be either the start of m8pOCK
LIST or mapEXPR, LIST. Because perl doesn't look ahead for the closiriighas to take a guess
at which its dealing with based what it finds just after {théJsually it gets it right, but if it
doesn't it won't realize something is wrong until it gets to thand encounters the missing (or
unexpected) comma. The syntax error will be reported close tp lthe you'll need to change
something near thie such as using a una#yto give perl some help:

100 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

%hash=map{ "\L$ ", 1 } @array # perl guesses EXPR. wrong
%hash =map { +'\L$_", 1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_", 1) } @array # this also works

%hash=map{ Ic($),1 } @array # as does this.

%hash = map +(lc($_), 1), @array # this is EXPR and works!

%hash=map (Ic($),1), @array # evaluates to (1, @array)
or to force an anon hash constructor te
@hashes = map +{Ic($_), 1}, @array # EXPR, so needs , at end
and you get list of anonymous hashes each with only 1 entry.

mkdir FILENAME,MASK

mkdir FILENAME
Creates the directory specified B.ENAME, with permissions specified BASK (as modified
by umask). If it succeeds it returns true, otherwise it returns false and$set®rrno). If
omitted,MASK defaults to 0777.

In general, it is better to create directories with permiggixgk, and let the user modify that

with their umask, than it is to supply a restrictivdASK and give the user no way to be more
permissive. The exceptions to this rule are when the file or directory should be kept private (malil
files, for instance). Theerlfunc(l) entry onumask discusses the choice ®fASK in more

detail.

Note that according to tHe0SIX 1003.1-1996 th&ILENAME may have any number of trailing
slashes. Some operating and filesystems do not get this right, so Perl automatically removes all
trailing slashes to keep everyone happy.

msgctliD,CMD,ARG
Calls the System WC functionmsgcti(2). You'll probably have to say

use IPC::SysV,

first to get the correct constant definitions.CMID is IPC_STAT, thenARG must be a variable
which will hold the returnednsqid_ds structure. Returns likioctl : the undefined value for
error,"0 but true" for zero, or the actual return value otherwise. See also “$ysVin
perlipc,IPC::SysV , andIPC::Semaphore documentation.

msggetKEY,FLAGS
Calls the System \IPC function msggef2). Returns the message queue id, or the undefined
value if there is an error. See also “SyRC” in perlipc andIPC::SysV andIPC::Msg
documentation.

msgrcviD,VAR,SIZE, TYPE,FLAGS
Calls the System \MPC function msgrcv to receive a message from message dDeirdo
variableVAR with a maximum message sizeSIZE. Note that when a message is received, the
message type as a native long integer will be the first thingaiy followed by the actual
message. This packing may be opened withack("l! a*") . Taints the variable. Returns
true if successful, or false if there is an error. See also “$y€&Vin perlipc, IPC::SysV , and
IPC::SysV::Msg documentation.

msgsndD,MSG,FLAGS
Calls the System \PC function msgsnd to send the messsEG to the message quel®.
MSG must begin with the native long integer message type, and be followed by the length of the
actual message, and finally the message itself. This kind of packing can be achieved with
pack("ll a*", $type, $message) . Returns true if successful, or false if there is an
error. See alstPC::SysV andIPC::SysV::Msg documentation.

my EXPR

my TYPE EXPR

my EXPR: ATTRS

my TYPE EXPR: ATTRS
A mydeclares the listed variables to be local (lexically) to the enclosing block, fégabr. If
more than one value is listed, the list must be placed in parentheses.

perl v5.8.0 2003-08-13 101

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The exact semantics and interfaceTOfPE and ATTRS are still evolving. TYPE is currently
bound to the use dields pragma, and attributes are handled usingthrébutes pragma,
or starting from Perl 5.8.0 also via thtribute::Handlers module. See “Private
Variables viamy()' in perlsub for details, and fields, attributes, and Attribute::Handlers.

nextLABEL
next Thenext command is like theontinue statement in C; it starts the next iteration of the loop:
LINE: while (<STDIN>) {
next LINE if /I"#/; # discard comments
#...
}

Note that if there were @ontinue block on the above, it would get executed even on discarded
lines. If theLABEL is omitted, the command refers to the innermost enclosing loop.

next cannot be used to exit a block which returns a value suekaq} ,sub{} ordo
{} , and should not be used to exigrap() or map()operation.

Note that a block by itself is semantically identical to a loop that executes onceneusvill
exit such a block early.

See also “continue” for an illustration of holast , next , andredo work.

no ModuleVERSION LIST
no ModuleVERSION
no ModuleLIST
no Module
See the “use” function, whicho is the opposite of.

OCtEXPR

oct InterpretE€EXPR as an octal string and returns the corresponding valu&XgR happens to start
off with 0x, interprets it as a hex string. EXPR starts off withQOb, it is interpreted as a binary
string. Leading whitespace is ignored in all three cases.) The following will handle decimal,
binary, octal, and hex in the standard Perl or C notation:

$val = oct($val) if $val =" /°0/;

If EXPRis omitted, use$_. To go the other way (produce a number in octal), ysentf() or
printf():

$perms = (stat("filename™))[2] & 07777,
$oct_perms = sprintf "%lo", $perms;

Theoct() function is commonly used when a string sucl644 needs to be converted into a file
mode, for example. (Although perl will automatically convert strings into numbers as needed, this
automatic conversion assumes base 10.)

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE
Opens the file whose filename is givere¥PR, and associates it witHLEHANDLE.

(The following is a comprehensive referenceofen() for a gentler introduction you may
consider perlopentut.)

If FILEHANDLE is an undefined lexicainy) variable the variable is assigned a reference to a new
anonymous filehandle, otherwiseFiLEHANDLE is an expression, its value is used as the name
of the real filehandle wanted. (This is considered a symbolic referenagsesatrict

refs’ shouldnotbe in effect.)

If EXPR is omitted, the scalar variable of the same name asItfBHANDLE contains the
filename. (Note that lexical variables —those declared migh—will not work for this purpose;
so if you're usingmy, specifyEXPRin your call to open.)

If three or more arguments are specified then the mode of opening and the file name are separate.

102 2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

If MODE is'<’ or nothing, the file is opened for input. MODE is '>" | the file is truncated and
opened for output, being created if necessaryldbE is'>>" | the file is opened for appending,
again being created if necessary.

You can put d+' in front of the’>" or’'<’ to indicate that you want both read and write
access to the file; this<’ is almost always preferred for read/write updates —thé mode
would clobber the file first. You can't usually use either read-write mode for updating textfiles,
since they have variable length records. See-thmwvitch in perlrun for a better approach. The
file is created with permissions @666 modified by the process’mask value.

These various prefixes correspond to fihygen(3) modes ofr’ |, 'r+' | 'w
A

|W+1a

In the 2—-arguments (and 1-argument) form of the call the mode and filename should be
concatenated (in this order), possibly separated by spaces. It is possible to omit the mode in these
forms if the mode i&’

If the filename begins with[, the filename is interpreted as a command to which output is to
be piped, and if the flename ends with @ , the filename is interpreted as a command which
pipes output to us. See “Usirgpen()for IPC" in perlipc for more examples of this. (You are
not allowed toopen to a command that pipes bothand out, but see IPC::Open2, IPC::Open3,
and “Bidirectional Communication with Another Process” in perlipc for alternatives.)

For three or more argumentsNfODE is ' [+ , the filename is interpreted as a command to
which output is to be piped, andNfODE is '= O , the filename is interpreted as a command
which pipes output to us. In the 2—arguments (and 1-argument) form one should replace dash
'~) with the command. See “Usingpen()for IPC" in perlipc for more examples of this.

(You are not allowed topen to a command that pipes both and out, but see IPC::0Open2,
IPC::Open3, and “Bidirectional Communication” in perlipc for alternatives.)

In the three-or-more argument form of pipe openk|Sf is specified (extra arguments after the
command name) thanST becomes arguments to the command invoked if the platform supports
it. The meaning ofopen with more than three arguments for non-pipe modes is not yet
specified. Experimental “layers” may give exttesT arguments meaning.

In the 2—arguments (and 1-argument) form opefihg opensSTDIN and opening>-" opens
STDOUT.

You may use the three-argument form of open to sp&oifyayers” (sometimes also referred to
as “disciplines”) to be applied to the handle that affect how the input and output are processed
(see open and PerllO for more details). For example

open(FH, "<:utfg8", "file")

will open theUTF-8 encoded file containing Unicode characters, see perluniintro. (Note that if
layers are specified in the three-arg form then default layers set bgahepragma are ignored.)

Open returns nonzero upon success, the undefined value otherwiseogéth@volved a pipe,
the return value happens to be the pid of the subprocess.

If you're running Perl on a system that distinguishes between text files and binary files, then you
should check out “binmode” for tips for dealing with this. The key distinction between systems
that neecbinmode and those that don't is their text file formats. Systems like Unix, ®Igc

and Plan 9, which delimit lines with a single character, and which encode that character in C as
"“\n" , do not needbinmode . The rest need it.

When opening a file, it's usually a bad idea to continue normal execution if the request failed, so
open is frequently used in connection witie . Even ifdie won’t do what you want (say, in a

CGil script, where you want to make a nicely formatted error message (but there are modules that
can help with that problem)) you should always check the return value from opening a file. The
infrequent exception is when working with an unopened filehandle is actually what you want to
do.

As a special case the 3 arg form with a read/write mode and the third argumeniriakshg

2003-08-13 103

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open(TMP, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file.

File handles can be opened to “in memory” files held in Perl scalars via:
open($fh, '>’, \$variable) ..

Though if you try to re-opeBTDOUTor STDERRas an “in memory” file, you have to close it
first:

close STDOUT;
open STDOUT, >, \$variable or die "Can’t open STDOUT: $!";

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can't find article $ARTICLE: $\n";
while (<ARTICLE>) {...

open(LOG, ">>/ust/spool/news/twitlog’); # (log is reserved)
if the open fails, output is discarded

open(DBASE, '+<’, 'dbase.mine’) # open for update
or die "Can'’t open 'dbase.mine’ for update: $!";

open(DBASE, '+<dbase.mine’) # ditto
or die "Can'’t open 'dbase.mine’ for update: $!";

open(ARTICLE, - 0, "caesar <$article") # decrypt article
or die "Can't start caesar: $!";

open(ARTICLE, "caesar <%$article ™M # ditto
or die "Can't start caesar: $!";

open(EXTRACT, " [kort >/tmp/Tmp$$") # $$ is our process id
or die "Can't start sort: $!";

in memory files
open(MEMORY,’>’, \$var)
or die "Can'’t open memory file: $!";
print MEMORY "foo\n"; # output will end up in $v

process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, 'fh00’);
}

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {
print STDERR "Can’t open $filename: $!\n";

return;
}
local $_;
while (<$input>) { # note use of indirection
if (/"#include "(.*)"/) {
process($1, $input);
next;
}
#... # whatever
}

}

You may also, in the Bourne shell tradition, speciffEXiPR beginning with>&' , in which case

104 2003-08-13 perl v5.8.0

"~y

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

the rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric) to be
duped and opened. You may u&efter >, >>, <, +>, +>> and+<. The mode you specify
should match the mode of the original filehandle. (Duping a filehandle does not take into account
any existing contents ob buffers.) If you use the 3 arg form then you can pass either a number,
the name of a filehandle or the normal “reference to a glob”.

Here is a script that saves, redirects, and res®re®OUTandSTDERRuUsing various methods:

#!/usr/bin/perl

open my $oldout, ">&STDOUT" or die "Can’t dup STDOUT: $!";
open OLDERR, ">&", *STDERR or die "Can't dup STDERR: $!";
open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";

open STDERR, ">&STDOUT" or die "Can’t dup STDOUT: $!";
select STDERR; $ 0= 1; # make unbuffered

select STDOUT; $ 0O= 1, # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

close STDOUT;
close STDERR;

open STDOUT, ">&", $oldout or die "Can’t dup \$oldout: $!";
open STDERR, ">&OLDERR" or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify’<&=N’ , whereNis a number, then Perl will do an equivalent of fdgpen of
that file descriptor; this is more parsimonious of file descriptors. For example:

open(FILEHANDLE, "<&=$fd")
or
open(FILEHANDLE, "<&=", $fd)

Note that if Perl is using the standard C librarfdspen()then on manwNIX systemsfdopen()
is known to fail when file descriptors exceed a certain value, typically 255. If you need more file
descriptors than that, consider rebuilding Perl to us¢nO .

You can see whether Perl has been compiled with PerllO or not by ruperthgV and
looking for useperlio= line. If useperlio is define , you have PerllO, otherwise you
don't.

If you open a pipe on the command , i.e., either’ ' or '= O with 2—-arguments (or
1-argument) form obpen() then there is an implicit fork done, and the return value of open is
the pid of the child within the parent process, ahdwithin the child process. (Use
defined($pid) to determine whether the open was successful.) The filehandle behaves
normally for the parent, but i/o to that filehandle is piped from/tsTBOUT/STDINof the child

process. In the child process the filehandle isn't opened —i/o happens from/to tBeDewT

or STDIN. Typically this is used like the normal piped open when you want to exercise more
control over just how the pipe command gets executed, such as when you are running setuid, and
don’t want to have to scan shell commands for metacharacters. The following triples are more or
less equivalent:

open(FOO, " 0Or [a-z] '[A-Z]™);

open(FOO, " O, "tr'[a-z]" '[A-Z]™);
open(FOO,’ @) [exec'tr,’[a-z], [A-Z];
open(FOO, " 0O, "tr", Ta-z], '[A-Z]);

2003-08-13 105

PERLFUNC(1)

106

Perl Programmers Reference Guide PERLFUNC(1)

open(FOOQO, "cat -n '$file’ m);
open(FOO, - [0, "cat -n "$file™);
open(FOO,’- [0O) [0 exec 'cat’, ’-n’, $file;
open(FOO, - 0O, "cat", "-n’, $file);

The last example in each block shows the pipe as “list form”, which is not yet supported on all
platforms. A good rule of thumb is that if your platform has fia&() (in other words, if
your platform isSUNIX) you can use the list form.

See “Safe Pipe Opens” in perlipc for more examples of this.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see perlport). To be safe,
you may need to sek] (PAUTOFLUSH in English) or call thewutoflush() method of
I0::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor as determined by the value of $°F. See “$"F” in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish, and returns
the status value ii?.

The filename passed to 2—argument (or 1-argument) foopesf()will have leading and trailing
whitespace deleted, and the normal redirection characters honored. This property, known as
“magic open”, can often be used to good effect. A user could specify a filenatrsh afat file

T, or you could change certain filenames as needed:

$filename =" s/(.*\.gz)\s*$/gzip -dc < $1 u;
open(FH, $filename) or die "Can’t open $filename: $!";

Use 3—argument form to open a file with arbitrary weird characters in it,
open(FOO, '<, $file);
otherwise it's necessary to protect any leading and trailing whitespace:

$file =~ s#™(\s)#./$1#;
open(FOO, "< $file\0");

(this may not work on some bizarre filesystems). One should conscientiously choose between the
magicand 3—arguments form open()

open IN, $ARGVI[O0];

will allow the user to specify an argument of the fdinsh cat file ', but will not work
on a filename which happens to have a trailing space, while

open IN, '<’, $ARGVI[0];
will have exactly the opposite restrictions.

If you want a “real” Copen (seeopen(2) on your system), then you should usedysopen
function, which involves no such magic (but may use subtly different flemodes thap&e()
which is mapped to @pen(). This is another way to protect your filenames from interpretation.
For example:

use |0::Handle;

sysopen(HANDLE, $path, O_RDWR [O_CREATO_EXCL)
or die "sysopen $path: $!";

$oldfh = select(HANDLE); $ O = 1; select($oldfh);

print HANDLE "stuff $$\n";

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

Using the constructor from th#D::Handle package (or one of its subclasses, such as
10::File or I0::Socket), you can generate anonymous filehandles that have the scope of
whatever variables hold references to them, and automatically close whenever and however you
leave that scope:

2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

use |0::File;

#...

sub read_myfile_munged {
my $ALL = shift;

my $handle = new IO::File;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

}

See “seek” for some details about mixing reading and writing.

opendirDIRHANDLE,EXPR

ord EXPR
ord

Opens a directory name@&XPR for processing byreaddir , telldir , seekdir
rewinddir , andclosedir . Returns true if successful. DIRHANDLEs have their own
namespace separate from FILEHANDLES.

Returns the numeric (the native 8-bit encoding, A&Ell or EBCDIC, or Unicode) value of the
first character oEXPR If EXPRis omitted, use$_.

For the reverse, see “chr”. See perlunicode and encoding for more about Unicode.

our EXPR

ourEXPR TYPE

our EXPR: ATTRS
ourTYPE EXPR: ATTRS

perl v5.8.0

An our declares the listed variables to be valid globals within the enclosing block, fealot

That is, it has the same scoping rules as a “my” declaration, but does not create a local variable.
If more than one value is listed, the list must be placed in parenthesesurTlieclaration has

no semantic effect unless “use strict vars” is in effect, in which case it lets you use the declared
global variable without qualifying it with a package name. (But only within the lexical scope of
theour declaration. In this it differs from “use vars”, which is package scoped.)

An our declaration declares a global variable that will be visible across its entire lexical scope,
even across package boundaries. The package in which the variable is entered is determined at
the point of the declaration, not at the point of use. This means the following behavior holds:

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;

print $bar; # prints 20

Multiple our declarations in the same lexical scope are allowed if they are in different packages.
If they happened to be in the same package, Perl will emit warnings if you have asked for them.

use warnings;
package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;

our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning

An our declaration may also have a list of attributes associated with it.

The exact semantics and interfaceTOfPE and ATTRS are still evolving. TYPE is currently
bound to the use dields pragma, and attributes are handled usingthrébutes pragma,

2003-08-13 107

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

or starting from Perl 5.8.0 also via thtribute::Handlers module. See “Private
Variables viamy()' in perlsub for details, and fields, attributes, and Attribute::Handlers.

The only currently recognizeaur() attribute isunique which indicates that a single copy of

the global is to be used by all interpreters should the program happen to be running in a multi-
interpreter environment. (The default behaviour would be for each interpreter to have its own
copy of the global.) Examples:

our @EXPORT : unique = gw(foo);
our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
our $VERSION : unique = "1.00";

Note that this attribute also has the effect of making the global readonly when the first new
interpreter is cloned (for example, when the first new thread is created).

Multi-interpreter environments can come to being either throughfdhg) emulation on
Windows platforms, or by embedding perl in a multi-threaded application. uRigue
attribute does nothing in all other environments.

packTEMPLATE,LIST

108

Takes aIST of values and converts it into a string using the rules given byEN®LATE. The
resulting string is the concatenation of the converted values. Typically, each converted value
looks like its machine-level representation. For example, on 32-bit machines a converted integer
may be represented by a sequence of 4 bytes.

The TEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.

A A text (ASCII) string, will be space padded.

Z A null terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte, like vec()).
B A bit string (descending bit order inside each byte).

h A hex string (low nybble first).

H A hex string (high nybble first).

¢ A signed char value.

C An unsigned char value. Only does bytes. See U for Unicode.
s A signed short value.

S An unsigned short value.

(This 'short’ is _exactly_ 16 bits, which may differ from
what a local C compiler calls 'short’. If you want
native-length shorts, use the '!" suffix.)

i A signed integer value.
An unsigned integer value.

(This 'integer’ is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int’,
and may even be larger than the 'long’ described in
the next item.)

| A signed long value.
L An unsigned long value.
(This 'long’ is _exactly 32 bits, which may differ from
what a local C compiler calls 'long’. If you want
native-length longs, use the '’ suffix.)

An unsigned short in "network" (big-endian) order.
An unsigned long in "network" (big-endian) order.
An unsigned short in "VAX" (little-endian) order.
An unsigned long in "VAX" (little-endian) order.
(These 'shorts’ and 'longs’ are _exactly 16 bits and
_exactly 32 bits, respectively.)

<< =zZ>

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

q A signed quad (64-bit) value.
Q An unsigned quad value.
(Quads are available only if your system supports 64-bit
integer values _and__ if Perl has been compiled to support those
Causes a fatal error otherwise.)

A signed integer value (a Perl internal integer, V).
An unsigned integer value (a Perl internal unsigned integer, UV).

j

J

f A single-precision float in the native format.
d A double-precision float in the native format.
F

A floating point value in the native native format
(a Perl internal floating point value, NV).
D A long double-precision float in the native format.
(Long doubles are available only if your system supports long
double values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

p A pointer to a null-terminated string.
P A pointer to a structure (fixed-length string).

u A uuencoded string.
U A Unicode character number. Encodes to UTF-8 internally
(or UTF-EBCDIC in EBCDIC platforms).

w A BER compressed integer. Its bytes represent an unsigned
integer in base 128, most significant digit first, with as
few digits as possible. Bit eight (the high bit) is set
on each byte except the last.

x A null byte.

X Back up a byte.

@ Null fill to absolute position.
(Start of a ()-group.

The following rules apply:

. Each letter may optionally be followed by a number giving a repeat count. With all
types except, A, Z, b, B, h, H, @ x, X andP the pack function will gobble up that
many values from thelST. A * for the repeat count means to use however many items
are left, except fo@ x, X, where it is equivalent td, andu, where it is equivalent to 1
(or 45, what is the same). A numeric repeat count may optionally be enclosed in
brackets, as ipack 'C[80]', @arr

One can replace the numeric repeat count by a template enclosed in brackets; then the
packed length of this template in bytes is used as a count. For exafhpleskips a

long (it skips the number of bytes in a long); the tembat&[$t] $t unpack(®

twice what$t unpacks. If the template in brackets contains alignment commands
(such ax![d]), its packed length is calculated as if the start of the template has the
maximal possible alignment.

When used witlzZ, * results in the addition of a trailing null byte (so the packed result
will be one longer than the bytength of the item).

The repeat count far is interpreted as the maximal number of bytes to encode per line
of output, with 0 and 1 replaced by 45.

. The a, A, andZ types gobble just one value, but pack it as a string of length count,
padding with nulls or spaces as necessary. When unpadkisigips trailing spaces
and nulls,Z strips everything after the first null, aadreturns data verbatim. When
packing,a, andZ are equivalent.

If the value-to-pack is too long, it is truncated. If too long and an explicit count is
provided,Z packs only$count-1 bytes, followed by a null byte. Thus always
packs a trailing null byte under all circumstances.

perl v5.8.0 2003-08-13 109

PERLFUNC(1)

110

Perl Programmers Reference Guide PERLFUNC(1)

Likewise, theb andB fields pack a string that many bits long. Each byte of the input
field of pack() generates 1 bit of the result. Each result bit is based on the least-
significant bit of the corresponding input byte, i.e.ocot($byte)%2 . In particular,
bytes"0" and"l1" generate bits 0 and 1, as do by%s and"\1"

Starting from the beginning of the input string pdck() each 8-tuple of bytes is

converted to 1 byte of output. With formatthe first byte of the 8-tuple determines
the least-significant bit of a byte, and with forrBait determines the most-significant
bit of a byte.

If the length of the input string is not exactly divisible by 8, the remainder is packed as
if the input string were padded by null bytes at the end. Similarly, duripgck()ng
the “extra” bits are ignored.

If the input string ofpack()is longer than needed, extra bytes are ignored. fér the
repeat count gback()means to use all the bytes of the input field. W@pack()ng the
bits are converted to a string'@®"' s and'1" s.

The h and H fields pack a string that many nybbles (4-bit groups, representable as
hexadecimal digits, 0-9a-f) long.

Each byte of the input field obpack() generates 4 bits of the result. For non-
alphabetical bytes the result is based on the 4 least-significant bits of the input byte, i.e.,
onord($byte)%16 . In particular, bytes0" and"1" generate nybbles O and 1, as

do bytes"\0" and "\1" . For bytes"a"."f" and "A".."F" the result is
compatible with the usual hexadecimal digits, so that and"A" both generate the
nybble Oxa==10. The result for bytes"g".."z" and "G".."Z" is not

well-defined.

Starting from the beginning of the input stringpafck() each pair of bytes is converted
to 1 byte of output. With formal the first byte of the pair determines the least-
significant nybble of the output byte, and with fornkhtit determines the most-
significant nybble.

If the length of the input string is not even, it behaves as if padded by a null byte at the
end. Similarly, duringinpack(ing the “extra” nybbles are ignored.

If the input string ofpack()is longer than needed, extra bytes are ignored. fér the
repeat count gback()means to use all the bytes of the input field. W@pack()ng the
bits are converted to a string of hexadecimal digits.

Thep type packs a pointer to a null-terminated string. You are responsible for ensuring
the string is not a temporary value (which can potentially get deallocated before you get
around to using the packed result). Thiype packs a pointer to a structure of the size
indicated by the length. AULL pointer is created if the corresponding valuegfar

P is undef , similarly forunpack()

The/ template character allows packing and unpacking of strings where the packed
structure contains a byte count followed by the string itself. You weteth-
item’ string-item

Thelength-itemcan be anypack template letter, and describes how the length value is
packed. The ones likely to be of most use are integer-packing ones (fke Java
strings),w (for ASN.1 or SNMP) andN (for SUnXDR).

The string-itemmust, at present, B&*" |, "a*' or"Z*' . Forunpack the length of
the string is obtained from thength-item but if you put in the ™ it will be ignored.

unpack 'C/a’, "\04Gurusamy"; gives 'Guru’
unpack 'a3/A* A*,'007 Bond J ’; gives (' Bond’,'J")
pack 'n/a* w/a*’hello,’,'world’; gives "\000\006hello,\005wo

Thelength-itemis not returned explicitly fromnpack .

Adding a count to théength-itemletter is unlikely to do anything useful, unless that
letter isA, a or Z. Packing with alength-itemof a or Z may introduce™\000"

2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

characters, which Perl does not regard as legal in numeric strings.

The integer types, S, | , andL may be immediately followed by!asuffix to signify
native shorts or longs—as you can see fromvalfor example a baré does mean
exactly 32 bits, the natideng (as seen by the local C compiler) may be larger. This
is an issue mainly in 64-bit platforms. You can see whether usimgakes any
difference by

print length(pack("s"), " ", length(pack("s!")), "\n";
print length(pack("l")), " ", length(pack("I!")), "\n";

i! andl! also work but only because of completeness; they are identicalrtdl .

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the platform
where Perl was built are also available via Config:

use Config;

print $Config{shortsize}, "\n";

print $Config{intsize}, "\n";

print $Config{longsize}, “\n";

print $Config{longlongsize}, "\n";
(The $Config{longlongsize} will be undefine if your system does not support
long longs.)
The integer formats, S, i, 1,1, L, j, andJ are inherently non-portable between

processors and operating systems because they obey the native byteorder and
endianness. For example a 4-byte integer 0x12345678 (305419896 decimal) would be
ordered natively (arranged in and handled byaeregisters) into bytes as

0x12 0x34 0x56 0x78 # big-endian
0x78 0x56 0x34 0x12 # little-endian

Basically, the Intel an?¥AX CPUs are little—endian, while everybody else, for example
Motorola m68k/88kPPG Sparc,HP PA Power, and Cray are big—endian. Alpha and
MIPS can be either: Digital/Compaq used/uses them in little-endian mode; SGI/Cray
uses them in big-endian mode.

The names ‘big-endian’ and ‘little—endian’ are comic references to the classic
“Gulliver's Travels” (via the paper “On Holy Wars and a Plea for Peace” by Danny
Cohen,UsC/ISI IEN137, April 1, 1980) and the egg-eating habits of the Lilliputians.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can see your system’s preference with

print join(" ", map { sprintf "%#02x", $_}
unpack("C*",pack("L",0x12345678))), "\n"

The byteorder on the platform where Perl was built is also available via Config:

use Config;
print $Config{byteorder}, "\n";

Byteorders1234’ and’'12345678' are little—endian'4321’ and’'87654321’
are big—endian.

If you want portable packed integers use the fornmat®\, v, andV, their byte
endianness and size are known. See also perlport.

Real numbers (floats and doubles) are in the native machine format only; due to the
multiplicity of floating formats around, and the lack of a standard “network”
representation, no facility for interchange has been made. This means that packed
floating point data written on one machine may not be readable on another — even if
both use IEEE floating point arithmetic (as the endian-ness of the memory

2003-08-13 111

PERLFUNC(1)

112

Perl Programmers Reference Guide PERLFUNC(1)

representation is not part of tHeEE spec). See also perlport.

Note that Perl uses doubles internally for all numeric calculation, and converting from
double into float and thence back to double again will lose precision (i.e.,
unpack("f", pack("f", $foo)) will not in general equéfoo).

If the pattern begins with 8, the resulting string will be treated as Unicode—encoded.
You can forceUTF8 encoding on in a string with an initial0, and the bytes that follow

will be interpreted as Unicode characters. If you don’t want this to happen, you can
begin your pattern witlCO (or anything else) to force Perl not t0'F8 encode your
string, and then follow this withld* somewhere in your pattern.

You must yourself do any alignment or padding by inserting for example endugs
while packing. There is no way fmck()andunpack()could know where the bytes are
going to or coming from. Therefopack (andunpack) handle their output and input
as flat sequences of bytes.

A ()—group is a sub-TEMPLATE enclosed in parentheses. A group may take a repeat
count, both as postfix, and via theemplate character.

x and X accept! modifier. In this case they act as alignment commands: they jump
forward/back to the closest position aligned at a multiplecanfnt bytes. For
example, topack() or unpack() C's struct {char c; double d; char

cc[2]} one may need to use the templ@tex![d] d C[2] ; this assumes that
doubles must be aligned on the double’s size.

For alignment commandsount of O is equivalent tacount of 1; both result in
no-ops.

A comment in FEEMPLATE starts with# and goes to the end of line.

If TEMPLATE requires more arguments pack() than actually givenpack() assumes

additional™ arguments. ITEMPLATE requires less argumentspack()than actually
given, extra arguments are ignored.

Examples:

$foo = pack("CCCC",65,66,67,68);

foo eq"ABCD"

$foo = pack("C4",65,66,67,68);

same thing

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
same thing with Unicode circled letters

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\O\OCD"

note: the above examples featuring "C" and "c" are true

only on ASCIl and ASCII-derived systems such as ISO Latin 1
and UTF-8. In EBCDIC the first example would be

$foo = pack("CCCC",193,194,195,196);

$foo = pack("s2",1,2);
"\1\0\2\0" on little-endian
"\0\1\0\2" on big-endian

$foo = pack("a4","abcd","x","y","z"),

"abcd"

$foo = pack("aaaa","abcd","x","y","z");
"axyz"

$foo = pack("al4","abcdefg");

"abcdefg\O\0O\O\0\0\0\O"

$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$utmp_template ="Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmpl);
a struct utmp (BSDish)

@utmp?2 = unpack($utmp_template, $utmp);
"@utmpl" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
}

$foo = pack('sx2l', 12, 34);

short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);

short 12, zero fill to position 4, long 34

$foo eq $bar

The same template may generally also be usadpack()

packageNAMESPACE

package Declares the compilation unit as being in the given namespace. The scope of the package
declaration is from the declaration itself through the end of the enclosing block, file, or eval (the
same as theny operator). All further unqualified dynamic identifiers will be in this namespace.
A package statement affects only dynamic variables —including those you'velagséd
on—but not lexical variables, which are created withy. Typically it would be the first
declaration in a file to be included by trequire or use operator. You can switch into a
package in more than one place; it merely influences which symbol table is used by the compiler
for the rest of that block. You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double c@Backage::Variable
If the package name is null, theain package as assumed. That$issail is equivalent to
$main::sail (as well as t@dmain’sail , still seen in older code).

If NAMESPACE is omitted, then there is no current package, and all identifiers must be fully
qualified or lexicals. However, you are strongly advised not to make use of this feature. Its use
can cause unexpected behaviour, even crashing some versions of Perl. It is deprecated, and will
be removed from a future release.

See “Packages” in perimod for more information about packages, modules, and classes. See
perlsub for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that Perl's
pipes uselO buffering, so you may need to skflto flush yourwRITEHANDLE after each
command, depending on the application.

See IPC::0Open2, IPC::Open3, and “Bidirectional Communication” in perlipc for examples of
such things.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors as determined by the value of $°F. See “$"F” in perlvar.

POPARRAY
pop Pops and returns the last value of the array, shortening the array by one element. Has an effect
similar to

$ARRAY[$#ARRAY--]

If there are no elements in the array, returns the undefined value (although this may happen at
other times as well). IARRAY is omitted, pops th@ARG¥rray in the main program, and the
@ _array in subroutines, just lilshift

POSSCALAR

pos Returns the offset of where the ladtg search left off for the variable in questidh (is used
when the variable is not specified). May be modified to change that offset. Such modification
will also influence th&G zero-width assertion in regular expressions. See perlre and perlop.

perl v5.8.0 2003-08-13 113

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

114

print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns true if succes$flEHANDLE may be a scalar

variable name, in which case the variable contains the name of or a reference to the filehandle,

thus introducing one level of indirectionN@TE: If FILEHANDLE is a variable and the next token

is a term, it may be misinterpreted as an operator unless you interpose jaut parentheses
around the arguments.) RfLEHANDLE is omitted, prints by default to standard output (or to the
last selected output channel—see “select”).LIST is also omitted, print$_ to the currently
selected output channel. To set the default output channel to something oth&T IR use

the select operation. The current valuebpf (if any) is printed between ea¢hST item. The
current value o\ (if any) is printed after the entiteST has been printed. Because print takes
aLIST, anything in theLIST is evaluated in list context, and any subroutine that you call will have
one or more of its expressions evaluated in list context. Also be careful not to follow the print

keyword with a left parenthesis unless you want the corresponding right parenthesis to terminate

the arguments to the print—interpose ar put parentheses around all the arguments.

Note that if you're storingFILEHANDLES in an array or other expression, you will have to use a
block returning its value instead:

print { $files[$i] } "stuffin";
print { $OK ? STDOUT : STDERR } "stuff\n";
printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST
Equivalent toprint FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the

output record separator) is not appended. The first argument of the list will be interpreted as the

printf format. Seesprintf for an explanation of the format argumentuse locale is

in effect, the character used for the decimal point in formatted real numbers is affected by the

LC_NUMERIC locale. See perllocale.

Don't fall into the trap of using printf ~ when a simplgrint would do. Theprint is more
efficient and less error prone.

prototypeFUNCTION
Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION s a reference to, or the name of, the function whose prototype you want to retrieve.

If FUNCTION is a string starting witlCORE::, the rest is taken as a name for Perl builtin. If the
builtin is notoverridable (such asgw//) or its arguments cannot be expressed by a prototype
(such assystem) returnsundef because the builtin does not really behave like a Perl function.
Otherwise, the string describing the equivalent prototype is returned.

PushARRAY,LIST
TreatsARRAY as a stack, and pushes the valuesI®T onto the end oARRAY. The length of
ARRAY increases by the length bfST. Has the same effect as

for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;
}

but is more efficient. Returns the new number of elements in the array.

g/STRING/
gq/STRING/
gr/STRING/
gx/STRING/
gW/STRING/
Generalized quotes. See “Regexp Quote-Like Operators” in perlop.

quotemet&EXPR

guotemeta
Returns the value &XPRwith all non—"“word” characters backslashed. (That is, all characters
not matching/[A-Za-z_0-9]/ will be preceded by a backslash in the returned string,
regardless of any locale settings.) This is the internal function implementin@ tiescape in
double-quoted strings.

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)
If EXPRis omitted, use$_.
randEXPR
rand Returns a random fractional number greater than or eqQadrd less than the value BXPR

(EXPR should be positive.) IEXPR is omitted, the valud is used. CurrenthEXPR with the
valueO is also special-cased &s- this has not been documented before perl 5.8.0 and is subject
to change in future versions of perl. Automatically catBnd unlesssrand has already been
called. See alssrand .

Apply int() to the value returned lnand() if you want random integers instead of random
fractional numbers. For example,

int(rand(10))
returns a random integer betwe®and9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then
your version of Perl was probably compiled with the wrong numbRANDBITS.)

readFILEHANDLE,SCALAR,LENGTH,OFFSET
readFILEHANDLE,SCALAR,LENGTH

Attempts to readLENGTH characters of data into variableSCALAR from the specified
FILEHANDLE. Returns the number of characters actually raat, end of file, or undef if there
was an error (in the latter ca$é is also set).SCALAR will be grown or shrunk to the length
actually read. IfSCALAR needs growing, the new bytes will be zero bytes. O&FSETmay be
specified to place the read data into some other pla&€AnAR than the beginning. The call is
actually implemented in terms of either Perl's or systeir@ad() call. To get a trugead(2)
system call, sesysread .

Note thecharacters depending on the status of the filehandle, either (8—bit) bytes or characters
are read. By default all filehandles operate on bytes, but for example if the filehandle has been
opened with theutf8 1/O layer (see “open”, and thepen pragma, open), the I/O will operate

on characters, not bytes.

readdirDIRHANDLE

Returns the next directory entry for a directory openedpmndir . If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, returns an
undefined value in scalar context or a null list in list context.

If you're planning to filetest the return values out ofeaddir , you'd better prepend the
directory in question. Otherwise, because we didndir there, it would have been testing the
wrong file.

opendir(DIR, $some_dir) [die "can’t opendir $some_dir: $!";
@dots = grep { /'\./ && -f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readlineEXPR

Reads from the filehandle whose typeglob is containe®EXPR In scalar context, each call

reads and returns the next line, until end-of-file is reached, whereupon the subsequent call returns
undef. In list context, reads until end-of-file is reached and returns a list of lines. Note that the
notion of “line” used here is however you may have defined it wifi or
$INPUT_RECORD_SEPARATQRSee “$/" in perlvar.

When$/ is set toundef , whenreadline()is in scalar context (i.e. file slurp mode), and when an
empty file is read, it returris the first time, followed byndef subsequently.

This is the internal function implementing tiEXPR>operator, but you can use it directly. The
<EXPR>operator is discussed in more detail in “I/O Operators” in perlop.

$line = <STDIN>;
$line = readline(*STDIN); # same thing

readlinkEXPR
readlink Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a fatal

perl v5.8.0

error. If there is some system error, returns the undefined value ar#l ggisno). IfEXPRis
omitted, use$_.

2003-08-13 115

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

readpipeEXPR
EXPR is executed as a system command. The collected standard output of the command is
returned. In scalar context, it comes back as a single (potentially multi-line) string. In list
context, returns a list of lines (however youve defined lines wi#h or
$INPUT_RECORD_SEPARATQRThis is the internal function implementing the/EXPR/
operator, but you can use it directly. TipdEXPR/ operator is discussed in more detail in “I/O
Operators” in perlop.

recvSOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attempts to recENETH characters of data into variable
SCALAR from the specifie®OCKET filehandle. SCALAR will be grown or shrunk to the length
actually read. Takes the same flags as the system call of the same name. Returns the address of
the sender iSOCKETSs protocol supports this; returns an empty string otherwise. If there’s an
error, returns the undefined value. This call is actually implemented in termes\wdfom(2)
system call. SeeUDP: Message Passing” in perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are
received. By default all sockets operate on bytes, but for example if the socket has been changed
usingbinmode(Jto operate with theutf8 1/O layer (see thepen pragma, open), the I/O will
operate on characters, not bytes.

redoLABEL

redo Theredo command restarts the loop block without evaluating the conditional again. The
continue block, if any, is not executed. If tHeABEL is omitted, the command refers to the
innermost enclosing loop. This command is normally used by programs that want to lie to
themselves about what was just input:

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s O{*}.%{.*} 1 D {

s 00
if(s O* 00D {
$front=9_;
while (<STDIN>) {
if (M) { # end of comment?
sO Bfront{ O
redo LINE;
}
}
} .
print;

}

redo cannot be used to retry a block which returns a value suebadg} ,sub {} ordo
{} , and should not be used to exigrap() or map()operation.

Note that a block by itself is semantically identical to a loop that executes once.retious
inside such a block will effectively turn it into a looping construct.

See also “continue” for an illustration of holast , next , andredo work.

ref EXPR

ref Returns a true value EXPRis a reference, false otherwise.EXPRis not specified$ will be
used. The value returned depends on the type of thing the reference is a reference to. Builtin
types include:

116 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE

If the referenced object has been blessed into a package, then that package name is returned
instead. You can think oéf as atypeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}

if (UNIVERSAL::isa($r, "HASH"){ # for subclassing
print "r is a reference to something that isa hash.\n";
}

See also perlref.

renameOLDNAME ,NEWNAME
Changes the name of a file; an existing REWNAME will be clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system implementation. For example,
it will usually not work across file system boundaries, even though the systetommand
sometimes compensates for this. Other restrictions include whether it works on directories, open
files, or pre-existing files. Check perlport and either thiegameg2) manpage or equivalent
system documentation for details.

requireVERSION

requireEXPR

require Demands a version of Perl specified/BRSION, or demands some semantics specifie&X§R
or by$_ if EXPRIis not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compakddoa
literal of the form v5.6.1, which will be compared®d/ (aka$PERL_VERSION. A fatal error

is produced at run time WERSION is greater than the version of the current Perl interpreter.
Compare with “use”, which can do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl which do not support this syntax. The
equivalent numeric version should be used instead.

require v5.6.1; # run time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards compatibility

Otherwise, demands that a library file be included if it hasn't already been included. The file is
included via the do-FILE mechanism, which is essentially just a varietyadf. Has semantics
similar to the following subroutine:

perl v5.8.0 2003-08-13 117

PERLFUNC(1)

118

Perl Programmers Reference Guide PERLFUNC(1)

sub require {
my($filename) = @ _;
return 1 if $SINC{$filename};
my($realfilename, $result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (-f $realfilename) {
S$INC{$filename} = $realfilename;
$result = do $realfilename;
last ITER;
}
}
die "Can't find $filename in \@INC";
}
delete $INC{$filename} if $@ (O '$result;
die $@ if $@;
die "$filename did not return true value" unless $result;
return $result;

}

Note that the file will not be included twice under the same specified name. The file must return
true as the last statement to indicate successful execution of any initialization code, so it's
customary to end such a file with unless you're sure it'll return true otherwise. But it's better
just to put thel; , in case you add more statements.

If EXPRis a bareword, the require assumespat" extension and replaces::™ with " /" in the
filename for you, to make it easy to load standard modules. This form of loading of modules
does not risk altering your namespace.

In other words, if you try this:
require Foo::Bar; # a splendid bareword

The require function will actually look for thé&do/Bar.pni file in the directories specified in the
@INCarray.

But if you try this:

$class = 'Foo::Bar’;
require $class; # $class is not a bareword
#or

require "Foo::Bar"; # not a bareword because of the

The require function will look for theFbo::Bar” file in the @INCarray and will complain about
not finding "Foo::Bar" there. In this case you can do:

eval "require $class";

You can also insert hooks into the import facility, by putting directly Perl code int@tinC
array. There are three forms of hooks: subroutine references, array references and blessed
objects.

Subroutine references are the simplest case. When the inclusion system walks@k€Gghd
encounters a subroutine, this subroutine gets called with two parameters, the first being a
reference to itself, and the second the name of the file to be included=6aBdr.pni). The
subroutine should returandef or a filehandle, from which the file to include will be read. If
undef is returnedrequire will look at the remaining elements @INC

If the hook is an array reference, its first element must be a subroutine reference. This subroutine
is called as above, but the first parameter is the array reference. This enables to pass indirectly
some arguments to the subroutine.

In other words, you can write:

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

push @INC, \&my_sub;
sub my_sub {
my ($coderef, $filename) = @_; # $coderef is \&my_sub

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {
my ($arrayref, $filename) = @_;
Retrieve $x, 3y, ...
my @parameters = @$arrayref[1l..$#$arrayref];

}

If the hook is an object, it must provide &NC method, that will be called as above, the first
parameter being the object itself. (Note that you must fully qualify the sub’s name, as it is always
forced into packagmain .) Here is a typical code layout:

In Foo.pm
package Foo;
subnew{...}
sub Foo::INC {
my ($self, $filename) = @_;

}

In the main program
push @INC, new Foo(...);

Note that these hooks are also permitted to se?ddC entry corresponding to the files they
have loaded. See “%INC” in perlvar.

For a yet-more-powerful import facility, see “use” and perimod.

resetEXPR

reset Generally used incantinue block at the end of a loop to clear variables and f&ekearches
so that they work again. The expression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of those letters are reset to their
pristine state. If the expression is omitted, one-match seargpaten?) are reset to match
again. Resets only variables or searches in the current package. Always returns 1. Examples:

reset 'X’; # reset all X variables
reset 'a-z’; # reset lower case variables
reset; # just reset ?one-time? searches

Resetting"A-Z" is not recommended because you'll wipe out yoRARGANd @INCarrays
and your%ENVWhash. Resets only package variables — lexical variables are unaffected, but they
clean themselves up on scope exit anyway, so you'll probably want to use them instead. See

“ ”

my”.

returnEXPR

return Returns from a subroutineyal , or do FILE with the value given irEXPR Evaluation of
EXPRmay be in list, scalar, or void context, depending on how the return value will be used, and
the context may vary from one execution to the next (ge#tarray). If no EXPRis given,
returns an empty list in list context, the undefined value in scalar context, and (of course) nothing
at all in a void context.

(Note that in the absence of an explieiturn , a subroutine, eval, or daLE will automatically
return the value of the last expression evaluated.)

reverseLIST
In list context, returns a list value consisting of the elementdsaf in the opposite order. In
scalar context, concatenates the element$3if and returns a string value with all characters in

perl v5.8.0 2003-08-13 119

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

120

the opposite order.

print reverse <>; # line tac, last line first
undef $/; # for efficiency of <>
print scalar reverse <>; # character tac, last line tsrif

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted hash.
Also, this has to unwind one hash and build a whole new one, which may take some time on a

large hash, such as fronbaM file.

%by _name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory forrdélagldir routine on
DIRHANDLE.

rindexSTRSUBSTR,POSITION

rindexSTRSUBSTR
Works just likeindex() except that it returns the position of th&ST occurrence oBUBSTRIN
STR If POSITIONIs specified, returns the last occurrence at or before that position.

rmdir FILENAME
rmdir Deletes the directory specified B\rtENAME if that directory is empty. If it succeeds it returns
true, otherwise it returns false and sgts(errno). IfFILENAME is omitted, use$_.

s/l The substitution operator. See perlop.

scalarEXPR
ForcesEXPRto be interpreted in scalar context and returns the valBErR

@counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context because in
practice, this is never needed. If you really wanted to do so, however, you could use the
construction@{[(some expression)]} , but usually a simplésome expression)

suffices.

Becausescalar is unary operator, if you accidentally use #XPR a parenthesized list, this
behaves as a scalar comma expression, evaluating all but the last element in void context and
returning the final element evaluated in scalar context. This is seldom what you want.

The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the moral equivalent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE's position, just like thefseek call of stdio . FILEHANDLE may be an
expression whose value gives the name of the filehandle. The valwedEONCE are0 to set the
new positionin bytesto POSITION 1 to set it to the current position ple®©SITION and2 to set
it to EOF plus POSITION (typically negative). FOrwHENCE you may use the constants
SEEK_SET SEEK CURandSEEK_ENDstart of the file, current position, end of the file) from
the Fcntl module. Returrisupon succes$) otherwise.

Note thein bytes even if the filehandle has been set to operate on characters (for example by
using the:utf8 open layer),tell() will return byte offsets, not character offsets (because
implementing that would rendseek(Jandtell() rather slow).

If you want to position file fosysread or syswrite , don't useseek ——buffering makes its
effect on the file's system position unpredictable and non—portablesydseek instead.

Due to the rules and rigors afNSI C, on some systems you have to do a seek whenever you

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

switch between reading and writing. Amongst other things, this may have the effect of calling
stdio’sclearerr(3). AWHENCEof 1 (SEEK_CURIis useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulatitagi —f . Once you hitEOF on your read, and
then sleep for a while, you might have to stick iseek()to reset things. Theeek doesn't
change the current position, butdibesclear the end-of-file condition on the handle, so that the
next<FILE> makes Perl try again to read something. We hope.

If that doesn’t work (som& implementations are particularly cantankerous), then you may need
something more like this:

for () {
for ($curpos = tell(FILE); $ = <FILE>;
$curpos = tell(FILE)) {
search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}

seekdirDIRHANDLE,POS
Sets the current position for tlreaddir routine onDIRHANDLE. POS must be a value
returned bytelldir . Has the same caveats about possible directory compaction as the
corresponding system library routine.

selectFILEHANDLE

select Returns the currently selected filehandle. Sets the current default filehandle for output, if
FILEHANDLE is supplied. This has two effects: firstwaite or aprint without a filehandle
will default to thisFILEHANDLE. Second, references to variables related to output will refer to
this output channel. For example, if you have to set the top of form format for more than one
output channel, you might do the following:

select(REPORT1);
$" = reportl_top’;
select(REPORT?2);
$" = report2_top’;
FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:
$oldfh = select(STDERR); $ O = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write
the last example as:

use 10::Handle;
STDERR->autoflush(1);

selectRBITSWBITS,EBITS, TIMEOUT
This calls theseleci(2) system call with the bit masks specified, which can be constructed using
fileno andvec, along these lines:
$rin = $win = $ein = 7;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1,
$ein = $rin O $win;

If you want to select on many filehandles you might wish to write a subroutine:

perl v5.8.0 2003-08-13 121

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub fhbits {
my(@fhlist) = split(*,$_[0]);
my($bits);
for (@fhlist) {
vec($bits,fileno($_),1) = 1;
}

$bits;

}
$rin = thbits(STDIN TTY SOCK);

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=%ein, Stimeout);

or to block until something becomes ready just do this
$nfound = select($rout=%$rin, $wout=$win, $eout=3%ein, undef);

Most systems do not bother to return anything usefitimeleft , so callingselect()in scalar
context just return$nfound .

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. Note: not all implementations are capable of returningtthreleft . If not, they
always returrtimeleft ~ equal to the suppliegtimeout

You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (saySIGALRM) is
implementation—-dependent.

WARNING : One should not attempt to mix buffered I/O (likead or <FH>) with select
except as permitted BBOSIX, and even then only dPOSIXsystems. You have to usgsread
instead.

semctliD,SEMNUM,CMD,ARG
Calls the System WC functionsemctl . You'll probably have to say

use IPC::SysV,

first to get the correct constant definitions CMID is IPC_STAT or GETALL, thenARG must be a
variable which will hold the returned semid_ds structure or semaphore value array. Returns like
ioctl : the undefined value for errorD" but true " for zero, or the actual return value
otherwise. Th&RG must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem) . See also *“SysV IPC’ in perlipc, [IPC:SysV |,
IPC::Semaphore documentation.

semgeKEY ,NSEMS,FLAGS
Calls the System \PC function semget. Returns the semaphore id, or the undefined value if
there is an error. See also “Sys$NC" in perlipc, IPC::SysV , IPC::SysV::Semaphore
documentation.

semopKEY,OPSTRING
Calls the System WC function semop to perform semaphore operations such as signalling and
waiting. OPSTRINGmust be a packed array of semop structures. Each semop structure can be
generated withpack("s!3", $semnum, $semop, $semflag) . The number of
semaphore operations is implied by the lengt®@PRSTRING Returns true if successful, or false
if there is an error. As an example, the following code waits on semagiiseranum of
semaphore i$semid:

$semop = pack("s!3", $semnum, -1, 0);
die "Semaphore trouble: $1\n" unless semop($semid, $semop);

To signal the semaphore, replacewith 1. See also “SysMPC” in perlipc, IPC::SysV , and
IPC::SysV::Semaphore documentation.

122 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sendSOCKET,MSG,FLAGS, TO

sendSOCKET,MSG,FLAGS
Sends a message on a socket. Attempts to send thensgal@n theSOCKETfilehandle. Takes
the same flags as the system call of the same name. On unconnected sockets you must specify a
destination to sendO, in which case it does a €=ndto . Returns the number of characters
sent, or the undefined value if there is an error. The C systensezalms¢?) is currently
unimplemented. SeeUDP: Message Passing” in perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are
sent. By default all sockets operate on bytes, but for example if the socket has been changed
usingbinmode()to operate with theutf8 1/O layer (see “open”, or th@pen pragma, open),

the 1/0O will operate on characters, not bytes.

setpgrpPID,PGRP
Sets the current process group for the spec#ied O for the current process. Will produce a
fatal error if used on a machine that doesn't implenrergiX setpgid2) or BSD setpgrp(2). If
the arguments are omitted, it default9)t0 . Note that theBSD 4.2 version ofetpgrp does
not accept any arguments, so osétpgrp(0,0) is portable. See ald@0OSIX::setsid()

setpriorityWHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a usersefpaerity(2).) Will
produce a fatal error if used on a machine that doesn't implesagniority(2).

setsockopSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an @PDOVAL may be
specified asindef if you don’t want to pass an argument.

shift ARRAY

shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving
everything down. If there are no elements in the array, returns the undefined valRAYf is
omitted, shifts the@ array within the lexical scope of subroutines and formats, an@heGV
array at file scopes or within the lexical scopes established v#he , BEGIN {} , INIT
{} ,CHECK {} ,andEND {} constructs.

See alsanshift , push, andpop. shift andunshift do the same thing to the left end of
an array thapop andpush do to the right end.

shmctliD,CMD,ARG
Calls the System WC function shmctl. You'll probably have to say

use IPC::SysV;

first to get the correct constant definitions.CMID is IPC_STAT, thenARG must be a variable
which will hold the returneghmid_ds structure. Returns like ioctl: the undefined value for
error, '0 but true" for zero, or the actual return value otherwise. See also “B®&\Mn perlipc
andIPC::SysV documentation.

shmgeKEY,SIZE,FLAGS
Calls the System MPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an error. See also “Sy®¢’ in perlipc and IPC::SysV
documentation.

shmreadD,VAR,POS,SIZE

shmwritelD,STRING,POS,SIZE
Reads or writes the System V shared memory segimestarting at positiolPOSfor size SIZE
by attaching to it, copying in/fout, and detaching from it. When readig,must be a variable
that will hold the data read. When writing,9fRING is too long, onlySIZE bytes are used; if
STRING s too short, nulls are written to fill o81ZE bytes. Return true if successful, or false if
there is an errorshmread()taints the variable. See also “Sys®WC" in perlipc, IPC::SysV
documentation, and tHBC::Shareable module fromCPAN.

shutdownSOCKET,HOW
Shuts down a socket connection in the manner indicatedH®y, which has the same
interpretation as in the system call of the same name.

perl v5.8.0 2003-08-13 123

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

shutdown(SOCKET, 0); # llwe have stopped reading data
shutdown(SOCKET, 1); # l/we have stopped writing data
shutdown(SOCKET, 2); # l/we have stopped using this socket

This is useful with sockets when you want to tell the other side you're done writing but not done
reading, or vice versa. It's also a more insistent form of close because it also disables the file
descriptor in any forked copies in other processes.

2:2 . Returns the sine &XPR (expressed in radians). HXPRis omitted, returns sine & .
For the inverse sine operation, you may use Mah::Trig::asin function, or use this
relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
sleepEXPR

sleep Causes the script to sleep EXPR seconds, or forever if nBEXPR May be interrupted if the
process receives a signal suchsd6ALRM Returns the number of seconds actually slept. You
probably cannot mixalarm andsleep calls, becaussleep is often implemented using
alarm .

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds. Most modern systems always sleep the full amount. They may appear
to sleep longer than that, however, because your process might not be scheduled right away in a
busy multitasking system.

For delays of finer granularity than one second, you may use 8etall interface to access
setitimen(2) if your system supports it, or else see “select” above. The Time::HiRes module
(from CPAN, and starting from Perl 5.8 part of the standard distribution) may also help.

See also theosiXmodule’spause function.

socketSOCKET,DOMAIN,TYPE,PROTOCOL
Opens a socket of the specified kind and attaches it to fileha@di€ET. DOMAIN, TYPE, and
PROTOCOL are specified the same as for the system call of the same name. Yous®uld
Socket first to get the proper definitions imported. See the examples in “Sockets: Client/Server
Communication” in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $°F. See “$"F” in perlvar.

socketpailSOCKET1,SOCKET2,DOMAIN, TYPE,ROTOCOL
Creates an unnamed pair of sockets in the specified domain, of the specifie®OK&IN,
TYPE, and PROTOCOL are specified the same as for the system call of the same name. If
unimplemented, yields a fatal error. Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of $°F. See “$"F” in perlvar.

Some systems defingupe in terms ofsocketpair , in which a call topipe(Rdr, Wtr)
is essentially:
use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulate socketpdip using
sockets to localhost if your system implements sockets but not socketpair.

SOrtSUBNAME LIST

SOrtBLOCK LIST

SOrtLIST
In list context, this sorts theIST and returns the sorted list value. In scalar context, the
behaviour ofort() is undefined.

If SUBNAME or BLOCK is omitted,sort s in standard string comparison orderSUBNAME is

124 2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

specified, it gives the name of a subroutine that returns an integer less than, equal to, or greater
than0, depending on how the elements of the list are to be ordered.<€Fhandcmp operators

are extremely useful in such routines3UBNAME may be a scalar variable name
(unsubscripted), in which case the value provides the name of (or a reference to) the actual
subroutine to use. In place ofSWBNAME, you can provide 8LOCK as an anonymous, in-line

sort subroutine.

If the subroutine’s prototype i$$) , the elements to be compared are passed by reference in
@, as for a normal subroutine. This is slower than unprototyped subroutines, where the elements
to be compared are passed into the subroutine as the package global V@asicdmestb (see
example below). Note that in the latter case, it is usually counter-productive to dizclared

$b as lexicals.

In either case, the subroutine may not be recursive. The values to be compared are always passed
by reference, so don’'t modify them.

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described in perlsyn or wiftpoto .

When use locale is in effect,sort LIST sortsLIST according to the current collation
locale. See perllocale.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not stable,
andcouldgo quadratic. (Astablesort preserves the input order of elements that compare equal.
Although quicksort’s run time is O(NlogN) when averaged over all arrays of length N, the time
can be O(N**2),quadraticbehavior, for some inputs.) In 5.7, the quicksort implementation was
replaced with a stable mergesort algorithm whose worst case behavior is O(NlogN). But
benchmarks indicated that for some inputs, on some platforms, the original quicksort was faster.
5.8 has a sort pragma for limited control of the sort. Its rather blunt control of the underlying
algorithm may not persist into future perls, but the ability to characterize the input or output in
implementation independent ways quite probably will. See sort.

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case-insensitively
@articles = sort {uc($a) cmp uc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

this sorts the %age hash by value instead of key
using an in-line function
@eldest = sort { $age{$b} <=> $age{$a} } keys %age;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}

@sortedclass = sort byage @class;

2003-08-13 125

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub backwards { $b cmp $a }
@harry = gw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to’, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

inefficiently sort by descending numeric compare using
the first integer after the first = sign, or the
whole record case-insensitively otherwise

@new = sort {
($b =" /=(\d+)N[0] <=> ($a =" /=(\d+)/)[0]
1]
uc($a) cmp uc($b)
} @old,;

same thing, but much more efficiently;
we’'ll build auxiliary indices instead
for speed
@nums = @caps = ();
for (@old) {
push @nums, /=(\d+)/;
push @caps, uc($);
}

@new = @old[sort {
$nums[$b] <=> $nums[$a]
NN
$caps[$a] cmp Scaps[$b]
} 0..$#old
I;
same thing, but without any temps
@new =map {$_->[0] }
sort { $b->[1] <=> $a->[1]
NN
$a->[2] cmp $b->[2]
} map {[$_, /=(\d+)/, uc($_)] } @old;
using a prototype allows you to use any comparison subroutine
as a sort subroutine (including other package’s subroutines)

package other;
sub backwards ($$) { $_[1] cmp $_[O]; } # $a and $b are not set he

package main;
@new = sort other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable’;
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old,;

force use of mergesort (not portable outside Perl 5.8)
use sort’'_mergesort’; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old,;

If you're using strict, youmust notdeclare$a and $b as lexicals. They are package globals.
That means if you're in thmain package and type

@articles = sort {$b <=> $a} @files;

then$a and $b are $main::a and $main::b (or $::a and $::b), but if youre in the

126 2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

FooPack package, it's the same as typing
@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results (sometimes
saying$x[1] is less thar$x[2] and sometimes saying the opposite, for example) the results
are not well-defined.

spliceARRAY,OFFSET,LENGTH,LIST
spliceARRAY,OFFSET,LENGTH
spliceARRAY,OFFSET

spliceARRAY

Removes the elements designatedBPFSETandLENGTH from an array, and replaces them with
the elements ofIST, if any. In list context, returns the elements removed from the array. In
scalar context, returns the last element removedindef if no elements are removed. The
array grows or shrinks as necessaryOFFSETIis negative then it starts that far from the end of
the array. IfLENGTH is omitted, removes everything fro@FFSET onward. If LENGTH is
negative, removes the elements framFSETonward except for —-LENGTH elements at the end
of the array. If bottOFFSETandLENGTH are omitted, removes everything FFSETis past the
end of the array, perl issues a warning, and splices at the end of the array.

The following equivalences hold (assumBjg==0):

push(@a,$x,$y) splice(@a,@a,0,%x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,3y)
$a[$x] = $y splice(@a,$x,1,$y)

Example, assuming array lengths are passed before arrays:

subaeq{ # compare two list values
my(@a) = splice(@_,0,shift);
my(@b) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return 0 if pop(@a) ne pop(@b);
}
return 1;

}
if (&aeq($len,@foo[l..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/

split

perl v5.8.0

Splits a string into a list of strings and returns that list. By default, empty leading fields are
preserved, and empty trailing ones are deleted.

In scalar context, returns the number of fields found and splits int@tleray. Use of split in
scalar context is deprecated, however, because it clobbers your subroutine arguments.

If EXPRis omitted, splits th&_ string. If PATTERN s also omitted, splits on whitespace (after
skipping any leading whitespace). Anything matchiPgf TERN is taken to be a delimiter
separating the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and positive, it represents the maximum number of fieldx#rwill be
split into, though the actual number of fields returned depends on the number G?ATMERN
matches withinEXPR If LIMIT is unspecified or zero, trailing null fields are stripped (which
potential users opop would do well to remember). EIMIT is negative, it is treated as if an
arbitrarily largeLIMIT had been specified. Note that splitting BXPR that evaluates to the
empty string always returns the empty list, regardless dfith@ specified.

A pattern matching the null string (not to be confused with a null pafternvhich is just one
member of the set of patterns matching a null string) will split the val@&X®R into separate
characters at each point it matches that way. For example:

2003-08-13 127

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

print join(’:’, split(/ */, ’hi there"));
produces the output 'h:i:t:h:e:r:e’.
Using the empty patterfi specifically matches the null string, and is not be confused with the
use of// to mean “the last successful pattern match”.

Empty leading (or trailing) fields are produced when there are positive width matches at the
beginning (or end) of the string; a zero-width match at the beginning (or end) of the string does
not produce an empty field. For example:

print join(":’, split{(/(?=\w)/, ’hi there!"));
produces the output 'h:i :t:h:e:r:el’.
TheLIMIT parameter can be used to split a line partially
($login, $passwd, Sremainder) = split(/:/, $_, 3);

When assigning to a list, ifiMIT is omitted, Perl supplieslaMIT one larger than the number of
variables in the list, to avoid unnecessary work. For the list abowe would have been 4 by
default. In time critical applications it behooves you not to split into more fields than you really
need.

If the PATTERN contains parentheses, additional list elements are created from each matching
substring in the delimiter.

split(/([,-])/, "1-10,20", 3);
produces the list value
(1,'-, 10, 20)

If you had the entire header of a normal Unix email messafjbeader , you could split it up
into fields and their values this way:

$header =" s/\n\s+//g; # fix continuation lines
%hdrs = (UNIX_FROM => split /7(\S*?):\s*/m, $header);

The patter’PATTERN/ may be replaced with an expression to specify patterns that vary at
runtime. (To do runtime compilation only once, U$eariable/o)

As a special case, specifyindPATTERN of space’(") will split on white space just aplit

with no arguments does. Thusplit(' *) can be used to emulasavk’'s default behavior,
whereassplit(/ /) will give you as many null initial fields as there are leading spaces. A
split on/As+/ s like asplit(’ ") except that any leading whitespace produces a null
first field. Asplit with no arguments really doesglit("’, $) internally.

A PATTERNOf /"/ is treated as if it werE/m , since it isn’t much use otherwise.
Example:

open(PASSWD, 'letc/passwd);
while (<PASSWD>) {
chomp;
($login, $passwd, $uid, $gid,
$gcos, $home, $shell) = split(/:/);
#...
}

As with regular pattern matching, any capturing parentheses that are not matcisedt{h a
will be set toundef when returned:

@fields = split /(A) B/, "1A2B3";

@fields is (1, 'A’, 2, undef, 3)

sprintf FORMAT, LIST

128

Returns a string formatted by the uspiahtf ~ conventions of the C library functiaprintf
See below for more details and sgwintf(3) or printf(3) on your system for an explanation of
the general principles.

2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

For example:

Format number with up to 8 leading zeroes
$result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", $number);

Perl does its owsprintf formatting — it emulates the C functigprintf , but it doesn’t use
it (except for floating-point numbers, and even then only the standard modifiers are allowed). As
a result, any non-standard extensions in your Ispahtf ~ are not available from Perl.

Unlike printf , sprintf does not do what you probably mean when you pass it an array as
your first argument. The array is given scalar context, and instead of using the Oth element of the
array as the format, Perl will use the count of elements in the array as the format, which is almost
never useful.

Perl'ssprintf permits the following universally-known conversions:

%% a percent sign

%c a character with the given number

%s a string

%d a signed integer, in decimal

%u an unsigned integer, in decimal

%0 an unsigned integer, in octal

%x an unsigned integer, in hexadecimal

%e a floating-point number, in scientific notation

%f a floating-point number, in fixed decimal notation
%g a floating-point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %kx, but using upper-case letters

%E like %e, but using an upper-case "E"

%G like %g, but with an upper-case "E" (if applicable)

%b an unsigned integer, in binary

%p a pointer (outputs the Perl value’s address in hexadecimal)

%n special: *stores* the number of characters output so far
into the next variable in the parameter list

Finally, for backward (and we do mean “backward”) compatibility, Perl permits these
unnecessary but widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%0 a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation producke, ByE %gand%G

for numbers with the modulus of the exponent less than 100 is system—dependent: it may be three
or less (zero—padded as necessary). In other words, 1.23 times ten to the 99th may be either
“1.23e99” or “1.23e099".

Between the% and the format letter, you may specify a number of additional attributes
controlling the interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such 28. By default sprintf will format the next
unused argument in the list, but this allows you to take the arguments out of order. Eg:

printf '%2%d %1$d’, 12, 34; # prints "34 12"
printf '%3%d %d %1$d’, 1, 2, 3; # prints"3 11"

2003-08-13 129

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

flags
one or more of:

space prefix positive number with a space

+ prefix positive number with a plus sign

- left-justify within the field

0 use zeros, not spaces, to right-justify

prefix non-zero octal with “0”, non-zero hex with “0x”,
non-zero binary with “Ob”

For example:

printf '<% d>’, 12; # prints "< 12>"
printf '<%+d>", 12; # prints "<+12>"
printf '<%6s>’, 12; # prints "< 12>"
printf '<%-6s>’, 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#x>", 12; # prints "<Oxc>"

vector flag
The vector flagy, optionally specifying the join string to use. This flag tells perl to interpret
the supplied string as a vector of integers, one for each character in the string, separated by a
given string (a dot by default). This can be useful for displaying ordinal values of
characters in arbitrary strings:

printf "version is v%vd\n", $7V; # Perl's version
Put an asterisk before thev to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # IPv6 address
printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for the join string using eg
*2%v :

printf '%*4$vX %*4$vX %*4$vX’', @addr[1..3], ":"; # 3 IPv6 addresses

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given value.
You can override the width by putting a number here, or get the width from the next
argument (with*) or from a specified argument (with &2f):

printf '<%s>’, "a"; # prints "<a>"

printf '<%6s>", "a"; # prints "< a>"

printf '<%%*s>’, 6, "a"; # prints "< a>"

printf '<%*2$s>’, "a", 6; # prints "< a>"

printf '<%2s>’, "long"; # prints "<long>" (does not truncate)

If a field width obtained through is negative, it has the same effect as thdlag:
left—justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying .afollowed by a number. For floating point formats, with the
exception of 'g’ and 'G’, this specifies the number of decimal places to show (the default
being 6), eg:

these examples are subject to system-specific variation
printf '<%f>", 1; # prints "<1.000000>"

printf '<%.1f>', 1; # prints "<1.0>"

printf '<%.0f>', 1; # prints "<1>"

printf '<%e>’, 10; # prints "<1.000000e+01>"

printf '<%.1e>’, 10; # prints "<1.0e+01>"

For 'g’ and 'G’, this specifies the maximum number of digits to show, including prior to the
decimal point as well as after it, eg:

130 2003-08-13 perl v5.8.0

PERLFUNC(1)

perl v5.8.0

Perl Programmers Reference Guide PERLFUNC(1)

these examples are subject to system-specific variation

printf '<%g>’, 1; # prints "<1>"
printf '<%.10g>", 1; # prints "<1>"
printf '<%g>’, 100; # prints "<100>"

printf '<%.1g>’, 100; # prints "<le+02>"
printf '<%.2g>’, 100.01; # prints "<1e+02>"
printf '<%.5g>’, 100.01; # prints "<100.01>"
printf '<%.4g>’, 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the output of the number itself
should be zero-padded to this width:

printf '<%.6x>", 1; # prints "<000001>"
printf '<%#.6x>", 1; # prints "<0x000001>"
printf '<%-10.6x>", 1; # prints "<000001 >"

For string conversions, specifying a precision truncates the string to fit in the specified
width:

printf '<%.5s>", "truncated"; # prints "<trunc>"
printf '<%10.5s>’, "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using

printf '<%.6x>", 1; # prints "<000001>"
printf '<%.*x>", 6, 1; # prints "<000001>"

You cannot currently get the precision from a specified number, but it is intended that this
will be possible in the future using e@$:

printf '<%.*2$x>’, 1, 6; # INVALID, but in future will print "<0000

For numeric conversions, you can specify the size to interpret the number ab,using

g, L, orll . For integer conversionsl(u o0 x X b i D U O), numbers are usually
assumed to be whatever the default integer size is on your platform (usually 32 or 64 bits),
but you can override this to use instead one of the standard C types, as supported by the
compiler used to build Perl:

I interpret integer as C type "long" or "unsigned long"
h interpret integer as C type "short" or "unsigned short"

g, Lorll interpretinteger as C type "long long", "unsigned long
or "quads" (typically 64-bit integers)

The last will produce errors if Perl does not understand “quads” in your installation. (This
requires that either the platform natively supports quads or Perl was specifically compiled to
support quads.) You can find out whether your Perl supports quads via Config:

use Config;
($Config{useb4bitint} eq 'define’ [0 $Config{longsize} >= 8) &&
print "quads\n";

For floating point conversion®(f g E F G), numbers are usually assumed to be the
default floating point size on your platform (double or long double), but you can force ’long
double’ withq, L, orll if your platform supports them. You can find out whether your Perl
supports long doubles via Config:

use Config;
$Config{d_longdbl} eq 'define’ && print "long doubles\n";

You can find out whether Perl considers 'long double’ to be the default floating point size to
use on your platform via Config:

use Config;
($Config{uselongdouble} eq 'define’) &&
print "long doubles by default\n";

2003-08-13 131

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

132

It can also be the case that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&
print "doubles are long doubles\n®;

The size specifiev has no effect for Perl code, but it is supported for compatibility Méth
code; it means 'use the standard size for a Perl integer (or floating-point number)’, which is
already the default for Perl code.

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification usedo require additional arguments, these are
consumed from the argument list in the order in which they appear in the format
specificationbeforethe value to format. Where an argument is specified using an explicit
index, this does not affect the normal order for the arguments (even when the explicitly
specified index would have been the next argument in any case).

So:
printf '<%*.*s>', $a, $b, $c;

would useba for the width,$b for the precision anfic as the value to format, while:
print '<%*1$.*s>’, $a, $b;

would useba for the width and the precision, afid as the value to format.

Here are some more examples — beware that when using an explicit indexydlyeneed to

be escaped:
printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale is in effect, the character used for the decimal point in formatted real numbers
is affected by theC_NUMERIC locale. See perllocale.

SQrtEXPR
sqrt Return the square root BXPR If EXPRis omitted, returns square root ®f. Only works on
non-negative operands, unless you've loaded the standard Math::Complex module.

use Math::Complex;
print sqrt(-2); # prints 1.4142135623731i

srandeEXPR
srand Sets the random number seed forahd operator.

The point of the function is to “seed” theand function so thatand can produce a different
sequence each time you run your program.

If srand()is not called explicitly, it is called implicitly at the first use of ttexd operator.
However, this was not the case in versions of Perl before 5.004, so if your script will run under
older Perl versions, it should calland .

Most programs won't even cadrand() at all, except those that need a cryptographically-strong
starting point rather than the generally acceptable default, which is based on time of day, process
ID, and memory allocation, or tiiéev/urandondevice, if available.

You can call srand($seed) with the saseed to reproduce theamesequence fromand(), but
this is usually reserved for generating predictable results for testing or debugging. Otherwise,
don't callsrand()more than once in your program.

Do not call srand() (i.e. without an argument) more than once in a script. The internal state of
the random number generator should contain more entropy than can be provided by any seed, so
calling srand()again actuallyosesrandomness.

Most implementations o$rand take an integer and will silently truncate decimal numbers.

2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

This meansrand(42) will usually produce the same resultssaand(42.1) . To be safe,
always passrand an integer.

In versions of Perl prior to 5.004 the default seed was just the cument. This isn't a
particularly good seed, so many old programs supply their own seed valugi(o&ér$$ or
time ~ ($$ + ($$ << 15))), but that isn’t necessary any more.

Note that you need something much more random than the default seed for cryptographic
purposes. Checksumming the compressed output of one or more rapidly changing operating
system status programs is the usual method. For example:

srand (time ~ $$ "~ unpack "%L*", ‘ps axww 0 gzip);
If you're particularly concerned with this, see Math::TrulyRandom module inCPAN.
Frequently called programs (likaGl scripts) that simply use
time ~ $$
for a seed can fall prey to the mathematical property that
a'b == (a+1)"(b+1)
one-third of the time. So don’t do that.

statFILEHANDLE
statEXPR

stat

perl v5.8.0

Returns a 13—-element list giving the status info for a file, either the file opem@dBHANDLE,
or named byEXPR. If EXPRis omitted, it stat$. Returns a null list if the stat fails. Typically
used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime,$Sctime,$blksize,$blocks)
= stat($filename);

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

0 dev device number of filesystem

1 ino inode number

2 mode file mode (type and permissions)

3 nlink number of (hard) links to the file

4 uid numeric user ID of file’s owner

5 gid numeric group ID of file’s owner

6 rdev the device identifier (special files only)

7 size total size of file, in bytes

8 atime last access time in seconds since the epoch

9 mtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)

11 blksize preferred block size for file system I/O
12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1G¥(O.)

(*) The ctime field is non—portable, in particular you cannot expect it to be a “creation time”, see
“Files and Filesystems” in perlport for details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat or filetest are returned. Example:

if (-x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";
}

(This works on machines only for which the device number is negative NR8&r

Because the mode contains both the file type and its permissions, you should mask off the file
type portion and (s)printf using"&o0" if you want to see the real permissions.

2003-08-13 133

PERLFUNC(1)

134

Perl Programmers Reference Guide PERLFUNC(1)

$mode = (stat($filename))[2];
printf "Permissions are %040\n", $mode & 07777;

In scalar contextstat returns a boolean value indicating success or failure, and, if successful,
sets the information associated with the special filehandle

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;

$sb = stat($filename);

printf "File is %s, size is %s, perm %040, mtime %s\n",
$filename, $sb->size, $sb->mode & 07777,
scalar localtime $sb->mtime;

You can import symbolic mode constan8 [F*) and functions $_IS*) from the Fcntl
module:

use Fcntl :mode’;
$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S _IRGRP) >> 3;
$other_execute = $mode & S_IXOTH,;

printf "Permissions are %040\n", S_IMODE($mode), "\n";

$mode & S_ISUID;
S_ISDIR($mode);

You could write the last two using theu and —d operators. The commonly available S_IF*
constants are

$is_setuid
$is_setgid

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S IRWXG S_IRGRP S_IWGRP S_IXGRP
S IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT
File types. Not necessarily all are available on your system.
S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENF
The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUS
S_IREAD S_IWRITE S_IEXEC
and the S_IF* functions are

S_IMODE($mode) the part of $mode containing the permission bits
and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with e.g. S_IFREG
or with the following functions

The operators -f, -d, -I, -b, -c, -p, and -s.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct -X operator counterpart, but for the first one
the -g operator is often equivalent. The ENFMT stands for
record flocking enforcement, a platform-dependent feature.

2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

S_ISENFMT($mode) S_ISWHT($mode)
See your nativehmod2) andstat(2) documentation for more details about the S_* constants.

To get status info for a symbolic link instead of the target file behind the link, usstahe
function, see “stat”.

studySCALAR

study Takes extra time to stuCALAR ($_ if unspecified) in anticipation of doing many pattern
matches on the string before it is next modified. This may or may not save time, depending on
the nature and number of patterns you are searching on, and on the distribution of character
frequencies in the string to be searched—you probably want to compare run times with and
without it to see which runs faster. Those loops which scan for many short constant strings
(including the constant parts of more complex patterns) will benefit most. You may have only
onestudy active at a time —if you study a different scalar the first is “unstudied”. (The way
study works is this: a linked list of every character in the string to be searched is made, so we
know, for example, where all th& characters are. From each search string, the rarest
character is selected, based on some static frequency tables constructed from some C programs
and English text. Only those places that contain this “rarest” character are examined.)

For example, here is a loop that inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if Abfoo\b/;
print ".IX bar\n" if Abbar\b/;
print ".IX blurfin" if Abblurfl\b/;
..
print;

}

In searching for\bfoo\b/ , only those locations i$_ that containf will be looked at,

becausd is rarer tharo. In general, this is a big win except in pathological cases. The only
question is whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don't know till runtime, you can build an entire
loop as a string anelval that to avoid recompiling all your patterns all the time. Together with
undefining $/ to input entire files as one record, this can be very fast, often faster than
specialized programs likigrep(1). The following scans a list of filegfiles) for a list of
words @words), and prints out the names of those files that contain a match:

$search =while (<>) { study;’;
foreach $word (@words) {
$search .= "++\$seen{\$ARGV} if N\bSword\\b/;\n";

}
$search .="}";
@ARGV = @files;
undef $/;
eval $search; # this screams
$/="\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}

SUbNAME BLOCK

SUbNAME (PROTQ BLOCK

SUbNAME : ATTRS BLOCK

SUbNAME (PROTQ : ATTRS BLOCK
This is subroutine definition, not a real functiper se Without aBLOCK it's just a forward
declaration. Without &IAME, it's an anonymous function declaration, and does actually return a
value: theCODE ref of the closure you just created.

See perlsub and perlref for details about subroutines and references, and attributes and

perl v5.8.0 2003-08-13 135

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Attribute::Handlers for more information about attributes.

substrEXPR OFFSET,LENGTH,REPLACEMENT

substrEXPR OFFSET,LENGTH

SubstrEXPR OFFSET
Extracts a substring out &XPRand returns it. First character is at offéebr whatever you've
set$[to (but don't do that). OFFSETIis negative (or more precisely, less ti#ir), starts that
far from the end of the string. HENGTH is omitted, returns everything to the end of the string.
If LENGTH is negative, leaves that many characters off the end of the string.

You can use thsubstr()function as an Ivalue, in which caB&PR must itself be an Ivalue. If
you assign something shorter tha8NGTH, the string will shrink, and if you assign something
longer tharLENGTH, the string will grow to accommodate it. To keep the string the same length
you may need to pad or chop your value usimigntf

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within

the string is returned. If the substring is beyond either end of the sdribgtr() returns the
undefined value and produces a warning. When used as an Ivalue, specifying a substring that is
entirely outside the string is a fatal error. Here's an example showing the behavior for boundary

cases:
my $name = 'fred’;
substr($name, 4) = 'dy’; # $name is now 'freddy’
my $null = substr $name, 6, 2; # returns ” (no warning)
my $oops = substr $name, 7; # returns undef, with warning
substr($name, 7) = 'gap’; # fatal error

An alternative to usingsubstr() as an Ivalue is to specify the replacement string as the 4th
argument. This allows you to replace parts ofBX®R and return what was there before in one
operation, just as you can wiplice()

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Refurfte success0
otherwise. On systems that don’t support symbolic links, produces a fatal error at run time. To
check for that, use eval:

$symlink_exists = eval { symlink("",""); 1 };

syscallLIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal error. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If not, the
pointer to the string value is passed. You are responsible to make sure a string is pre-extended
long enough to receive any result that might be written into a string. You can't use a string literal
(or other read-only string) as an argumensyscall because Perl has to assume that any
string pointer might be written through. If your integer arguments are not literals and have never
been interpreted in a numeric context, you may need t® addhem to force them to look like
numbers. This emulates tegswrite function (or vice versa):

require 'syscall.ph’; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your system call, which in practice
should usually suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails,
syscall returns—-1 and setsp! (errno). Note that some system calls can legitimately return
-1. The proper way to handle such calls is to as$ig0; before the call and check the value

of $! if syscall returns-1.

There’s a problem witlsyscall(&SYS_pipe) . it returns the file number of the read end of
the pipe it creates. There is no way to retrieve the file number of the other end. You can avoid
this problem by usingipe instead.

136 2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

sysoperFILEHANDLE,FILENAME,MODE
sysoperFILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is givenFIYENAME, and associates it withILEHANDLE. If
FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted. This
function calls the underlying operating systewy®en function with the paramete SLENAME,

MODE, PERMS

The possible values and flag bits of th®DE parameter are system-dependent; they are
available via the standard modwtentl . See the documentation of your operating system’s
open to see which values and flag bits are available. You may combine several flags using the
[(}-operator.

Some of the most common values &eRDONLYfor opening the file in read-only mode,
O_WRONLY06r opening the file in write-only mode, a@ RDWRor opening the file in read-
write mode, and.

For historical reasons, some values work on almost every system supported by perl: zero means
read-only, one means write—only, and two means read/write. We know that these vahots do
work under0S/390& VM/ESA Unix and on the Macintosh; you probably don't want to use them

in new code.

If the file named byFILENAME does not exist and thapen call creates it (typically because
MODE includes theO_CREATlag), then the value dPERMS specifies the permissions of the
newly created file. If you omit theERMS argument tosysopen , Perl uses the octal value
0666. These permission values need to be in octal, and are modified by your process’s current
umask.

In many systems th® EXCLflag is available for opening files in exclusive mode. Thisas
locking: exclusiveness means here that if the file already exisopen(¥ails. TheO_EXCL
wins O_TRUNC

Sometimes you may want to truncate an already-existingX¥ilgRUNC

You should seldom if ever us@644 as argument t@ysopen , because that takes away the
user’s option to have a more permissive umask. Better to omit it. Seefienc(1) entry on
umask for more on this.

Note thatsysopen depends on thédopen() C library function. On manyuUNIX systems,
fdopen()is known to fail when file descriptors exceed a certain value, typically 255. If you need
more file descriptors than that, consider rebuilding Perl to usithe library, or perhaps using

the POSIX::open(function.

See perlopentut for a kinder, gentler explanation of opening files.

sysread-ILEHANDLE,SCALAR,LENGTH,OFFSET
sysread-ILEHANDLE,SCALAR,LENGTH

perl v5.8.0

Attempts to readLENGTH characters of data into variableSCALAR from the specified
FILEHANDLE, using the system caitad(2). It bypasses buffered, so mixing this with other
kinds of readsprint , write , seek,tell , oreof can cause confusion because stdio usually
buffers data. Returns the number of characters actually @eadend of file, or undef if there
was an error (in the latter ca$e is also set).SCALAR will be grown or shrunk so that the last
byte actually read is the last byte of the scalar after the read.

Note thecharacters depending on the status of the filehandle, either (8—bit) bytes or characters
are read. By default all filehandles operate on bytes, but for example if the filehandle has been
opened with theutf8 1/O layer (see “open”, and thepen pragma, open), the I/O will operate

on characters, not bytes.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negativ®FFSETspecifies placement at that many characters counting backwards
from the end of the string. A positiv@FFSETgreater than the length 8CALAR results in the

string being padded to the required size with' bytes before the result of the read is
appended.

There is neyseof(¥unction, which is ok, sinceof()doesn’t work very well on device files (like

2003-08-13 137

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

ttys) anyway. Ussysread()and check for a return value for O to decide whether you're done.

sysseelEILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE's system positiofin bytesusing the system cdeel(2). FILEHANDLE may
be an expression whose value gives the name of the filehandle. The valWwetECE are0 to
set the new position tBOSITION 1 to set the it to the current position pROSITION and?2 to
set it toEOF plusPOSITION(typically negative).

Note thein bytes even if the filehandle has been set to operate on characters (for example by
using the:utf8 1/O layer), tell() will return byte offsets, not character offsets (because
implementing that would rendsysseek(yery slow).

sysseek(pypasses normal buffered io, so mixing this with reads (other sharead , for
example >< orread()) print , write , seek,tell , oreof may cause confusion.

For WHENCE, you may also use the constaB8BSEK_SETSEEK CURandSEEK_ENDstart of
the file, current position, end of the file) from the Fcntl module. Use of the constants is also more
portable than relying on 0, 1, and 2. For example to define a “systell” function:

use Fnctl 'SEEK_CUR’;
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero is returned as the

string"0 but true" ; thussysseek returns true on success and false on failure, yet you can
still easily determine the new position.
systemLIST

SystemPROGRAM LIST
Does exactly the same thing esec LIST , except that a fork is done first, and the parent
process waits for the child process to complete. Note that argument processing varies depending
on the number of arguments. If there is more than one argumelrgTinor if LIST is an array
with more than one value, starts the program given by the first element of the list with arguments
given by the rest of the list. If there is only one scalar argument, the argument is checked for
shell metacharacters, and if there are any, the entire argument is passed to the system’s command
shell for parsing (this igbin/sh —c on Unix platforms, but varies on other platforms). If
there are no shell metacharacters in the argument, it is split into words and passed directly to
execvp , which is more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see perlport). To be safe,
you may need to sek] (PAUTOFLUSH in English) or call thewutoflush() method of
I0::Handle on any open handles.

The return value is the exit status of the program as returned kyathecall. To get the actual
exit value shift right by eight (see below). See also “exec”. Thisisvhat you want to use to
capture the output from a command, for that you should use merely backticis/ or as
described in “STRING" in perlop. Return value of -1 indicates a failure to start the program
(inspect $! for the reason).

Like exec, system allows you to lie to a program about its name if you useststem
PROGRAM LISTsyntax. Again, see “exec”.

Becausesystem and backticks blockSIGINT and SIGQUIT, killing the program they're
running doesn't actually interrupt your program.

@args = ("command", "argl", "arg2");
system(@args) ==
or die "system @args failed: $?"
You can check all the failure possibilities by inspectfgdlike this:

$exit_value = $? >>8;
$signal num = $? & 127,
$dumped_core = $? & 128;

or more portably by using the W*() calls of tHOSIX extension; see perlport for more

138 2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

information.

When the arguments get executed via the system shell, results and return codes will be subject to
its quirks and capabilities. See “STRING" in perlop and “exec” for details.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET
syswriteFILEHANDLE,SCALAR,LENGTH
syswriteFILEHANDLE,SCALAR

Attempts to write LENGTH characters of data from variablBCALAR to the specified
FILEHANDLE, using the system calvrite(2). If LENGTH is not specified, writes whole
SCALAR. It bypasses buffereid, so mixing this with reads (other thapsread()) , print

write , seek, tell , oreof may cause confusion because stdio usually buffers data. Returns
the number of characters actually writtenuadef if there was an error (in this case the errno
variable$! is also set). If the ENGTH is greater than the available data in $GALAR after the
OFFSET only as much data as is available will be written.

An OFFSETmay be specified to write the data from some part of the string other than the
beginning. A negativ®FFSETspecifies writing that many characters counting backwards from
the end of the string. In the case 8®ALAR is empty you can useFFSETbut only zero offset.

Note thecharacters depending on the status of the filehandle, either (8—bit) bytes or characters
are written. By default all filehandles operate on bytes, but for example if the filehandle has been
opened with theutf8 1/O layer (see “open”, and the open pragma, open), the 1/0O will operate
on characters, not bytes.

tell FILEHANDLE

tell

Returns the current position bytesfor FILEHANDLE, or —1 on error. FILEHANDLE may be an
expression whose value gives the name of the actual filehandRLEKFIANDLE is omitted,
assumes the file last read.

Note thein bytes even if the filehandle has been set to operate on characters (for example by
using the:utf8 open layer)tell() will return byte offsets, not character offsets (because that
would rendeseek(jandtell() rather slow).

The return value ofell() for the standard streams like t$9DIN depends on the operating
system: it may return -1 or something elsgl() on pipes, fifos, and sockets usually returns —1.

There is nsystell function. Usesysseek(FH, 0, 1) for that.

Do not usetell() on a filehandle that has been opened usysppen()usesysseek(jor that as
described above. Why? Becauseopen(kreates unbuffered, “raw”, filehandles, whitgen()
creates buffered filehandlesysseek(jnake sense only on the first kindll() only makes sense
on the second kind.

telldir DIRHANDLE

Returns the current position of theaddir routines onDIRHANDLE. Value may be given to
seekdir to access a particular location in a directory. Has the same caveats about possible
directory compaction as the corresponding system library routine.

tie VARIABLE ,CLASSNAME,LIST

perl v5.8.0

This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchant@dASSNAME is the name of a
class implementing objects of correct type. Any additional arguments are passednewthe
method of the class (meanin§IESCALAR, TIEHANDLE TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passeddbrtheopen() function of C. The
object returned by theew method is also returned by thie function, which would be useful if

you want to access other methodSiMSSNAME.

Note that functions such &sys andvalues may return huge lists when used on large objects,
like DBM files. You may prefer to use tleach function to iterate over such. Example:

2003-08-13 139

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File’, '/usr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' =", unpack(L’,$val), "\n";
}

untie(%HIST);
A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key

STORE this, key, value
DELETE this, key

CLEAR this

EXISTS this, key
FIRSTKEY this

NEXTKEY this, lastkey
DESTROY this

UNTIE this

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST
FETCH this, key

STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DESTROY this

UNTIE this

A class implementing a file handle should have the following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this

GETC this

WRITE this, scalar, length, offset
PRINT this, LIST

PRINTF this, format, LIST
BINMODE this

EOF this

FILENO this

SEEK this, position, whence
TELL this

OPEN this, mode, LIST

CLOSE this

DESTROY this

UNTIE this

A class implementing a scalar should have the following methods:

140 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

TIESCALAR classname, LIST
FETCH this,

STORE this, value
DESTROY this

UNTIE this

Not all methods indicated abe need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, thetie function will not use or require a module for you—you need to do
that explicitly yourself. See DB_File or tl@nfigmodule for interestingie implementations.

For further details see perltie, “tia\ARIABLE ".

tied VARIABLE
Returns a reference to the object underlWAGRIABLE (the same value that was originally
returned by theaie call that bound the variable to a package.) Returns the undefined value if
VARIABLE isn't tied to a package.

time Returns the number of non-leap seconds since whatever time the system considers to be the
epoch (that's 00:00:00, January 1, 1904 for & and 00:00:0QWTC, January 1, 1970 for most
other systems). Suitable for feedinggimtime andlocaltime

For measuring time in better granularity than one second, you may use either the Time::HiRes
module fromCPAN, or if you havegettimeofday2), you may be able to use tkgscall
interface of Perl, see perlfag8 for details.

times Returns a four-element list giving the user and system times, in seconds, for this process and the
children of this process.

(Buser,$system,$cuser,$csystem) = times;
In scalar contextimes returns$user .
trlll The transliteration operator. Sameyds . See perlop.

truncateFILEHANDLE,LENGTH

truncateEXPRLENGTH
Truncates the file opened BLEHANDLE, or named byEXPR, to the specified length. Produces
a fatal error if truncate isn’t implemented on your system. Returns true if successful, the
undefined value otherwise.

The behavior is undefinediENGTH is greater than the length of the file.

uc EXPR

uc Returns an uppercased versionedfPR This is the internal function implementing thig
escape in double-quoted strings. Respects cut@ntTYPE locale if use locale in force.
See perllocale and perlunicode for more details about locale and Unicode support. It does not
attempt to do titlecase mapping on initial letters. @fast for that.

If EXPRis omitted, use$_.

ucfirstEXPR

ucfirst Returns the value &xPRwith the first character in uppercase (titlecase in Unicode). This is the
internal function implementing th&u escape in double-quoted strings. Respects current
LC_CTYPE locale if use locale in force. See perllocale and perlunicode for more details
about locale and Unicode support.

If EXPRis omitted, use$_.

umaskEXPR
umask Sets the umask for the proces&X®R and returns the previous value. HKPR is omitted,
merely returns the current umask.

The Unix permissiomwxr—x——— is represented as three sets of three bits, or three octal digits:
0750 (the leading O indicates octal and isn't one of the digits). Umnask value is such a
number representing disabled permissions bits. The permission (or “mode”) values you pass
mkdir or sysopen are modified by your umask, so even if you sisopen to create a file

perl v5.8.0 2003-08-13 141

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

with permissions0777, if your umask is0022 then the file will actually be created with
permission0755. If your umask were 0027 (group can't write; others can't read, write, or
execute), then passirsysopen 0666 would create a file with modas40 (0666 & 027 is
0640).

Here's some advice: supply a creation mod@a#6 for regular files (irsysopen) and one of

0777 for directories (infmkdir) and executable files. This gives users the freedom of choice: if
they want protected files, they might choose process umask®2df 027, or even the
particularly antisocial mask @77. Programs should rarely if ever make policy decisions better
left to the user. The exception to this is when writing files that should be kept private: mail files,
web browser cookiesshostsfiles, and so on.

If umask?2) is not implemented on your system and you are trying to restrict accesaifeelf
(i.e., EXPR& 0700) > 0), produces a fatal error at run timeurfask?2) is not implemented and
you are not trying to restrict access for yourself, retuntef .

Remember that a umask is a number, usually given in octalndtis string of octal digits. See
also “oct”, if all you have is a string.

undefEXPR

undef Undefines the value &XPR, which must be an Ivalue. Use only on a scalar value, an array
(using @, a hash (usin§9, a subroutine (using), or a typeglob (using <*>). (Sayingndef
$hash{$key} will probably not do what you expect on most predefined variablegr list
values, so don't do that; see delete.) Always returns the undefined value. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine, assign to a variable or pass as a parameter. Examples:

undef $foo;

undef $bar{’blurfl’}; # Compare to: delete $bar{blurfl’};
undef @ary;

undef %hash;

undef &mysub;

undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew _it;
select undef, undef, undef, 0.25;

($a, $b, undef, $c) = &foo; # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST

unlink Deletes a list of files. Returns the number of files successfully deleted.
$cnt = unlink 'a’, 'b’, 'c’;
unlink @goners;
unlink <*.bak>;

Note:unlink will not delete directories unless you are superuser andUuHtag is supplied to
Perl. Even if these conditions are met, be warned that unlinking a directory can inflict damage on
your filesystem. Usemdir instead.

If LIST is omitted, use$_.

unpackTEMPLATE,EXPR
unpack does the reverse gfack : it takes a string and expands it out into a list of values. (In
scalar context, it returns merely the first value produced.)

The string is broken into chunks described by W&MPLATE. Each chunk is converted
separately to a value. Typically, either the string is a resyaok , or the bytes of the string
represent a C structure of some kind.

The TEMPLATE has the same format as in thack function. Here's a subroutine that does
substring:

142 2003-08-13 perl v5.8.0

PERLFUNC(1)

Perl Programmers Reference Guide PERLFUNC(1)

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s
sub ordinal { unpack("c",$_[0]); } # same as ord()

In addition to fields allowed ipack() you may prefix a field with a %<number> to indicate that
you want a <number>-bit checksum of the items instead of the items themselves. Default is a
16-bit checksum. Checksum is calculated by summing numeric values of expanded values (for
string fields the sum afrd($char) is taken, for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

$checksum = do {
local $/; # slurp!
unpack("%32C*",<>) % 65535;
h
The following efficiently counts the number of set bits in a bit vector:
$sethits = unpack("%32b*", $selectmask);

The p andP formats should be used with care. Since Perl has no way of checking whether the
value passed tanpack() corresponds to a valid memory location, passing a pointer value
that’s not known to be valid is likely to have disastrous consequences.

If the repeat count of a field is larger than what the remainder of the input string allows, repeat
count is decreased. If the input string is longer than one described DyMReATE, the rest is
ignored.

See “pack” for more examples and notes.

untie VARIABLE

Breaks the binding between a variable and a package.ti€Seg Has no effect if the variable is
not tied.

unshiftARRAY,LIST

Does the opposite of ghift . Or the opposite of push, depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

unshiftf(@ARGV, '-e") unless $ARGV[0] =" /"-/;

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Useverse to do the reverse.

use ModuleVERSION LIST
use ModuleVERSION

use ModuleLIST

use Module

uUseVERSION

perl v5.8.0

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; import Module LIST; }
except that Modulenustbe a bareword.

VERSION may be either a numeric argument such as 5.006, which will be compakddoa

literal of the form v5.6.1, which will be compared%d/ (aka$PERL_VERSION A fatal error

is produced ifVERSION is greater than the version of the current Perl interpreter; Perl will not
attempt to parse the rest of the file. Compare with “require”, which can do a similar check at run
time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl which do not support this syntax. The

2003-08-13 143

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

equivalent numeric version should be used instead.

use v5.6.1; # compile time version check

use 5.6.1; # ditto

use 5.006_001; # ditto; preferred for backwards compatibility
This is often useful if you need to check the current Perl version heferiag library modules
that have changed in incompatible ways from older versions of Perl. (We try not to do this more
than we have to.)
The BEGINforces therequire andimport to happen at compile time. Thequire makes
sure the module is loaded into memory if it hasn't been yet. iMpert is not a builtin —it's
just an ordinary static method call into th®dule package to tell the module to import the list
of features back into the current package. The module can implemanpdg method any
way it likes, though most modules just choose to derive thgiort method via inheritance
from the Exporter class that is defined in thEexporter module. See Exporter. If no
import method can be found then the call is skipped.
If you do not want to call the packagésport method (for instance, to stop your namespace
from being altered), explicitly supply the empty list:

use Module ();
That is exactly equivalent to

BEGIN { require Module }
If the VERSION argument is present between Module am&T, then theuse will call the
VERSION method in class Module with the given version as an argument. The d¢&fRStON
method, inherited from theNIVERSAL class, croaks if the given version is larger than the value
of the variableModule::VERSION .
Again, there is a distinction between omittingT (import called with no arguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afteRSION
Because this is a wide-open interface, pragmas (compiler directives) are also implemented this
way. Currently implemented pragmas are:

use constant;

use diagnostics;

use integer;

use sigtrap qw(SEGV BUS);

use strict qw(subs vars refs);

use subs gw(afunc blurfl);

use warnings qw(all);

use sort gw(stable _quicksort _mergesort);
Some of these pseudo-modules import semantics into the current block scoptriflike or
integer , unlike ordinary modules, which import symbols into the current package (which are
effective through the end of the file).
There's a correspondingo command that unimports meanings importedubg , i.e., it calls
unimport Module LIST instead ofmport

no integer;

no strict 'refs’;

no warnings;
See perlmodlib for a list of standard modules and pragmas. See perlrun fe tored —m
command-line options to perl that giuee functionality from the command-line.

utimeLIST
Changes the access and modification times on each file of a list of files. The first two elements of
the list must be th&lUMERICAL access and modification times, in that order. Returns the
number of files successfully changed. The inode change time of each file is set to the current
time. This code has the same effect agdheh command if the files already exist:
144 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

#!/usr/bin/perl
$now = time;
utime $now, $now, @ARGV;

If the first two elements of the list anadef , then theutime(2) function in the C library will be
called with a null second argument. On most systems, this will set the file's access and
modification times to the current time. (i.e. equivalent to the example above.)

utime undef, undef, @ARGV;

valuesHASH
Returns a list consisting of all the values of the named hash. (In a scalar context, returns the
number of values.) The values are returned in an apparently random order. The actual random
order is subject to change in future versions of perl, but it is guaranteed to be the same order as
either thekeys or each function would produce on the same (unmodified) hash.

Note that the values are not copied, which means modifying them will modify the contents of the
hash:

for (values %hash) { s/foo/bar/g} # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g} # same

As a side effect, callingalues()resets thedASH's internal iterator. See ald@ys , each, and
sort .

VeCEXPROFFSET,BITS
Treats the string iEXPRas a bit vector made up of elements of wilths, and returns the value
of the element specified YFFSETas an unsigned integeRITS therefore specifies the number
of bits that are reserved for each element in the bit vector. This must be a power of two from 1 to
32 (or 64, if your platform supports that).

If BITSis 8, “elements” coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks o®15igés, and each
group is converted to a number as wghck(Junpack() with big-endian formatsh/N (and
analogously for BITS==64). See “pack” for details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into
8/BITS groups. Bits of a byte are numbered in a little-endian-ish way,Ga®ih, 0x02 , 0x04 ,

0x08, 0x10, 0x20, 0x40, 0x80. For example, breaking the single input bgte(0x36)

into two groups gives a ligdx6, 0x3) ; breaking it into 4 groups givgex2, 0x1, 0x3,

0x0) .

vec may also be assigned to, in which case parentheses are needed to give the expression the
correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an element off the end of
the string is written to, Perl will first extend the string with sufficiently many zero bytes. It is an
error to try to write off the beginning of the string (i.e. negab%&ESET).

The string should not contain any character with the value > 255 (which can only happen if
you're usingUTF8 encoding). If it does, it will be treated as something which is U8
encoded. When thgec was assigned to, other parts of your program will also no longer
consider the string to beTF8 encoded. In other words, if you do have such characters in your
string,vec()will operate on the actual byte string, and not the conceptual character string.

Strings created witlvec can also be manipulated with the logical operafgr&, ~, and”™.
These operators will assume a bit vector operation is desired when both operands are strings. See
“Bitwise String Operators” in perlop.

The following code will build up amScCIl string sayingPerlPerlPerl’ . The comments
show the string after each step. Note that this code works in the same way on big-endian or little-
endian machines.

perl v5.8.0 2003-08-13 145

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

my $foo =";

vec($foo, 0, 32) = 0x5065726C; # 'Perl’

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits

print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P’)
vec($foo, 2, 16) = 0x5065; # 'PerlPe’

vec($foo, 3, 16) = 0x726C; # 'PerlPerl’

vec($foo, 8, 8) = 0x50; # 'PerlPerlP’

vec($foo, 9, 8) = 0x65; # 'PerlPerlPe’

vec($foo, 20, 4)=2; # 'PerlPerlPe’ . "\x02"
vec($foo, 21, 4)=7,; # 'PerlPerlPer’

'r'is "\x72"
vec($foo, 45, 2)=3; # 'PerlPerlPer’ . "\xOc"
vec($foo, 93, 1)=1,; # 'PerlPerlPer . "\x2c"
vec($foo, 94, 1)=1, # 'PerlPerlPerl’

'I'is "\x6¢"

To transform a bit vector into a string or list of O’s and 1's, use these:

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the
Here is an example to illustrate how the bits actually fall in place:
#!/usr/bin/perl -wl
print <<’EOT’;

0 1 2 3
unpack("Vv",$_) 01234567890123456789012345678901

EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {
for ($off=0; $off < 32/$width; ++$off) {

$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}

format STDOUT =
vec($_,@#,@#) = @<< == @H##HHHHHH @>>>>>>>>>>>>>555>>>>>>>>>>>>>>>
$off, Swidth, $bits, $val, $res

END__

Regardless of the machine architecture on which it is run, theadample should print the
following table:

146 2003-08-13 perl v5.8.0

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

0 1 2 3
unpack("Vv",$_) 01234567890123456789012345678901

vec($_,0,1)=1 == 1 10000000000000000000000000000000
vec($_,1,1)=1 == 2 01000000000000000000000000000000
vec($_,2,1)=1 == 4 00100000000000000000000000000000
vec($_,3,1)=1 == 8 00010000000000000000000000000000
vec($_,4,1)=1 == 16 00001000000000000000000000000000
vec($_,5 1)=1 == 32 00000100000000000000000000000000
vec($_,6,1)=1 == 64 00000010000000000000000000000000
vec($_,7,1)=1 == 128 00000001000000000000000000000000
vec($_,8,1)=1 == 256 00000000100000000000000000000000
vec($_,9,1)=1 == 512 00000000010000000000000000000000
vec($_,10,1)=1 == 1024 00000000001000000000000000000000
vec($_,11,1)=1 == 2048 00000000000100000000000000000000
vec($_,12,1)=1 == 4096 00000000000010000000000000000000
vec($_,13,1)=1 == 8192 00000000000001000000000000000000
vec($_,14,1)=1 == 16384 00000000000000100000000000000000
vec($_,15,1)=1 == 32768 00000000000000010000000000000000
vec($_,16,1)=1 == 65536 00000000000000001000000000000000
vec($_,17,1)=1 == 131072 00000000000000000100000000000000
vec($_,18,1)=1 == 262144 00000000000000000010000000000000
vec($_,19,1)=1 == 524288 00000000000000000001000000000000
vec($_,20,1)=1 == 1048576 00000000000000000000100000000000
vec($_,21,1)=1 == 2097152 00000000000000000000010000000000
vec($_,22,1)=1 == 4194304 00000000000000000000001000000000
vec($_,23,1)=1 == 8388608 00000000000000000000000100000000
vec($_,24,1)=1 == 16777216 00000000000000000000000010000000
vec($_,25,1)=1 == 33554432 00000000000000000000000001000000
vec($_,26,1)=1 == 67108864 00000000000000000000000000100000
vec($_,27,1)=1 == 134217728 00000000000000000000000000010000
vec($_,28,1)=1 == 268435456 00000000000000000000000000001000
vec($_,29,1)=1 == 536870912 00000000000000000000000000000100
vec($_,30,1)=1 ==1073741824 00000000000000000000000000000010

vec($_,31,1)=1 ==2147483648 00000000000000000000000000000001

vec($_,0,2)=1 == 1 10000000000000000000000000000000
vec($_,1,2)=1 == 4 00100000000000000000000000000000
vec($_,2,2)=1 == 16 00001000000000000000000000000000
vec($_,3,2)=1 == 64 00000010000000000000000000000000
vec($_,4,2)=1 == 256 00000000100000000000000000000000
vec($_,5 2)=1 == 1024 00000000001000000000000000000000
vec($_,6,2)=1 == 4096 00000000000010000000000000000000
vec($_,7,2)=1 == 16384 00000000000000100000000000000000
vec($_,8,2)=1 == 65536 00000000000000001000000000000000
vec($_,9,2)=1 == 262144 00000000000000000010000000000000
vec($_,10,2)=1 == 1048576 00000000000000000000100000000000
vec($_,11,2)=1 == 4194304 00000000000000000000001000000000
vec($_,12,2)=1 == 16777216 00000000000000000000000010000000
vec($_,13,2)=1 == 67108864 00000000000000000000000000100000
vec($_,14,2)=1 == 268435456 00000000000000000000000000001000
vec($_,15,2)=1 ==1073741824 00000000000000000000000000000010

vec($_,0,2)=2 == 2 01000000000000000000000000000000
vec($_,1,2)=2 == 8 00010000000000000000000000000000
vec($_,2,2)=2 == 32 00000100000000000000000000000000
vec($_,3,2)=2 == 128 00000001000000000000000000000000
vec($_,4,2)=2 == 512 00000000010000000000000000000000
vec($_,5 2)=2 == 2048 00000000000100000000000000000000
vec($_,6,2)=2 == 8192 00000000000001000000000000000000
vec($_,7,2)=2 == 32768 00000000000000010000000000000000

perl v5.8.0 2003-08-13 147

PERLFUNC(1)

148

Perl Programmers Reference Guide

vec($_, 8,
vec($_, 9,
vec($_,10,
vec($_,11,
vec($_,12,
vec($_,13,
vec($_,14,
vec($_,15,
vec($_, 0,
vec($_, 1,
vec($_, 2,
vec($_, 3,
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,
vec($_, 0,
vec($_, 1,
vec($_, 2,
vec($_, 3,
vec($_, 4,
vec($_, 5,
vec($_, 6,
vec($_, 7,
vec($_, 0,
vec($_, 1,
vec($_, 2,4
vec($_,3,4) =4
vec($_,4,4)=4
vec($_,5,4)=4
vec($_,6,4)=4

AR BRANNNNNNNNRPRREPRREPERE GNMNNDND NN

4
4
vec($_, 2,4
vec($_, 3,4
vec($_, 4,4
vec($_, 5,4
vec($_, 6,4
vec($_,7,4
vec($_,0,8
vec($_, 1,8
vec($_, 2,8
vec($_, 3,8
vec($_,0,8
vec($_, 1,8
vec($_, 2,8
vec($_, 3,8
vec($_,0,8
vec($_, 1,8
vec($_, 2,8
vec($_, 3,8
vec($_,0,8
vec($_, 1,8
vec($_, 2,8
vec($_, 3,8
vec($_,0,8
vec($_, 1,8
vec($_, 2,8

PERLFUNC(1)

131072 00000000000000000100000000000000
524288 00000000000000000001000000000000
2097152 00000000000000000000010000000000
8388608 00000000000000000000000100000000
33554432 00000000000000000000000001000000
134217728 00000000000000000000000000010000
536870912 00000000000000000000000000000100
2147483648 00000000000000000000000000000001
1 10000000000000000000000000000000
16 00001000000000000000000000000000
256 00000000100000000000000000000000
4096 00000000000010000000000000000000
65536 00000000000000001000000000000000
1048576 00000000000000000000100000000000
16777216 00000000000000000000000010000000
268435456 00000000000000000000000000001000
2 01000000000000000000000000000000
32 00000100000000000000000000000000
512 00000000010000000000000000000000
8192 00000000000001000000000000000000
131072 00000000000000000100000000000000
2097152 00000000000000000000010000000000
33554432 00000000000000000000000001000000
536870912 00000000000000000000000000000100
4 00100000000000000000000000000000
64 00000010000000000000000000000000
1024 00000000001000000000000000000000
16384 00000000000000100000000000000000
262144 00000000000000000010000000000000
4194304 00000000000000000000001000000000
67108864 00000000000000000000000000100000
1073741824 00000000000000000000000000000010
8 00010000000000000000000000000000
128 00000001000000000000000000000000
2048 00000000000100000000000000000000
32768 00000000000000010000000000000000
524288 00000000000000000001000000000000
8388608 00000000000000000000000100000000
134217728 00000000000000000000000000010000
2147483648 00000000000000000000000000000001
1 10000000000000000000000000000000
256 00000000100000000000000000000000
65536 00000000000000001000000000000000
16777216 00000000000000000000000010000000
2 01000000000000000000000000000000
512 00000000010000000000000000000000
131072 00000000000000000100000000000000
33554432 00000000000000000000000001000000
4 00100000000000000000000000000000
1024 00000000001000000000000000000000
262144 00000000000000000010000000000000
67108864 00000000000000000000000000100000
8 00010000000000000000000000000000
2048 00000000000100000000000000000000
524288 00000000000000000001000000000000
134217728 00000000000000000000000000010000
16 00001000000000000000000000000000
4096 00000000000010000000000000000000
1048576 00000000000000000000100000000000

2003-08-13

perl v5.8.0

PERLFUNC(1)

wait

Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 3,8)=16 == 268435456 00000000000000000000000000001000
vec($_,0,8)=32 == 32 00000100000000000000000000000000
vec($_,1,8)=32 == 8192 00000000000001000000000000000000
vec($_,2,8)=32 == 2097152 00000000000000000000010000000000
vec($_, 3,8)=32 == 536870912 00000000000000000000000000000100
vec($_,0,8)=64 == 64 00000010000000000000000000000000
vec($_,1,8)=64 == 16384 00000000000000100000000000000000
vec($_,2,8)=64 == 4194304 00000000000000000000001000000000
vec($_, 3,8) =64 ==1073741824 00000000000000000000000000000010
vec($_, 0, 8) =128 == 128 00000001000000000000000000000000
vec($_, 1,8) =128 == 32768 00000000000000010000000000000000
vec($_, 2,8) =128 == 8388608 00000000000000000000000100000000

vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

Behaves like thavait(2) system call on your system: it waits for a child process to terminate and
returns the pid of the deceased process;loif there are no child processes. The status is
returned in$?. Note that a return value ofl could mean that child processes are being
automatically reaped, as described in perlipc.

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of the deceased predess, or
if there is no such child process. On some systems, a value of 0 indicates that there are processes
still running. The status is returned$f. If you say

use POSIX ":sys_wait_h";
#...
do{
$kid = waitpid(-1, WNOHANG);
} until $kid > 0;

then you can do a non-blocking wait for all pending zombie processes. Non-blocking wait is
available on machines supporting either thaitpid(2) or wait4(2) system calls. However,
waiting for a particular pid withFLAGS of 0 is implemented everywhere. (Perl emulates the
system call by remembering the status values of processes that have exited but have not been
harvested by the Perl script yet.)

Note that on some systems, a return value-bfcould mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

wantarray

Returns true if the context of the currently executing subroutine is looking for a list value.
Returns false if the context is looking for a scalar. Returns the undefined value if the context is
looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

This function should have been nanveahtlist()instead.

warnLIST

perl v5.8.0

Produces a message STDERRjust likedie , but doesn’t exit or throw an exception.

If LIST is empty andb@already contains a value (typically from a previous eval) that value is

used after appendint...caught” to $@ This is useful for staying almost, but not entirely
similar todie .
If $@is empty then the strintyVarning: Something’s wrong" is used.

No message is printed if there is$&8IG{_ _WARN_} handler installed. It is the handler’s
responsibility to deal with the message as it sees fit (like, for instance, converting itiatd. a

Most handlers must therefore make arrangements to actually display the warnings that they are
not prepared to deal with, by callimgarn again in the handler. Note that this is quite safe and

will not produce an endless loop, sinceWARN__ hooks are not called from inside one.

You will find this behavior is slightly different from that $81G{_ _DIE_ _} handlers (which

2003-08-13 149

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

don't suppress the error text, but can insteaddiall again to change it).

Using a__WARN__ handler provides a powerful way to silence all warnings (even the so-called
mandatory ones). An example:

wipe out *all* compile-time warnings

BEGIN { $SIG{__WARN__"} = sub { warn $_[0] if SDOWARN }}

my $foo = 10;

my $foo = 20; # no warning about duplicate my $foo,
but hey, you asked for it!

no compile-time or run-time warnings before here

$DOWARN = 1;
run-time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on settif@SIGentries, and for more examples. See the Carp module for
other kinds of warnings using itsrp() andcluck() functions.

write FILEHANDLE

write EXPR

write Writes a formatted record (possibly multi-line) to the specifieé&HANDLE, using the format
associated with that file. By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (sesefeet function) may be set
explicitly by assigning the name of the format to $fevariable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is advanced by writing a form feed, a special top-of-page
format is used to format the new page header, and then the record is written. By default the top-
of-page format is the name of the filehandle with “_ TOP” appended, but it may be dynamically
set to the format of your choice by assigning the name té§"theariable while the filehandle is
selected. The number of lines remaining on the current page is in véiigbMhich can be set

to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out
asSTDOUT but may be changed by tlselect operator. If theFILEHANDLE is anEXPR, then

the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time. For more on formats, see perlform.

Note that write isiotthe opposite ofead . Unfortunately.
ylil The transliteration operator. Sametidd . See perlop.

150 2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

NAME
perlvar — Perl predefined variables

DESCRIPTION
Predefined Names

The following names have special meaning to Perl. Most punctuation names have reasonable mnemonics,
or analogs in the shells. Nevertheless, if you wish to use long variable names, you need only say

use English;

at the top of your program. This aliases all the short names to the long names in the current package. Some
even have medium names, generally borrowed fraka In general, it's best to use the

use English '-no_match_vars’;

invocation if you don't nee8PREMATCHEMATCHor $POSTMATCHhs it avoids a certain performance
hit with the use of regular expressions. See English.

Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the 10::Handle object, although this is less efficient than using the regular built-in variables.
(Summary lines below for this contain the wetANDLE.) First you must say

use |0::Handle;
after which you may use either
method HANDLE EXPR
or more safely,
HANDLE->method(EXPR)

Each method returns the old value of the 10::Handle attribute. The methods each take anEx®Bnal
which, if supplied, specifies the new value for the 10::Handle attribute in question. If not supplied, most
methods do nothing to the current value — excepaéboflush() which will assume a 1 for you, just to be
different.

Because loading in the 10::Handle class is an expensive operation, you should learn how to use the regular
built-in variables.

A few of these variables are considered “read—only”. This means that if you try to assign to this variable,
either directly or indirectly through a reference, you'll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in this
document. In most cases you want to localize these variables before changing them, since if you don't, the
change may affect other modules which rely on the default values of the special variables that you have
changed. This is one of the correct ways to read the whole file at once:

open my $fh, "foo" or die $!;

local $/; # enable localized slurp mode
my $content = <$fh>;

close $fh;

But the following code is quite bad:

open my $fh, "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;

close $fh;

since some other module, may want to read data from some file in the default “line mode”, so if the code
we have just presented has been executed, the global vafiie isfnow changed for any other code
running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope
possible. So unless you are already inside some §hotilock, you should create one yourself. For
example:

perl v5.8.0 2003-08-13 151

PERLVAR(1)

152

Perl Programmers Reference Guide PERLVAR(1)

my $content = ";
open my $fh, "foo" or die $!;

local $/;
$content = <$th>;

close $fh;

Here is an example of how your own code can go broken:
for (1..51

}

nasty break();
print "$_";

sub nasty_break {

}

$ =5
do something with $_

You probably expect this code to print:

12345

but instead you get:

55555

Why? Becauseasty break(Jnodifies$_ without localizing it first. The fix is to addcal():

local $_=5;

It's easy to notice the problem in such a short example, but in more complicated code you are looking for
trouble if you don't localize changes to the special variables.

The following list is ordered by scalar variables first, then the arrays, then the hashes.
$ARG

$_

$a
$b

The default input and pattern-searching space. The following pairs are equivalent:

while (<>) {...} # equivalent only in while!
while (defined($_=<>)) {...}

["Subject:/
$_="/"Subject:/

tr/a-z/A-Z/
$ ="trla-z/A-Z/

chomp
chomp($))

Here are the places where Perl will assd#mesven if you don't use it:

Various unary functions, including functions liked() andint(), as well as the all file tests
(-f , —d) except for-t , which defaults t&TDIN.

Various list functions likerint() andunlink().

The pattern matching operatioms/ , s/// , andtr/// when used without an™ operator.
The default iterator variable infareach loop if no other variable is supplied.

The implicit iterator variable in thgrep()andmap()functions.

The default place to put an input record whetF&l> operation’s result is tested by itself as
the sole criterion of while test. Outside avhile test, this will not happen.

(Mnemonic: underline is understood in certain operations.)

Special package variables when usiog(), see “sort” in perlfunc. Because of this specialness
$a and$b don’t need to be declared (usilugal(), use vars, oour()) even when using the strict

2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

vars pragma. Don't lexicalize them withy $a or my $b if you want to be able to use them in
thesort() comparison block or function.

$<digits>
Contains the subpattern from the corresponding set of capturing parentheses from the last pattern
match, not counting patterns matched in nested blocks that have been exited already.
(Mnemonic: like \digits.) These variables are all read-only and dynamically scoped to the current
BLOCK.

$MATCH

$& The string matched by the last successful pattern match (not counting any matches hidden within
aBLOCK or eval() enclosed by the curreBLOCK). (Mnemonic: like & in some editors.) This
variable is read-only and dynamically scoped to the cuBedCK.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS'.

$PREMATCH

$ The string preceding whatever was matched by the last successful pattern match (not counting
any matches hidden within BLOCK or eval enclosed by the curreBLOCK). (Mnemonic:*
often precedes a quoted string.) This variable is read—only.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS'.

$POSTMATCH

$ The string following whatever was matched by the last successful pattern match (not counting
any matches hidden withinBLOCK or eval() enclosed by the curreBLOCK). (Mnemonic:’
often follows a quoted string.) Example:

local $_ = 'abcdefghi’;
/def};
print "$:$&:$\n"; # prints abc:def:ghi

This variable is read-only and dynamically scoped to the cuBtemCK.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. S&JGS'.

$LAST_PAREN_MATCH

$+ The text matched by the last bracket of the last successful search pattern. This is useful if you
don’t know which one of a set of alternative patterns matched. For example:
[Version: (.*) [Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read-only and dynamically scoped
to the currenBLOCK.

$N The text matched by the used group most-recently closed (i.e. the group with the rightmost
closing parenthesis) of the last successful search pattern. (Mnemonic: the (possibly) Nested
parenthesis that most recently closed.)

This is primarily used insid€?{...}) blocks for examining text recently matched. For
example, to effectively capture text to a variable (in additidltds2, etc.), replacé...) with

(?:(..)?{ Svar =$'N})
By setting and then usingvar in this way relieves you from having to worry about exactly
which numbered set of parentheses they are.
This variable is dynamically scoped to the cur@&rdCK.

@LAST_MATCH_END

@+ This array holds the offsets of the ends of the last successful submatches in the currently active
dynamic scope $+[0] is the offset into the string of the end of the entire match. This is the
same value as what thgos function returns when called on the variable that was matched
against. Thenth element of this array holds the offset of tiie submatch, s&+[1] is the
offset past wher81 ends $+[2] the offset past whei®2 ends, and so on. You can ug#é+ to

perl v5.8.0 2003-08-13 153

PERLVAR(1)

154

Perl Programmers Reference Guide PERLVAR(1)

determine how many subgroups were in the last successful match. See the examples given for the
@-variable.

$SMULTILINE_MATCHING

$*

Set to a non-zero integer value to do multi-line matching within a string, 0 (or undefined) to tell
Perl that it can assume that strings contain a single line, for the purpose of optimizing pattern
matches. Pattern matches on strings containing multiple newlines can produce confusing results
when$* is 0 or undefined. Default is undefined. (Mnemonic: * matches multiple things.) This
variable influences the interpretation of ohl\and$. A literal newline can be searched for even
when$* == 0

Use of $* is deprecated in modern Perl, supplanted by/sheand /m modifiers on pattern
matching.

Assigning a non-numerical value & triggers a warning (and mak&$ act if $* == 0),
while assigning a numerical value$d makes that an implicibt is applied on the value.

HANDLE->input_line_numbeEXPR)
$INPUT_LINE_NUMBER

$NR
$.

Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending on the
value of$/ , Perl's idea of what constitutes a line may not match yours.) When a line is read
from a filehandle (viaeadline() or <>), or whentell() or seek()is called on it$. becomes an

alias to the line counter for that filehandle.

You can adjust the counter by assigningbtq but this will not actually rove the seek pointer.
Localizing$. will not localize the filehandle’s line couninstead, it will localize perl’s notion of
which filehandleb. is currently aliased to.

$. is reset when the filehandle is closed, tmttwhen an open filehandle is reopened without an
interveningclose() For more details, see "I/O Operators" in perlop. Becaxseever does an
explicit close, line numbers increase acRsV files (but see examples in “eof” in perlfunc).

You can also usélANDLE->input_line_number(EXPR) to access the line counter for a
given filehandle without having to worry about which handle you last accessed.

(Mnemonic: many programs use “.” to mean the current line number.)

|0::Handle—>input_record_separatexfR)
$INPUT_RECORD_SEPARATOR

$RS
$/

The input record separator, newline by default. This influences Perl’s idea of what a “line” is.
Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string. (An empty line cannot contain any spaces or tabs.) You may set it to a multi-character
string to match a multi-character terminator, outmef to read through the end of file. Setting

it to "\n\n" means something slightly different than setting"to, if the file contains
consecutive empty lines. Setting"to will treat two or more consecutive empty lines as a single
empty line. Setting td\n\n" will blindly assume that the next input character belongs to the
next paragraph, even if it's a newline. (Mnemonic: / delimits line boundaries when quoting

poetry.)

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
sA\n[\t]+/ /g;

Remember: the value &f is a string, not a regexawk has to be better for something. :-)

Setting$/ to a reference to an integer, scalar containing an integer, or scalar that's convertible to
an integer will attempt to read records instead of lines, with the maximum record size being the
referenced integer. So this:

2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

local $/ =\32768; # or \"32768", or \$var_containing_32768
open my $fh, $myfile or die $!;
local $_ = <$fh>;

will read a record of no more than 32768 bytes frabk. If you're not reading from a record-
oriented file (or younSsdoesn't have record-oriented files), then you'll likely get a full chunk of
data with every read. If a record is larger than the record size you've set, you'll get the record
back in pieces.

On VMS, record reads are done with the equivalentysfread , so it's best not to mix record

and non-record reads on the same file. (This is unlikely to be a problem, because any file you'd
want to read in record mode is probably unusable in line mode.) Non-VMS systems do normal
I/0, so it's safe to mix record and non-record reads of a file.

See also “Newlines” in perlport. Also sek .

HANDLE->autoflushEXPR)

$OUTPUT_AUTOFLUSH

$0 If set to nonzero, forces a flush right away and after every write or print on the currently selected
output channel. Default is O (regardless of whether the channel is really buffered by the system or
not; $0tells you only whether you've asked Perl explicitly to flush after each wi#epouT
will typically be line buffered if output is to the terminal and block buffered otherwise. Setting
this variable is useful primarily when you are outputting to a pipe or socket, such as when you are
running a Perl program undesh and want to see the output as it's happening. This has no effect
on input buffering. See “getc” in perlfunc for that. (Mnemonic: when you want your pipes to be
piping hot.)

|0::Handle—>output_field_separat®éxPR

$OUTPUT_FIELD_SEPARATOR

$OFS

$, The output field separator for the print operator. Ordinarily the print operator simply prints out its
arguments without further adornment. To get behavior morealile set this variable as you
would setawk’s OFS variable to specify what is printed between fields. (Mnemonic: what is

printed when there is a “,” in your print statement.)

|0::Handle—>output_record_separaXPR

$OUTPUT_RECORD_SEPARATOR

$ORS

$\ The output record separator for the print operator. Ordinarily the print operator simply prints out
its arguments as is, with no trailing newline or other end-of-record string added. To get behavior
more likeawk, set this variable as you would setk’s ORSvariable to specify what is printed at
the end of the print. (Mnemonic: you $&t instead of adding “\n” at the end of the print. Also,
it’s just like $/ , but it's what you get “back” from Perl.)

$LIST_SEPARATOR
$" This is like$, except that it applies to array and slice values interpolated into a double-quoted
string (or similar interpreted string). Default is a space. (Mnemonic: obvious, | think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{%a,$b,c}
it really means
$foofjoin($;, $a, $b, $c)}
But don't put
@foo{%a,$b,$c} # a slice--note the @
which means
($foo{$a},Sfoo{$b},Sfoo{$c})
Default is “\034”, the same aSUBSEPIn awk. If your keys contain binary data there might not

perl v5.8.0 2003-08-13 155

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

156

be any safe value fofs; . (Mnemonic: comma (the syntactic subscript separator) is a
semi—semicolon. Yeah, | know, it's pretty lame, I8yt is already taken for something more
important.)

Consider using “real” multidimensional arrays as described in perllol.

$OFMT

$# The output format for printed numbers. This variable is a half-hearted attempt to eandate
OFMT variable. There are times, however, wtremk and Perl have differing notions of what
counts as numeric. The initial value is 1%, wheren is the value of the macmBL_DIG from
your system'dloat.h This is different fromawk’s defaultOFMT setting of “%.69", so you need
to set$# explicitly to getawk’s value. (Mnemonic: # is the number sign.)

Use of$# is deprecated.

HANDLE->format_page numbefkPR)

$FORMAT_PAGE_NUMBER

$% The current page number of the currently selected output channel. Used with formats.
(Mnemonic: % is page number mmoff .)

HANDLE->format_lines_per_pageXPR)

$FORMAT_LINES_PER_PAGE

$= The current page length (printable lines) of the currently selected output channel. Default is 60.
Used with formats. (Mnemonic: = has horizontal lines.)

HANDLE->format_lines_leffEXPR)

$FORMAT_LINES_LEFT

$- The number of lines left on the page of the currently selected output channel. Used with formats.
(Mnemonic: lines_on_page - lines_printed.)

@LAST_MATCH_START
@- $-[0] is the offset of the start of the last successful makeh.n] is the offset of the start of the
substring matched hy-th subpattern, or undef if the subpattern did not match.

Thus after a match agairt, $& coincides withsubstr $_, $-[0], $+[0] — $-[0] .
Similarly, $n coincides withsubstr $_, $-[n,$+[n] — $-[n] if $-[n] is defined,
and $+ coincides witsubstr $_, $-[$#-], $+[$#-] . One can us&#- to find the last
matched subgroup in the last successful match. Contras$#iththe number of subgroups in
the regular expression. Compare w@h+

This array holds the offsets of the beginnings of the last successful submatches in the currently
active dynamic scope$—[0] is the offset into the string of the beginning of the entire match.
Thenth element of this array holds the offset of titie submatch, s&—[1] is the offset where

$1 begins$-[2] the offset wher&2 begins, and so on.

After a match against some variaBhar:

$' is the same asubstr($var, 0, $-[0])
$& is the same asubstr($var, $-[0], $+[0] — $-[0])
$' is the same asubstr($var, $+[0])
$1 is the same asubstr($var, $-[1], $+[1] - $-[1])
$2 is the same asubstr($var, $-[2], $+[2] - $-[2])
$3 is the same asubstr $var, $-[3], $+[3] - $-[3])
HANDLE->format_namefXPR)
$FORMAT_NAME
$ The name of the current report format for the currently selected output channel. Default is the
name of the filehandle. (Mnemonic: brothef{a)

HANDLE->format_top_nam&XPR)

$FORMAT_TOP_NAME

$ The name of the current top-of-page format for the currently selected output channel. Default is
the name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

I0::Handle—>format_line_break charactedPR

2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may be broken to fill continuation fields
(starting with 7) in a format. Default is “\n-", to break on whitespace or hyphens. (Mnemonic:
a “colon” in poetry is a part of a line.)

I0::Handle->format_formfeedXPR
$FORMAT_FORMFEED

$L What formats output as a form feed. Default is \f.
$ACCUMULATOR
$A The current value of therite() accumulator forformat() lines. A format containgormline()

calls that put their result int§'A . After calling its formatwrite() prints out the contents @A
and empties. So you never really see the conterfid®ofunless you callormline() yourself and
then look at it. See perlform andormline() in perlfunc.

$CHILD_ERROR

$? The status returned by the last pipe close, bacKtickfommand, successful call weait() or
waitpid(), or from thesystem(pperator. This is just the 16—bit status word returned byHit)
system call (or else is made up to look like it). Thus, the exit value of the subprocess is really
($? >>8), and$? & 127 gives which signal, if any, the process died from, &k 128
reports whether there was a core dump. (Mnemonic: simiktramdksh.)

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any
gethost*() function fails.

If you have installed a signal handler fStGCHLD the value of$? will usually be wrong
outside that handler.

Inside anENDsubroutine$? contains the value that is going to be giverexit() . You can
modify $? in anENDsubroutine to change the exit status of your program. For example:

END {
$?=1if $?2 ==255; # die would make it 255
}

UnderVMS, the pragmaise vmsish 'status’ makes$? reflect the actualMs exit status,
instead of the default emulation®SIX status; see “$?” in perlvms for details.

Also see “Error Indicators”.

${"ENCODING}
The object referenceo the Encode object that is used to convert the source code to Unicode.
Thanks to this variable your perl script does not have to be writtefir8. Default isundef
The direct manipulation of this variable is highly discouraged. See encoding for more details.

$0OS_ERROR

$ERRNO

$! If used numerically, yields the current value of theettho variable, or in other words, if a
system or library call fails, it sets this variable. This means that the valble isf meaningful
only immediatelyafter afailure :

if (open(FH, $filename)) {
Here $! is meaningless.

} else {
ONLY here is $! meaningful.

Already here $! might be meaningless.

}

Since here we might have either success or failure,
here $! is meaningless.

In the abovemeaninglesstands for anything: zero, non-zeumdef . A successful system or
library call doesot set the variable to zero.

If used an a string, yields the corresponding system error string. You can assign a nughber to

perl v5.8.0 2003-08-13 157

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

to seterrnoif, for instance, you wart!" to return the string for errar, or you want to set the
exit value for thedie() operator. (Mnemonic: What just went bang?)

Also see “Error Indicators”.

%! Each element d¥! has a true value only ! is set to that value. For examp®{ENOENT}
is true if and only if the current value $f is ENOENTthat is, if the most recent error was “No
such file or directory” (or its moral equivalent: not all operating systems give that exact error, and
certainly not all languages). To check if a particular key is meaningful on your system, use
exists $!{the_key} ; for a list of legal keys, us&eys %! . See Errno for more
information, and also see@lefor the validity of$! .

$EXTENDED_OS_ERROR

$E Error information specific to the current operating system. At the moment, this differ$!/from
under onlyWwMS, 0S/2 and Win32 (and for MacPerl). On all other platfor®¥; is always just
the same a$! .

UndervMs, $°E provides thevMS status value from the last system error. This is more specific
information about the last system error than that provide#l! byThis is particularly important
when$! is set toEVMSERR.

Under0S/2 $°E is set to the error code of the last callas/2 APIeither viaCRT, or directly

from perl.
Under Win32,$°E always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within the Win3®l. Most

Win32-specific code will report errors ViE . ANSI C and Unix-like calls se¢rrno and so
most portable Perl code will report errors $la.

Caveats mentioned in the description$f generally apply t&°E , also. (Mnemonic: Extra
error explanation.)

Also see “Error Indicators”.

$EVAL_ERROR

$@ The Perl syntax error message from the dasi() operator. If $3@ is the null string, the last
eval() parsed and executed correctly (although the operations you invoked may have failed in the
normal fashion). (Mnemonic: Where was the syntax error “at”?)

Warning messages are not collected in this variable. You can, however, set up a routine to
process warnings by setti8&IG{ _WARN_} as described below.

Also see “Error Indicators”.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. You should consider this variable read—only,

although it will be altered acroark() calls. (Mnemonic: same as shells.)

Note for Linux users: on Linux, the C functiogstpid() andgetppid() return different
values from different threads. In order to be portable, this behavior is not refle&d Wwkose
value remains consistent across threads. If you want to call the undgdypid() , you may
use theCPAN moduleLinux::Pid

$REAL_USER_ID

$UID
$< The real uid of this process. (Mnemonic: it's the uid you cog, if you're running setuid.)
You can change both the real uid and the effective uid at the same time bPQSh§::setuid()

$EFFECTIVE_USER_ID
$EUID
$> The effective uid of this process. Example:

$< = $>; # set real to effective uid
($<,%>) = ($>,$<); # swap real and effective uid

You can change both the effective uid and the real uid at the same time bPQSh§::setuid()

158 2003-08-13 perl v5.8.0

PERLVAR(1)

Perl Programmers Reference Guide PERLVAR(1)

(Mnemonic: it's the uid you wertb, if you're running setuid.)$< and$> can be swapped only
on machines supportirsgetreuid()

$REAL_GROUP_ID

$GID
(

The real gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bgetgid() and the subsequent onesdatgroups() one of which may be the same

as the first number.

However, a value assigned$0 must be a single number used to set the real gid. So the value
given by$(shouldnotbe assigned back &(without being forced numeric, such as by adding
zero.

You can change both the real gid and the effective gid at the same time bPQS8h§::setgid()

(Mnemonic: parentheses are usedytoup things. The real gid is the group yteft, if you're
running setgid.)

$EFFECTIVE_GROUP_ID

$EGID
$)

The effective gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, gives a space separated list of groups you are in. The first number is the
one returned bygetegid() and the subsequent onesgatgroups()one of which may be the same

as the first number.

Similarly, a value assigned t$) must also be a space-separated list of humbers. The first
number sets the effective gid, and the rest (if any) are passethtoups() To get the effect of

an empty list foisetgroups()just repeat the new effective gid; that is, to force an effective gid of
5 and an effectively empetgroups(jist, say $) ="5 5"

You can change both the effective gid and the real gid at the same time bPQShg;::setgid()
(use only a single numeric argument).

(Mnemonic: parentheses are usedtoup things. The effective gid is the group thaight for
you, if you're running setgid.)

$<, $>, $(and$) can be set only on machines that support the corresposelifrg]lug]id()
routine. $(and$) can be swapped only on machines supporetgegid()

$PROGRAM_NAME

$0

$[

$]

perl v5.8.0

Contains the name of the program being executed. On some operating systems assining to
modifies the argument area that gegprogram sees. This is more useful as a way of indicating
the current program state than it is for hiding the program you're running. (Mnemonic: same as
shandksh.)

Note forBSD users: setting0 does not completely remme ‘perl” from the ps(1) output. For
example, setting0 to "foobar" will result in "perl: foobar (perl)" . This is an
operating system feature.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy of the
$0 and the change becomes visibl@#§l) (assuming the operating system plays along).

The index of the first element in an array, and of the first character in a substring. Default is 0,
but you could theoretically set it to 1 to make Perl behave morealike (or Fortran) when
subscripting and when evaluating tiredex() and substr() functions. (Mnemonic: [begins
subscripts.)

As of release 5 of Perl, assignmentfois treated as a compiler directive, and cannot influence
the behavior of any other file. Its use is highly discouraged.

The version + patchlevel / 1000 of the Perl interpreter. This variable can be used to determine
whether the Perl interpreter executing a script is in the right range of versions. (Mnemonic: Is
this version of perl in the right bracket?) Example:

warn "No checksumming\n" if $] < 3.019;

See also the documentationusfe VERSION andrequire VERSION for a convenient way

2003-08-13 159

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

160

to fail if the running Perl interpreter is too old.

The floating point representation can sometimes lead to inaccurate numeric comparisons. See
$V for a more modern representation of the Perl version that allows accurate string

comparisons.
$COMPILING
$C The current value of the flag associated with-thswitch. Mainly of use with-MO=... to allow

code to alter its behavior when being compiled, such as for exampléT@_.OAD at compile
time rather than normal, deferred loading. See perlcc. Sekfiig= 1 is similar to calling
B::minus_c

$DEBUGGING

$D The current value of the debugging flags. (Mnemonic: valu®awitch.)

$SYSTEM_FD_MAX

$F The maximum system file descriptor, ordinarily 2. System file descriptors are pasged(¥ul
processes, while higher file descriptors are not. Also, duringpan() system file descriptors
are preserved even if thapen()fails. (Ordinary file descriptors are closed before dpen()is
attempted.) The close-on-exec status of a file descriptor will be decided according to the value of
$°F when the corresponding file, pipe, or socket was opened, not the timeegétfe

$H WARNING: This variable is strictly for internal use only. Its availability, behavior, and contents
are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation of a
BLOCK the value of this variable is restored to the value when the interpreter started to compile
the BLOCK.

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,
required file, subroutine body, loop body, or conditional block), the existing value of $°H is saved,
but its value is left unchanged. When the compilation of the block is completed, it regains the
saved value. Between the points where its value is saved and restored, code that executes within
BEGIN blocks is free to change the value of $"H.

This behavior provides the semantic of lexical scoping, and is used in, for instanasgthe
strict pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.
Here's an example:

sub add_100 { $"H = 0x100}

sub foo {
BEGIN { add_100() }
bar->baz($boon);

}

Consider what happens during execution ofBESIN block. At this point theBEGIN block has
already been compiled, but the bodyfad() is still being compiled. The new value of $™H will
therefore be visible only while the bodyfob() is being compiled.

Substitution of the abov@EGIN block with:
BEGIN { require strict; strict->import('vars’) }

demonstrates howse strict 'vars’ is implemented. Here’s a conditional version of the
same lexical pragma:

BEGIN { require strict; strict->import('vars’) if $condition }

%"H WARNING: This variable is strictly for internal use only. Its availability, behavior, and contents
are subject to change without notice.

The %"H hash provides the same scoping semantic as $H. This makes it useful for
implementation of lexically scoped pragmas.

2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$INPLACE_EDIT
$l The current value of the inplace-edit extension. Wselef to disable inplace editing.
(Mnemonic: value ofi switch.)

™M By default, running out of memory is an untrappable, fatal error. However, if suitably built, Perl
can use the contents $M as an emergency memory pool afféx()ing. Suppose that your Perl
were compiled with —-DPERL_EMERGENCY_SBRK and used Perl's malloc. Then

$™M ="a’ x (1 << 16);

would allocate a 64K buffer for use in an emergency. Se8wWALLfile in the Perl distribution
for information on how to enable this option. To discourage casual use of this advanced feature,
there is no English long name for this variable.

$OSNAME
$0 The name of the operating system under which this copy of Perl was built, as determined during
the configuration process. The value is identicab@nfig{’osname’} . See also Config

and the-V command-line switch documented in perlrun.

In Windows platforms, $°0O is not very helpful: since it is alwB{8Win32, it doesn't tell the
difference between 95/98/ME/NT/2000/XP/CE/.NET. Us®Vin32::GetOSName() or
Win32::GetOSVersion(see Win32 and perlport) to distinguish between the variants.

${"OPEN}
An internal variable used by PerllO. A string in two parts, separated®yleyte, the first part
describes the input layers, the second part describes the output layers.

$PERLDB
$P The internal variable for debugging support. The meanings of the various bits are subject to
change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging.

0x04 Switch off optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Reporgoto &subroutine as well.

0x100 Provide informative “file” names for evals based on the place they were compiled.

0x200 Provide informative names to anonymous subroutines based on the place they were
compiled.

Some bits may be relevant at compile-time only, some at run-time only. This is a new mechanism
and the details may change.

$LAST_REGEXP_CODE_RESULT
$R The result of evaluation of the last succesg&f{icode }) regular expression assertion (see
perlre). May be written to.

$EXCEPTIONS_BEING_CAUGHT

$'S Current state of the interpreter. Undefined if parsing of the current module/eval is not finished
(may happen i$SIG{__DIE__} and$SIG{__WARN_ _} handlers). True if inside agval(),
otherwise false.

$BASETIME

$T The time at which the program began running, in seconds since the epoch (beginning of 1970).
The values returned by thé, —A, and-C filetests are based on this value.

${"TAINT}
Reflects if taint mode is on or off (i.e. if the program was run withor not). True for on, false
for off.

perl v5.8.0 2003-08-13 161

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$PERL_VERSION

Vv The revision, version, and subversion of the Perl interpreter, represented as a string composed of
characters with those ordinals. Thus in Perl v5.6.0 it equn($) . chr(6) . chr(0)
and will return true fol$"V eq v5.6.0 . Note that the characters in this string value can
potentially be in Unicode range.

This can be used to determine whether the Perl interpreter executing a script is in the right range
of versions. (Mnemonic: use "V for Version Control.) Example:

warn "No \"our\" declarations'\n" if $"V and $"V It v5.6.0;
To convert$™V into its string representation usprintf()'s "%vd" conversion:
printf "version is v%vd\n", $°V; # Perl’s version

See the documentation wée VERSION andrequire VERSION for a convenient way to fail
if the running Perl interpreter is too old.

See als@®] for an older representation of the Perl version.

SWARNING
W The current value of the warning switch, initially true-ifv was used, false otherwise, but
directly modifiable. (Mnemonic: related to they switch.) See also warnings.

${"WARNING_BITS}
The current set of warning checks enabled by tise warnings pragma. See the
documentation ofvarnings for more details.

${"WIDE_SYSTEM_CALLS}
Global flag that enables system calls made by Perl to use wide character APIs native to the
system, if available. This is currently only implemented on the Windows platform.

This can also be enabled from the command line usingGlssvitch.

The initial value is typically0 for compatibility with Perl versions earlier than 5.6, but may be
automatically set tol by Perl if the system provides a user-settable default (e.g.,
$ENV{LC_CTYPE}).

The bytes pragma always overrides the effect of this flag in the current lexical scope. See

bytes.
$EXECUTABLE_NAME
$X The name used to execute the current copy of Perl, frorar@§0]

Depending on the host operating system, the value of $ X may be a relative or absolute pathname
of the perl program file, or may be the string used to invoke perl but not the pathname of the perl
program file. Also, most operating systems permit invoking programs that are notRATthe
environment variable, so there is no guarantee that the value of $AHn For VMS, the

value may or may not include a version number.

You usually can use the value of $°X to re-invoke an independent copy of the same perl that is
currently running, e.g.,

@first_run = ‘$"X -le "print int rand 100 for 1..100™;

But recall that not all operating systems support forking or capturing of the output of commands,
so this complex statement may not be portable.

It is not safe to use the value of $°X as a path name of a file, as some operating systems that have
a mandatory suffix on executable files do not require use of the suffix when invoking a command.
To convert the value of $°X to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
$this_perl =$X;
if ($"0 ne VMS’)
{$this_perl .=$Config { exe}
unlesssthis_perl =" m/$Config{_exe}$/i;}

162 2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Because many operating systems permit anyone with read access to the Perl program file to make
a copy of it, patch the copy, and then execute the copy, the security-conscious Perl programmer
should take care to invoke the installed copy of perl, not the copy referenced by $X. The
following statements accomplish this goal, and produce a pathname that can be invoked as a
command or referenced as a file.

use Config;
$secure_perl_path = $Config{perlpath};
if ($"0 ne 'VMS’)
{$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =~ m/$Config{ exe}$/i;}

ARGV The special filehandle that iterates over command-line filenam@ARGWsually written as
the null filehandle in the angle operatof. Note that currenthtARGVonly has its magical effect
within the<> operator; elsewhere it is just a plain filehandle corresponding to the last file opened
by <>. In particular, passinfARGV as a parameter to a function that expects a filehandle may
not cause your function to automatically read the contents of all the f@ARGV

$ARGV contains the name of the current file when reading from <>.

@ARGV
The array@ARG\ontains the command-line arguments intended for the scB#ARGVis
generally the number of arguments minus one, bec®AR&V[0] is the first argumentot the
program’s command name itself. Sk@for the command name.

ARGVOUT
The special filehandle that points to the currently open output file when doing edit-in-place
processing with-i. Useful when you have to do a lot of inserting and don't want to keep
modifying$_. See perlrun for thei switch.

@F The array@Fcontains the fields of each line read in when autosplit mode is turned on. See
perlrun for the-a switch. This array is package-specific, and must be declared or given a full
package name if not in package main when running wtdet 'vars’

@INC The array@INCcontains the list of places that the EXPR, require , oruse constructs look
for their library files. It initially consists of the arguments to attycommand-line switches,

followed by the default Perl library, probablysr/local/lib/per| followed by “.", to represent the
current directory. (“.” will not be appended if taint checks are enabled, eitheiThy by -t .)
If you need to modify this at runtime, you should useuse lib pragma to get the machine-

dependent library properly loaded also:

use lib '/mypath/libdir/’;
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code direct{® iN©
Those hooks may be subroutine references, array references or blessed objects. See “require” in
perlfunc for details.

@ Within a subroutine the arr&@_contains the parameters passed to that subroutine. See perlsub.

%INC The hash%INC contains entries for each filename included via dbe require , or use
operators. The key is the filename you specified (with module names converted to pathnames),
and the value is the location of the file found. Téguire operator uses this hash to determine
whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see “require” in perlfunc for a
description of these hooks), this hook is by default inserted%idC in place of a filename.
Note, however, that the hook may have setildCentry by itself to provide some more specific
info.

%ENV

SENV{expr}
The hash%ENVcontains your current environment. Setting a valueEMV changes the
environment for any child processes you subsequéartty) off.

%SIG

perl v5.8.0 2003-08-13 163

PERLVAR(1)

164

$SIG{expr}

Perl Programmers Reference Guide PERLVAR(1)
The has®oSIGcontains signal handlers for signals. For example:
sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig--shutting down\n";
close(LOG);
exit(0);
}

$SIG{INT} = \&handler;
$SIG{'QUIT’} = \&handler;

$SIG{INT'} = 'DEFAULT’; # restore default action
$SIG{'QUIT’} = "IGNORE’; # ignore SIGQUIT

Using a value ofl GNORE’ usually has the effect of ignoring the signal, except forGhé&D
signal. See perlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
$SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

If your system has th&igaction()function then signal handlers are installed using it. This means
you get reliable signal handling. If your system hasSheRESTARTflag it is used when signals
handlers are installed. This means that system calls for which restarting is supported continue
rather than returning when a signal arrives. If you want your system calls to be interrupted by
signal delivery then do something like this:

use POSIX "signal_h’;

my $alarm = 0;
sigaction SIGALRM, new POSIX::SigAction sub { $alarm =1}
or die "Error setting SIGALRM handler: $!\n";

SeePOSIX

Certain internal hooks can be also set using %®IG hash. The routine indicated by
$SIG{_ _WARN_} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence ofa __ WARN__ hook causes the ordinary
printing of warnings toSTDERR to be suppressed. You can use this to save warnings in a
variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN__}=sub {die $_[0] };
eval $proggie;

The routine indicated b$SIG{ _DIE_ } is called when a fatal exception is about to be

thrown. The error message is passed as the first argument. When a __DIE__ hook routine

returns, the exception processing continues as it would have in the absence of the hook, unless the

hook routine itself exits via goto , a loop exit, or alie(). The __DIE_ _ handler is explicitly

disabled during the call, so that you can die from aDIE_ _ handler. Similarly for
WARN__.

Due to an implementation glitch, t$SIG{_ _DIE_ _} hook is called even inside aval()

Do not use this to rewrite a pending exceptior$@ or as a bizarre substitute for overriding
CORE::GLOBAL.::die() This strange action at a distance may be fixed in a future release so that
$SIG{_ _DIE_ _} is only called if your program is about to exit, as was the original intent.
Any other use is deprecated.

__DIE_ /| _WARN__ handlers are very special in one respect: they may be called to report
(probable) errors found by the parser. In such a case the parser may be in inconsistent state, so

2003-08-13 perl v5.8.0

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

any attempt to evaluate Perl code from such a handler will probably result in a segfault. This
means that warnings or errors that result from parsing Perl should be used with extreme caution,
like this:

require Carp if defined $°S;

Carp::confess("Something wrong") if defined &Carp::confess;

die "Something wrong, but could not load Carp to give backtrace...
To see backtrace try starting Perl with -MCarp switch";

Here the first line will load Carpnlessit is the parser who called the handler. The second line
will print backtrace and die if Carp was available. The third line will be executed only if Carp
was not available.

See “die” in perlfunc, “warn” in perlfunc, “eval” in perlfunc, and warnings for additional
information.

Error Indicators

The variable$@ $! , $°E , and$? contain information about different types of error conditions that may
appear during execution of a Perl program. The variables are shown ordered by the “distance” between the
subsystem which reported the error and the Perl process. They correspond to errors detected by the Perl
interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which uses a
single-quoted string:

eval q{
open my $pipe, "/cdrom/install O or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";
2
After execution of this statement all 4 variables may have been set.

$@is set if the string to beval —ed did not compile (this may happerojfen or close were imported
with bad prototypes), or if Perl code executed during evaludie)d . In these cases the value of $@ is
the compile error, or the argumentdi®@ (which will interpolate$! and$?!). (See also Fatal, though.)

When theeval() expression alve is executedopen() <PIPE>, andclose are translated to calls in the C
run-time library and thence to the operating system kei$lelis set to the C library’®rrno if one of
these calls fails.

Under a few operating systenf§E may contain a more verbose error indicator, such as in this case,
“ CDROM tray not closed.” Systems that do not support extended error message$ leatiee same as
$! .

Finally, $? may be set to non-0 value if the external progfediom/installfails. The upper eight bits
reflect specific error conditions encountered by the program (the progrsit(jsvalue). The lower eight
bits reflect mode of failure, like signal death and core dump informationw@aé€?) for details. In

contrast ta$! and$°E, which are set only if error condition is detected, the varigBlés set on each
wait or pipeclose , overwriting the old value. This is more ligg) which on eveneval()is always set
on failure and cleared on success.

For more details, see the individual descriptior8@t$! , $°E , and$?.

Technical Note on the Syntax of Variable Names

Variable names in Perl can have several formats. Usually, they must begin with a letter or underscore, in
which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequencer’ . In this case, the part before the lastor’ is taken to

be apackage qualifiersee perimod.

Perl variable names may also be a sequence of digits or a single punctuation or control character. These
names are all reserved for special uses by Perl; for example, the all-digits names are used to hold data
captured by backreferences after a regular expression match. Perl has a special syntax for the single-
control-character names: It understaf¥s(caretX) to mean the controi character. For example, the
notation$"W (dollar-sign careW is the scalar variable whose name is the single character camtrol—

perl v5.8.0 2003-08-13 165

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

BUGS

166

This is better than typing a literal contr¥into your program.

Finally, new in Perl 5.6, Perl variable names may be alphanumeric strings that begin with control characters
(or better yet, a caret). These variables must be written in the®6Fao} ; the braces are not optional.
${"Foo} denotes the scalar variable whose name is a cohtfollewed by twoo’s. These variables are
reserved for future special uses by Perl, except for the ones that begih witlontrol-underscore or
caret—underscore). No control-character name that begins withill acquire a special meaning in any
future version of Perl; such names may therefore be used safely in proggamstself, however,is
reserved.

Perl identifiers that begin with digits, control characters, or punctuation characters are exempt from the
effects of thepackage declaration and are always forced to be in packagm ; they are also exempt

from strict 'vars’ errors. A few other names are also exempt in these ways:
ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG

In particular, the new speci&{"_XYZ} variables are always taken to be in packagén , regardless of
anypackage declarations presently in scope.

Due to an unfortunate accident of Perl's implementatiose English imposes a considerable
performance penalty on all regular expression matches in a program, regardless of whether they occur in
the scope ofise English . For that reason, sayinge English in libraries is strongly discouraged.

See the Devel::SawAmpersand module documentation fromCPAN (
http://www.cpan.org/modules/by—module/Devel/) for more information.

Having to even think about th&"S variable in your exception handlers is simply wrong.
$SIG{_ _DIE_ _} as currently implemented invites grievous and difficult to track down errors. Avoid it
and use aiEND{} or CORE::GLOBAL::die override instead.

2003-08-13 perl v5.8.0

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

NAME
perlrun — how to execute the Perl interpreter
SYNOPSIS
perl [-CsTtuUWX] [=hv][=V[:configval]
[—cw][—d[:debuggef] [-D[numberl/lis}]
[-pna][—Fpattern] [—l[octall][—O[octall]
[=Idir][=m[-]module] [-M[-]’'module..] [-P] [-S] [=x[dir]]
[—i[extensioh] [—e’command’] [——][programfile] [argument{...
DESCRIPTION

The normal way to run a Perl program is by making it directly executable, or else by passing the name of
the source file as an argument on the command line. (An interactive Perl environment is also
possible — see perldebug for details on how to do that.) Upon startup, Perl looks for your program in one
of the following places:

1. Specified line by line viae switches on the command line.

2. Contained in the file specified by the first flename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way. See “Location of Perl".)

3. Passed in implicitly via standard input. This works only if there are no filename arguments —to pass
arguments to a STDIN-read program you must explicitly specify a “~" for the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you've specified a
switch, in which case it scans for the first line starting with #! and containing the word “per!”, and starts
there instead. This is useful for running a program embedded in a larger message. (In this case you would
indicate the end of the program using theEND___ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you're on a machine that
allows only one argument with the #! line, or worse, doesn't even recognize the #! line, you still can get
consistent switch behavior regardless of how Perl was invoked, evenviis used to find the beginning of

the program.

Because historically some operating systems silently chopped off kernel interpretation of the #! line after
32 characters, some switches may be passed in on the command line, and some may not; you could even
get a “=" without its letter, if you're not careful. You probably want to make sure that all your switches
fall either before or after that 32-character boundary. Most switches don't actually care if they're
processed redundantly, but getting a “~" instead of a complete switch could cause Perl to try to execute

standard input instead of your program. And a parfiawitch could also cause odd results.

Some switches do care if they are processed twice, for instance combinatidredf-0. Either put all

the switches after the 32—character boundary (if applicable), or replace the-Qskigas by BEGIN{ $/

= "\0digits"; }

Parsing of the #! switches starts wherever “perl” is mentioned in the line. The sequences “—*" and “- "
are specifically ignored so that you could, if you were so inclined, say

#l/bin/sh -- # -*- perl -*- -p
eval 'exec perl -wS $0 ${1+"$@"}
if $running_under_some_shell;

to let Perl see thep switch.
A similar trick involves theenv program, if you have it.
#!/usr/bin/env perl

The examples alve use a relative path to the perl interpreter, getting whatever version is first in the user’s
path. If you want a specific version of Perl, say, perl5.005 57, you should place that directly in the #! line’s
path.

If the #! line does not contain the word “perl”, the program named after the #! is executed instead of the
Perl interpreter. This is slightly bizarre, but it helps people on machines that don’t do #!, because they can
tell a program that theisHELL is /usr/bin/per] and Perl will then dispatch the program to the correct
interpreter for them.

After locating your program, Perl compiles the entire program to an internal form. If there are any
compilation errors, execution of the program is not attempted. (This is unlike the typical shell script, which

perl v5.8.0 2003-08-13 167

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

168

might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an
exit() or die() operator, an impliciexit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix’s #! technique can be simulated on other systems:

0Ss/2
Put

extproc perl -S -your_switches

as the first line if.cmd file (-Sdue to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify ALTERNATIVE_SHEBANGee thalosish.h
file in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry to
associate thepl extension with the perl interpreter. If you install Perl by other means (including
building from the sources), you may have to modify the Registry yourself. Note that this means you
can no longer tell the difference between an executable Perl program and a Perl library file.

Macintosh
A Macintosh perl program will have the appropriate Creator and Type, so that double-clicking them
will invoke the perl application.

VMS
Put

$ perl -mysw 'f$env("procedure”)’ 'pl’ 'p2’ 'p3’ 'pd’ 'p5’ 'p6’ 'p7’ 'p8’
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, whergnysw are any command line switches you want to pass to Perl.
You can now invoke the program directly, by sayperl program , or as aDCL procedure, by
saying@program (or implicitly via DCL$PATHby just using the name of the program).

This incantation is a bit much to remember, but Perl will display it for you if youpsaly
"-V:startperl!"

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells. You'll
need to learn the special characters in your command-intergreterand" are common) and how to
protect whitespace and these characters to run one-linerse(setow).

On some systems, you may have to change single-quotes to double ones, which ymi doush Unix or
Plan 9 systems. You might also have to change a single % to a %%.

For example:

Unix
perl -e 'print "Hello world\n

MS-DOS, etc.
perl -e "print \"Hello world\n\

Macintosh
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

VMS
perl -e "print "'Hello world\n

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither
works. If4DOSwere the command shell, this would probably work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""
CMD.EXE in WindowsNT slipped a lot of standard Unix functionality in when nobody was looking, but

2003-08-13 perl v5.8.0

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

just try to find documentation for its quoting rules.

Under the Macintosh, it depends which environment you are using. The MacPerl siellypis much
like Unix shells in its support for several quoting variants, except that it makes free use of the Macintosh’s
non-ASCII characters as control characters.

There is no general solution to all of this. It's just a mess.

Location of Perl

It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it's good
for both /usr/bin/perl and /usr/local/bin/perlto be symlinks to the actual binary. If that can’t be done,
system administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities into
a directory typically found along a usePA&TH, or in some other obvious and convenient place.

In this documentationg!/usr/bin/perl on the first line of the program will stand in for whatever
method works on your system. You are advised to use a specific path if you care about a specific version.

#!/usr/local/bin/perl5.00554
or if you just want to be running at least version, place a statement like this at the top of your program:
use 5.005_54;

Command Switches

As with all standard commands, a single-character switch may be clustered with the following switch, if
any.

#!/usr/bin/perl -spi.orig # same as -s -p -i.orig
Switches include:

—0O[digits]
specifies the input record separathr X as an octal number. If there are no digits, the null character
is the separator. Other switches may precede or follow the digits. For example, if you have a version
of find which can print filenames terminated by the null character, you can say this:

find . -name "*.orig’ -print0 O perl -nOe unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will cause Perl
to slurp files whole because there is no legal character with that value.

—a turns on autosplit mode when used withraor —p. An implicit split command to thé@Farray is
done as the first thing inside the implicit while loop produced by-thar —p.

perl -ane print pop(@F), "\n";’
is equivalent to

while (<>) {
@F = split(");
print pop(@F), "\n";
}

An alternate delimiter may be specified ustitg

—-C enables Perl to use the native wide character APIs on the target system. The magic variable
${"WIDE_SYSTEM_CALLS} reflects the state of this switch. See
“${"WIDE_SYSTEM_CALLSY}" in perlvar.

This feature is currently only implemented on the Win32 platform.

—c causes Perl to check the syntax of the program and then exit without executing it. Actuallly, it
executeBEGIN, CHECK and use blocks, because these are considered as occurring outside the
execution of your programiNIT andENDblocks, however, will be skipped.

—d runs the program under the Perl debugger. See perldebug.

—d:foo[=bar,baz]
runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::foo. E.g.~d:DProf executes the program using the Devel::DProf profiler. As with-tfle

perl v5.8.0 2003-08-13 169

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

flag, options may be passed to the Devel::foo package where they will be received and interpreted by
the Devel::foo::import routine. The comma-separated list of options must folkowharacter. See
perldebug.

-Dletters

—Dnumber
sets debugging flags. To watch how it executes your program;-Dge. (This works only if
debugging is compiled into your Perl.) Another nice valuelig, which lists your compiled syntax
tree. And-Dr displays compiled regular expressions; the format of the output is explained in
perldebguts.

As an alternative, specify a number instead of list of letters (€d.4is equivalent te-Dtls):

1 p Tokenizing and parsing
2 s Stack snapshots

4 | Context (loop) stack processing
8 t Trace execution
16 o Method and overloading resolution
32 ¢ String/numeric conversions
64 P Print profiling info, preprocessor command for -P, source file
128 m Memory allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
u

Tainting checks
4096 (Obsolete, previously used for LEAKTEST)

8192 H Hash dump -- usurps values()
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Thread synchronization
131072 T Tokenising
262144 R Include reference counts of dumped variables (eg when using -Ds
524288 J Do not s,t,P-debug (Jump over) opcodes within package DB

All these flags require-DDEBUGGING when you compile the Perl executable (but see
Devel::Peek, re which may change this). SeaNisgALLfile in the Perl source distribution for how
to do this. This flag is automatically set if you incluggoption whenConfigure asks you about
optimizer/debugger flags.

If you're just trying to get a print out of each line of Perl code as it executes, the wap that
provides for shell scripts, you can’t use PefI3 switch. Instead do this

If you have "env" utility
env=PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See perldebug for details and variations.

—ecommandline
may be used to enter one line of program—dfis given, Perl will not look for a filename in the
argument list. Multiple-e commands may be given to build up a multi-line script. Make sure to use
semicolons where you would in a normal program.

—Fpattern
specifies the pattern to split on-Hé is also in effect. The pattern may be surrounded by" , or
", otherwise it will be put in single quotes.

—h prints a summary of the options.

170 2003-08-13 perl v5.8.0

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

—i[extensioh
specifies that files processed by #econstruct are to be edited in—place. It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. The extension, if supplied, is used to modify the name of the old file to make a
backup copy, following these rules:

If no extension is supplied, no backup is made and the current file is overwritten.

If the extension doesn’t contairfathen it is appended to the end of the current filename as a suffix.
If the extension does contain one or mdreharacters, then eac¢his replaced with the current
filename. In Perl terms, you could think of this as:

($backup = $extension) =~ s/*/$file_name/q;
This allows you to add a prefix to the backup file, instead of (or in addition to) a sulffix:
$ perl -pi 'orig_*' -e 's/bar/baz/’ fileA # backup to 'orig_fileA’

Or even to place backup copies of the original files into another directory (provided the directory
already exists):

$ perl -pi 'old/*.orig’ -e 's/bar/baz/’ fileA # backup to 'old/fileA.orig
These sets of one-liners are equivalent:

$ perl -pi -e 's/bar/baz/’ fileA # overwrite current file
$ perl -pi '*' -e 's/bar/baz/’ fileA # overwrite current file

$ perl -pi ".orig’ -e 's/bar/baz/’ fileA # backup to ‘fileA.orig’
$ perl -pi *.orig’ -e 's/bar/baz/’ fileA # backup to fileA.orig’

From the shell, saying
$ perl -p -i.orig -e "s/foo/bar/; ... "
is the same as using the program:

#!/usr/bin/perl -pi.orig
s/foo/bar/;

which is equivalent to

#!/usr/bin/perl
$extension = ".orig’;
LINE: while (<>) {
if (PARGV ne $oldargv) {
if ($extension I N*¥/) {
$backup = $ARGV . $extension;
}

else {
($backup = $extension) =~ s*/$ARGV/g;
}

rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = SARGV;
}
s/foo/bar/;
}
continue {
print; # this prints to original filename

}
select(STDOUT);

except that the-i form doesn't need to compa$ARGVto $oldargv to know when the filename
has changed. It does, however, ¥sRGVOUT for the selected filehandle. Note tH&IDOUT is
restored as the default output filehandle after the loop.

perl v5.8.0 2003-08-13 171

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

As shown above, Perl creates the backup file whether or not any output is actually changed. So this
is just a fancy way to copy files:

$ perl -p -i 'lsomeffile/path/* -e 1 filel file2 file3...
or
$ perl -p -i ".orig’ -e 1 filel file2 file3...

You can useof without parentheses to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see example in “eof” in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will skip
that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions-gnsee “Why does Perl let me delete
read-only files? Why does —i clobber protected files? Isn't this a bug in Perl?” in perlfag5.

You cannot usei to create directories or to strip extensions from files.
Perl does not exparidin filenames, which is good, since some folks use it for their backup files:
$ perl -pi” -e 's/foo/bar/’ filel file2 file3...

Finally, the—i switch does not impede execution when no files are given on the command line. In
this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds fronsTDIN to STDOUT as might be expected.

—ldirectory
Directories specified byl are prepended to the search path for mod@#l(}, and also tells the C
preprocessor where to search for include files. The C preprocessor is invoke®Pybthdefault it
searches /usr/include and /ustr/lib/perl.

—l[octnun}
enables automatic line-ending processing. It has two separate effects. First, it automatically chomps
$/ (the input record separator) when used withor —p. Second, it assigr\ (the output record
separator) to have the value aftnumso that any print statements will have that separator added
back on. Ifoctnumis omitted, set$\ to the current value d§/ . For instance, to trim lines to 80
columns:

perl -lpe 'substr($_, 80) = ™"

Note that the assignmeft = $/ is done when the switch is processed, so the input record
separator can be different than the output record separatorif $hétch is followed by a0 switch:

gnufind / -print0 O perl -InOe "print "found $_" if -p’
This setsb\ to newline and then se$ to the null character.
—m[-]module
—M[-]module
-M[-]'module ...

—[mM] [-]module=arg|[,arq]...
—-mmoduleexecutesise module(); before executing your program.

—Mmoduleexecutesise module; before executing your program. You can use quotes to add extra
code after the module name, e:gMmodule qw(foo bar)’

If the first character after theM or —-m is a dash~) then the 'use’ is replaced with 'no’.

A little builtin syntactic sugar means you can also-saynodule=foo,baror -Mmodule=foo,bar as

a shortcut for—-Mmodule qw(foo bar)’ . This avoids the need to use quotes when importing
symbols. The actual code generated byMmodule=foo,bar is use module
split(/,/,q{foo,bar}) . Note that the= form removes the distinction betweem and-M.

-n causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat lilsed —nor awk:

172 2003-08-13 perl v5.8.0

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

LINE:
while (<>) {

}

Note that the lines are not printed by default. Spdo have lines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about it and moves on to the next file.

your program goes here

Here is an efficient way to delete all files older than a week:
find . -mtime +7 -print O perl -nle unlink

This is faster than using thexecswitch offind because you don't have to start a process on every
filename found. It does suffer from the bug of mishandling newlines in pathnames, which you can fix
if you follow the example undetO.

BEGIN andENDblocks may be used to capture control before or after the implicit program loop, just
as inawk.

—-p causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat lilsed

LINE:
while (<>) {
your program goes here
} continue {
print or die "-p destination: $!\n";
}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and moves
on to the next file. Note that the lines are printed automatically. An error occurring during printing is
treated as fatal. To suppress printing use-thewitch. A—p overrides a-n switch.

BEGIN and ENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

-P NOTE: Use of —P is strongly discouraged because of its inherent problems, including poor
portability.

This option causes your program to be run through the C preprocessor before compilation by Perl.
Because both comments aopp directives begin with the # character, you should avoid starting
comments with any words recognized by the C preprocessor sli€h as"else" , or"define"

If you're considering usingP, you might also want to look at the Filter::cpp module fioPAN.

The problems of —P include, but are not limited to:

. The#! line is stripped, so any switches there don't apply.
. A —Pon a#! line doesn't work.
. All lines that begin with (whitespace andj dut do not look like cpp commands, are

stripped, including anything inside Perl strings, regular expressions, and here-docs .

. In some platforms the C preprocessor knows too much: it knows abouttthst{le
until-end-of-line comments starting with" . This will cause problems with common
Perl constructs like

sffooll,

because after —P this will became illegal code
sffoo

The workaround is to use some other quoting separatot/tharike for examplée'"
slfoo!l;

. It requires not only a working C preprocessor but also a workéag If not on UNIX,
you are probably out of luck on this.

perl v5.8.0 2003-08-13 173

PERLRUN(1)

174

Perl Programmers Reference Guide PERLRUN(1)
. Script line numbers are not preserved.
. The—x does not work with-P.

enables rudimentary switch parsing for switches on the command line after the program name but
before any filename arguments (or before an argument)f This means you can have switches

with two leading dashes-thelp). Any switch found there is removed fro@ARG\ANd sets the
corresponding variable in the Perl program. The following program prints “1” if the program is
invoked with a—xyz switch, and “abc” if it is invoked with-xyz=abc

#!/usr/bin/perl -s
if ($xyz) { print "$xyz\n" }

Do note that-—help creates the variable ${—help}, which is not compliant vgitfict refs

makes Perl use theATH environment variable to search for the program (unless the name of the
program contains directory separators).

On some platforms, this also makes Perl append suffixes to the filename while searching for it. For
example, on Win32 platforms, the “.bat” and “.cmd” suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of those suffixes. If your Perl was
compiled with DEBUGGING turned on, using the -Dp switch to Perl shows how the search
progresses.

Typically this is used to emulate #! startup on platforms that don't support #!. This example works
on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl -wS $0 ${1+"$@"}
if $running_under_some_shell;

The system ignores the first line and feeds the progratinitsh which proceeds to try to execute

the Perl program as a shell script. The shell executes the second line as a normal shell command, and
thus starts up the Perl interpreter. On some sys$&ndoesn't always contain the full pathname, so
the—Stells Perl to search for the program if necessary. After Perl locates the program, it parses the
lines and ignores them because the varighlening_under_some_shell is never true. If the

program will be interpreted by csh, you will need to rep#{de-"$@"} with $*, even though that

doesn’t understand embedded spaces (and such) in the argument list. To start up sh rather than csh,
some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can't control that, and need a totally devious construct that
will work under any ofttsh sh, or Perl, such as the following:

eval '(exit $70)’ && eval 'exec perl -wS $0 ${1+"'$@"}
& eval 'exec /usr/bin/perl -wS $0 $argv:q’
if $running_under_some_shell;

If the filename supplied contains directory separators (i.e., is an absolute or relative pathname), and if
that file is not found, platforms that append file extensions will do so and try to look for the file with
those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be searched
for in the current directory before being searched for orPAfiel. On Unix platforms, the program
will be searched for strictly on tH&TH.

Like T, but taint checks will issue warnings rather than fatal errors. These warnings can be
controlled normally witmo warnings qw(taint)

NOTE: this is not a substitute for —T.This is meant only to be used as a temporary development aid
while securing legacy code: for real production code and for new secure code written from scratch
always use the realTl .

forces “taint” checks to be turned on so you can test them. Ordinarily these checks are done only
when running setuid or setgid. It's a good idea to turn them on explicitly for programs that run on
behalf of someone else whom you might not necessarily trust, suhl @sograms or any internet
servers you might write in Perl. See perlsec for details. For security reasons, this option must be
seen by Perl quite early; usually this means it must appear early on the command line or in the #! line
for systems which support that construct.

2003-08-13 perl v5.8.0

PERLRUN(1)

-V
-V

Perl Programmers Reference Guide PERLRUN(1)

This obsolete switch causes Perl to dump core after compiling your program. You can then in theory
take this core dump and turn it into an executable file by usingrithemp program (not supplied).

This speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still, a “hello world” executable comes out to about 200K on my machine.) If you
want to execute a portion of your program before dumping, usaduthe()operator instead. Note:
availability ofundump is platform specific and may not be available for a specific port of Perl.

This switch has been superseded in favor of the new Perl code generator backends to the compiler.
See B and B::Bytecode for details.

allows Perl to do unsafe operations. Currently the only “unsafe” operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings. Note that thew switch (or the$"W variable) must be used along with this option to
actuallygeneratethe taint-check warnings.

prints the version and patchlevel of your perl executable.
prints summary of the major perl configuration values and the current val@isaf

-V.name

-wW

-W
-X

Prints toSTDOUT the value of the named configuration variable. For example,
$ perl -V:man.dir

will provide strong clues about what yadANPATH variable should be set to in order to access the
Perl documentation.

prints warnings about dubious constructs, such as variable names that are mentioned only once and
scalar variables that are used before being set, redefined subroutines, references to undefined
filehandles or filehandles opened read-only that you are attempting to write on, values used as a
number that doesn't look like numbers, using an array as though it were a scalar, if your subroutines
recurse more than 100 deep, and innumerable other things.

This switch really just enables the interfV variable. You can disable or promote into fatal errors
specific warnings using_ WARN__ hooks, as described in perlvar and “warn” in perlfunc. See also
perldiag and perltrap. A new, fine-grained warning facility is also available if you want to manipulate
entire classes of warnings; see warnings or perllexwarn.

Enables all warnings regardlessnofwarnings or $W. See perllexwarn.
Disables all warnings regardlessuse warnings or $"W. See perllexwarn.

—x directory

tells Perl that the program is embedded in a larger chunk of unr@la@dtext, such as in a mail
message. Leading garbage will be discarded until the first line that starts with #! and contains the
string “perl”. Any meaningful switches on that line will be applied. If a directory name is specified,
Perl will switch to that directory before running the program. Fheswitch controls only the
disposal of leading garbage. The program must be terminated wiEND__ if there is trailing
garbage to be ignored (the program can process any or all of the trailing garbage maathe
filehandle if desired).

ENVIRONMENT

HOME Used if chdir has no argument.
LOGDIR Used if chdir has no argument an@ME is not set.
PATH Used in executing subprocesses, and in finding the progre®&isfused.

PERL5LIB A colon-separated list of directories in which to look for Perl library files before looking in

perl v5.8.0

the standard library and the current directory. Any architecture-specific directories under the
specified locations are automatically included if they existPHRL5SLIB is not defined,
PERLLIB is used.

When running taint checks (either because the program was running setuid or setgid, or the
—T switch was used), neither variable is used. The program should instead say:

use lib "/my/directory";

2003-08-13 175

PERLRUN(1)
PERL50OPT
PERLIO
176

Perl Programmers Reference Guide PERLRUN(1)

Command-line options (switches). Switches in this variable are taken as if they were on
every Perl command line. Only thR§DIMUdmtw] switches are allowed. When running
taint checks (because the program was running setuid or setgid,-ar hdtch was used),

this variable is ignored. IPERL50PTbegins with—T, tainting will be enabled, and any
subsequent options ignored.

A space (or colon) separated list of PerllO layers. If perl is built to use PerllO systegn for
(the default) these layers effect pers

It is conventional to start layer names with a colon egrlio to emphasise their
similarity to variable “attributes”. But the code that parses layer specification strings (which
is also used to decode tAERLIO environment variable) treats the colon as a separator.

The list becomes the default falf perl’s10. Consequently only built-in layers can appear in
this list, as external layers (such aacoding() needlO in order to load them!. See “open
pragma” for how to add external encodings as defaults.

The layers that it makes sense to include in BERLIO environment variable are
summarised below. For more details see PerllO.

:bytes Turnsoff the :utf8 flag for the layer below. Unlikely to be useful in global
PERLIOenvironment variable.

.crif A layer that implements DOS/Windows likeRLF line endings. On read converts
pairs ofCR,LF to a single “\n” newline character. On write converts each “\n” to
aCR,LF pair. Based on thgerlio layer.

:mmap A layer which implements “reading” of files by usingnap() to make (whole)
file appear in the process’s address space, and then using that as PerllO’s “buffer”.
This maybe faster in certain circumstances for large files, and may result in less
physical memory use when multiple processes are reading the same file.

Files which are nommap() —able revert to behaving like theerlio layer.
Writes also behave likgerlio layer asmmap() for write needs extra house-
keeping (to extend the file) which negates any advantage.

The:mmap layer will not exist if platform does not suppantmap() .

:perlio A from scratch implementation of buffering for PerllO. Provides fast access to the
buffer forsv_gets which implements perl’'s readline/<> and in general attempts
to minimize data copying.

:perlio will insert a:unix layer below itself to do low leveO.

raw Applying the <:raw> layer is equivalent to callibigmode($fh) . It makes the
stream pass each byte as-is without any translation. In partitRiatranslation,
and/or :utf8 inuited from locale are disabled.

Arranges for all accesses go straight to the lowest buffered layer provided by the
configration. That is it strips off any layersoaithat layer.

In Perl 5.6 and some books thew layer (previously sometimes also referred to

as a “discipline”) is documented as the inverse of #tf layer. That is no
longer the case - other layers which would alter binary nature of the stream are
also disabled. If you wantiNIX line endings on a platform that normally does
CRLF translation, but still want/TF-8 or encoding defaults the appropriate thing

to dois to addperlio to PERLIOenvironment variable.

:stdio This layer provides PerllO interface by wrapping systam3l C “stdio” library
calls. The layer provides both buffering amd Note thatstdio layer doesiot
do CRLF translation even if that is platforms normal behaviour. You will need a
crif layer almve it to dothat.

:unix Lowest level layer which provides basic PerllO operations in terms of
UNIX/POSIX numeric file descriptor call®pen(), read(), write(),
Iseek(), close()

2003-08-13 perl v5.8.0

PERLRUN(1)

Perl Programmers Reference Guide PERLRUN(1)

:utfg8 Turns on a flag on the layer below to tell perl that data sent to the stream should be
converted to perl internal “utf8” form and that data from the stream should be
considered as so encoded. 8®CIll based platforms the encodinguU3F-8 and
on EBCDIC platforms UTF-EBCDIC. May be useful inPERLIO environment
variable to makeJTF-8 the default. (To turn off that behaviour udeytes
layer.)

:win32 On Win32 platforms thiexperimentalayer uses native “handlelO rather than
unix-like numeric file descriptor layer. Known to be buggy in this release.

On all platforms the default set of layers should give acceptable results.

For UNIX platforms that will equivalent of “unix perlio” or “stdio”. Configure is setup to
prefer “stdio” implementation if system’s library provides for fast access to the buffer,
otherwise it uses the “unix perlio” implementation.

On Win32 the default in this release is “unix crlf”. Win32’s “stdio” has a number of
bugs/mis—features for peld which are somewhat C compiler vendor/version dependent.
Using our owrcrlf layer as the buffer avoids those issues and makes things more uniform.
Thecrlf layer providesCRLF to/from “\n” conversion as well as buffering.

This release usamix as the bottom layer on Win32 and so still uses C compiler's numeric
file descriptor routines. There is an experimental nativ@2 layer which is expected to be
enhanced and should eventually replaceuttie layer.

PERLIO_DEBUG

PERLLIB

PERL5DB

If set to the name of a file or device then certain operations of PerllO sub-system will be
logged to that file (opened as append). Typical usesNibe

PERLIO_DEBUG=/devi/tty perl script ...
and Win32 approximate equivalent:

set PERLIO_DEBUG=CON
perl script ...

A colon-separated list of directories in which to look for Perl library files before looking in
the standard library and the current directoryPHRL5LIB is defined PERLLIB is not used.

The command used to load the debugger code. The default is:
BEGIN { require 'perl5db.pl’ }

PERL5SHELL(specific to the Win32 port)

May be set to an alternative shell that perl must use internally for executing “backtick”
commands osystem() Default iscmd.exe /x/c on WindowsNT ancommand.com

/c on Windows95. The value is considered to be space-separated. Precede any character
that needs to be protected (like a space or backslash) with a backslash.

Note that Perl doesn’t usEOMSPECfor this purpose becaus®OdMSPEChas a high degree

of variability among users, leading to portability concerns. Besides, perl can use a shell that
may not be fit for interactive use, and settti@MSPECto such a shell may interfere with

the proper functioning of other programs (which usually look@MSPECto find a shell fit

for interactive use).

PERL_DEBUG_MSTATS

Relevant only if perl is compiled with the malloc included with the perl distribution (that is,

if perl =V:d_mymalloc is 'define’). If set, this causes memory statistics to be dumped
after execution. If set to an integer greater than one, also causes memory statistics to be
dumped after compilation.

PERL_DESTRUCT_LEVEL

perl v5.8.0

Relevant only if your perl executable was built witDDEBUGGING, this controls the
behavior of global destruction of objects and other references. See
“ PERL_DESTRUCT_LEVEL in perlhack for more information.

2003-08-13 177

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

178

PERL_ENCODING
If using theencoding pragma without an explicit encoding name, HERL_ENCODING
environment variable is consulted for an encoding name.

PERL_ROOT(specific to the/MS port)
A translation concealed rooted logical name that contains perl and the logical device for the
@INCpath onvMS only. Other logical names that affect perl wKS include PERLSHR
PERL_ENV_TABLES and SYS$TIMEZONE_DIFFERENTIALbut are optional and discussed
further in perlvms and iREADMEvVmsin the Perl source distribution.

SYS$LOGIN(specific to thevMS port)
Used if chdir has no argument anr@ME andLOGDIR are not set.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages. See perllocale.

Apart from these, Perl uses no other environment variables, except to make them available to the program
being executed, and to child processes. However, programs running setuid would do well to execute the
following lines before doing anything else, just to keep people honest:

$ENV{PATH} = ’/bin:/usr/bin’; # or whatever you need
$ENV{SHELL} = '/bin/sh’ if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

2003-08-13 perl v5.8.0

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

NAME
perlreftut — Mark’s very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to manage complicated data structures
like multidimensional arrays and nested hashes. To enable these, Perl 5 introduced a feature called
‘references’, and using references is the key to managing complicated, structured data in Perl.
Unfortunately, there’s a lot of funny syntax to learn, and the main manual page can be hard to follow. The
manual is quite complete, and sometimes people find that a problem, because it can be hard to tell what is
important and what isn't.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the benefit. This page
will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was how to represent a hash whose values were lists. Perl
4 had hashes, of course, but the values had to be scalars; they couldn'’t be lists.

Why would you want a hash of lists? Let's take a simple example: You have a file of city and country
names, like this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an output like this, with each country mentioned once, and then an alphabetical
list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated with each country
name key is a list of the cities in that country. Each time you read a line of input, split it into a country and

a city, look up the list of cities already known to be in that country, and append the new city to the list.
When you're done reading the input, iterate over the hash as usual, sorting each list of cities before you
print it out.

If hash values can't be lists, you lose. In Perl 4, hash values can't be lists; they can only be strings. You
lose. You'd probably have to combine all the cities into a single string somehow, and then when time came
to write the output, you'd have to break the string into a list, sort the list, and turn it back into a string. This

is messy and error—prone. And it’s frustrating, because Perl already has perfectly good lists that would
solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must be scalars. The
solution to this is references.

A reference is a scalar value thefers toan entire array or an entire hash (or to just about anything else).
Names are one kind of reference that you're already familiar with. Think of the President of the United
States: a messy, inconvenient bag of blood and bones. But to talk about him, or to represent him in a
computer program, all you need is the easy, convenient scalar string “George Bush”.

References in Perl are like names for arrays and hashes. They're Perl’s private, internal names, so you can
be sure they’re unambiguous. Unlike “George Bush”, a reference only refers to one thing, and you always
know what it refers to. If you have a reference to an array, you can recover the entire array from it. If you
have a reference to a hash, you can recover the entire hash. But the reference is still an easy, compact scalar
value.

You can'’t have a hash whose values are arrays; hash values can only be scalars. We're stuck with that. But
a single reference can refer to an entire array, and references are scalars, so you can have a hash of
references to arrays, and it'll act a lot like a hash of arrays, and it'll be just as useful as a hash of arrays.

We’'ll come back to this city-country problem later, after we've seen some syntax for managing references.

perl v5.8.0 2003-08-13 179

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

Syntax

180

There are just two ways to make a reference, and just two ways to use it once you have it.

Making References
Make Rule 1
If you put a\ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \Y%hash; # $href now holds a reference to %hash

Once the reference is stored in a variable$&eef or $href , you can copy it or store it just the same as
any other scalar value:

$xy = Saref; # $xy now holds a reference to @array
$p[3] = Shref; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you want to make an
array or a hash that doesn’t have a name. This is analogous to the way you like to be able to use the string
"\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[ITEMS] makes a new, anonymous array, and returns a reference to thaf df&pIS } makes a
new, anonymous hash. and returns a reference to that hash.

$aref =[1, "foo", undef, 13];
$aref now holds a reference to an array

$href = { APR =>4, AUG =>8 };
S$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
Saref=[1,2,3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn't create the superfluous
array variable@array .
Using References

What can you do with a reference once you have it? It's a scalar value, and we've seen that you can store it
as a scalar and get it back again just like any scalar. There are just two more ways to use it:

Use Rule 1

If $aref contains a reference to an array, then you caf§auef} anywhere you would normally put
the name of an array. For examp@{$aref} instead of@array .

Here are some examples of that:

Arrays:
@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate on@wa array
and the right-hand versions operate on the array that is referredbtordfy , but once they find the array
they’re operating on, they do the same things to the arrays.

Using a hash referencedsgactlythe same:

2003-08-13 perl v5.8.0

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

%h %{$href} A hash

keys %h keys %{$href} Get the keys from the hash
$h{red’} ${Shref}{’red’} An element of the hash

$h{red} =17 ${Shref{red’} =17 Assigning an element

Use Rule 2
${$aref}[3] is too hard to read, so you can wipa@ef->[3] instead.
${$hrefH{red} is too hard to read, so you can witeref—>{red} instead.

Most often, when you have an array or a hash, you want to get or set a single element from it.
${$aref}[3] and${Shref{’'red’} have too much punctuation, and Perl lets you abbreviate.

If $aref holds a reference to an array, thgsref—>[3] is the fourth element of the array. Don't
confuse this with$aref(3] , which is the fourth element of a totally different array, one deceptively
named@aref . $aref and@aref are unrelated the same way thaem and@item are.

Similarly, $href->{’red’} is part of the hash referred to by the scalar varigbtef , perhaps even

one with no name$href{’red’} is part of the deceptively naméthref hash. It's easy to forget to

leave out the->, and if you do, you'll get bizarre results when your program gets array and hash elements
out of totally unexpected hashes and arrays that weren't the ones you wanted to use.

An Example
Let's see a quick example of how all this is useful.

First, remember thdt, 2, 3] makes an anonymous array containffig2, 3) , and gives you a
reference to that array.

Now think about
@a=([1,2,3],

[41 51 6]1
[7,8,9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[l] is one of these references. It refers to an array, the array contginBd) , and because it is

a reference to an arraySE RULE 2 says that we can writga[1]—>[2] to get the third element from

that array. $a[1]->[2] is the 6. Similarly$a[0]->[1] is the 2. What we have here is like a two-

dimensional array; you can wriga[ROW]->[COLUMN] to get or set the element in any row and any

column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

Arrow Rule
In between twaubscripts, the arrow is optional.

Instead of$a[1]->[2] , we can write$a[1][2] ; it means the same thing. Instead$af0]->[1]
we can writeba[0][1] ; it means the same thing.

Now it really looks like two-dimensional arrays!
You can see why the arrows are important. Without them, we would have had t&{Baf&]}[2]

instead of$a[l1][2] . For three-dimensional arrays, they let us wd2][3][5] instead of the
unreadabl&{${$x[2]}[3]}[5]
Solution

Here’s the answer to the problem | posed earlier, of reformatting a file of city and country names.

perl v5.8.0 2003-08-13 181

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

1 while (<>){
2 chomp;
3 my ($city, $country) = split /, /;
4 push @{$table{$country}}, $city;
5 }
6
7 foreach $country (sort keys %table) {
8 print "$country: ";
9 my @cities = @{$table{$country}};
10 print join’,’, sort @cities;
11 print ".\n";
12}

The program has two pieces: Lines 1--5 read the input and build a data structure, and lines 7--12 analyze
the data and print out the report.

In the first part, line 4 is the important one. We're going to have a #@&shle , whose keys are country
names, and whose values are (references to) arrays of city names. After acquiring a city and country name,
the program looks uftable{$country} , Which holds (a reference to) the list of cities seen in that
country so far. Line 4 is totally analogous to

push @array, $city;

except that the namarray has been replaced by the referefS@ble{$country}} . The push
adds a city name to the end of the referred-to array.
In the second part, line 9 is the important one. Adgtiable{$country} is (a reference to) the list of
cities in the country, so we can recover the original list, and copy it into the @tcétjes , by using
@{$table{$country}} . Line 9 is totally analogous to

@cities = @array;
except that the namexray has been replaced by the referef@able{$country}} . The @tells

Perl to get the entire array.

The rest of the program is just familiar useschbmp, split , sort , print , and doesn’t involve
references at all.

There’s one fine point | skipped. Suppose the program has just read the first line in its input that happens to

mention Greece. Control is at line$kountry is'Greece’ , and$city is’'Athens’ . Since this is
the first city in Greece$table{$country} is undefined———in fact there isn't aGreece’ key in
%table at all. What does line 4 do here?

4 push @{$table{$country}}, $city;

This is Perl, so it does the exact right thing. It sees that you want toApishs onto an array that
doesn't exist, so it helpfully makes a new, empty, anonymous array for you, installs it in the table, and then
pushedAthens onto it. This is called ‘autovivification’.

The Rest

182

| promised to give you 90% of the benefit with 10% of the details, and that means | left out 90% of the
details. Now that you have an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:
* You can make references to anything, including scalars, functions, and other references.

* In USE RULE 1, you can omit the curly brackets whenever the thing inside them is an atomic scalar
variable like$aref . For example@$aref is the same a@{$aref} , and$$aref[l] is the same
as ${$aref}[1] . If you're just starting out, you may want to adopt the habit of always including
the curly brackets.

 To see if a variable contains a reference, use the ‘ref’ function. It returns true if its argument is a
reference. Actually it's a little better than that: It retursSH for hash references amRRAY for
array references.

» Ifyou try to use a reference like a string, you get strings like

2003-08-13 perl v5.8.0

PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

ARRAY(0x80f5dec) or HASH(0x826afc0)
If you ever see a string that looks like this, you'll know you printed out a reference by mistake.

A side effect of this representation is that you canagsé¢o see if two references refer to the same
thing. (But you should usually use= instead because it's much faster.)

* You can use a string as if it were a reference. If you use the %oy as an array reference, it's
taken to be a reference to the ar@foo. This is called &oft referencer symbolic reference

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional arrays
in detail. After that, you should awe on toperldsc; it's a Data Structure Cookbook that shows recipes for
using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with references. There are
four important rules for managing references: Two for making references and two for using them. Once
you know these rules you can do most of the important things you need to do with references.

Credits
Author: Mark-Jason Dominus, Plover Systemmgd—perl-ref+@plover.com)

This article originally appeared ifhe Perl Journal http://www.tpj.com/) volume 3, #2. Reprinted with
permission.

The original title wasJnderstand References Today

Distribution Conditions
Copyright 1998 The Perl Journal.

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any
distribution of this file or derivatives thereof outside of that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

perl v5.8.0 2003-08-13 183

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

NAME

perldsc — Perl Data Structures Cookbook

DESCRIPTION

The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was
complex data structures. Even without direct language support, some valiant programmers did manage to
emulate them, but it was hard work and not for the faint of heart. You could occasionally get away with the
$m{$A0A,$b} notation borrowed fromawk in which the keys are actually more like a single
concatenated stringAoA$b" , but traversal and sorting were difficult. More desperate programmers even
hacked Perl’'s internal symbol table directly, a strategy that proved hard to develop and maintain —to put it
mildly.

The 5.0 release of Perl let us have complex data structures. You may now write something like this and all
of a sudden, you'd have an array with three dimensions!

for $x (1 .. 10) {
for $y (1 .. 10) {
for $z (1 .. 10) {
SACA[SX][$Y][$z] =
$x ** By + $z;

}
Alas, however simple this may appear, underneath it's a much more elaborate construct than meets the eye!

How do you print it out? Why can’t you say juystint @AoA ? How do you sort it? How can you pass

it to a function or get one of these back from a function? Is it an object? Can you save it to disk to read
back later? How do you access whole rows or columns of that matrix? Do all the values have to be
numeric?

As you see, it's quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it's really more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of data
structures you might want to develop. It should also serve as a cookbook of examples. That way, when you
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop-in example
from here.

Let's look at each of these possible constructs in detail. There are separate sections on each of the
following:

e arrays of arrays

* hashes of arrays

« arrays of hashes

 hashes of hashes

» more elaborate constructs

But for now, let's look at general issues common to all these types of data structures.

REFERENCES

184

The most important thing to understand about all data structures in Perl — including multidimensional
arrays —is that even though they might appear otherwise @&RRAS'and%HASHESs are all internally
one-dimensional. They can hold only scalar values (meaning a string, number, or a reference). They
cannot directly contain other arrays or hashes, but instead cefeaencedo other arrays or hashes.

You can't use a reference to an array or hash in quite the same way that you would a real array or hash. For
C or G+ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references ipgieef(1) man page. Briefly, references are rather

like pointers that know what they point to. (Objects are also a kind of reference, but we won't be needing
them right away —if ever.) This means that when you have something which looks to you like an access to
a two-or-more-dimensional array and/or hash, what's really going on is that the base type is merely a one-
dimensional entity that contains references to the next level. It's just that yoiseias though it were a

2003-08-13 perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

two-dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$array[7][12] # array of arrays
$array[7}{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you'll get something that doesn’t look very nice, like this:

@AoA = ([2, 3], [4,5,7],10]);
print $A0A[1][2];
7
print @AOA;
ARRAY(0x83c38)ARRAY (0x8b194)ARRAY (0x8b1d0)

That's because Perl doesn'’t (ever) implicitly dereference your variables. If you want to get at the thing a
reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${sblah} , @{$blah} , @{$blah[$i]} , or else postfix pointer arrows, liga—>[3] , $h—>{fred}

or even$ob—>method()—>[3]

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here'’s the case where you just get the count instead of a nested array:

for $i (1..10) {

@array = somefunc($i);

$A0A[$i] = @array; # WRONG!
}

That's just the simple case of assigning an array to a scalar and getting its element count. If that's what you
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

Here's the case of taking a reference to the same memory location again and again:

for $i (1..10) {

@array = somefunc($i);

$A0A[$I] = \@array; # WRONG!
}

So, what'’s the big problem with that? It looks right, doesn't it? After all, | just told you that you need an
array of references, so by golly, you've made me one!

Unfortunately, while this is true, it's still broken. All the referenceg@iAoAefer to thevery same plage
and they will therefore all hold whatever was las@array ! It's similar to the problem demonstrated in
the following C program:

#include <pwd.h>

main() {
struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam('root");
dp = getpwnam("daemon");
printf("daemon name is %s\nroot name is %s\n",

dp->pw_name, rp->pw_name);
}
Which will print

daemon name is daemon
root name is daemon

The problem is that bottp anddp are pointers to the same location in memory! In C, you'd have to

perl v5.8.0 2003-08-13 185

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

remember tanalloc() yourself some new memory. In Perl, you'll want to use the array constilictor
the hash construct§f instead. Here's the right way to do the preceding broken code fragments:

for $i (1..10) {
@array = somefunc($i);
$A0A[$I] = [@array |;

The square brackets make a reference to a new array wapyaf what's in @array at the time of the
assignment. This is what you want.

Note that this will produce something similar, but it's much harder to read:

for $i (1..10) {
@array =0 .. $i;
@{$A0A[$i]} = @array;
}

Is it the same? Well, maybe so—and maybe not. The subtle difference is that when you assign something
in square brackets, you know for sure it's always a brand new reference with eopgwf the data.
Something else could be going on in this new case wit@{#AoA[$i]}} dereference on the left-hand-

side of the assignment. It all depends on whepierA[$i] had been undefined to start with, or whether

it already contained a reference. If you had already poput@tkoAwith references, as in

$A0A[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing reference that was
already there:

@{$A0A[3]} = @array;

Of course, thisvould have the “interesting” effect of clobberin@another_array . (Have you ever
noticed how when a programmer says something is “interesting”, that rather than meaning “intriguing”,
they’re disturbingly more apt to mean that it's “annoying”, “difficult”, or both? :-)

So just remember always to use the array or hash constructorg wath{} , and you'll be fine, although
it's not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for $i (1..10) {
my @array = somefunc($i);
$A0A[S$I] = \@array;

}

That's becauseny() is more of a run-time statement than it is a compile-time declarpgorse This

means that theny() variable is remade afresh each time through the loop. So even thologlksitas

though you stored the same variable reference each time, you actually did not! This is a subtle distinction

that can produce more efficient code at the risk of misleading all but the most experienced of programmers.
So | usually advise against teaching it to beginners. In fact, except for passing arguments to functions, |

seldom like to see the gimme-a-reference operator (backslash) used much at all in code. Instead, | advise
beginners that they (and most of the rest of us) should try to use the much more easily understood

constructorg] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference-counting

to do the right thing behind the scenes.

In summary:
$A0A[$I] = [@array]; # usually best
$A0A[$I] = \@array; # perilous; just how my() was that array?
@{ $A0A[SI] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE

186

Speaking of things lik@{$A0A[$i]} , the following are actually the same thing:

$Saref->[2][2] # clear
$3aref[2][2] # confusing

That's because Perl's precedence rules on its five prefix dereferencers (which look like someone swearing:
$ @ * % &make them bind more tightly than the postfix subscripting brackets or braces! This will no

2003-08-13 perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

doubt come as a great shock to the Ciep&grammer, who is quite accustomed to ugaf to mean
what's pointed to by théth element ofa. That is, they first take the subscript, and only then dereference
the thing at that subscript. That's fine in C, but this isn’'t C.

The seemingly equivalent construct in P&Baref[$i] first does the deref daref , making it take
$aref as a reference to an array, and then dereference that, and finally tell ytu vhkie of the array
pointed to by$AoA. If you wanted the C notion, you'd have to wrig$AoA[S$i]} to force the
$A0A[$i] to get evaluated first before the lead#hdereferencer.

WHY YOU SHOULD ALWAYS use strict
If this is starting to sound scarier than it's worth, relax. Perl has some features to help you avoid its most
common pitfalls. The best way to avoid getting confused is to start every program like this:

#!/usr/bin/perl -w
use strict;

This way, you'll be forced to declare all your variables witi) and also disallow accidental “symbolic
dereferencing”. Therefore if you'd done this:

my $aref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge”, "maggie",],
["george”, "jane", "elroy", "judy”,],

I;

print $aref[2][2];

The compiler would immediately flag that as an eabrcompile time because you were accidentally
accessing@aref , an undeclared variable, and it would thereby remind you to write instead:

print $aref->[2][2]

DEBUGGING
Before version 5.002, the standard Perl debugger didn’'t do a very nice job of printing out complex data
structures. With 5.002 or above, the debugger includes several new features, including command line
editing as well as the command to dump out complex data structures. For example, given the assignment
to $A0A above, here’s the debugger output:

DB<1> x $A0A
$A0A = ARRAY(0x13b5a0)
0 ARRAY(0x1f0a24)

fred’
'barney’
'pebbles’
‘bambam’
'dino’

RRAY (0x13b558)
'homer’
‘bart’
'marge’
'maggie’

RRAY (0x13b540)
'george’
'jlane’
‘elroy’
‘judy’

1

2

WNPFRPOD>PWNROIRAWNERO

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are short code examples
illustrating access of various types of data structures.

ARRAYS OF ARRAYS

perl v5.8.0 2003-08-13 187

PERLDSC(1) Perl Programmers Reference Guide

Declaration of anARRAY OF ARRAYS

@AO0A = (
["fred", "barney"],
["george", "jane", "elroy"],
["homer", "marge", "bart"],

);

Generation of anARRAY OF ARRAYS

reading from file
while (<>) {

push @AOA, [split];
}

calling a function
for$i(1..10){

$A0A[SI] = [somefunc($i)];
}

using temp vars
for$i(1..10){
@tmp = somefunc($i);
$AO0A[SI] = [@tmp];
}

add to an existing row
push @{ $A0A[0] }, "wilma", "betty";

Access and Printing of aml@ARRAY OF ARRAYS

one element
$A0A[0][0] = "Fred";

another element
$A0A[L][1] =" s/(\WwW)\u$1/;

print the whole thing with refs
for $aref (@A0A) {

print "\t [@%aref],\n";
}

print the whole thing with indices
for $i (0 .. $#A0A) {

print "\t [@{$ACA[$il}].\n";
}

print the whole thing one at a time
for $i (0 .. $#A0A) {
for $j (0 .. $#{ $A0A[$I] }) {
print "elt $i $j is SAOA[SI][Hj]\n";
}

}

HASHES OF ARRAYS

188

Declaration of aHASH OF ARRAYS

%HOoA = (
flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],
);

2003-08-13

PERLDSC(1)

perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Generation of aHASH OF ARRAYS

reading from file
flintstones: fred barney wilma dino
while (<>) {
next unless s/"(.*?):\s*//;
$SHOA{$1} = [split];
}

reading from file; more temps

flintstones: fred barney wilma dino

while ($line = <>) {
($who, $rest) = split /:\s*/, $line, 2;
@fields = split * ’, $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list

for $group ("simpsons”, "jetsons", "flintstones") {
$HoA{$group} = [get_family($group) ;
}

likewise, but using temps

for $group ("simpsons”, "jetsons", "flintstones") {
@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty":

Access and Printing of &HASH OF ARRAYS

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] = s/(\wW)A\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {
print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {
print " $i = $HoA{Sfamily}[$i]";
}

print "\n";
}

print the whole thing sorted by number of members

foreach $family (sort { @{$HOA{$b}} <=> @{$HOoA{$a}} } keys %HOA) {
print "$family: @{ $HoA{$family} }\n"

}

perl v5.8.0 2003-08-13 189

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

print the whole thing sorted by number of members and name
foreach $family (sort {
@{$HOA{$b}} <=> @{$HoA{$a}}

1]
$a cmp $b
} keys %HOA)
{
print "$family: ", join(", ", sort @{ $HoA{Sfamily} }), "\n";
}

ARRAYS OF HASHES
Declaration of anARRAY OF HASHES

@AoH = (
{
Lead => "fred",
Friend => "barney",
h
{
Lead => "george",
Wife => "jane",
Son => "elroy",
h
{
Lead => "homer",
Wife => "marge",
Son => "bart",
}

);
Generation of anARRAY OF HASHES

reading from file
format: LEAD=fred FRIEND=barney
while (<>){
$rec = {};
for $field (split) {
($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
push @AoH, $rec;
}

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {
push @AoH, { split /\s+=]/ };
}

calling a function that returns a key/value pair list, like
"lead","fred","daughter","pebbles"
while (%fields = getnextpairset()) {
push @AoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($) };
}

190 2003-08-13 perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

add key/value to an element
$AoH[O{pet} = "dino";
$AOH[2){pet} = "santa’s little helper";

Access and Printing of aml@ARRAY OF HASHES

one element
$AoH[O[{lead} = "fred";

another element
$AoH[1[{lead} =~ s/(\W)\u$1/;

print the whole thing with refs
for $href (@AoH) {
print "{";
for $role (keys %S$href) {
print "$role=$href->{$role} ";
}

print "A\n";
}
print the whole thing with indices
for $i (0 .. $#A0oH) {
print "$iis { ";
for $role (keys %{ $AoH[$i] }) {
print "$role=$AoH[$i]{$role} *;
}

print "A\n";
}
print the whole thing one at a time
for $i (0 .. $#AoH) {
for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is SAoH[$il{$role}\n";
}

}

HASHES OF HASHES
Declaration of aHASH OF HASHES

%HoH = (
flintstones => {
lead => "fred",
pal => "barney",
2
jetsons => {
lead => "george",
wife => "jane",
"his boy" => "elroy",
2
simpsons => {
lead => "homer",
wife => "marge",
kid => "bart",
2
);

Generation of aHASH OF HASHES

perl v5.8.0 2003-08-13 191

PERLDSC(1) Perl Programmers Reference Guide

192

reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {
next unless s/"(.*?):\s*//;
$who = $1;
for $field (split) {
($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;
}

reading from file; more temps
while (<>){
next unless s/"(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {
($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}

calling a function that returns a key,value hash

for $group ("simpsons”, "jetsons", "flintstones") {
$HoH{$group} = { get_family($group) };

}

likewise, but using temps

for $group ("simpsons”, "jetsons", "flintstones") {
%members = get_family($group);
$HoH{$group} = { Yomembers };

}

append new members to an existing family
%new_folks = (
wife => "wilma",
pet => "dino",
);
for $what (keys %new_folks) {
$HoH({flintstones{$what} = $new_folks{$what};

}

Access and Printing of aHASH OF HASHES

one element
$HoH({flintstones}H{wife} = "wilma";

another element
$HoH{simpsons}Klead} =" s/(\w)\u$1/;

print the whole thing
foreach $family (keys %HoH) {
print "$family: {";
for $role (keys %{ $HoH{$family} }) {
print "$role=$HoH{$familyH$role} ";
}

print "A\n";

2003-08-13

PERLDSC(1)

perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {
print "$family: {";
for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";
}
print "An";
}
print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {
print "$family: {";
for $role (sort keys %{ $HoH{Sfamily} }) {
print "$role=$HoH{$familyH$role} ";

}

print "A\n";
}
establish a sort order (rank) for each role
$i=0;

for (qw(lead wife son daughter pal pet)) { $rank{$ } = ++$i }

now print the whole thing sorted by number of members

foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH)
print "$family: { ";
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b}} keys %{ $HoH{$family}}) {

print "$role=$HoH{$familyH{$role} ";

}
print "An";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here's a sample showing how to create and use a record whose fields are of many different sorts:

$rec ={
TEXT => $string,
SEQUENCE => [@old _values],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub{$ _[0]**$_[1]},
HANDLE => *STDOUT,

%

print $rec->{TEXT};

print $rec->{SEQUENCE}[0];
$last = pop @ { $rec->{SEQUENCE} };

print $rec->{LOOKUPK"key"};

($first_k, $first_v) = each %{ $rec->{LOOKUP} };
$answer = $rec->{THATCODE}->($arg);
$answer = $rec->{THISCODE}->($argl, $arg2);
careful of extra block braces on fh ref

print { $rec->{HANDLE} } "a string\n";

use FileHandle;
$rec->{HANDLE}->autoflush(1);
$rec->{HANDLE}->print(" a string\n");

perl v5.8.0 2003-08-13 193

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Declaration of aHASH OF COMPLEX RECORDS

%TV = (
flintstones =>{

series => "flintstones",

nights => [gw(monday thursday friday)],

members => |
{ name => "fred", role =>"lead", age => 36, },
{ name => "wilma", role => "wife", age =>31,},
{ name =>"pebbles", role => "kid", age => 4, },

2
jetsons => {
series => "jetsons",
nights => [gw(wednesday saturday)],
members => |
{ name =>"george", role =>"lead", age =>41,},
{ name =>"jane", role => "wife", age =>39,},
{ name =>"elroy", role =>"kid", age => 9, },
1,
2
simpsons => {
series => "simpsons",
nights => [gw(monday)],
members => |
{ name =>"homer", role => "lead", age => 34,1},
{ name =>"marge", role => "wife", age => 37, },
{ name =>"bart", role =>"kid", age => 11, },
1,
2

Generation of aHASH OF COMPLEX RECORDS

reading from file
this is most easily done by having the file itself be

in the raw data format as shown above. perlis happy
to parse complex data structures if declared as data, so
sometimes it's easiest to do that

here’s a piece by piece build up

$rec = {};

$rec->{series} = "flintstones";

$rec->{nights} = [find_days() J;

@members = ();
assume this file in field=value syntax
while (<>) {
%fields = split /[\s=]+/;
push @members, { %fields };
}

$rec->{members} = [@members |;

now remember the whole thing
$TV{ $rec->{series} } = $rec;

194 2003-08-13 perl v5.8.0

PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

HHEHH R R R T T R R R
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for example
if you wanted a {kids} field that was a reference
to an array of the kids’ records without having duplicate
records and thus update problems.
BRI R
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer

HHHHHH

@kids = ();
for $person (@{ $rec->{members} }) {
if ($person->{role} =" /kid [son Cdaughter/) {

push @kids, $person;
}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec->{kids} = [@kids J;
}

you copied the array, but the array itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}kids}[0] and $TV{simpsons{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {
print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family{members}}) {
print " $who->{name} ($who->{role}), age $who->{age}\n";
}

print “it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map {$_->{name} } @{ $TV{$family}kids} });
print "\n";
}
Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem
is that all butGDBM and BerkeleyDB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is thé.DBM module. Check your neareSPAN site as described in perlmodlib for
source code tBILDBM .

SEE ALSO
perlref(1), perllol (1), perldata(1), perlobj(1)

AUTHOR
Tom Christiansen tchrist@perl.corm

Last update: Wed Oct 23 04:57:8ET DST 1996

perl v5.8.0 2003-08-13 195

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

NAME

perlrequick — Perl regular expressions quick start

DESCRIPTION

This page covers the very basics of understanding, creating and using regular expressions (regexes’) in
Perl.

The Guide

196

Simple word matching

The simplest regex is simply a word, or more generally, a string of characters. A regex consisting of a word
matches any string that contains that word:

"Hello World" =~ /World/; # matches

In this statemeniVorld is a regex and thé enclosingWorld/ tells perl to search a string for a match.

The operatorE™ associates the string with the regex match and produces a true value if the regex matched,
or false if the regex did not match. In our casrld matches the second word"idello World" , SO

the expression is true. This idea has several variations.

Expressions like this are useful in conditionals:
print "It matches\n" if "Hello World" =~ /World/;
The sense of the match can be reversed by Uisiraperator:
print "It doesn’t match\n" if "Hello World" ! /World/;
The literal string in the regex can be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =" /$greeting/;

If you're matching against_, the$_ =~ part can be omitted:

$_="Hello World";
print "It matches\n" if /World/;

Finally, the// default delimiters for a match can be changed to arbitrary delimiters by putting aout
front:

"Hello World" =~ m!World!; # matches, delimited by 'V’
"Hello World" =~ m{World}; # matches, note the matching '{}’
“fusr/bin/per!l" =~ m"/perl"; # matches after '/usr/bin’,

'l becomes an ordinary char

o o

Regexes must match a part of the stergctlyin order for the statement to be true:

"Hello World" =" /world/; # doesn’t match, case sensitive
"Hello World" =" /o WV, # matches, '’ is an ordinary char
"Hello World" =~ /World /; # doesn’t match, no '’ at end

perl will always match at the earliest possible point in the string:

"Hello World" =" /o/; # matches '0’ in 'Hello’
"That hat is red" = /hat/; # matches 'hat’ in "'That’

Not all characters can be used 'as is’ in a match. Some charactersnuatibetharacters are reserved for
use in regex notation. The metacharacters are

{10°s. OF+2\
A metacharacter can be matched by putting a backslash before it:

"2+2=4" =" [2+2]; # doesn’t match, + is a metacharacter
"2+2=4" =" [2\+2/, # matches, \+ is treated like an ordinary +
"C:\WIN32' =7 /C:\\WIN/; # matches

"fusr/bin/per!" =~ MusrVllocalVbinV/perl/; # matches
In the last regex, the forward sldgh is also backslashed, because it is used to delimit the regex.

Non-printableASCII characters are representeddsgape sequencesCommon examples ake for a tab,
\n for a newline, andr for a carriage return. Arbitrary bytes are represented by octal escape sequences,
e.9.,\033 , or hexadecimal escape sequences, \&1j :

2003-08-13 perl v5.8.0

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

"1000\t2000" =~ m(0\t2) # matches
"cat" =" N\143\x61\x74/ # matches, but a weird way to spell cat

Regexes are treated mostly as double quoted strings, so variable substitution works:

$foo = 'house’;
‘cathouse’ =™ /cat$foo/; # matches
'housecat’ =" /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was considered a match. To
specify whereit should match, we would use th@chor metacharacters and$. The anchof means

match at the beginning of the string and the anghoreans match at the end of the string, or before a
newline at the end of the string. Some examples:

"housekeeper" =" /keeper/, # matches
"housekeeper" =" I"keeper/; # doesn’t match
"housekeeper" =" /keeper$/; # matches
"housekeeper\n" =~ /keeper$/; # matches

"housekeeper" =" "housekeeper$/; # matches

Using character classes

A character classallows a set of possible characters, rather than just a single character, to match at a
particular point in a regex. Character classes are denoted by brackets, with the set of characters to
be possibly matched inside. Here are some examples:

[catl, # matches 'cat’
/[ber]at/; # matches 'bat’, 'cat’, or 'rat’
"abc" =" /[cab]/; # matches 'a’

In the last statement, even though is the first character in the class, the earliest point at which the regex
can match is’

/[lyY][eE][sS]/; # match 'yes’ in a case-insensitive way
’yes’, 'Yes', 'YES', etc.
lyesli; # also match 'yes' in a case-insensitive way
The last example shows a match withian modifier, which makes the match case-insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and special characters
inside a character class are different than those outside a character class. The special characters for a
character class ard\"$ and are matched using an escape:

/\c]ldef/; # matches 'ldef’ or 'cdef’

$x ="ber’;

/[$x]at/; # matches ’bat, 'cat’, or 'rat’
/\$x]Jat/; # matches '$at’ or 'xat’
/\$x]at/; # matches "\at’, 'bat, 'cat’, or 'rat’

The special charactér’ acts as a range operator within character classes, so that the unwieldy
[0123456789] and[abc...xyz] become the svelf®-9] and[a-z]

/item[0-9])/; # matches 'itemQ’ or ... or 'item9’
/[0-9a-fA-F]/; # matches a hexadecimal digit

If '=" is the first or last character in a character class, it is treated as an ordinary character.

The special charactérin the first position of a character class denotasgated character classwhich
matches any character but those in the brackets. [Bdth and[...] must match a character, or the
match fails. Then

[["a]at/; # doesn’'t match 'aat’ or 'at’, but matches
all other 'bat’, 'cat, 'Oat’, '%at’, etc.

/["0-9])/; # matches a non-numeric character

/[a"]lat/; # matches 'aat’ or "at’; here " is ordinary

Perl has several abbreviations for common character classes:
* \dis adigit and represents [0-9]

perl v5.8.0 2003-08-13 197

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

» \sis awhitespace character and represents [\ \t\r\n\f]

* \wis aword character (alphanumeric or _) and represents [0-9a-zA-Z]

 \Dis anegated \d; it represents any character but a digit [[0-9]

» \Sisanegated \s; it represents any non-whitespace character ["\s]

 \Wis anegated \w; it represents any non-word character ["\w]

e The period '’ matches any character but “\n”

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character classes. Here are

some in use:
Nd\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/N\d\s)/; # matches any digit or whitespace character
AWAWAWY; # matches a word char, followed by a

non-word char, followed by a word char

[.rtl; # matches any two chars, followed by 'rt’
/end\./; # matches 'end.’
lend[.J/; # same thing, matches 'end.’

The word anchor \b matches a boundary between a word character and a non-word chavattesr
\WAw :

$x = "Housecat catenates house and cat";

$x =" Nbcat/; # matches cat in 'catenates’

$x =" /cat\b/; # matches cat in 'housecat’

$x =" N\bcat\b/; # matches 'cat’ at end of string

In the last example, the end of the string is considered a word boundary.

Matching this or that

We can match different character strings withahernation metacharacterd . To matchdog or cat ,

we form the regerlog [tat . As before, perl will try to match the regex at the earliest possible point in the
string. At each character position, perl will first try to match the first alternatoge, If dog doesn’t
match, perl will then try the next alternativeat . If cat doesn’'t match either, then the match fails and
perl moves to the next position in the string. Some examples:

"cats and dogs" =" /cat [dog [bird/; # matches "cat"

"cats and dogs" =" /dog Ctat [bird/; # matches "cat"
Even thougtdog is the first alternative in the second reged, is able to match earlier in the string.

" Ic Ctaltat [tats/; # matches "c"
"~ [cats Ctat [talt/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed will be the one that
matches. Here, all the alternatives match at the first string position, so th first matches.

"cats"
"cats”

Grouping things and hierarchical matching

The grouping metacharacter§ allow a part of a regex to be treated as a single unit. Parts of a regex are
grouped by enclosing them in parentheses. The régese(cat [keeper) means matcthouse
followed by eithercat orkeeper . Some more examples are

/(a [b)bf; # matches 'ab’ or 'bb’

/Ca [b)c/; # matches 'ac’ at start of string or 'bc’ anywhere

/house(cat [)/; # matches either 'housecat’ or 'house’

/house(cat(s 0O 0O/; # matches either 'housecats’ or 'housecat’ or
'house’. Note groups can be nested.

"20" =" /(19 (200O\d\d/; # matches the null alternative 'O\d\d’,
because '20\d\d’ can't match

198 2003-08-13 perl v5.8.0

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

Extracting matches

The grouping metacharactgjs also allow the extraction of the parts of a string that matched. For each
grouping, the part that matched inside goes into the special vai¥dhl&2, etc. They can be used just as
ordinary variables:

extract hours, minutes, seconds

$time =" /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;

$minutes = $2;

$seconds = $3;

In list context, a matclregex/ with groupings will return the list of matched valug4,$2,...)
So we could rewrite it as

($hours, $minutes, $second) = ($time =" /(\d\d):(\d\d): (\d\d)/);

If the groupings in a regex are nest$tl,gets the group with the leftmost opening parenth&gishe next
opening parenthesis, etc. For example, here is a complex regex and the matching variables indicated below
it:
/(ab(cd Cef)((gi) O));
1 2 34

Associated with the matching variab®s, $2, ... are thébackreferences\1 ,\2 , ... Backreferences are
matching variables that can be ugesidea regex:

/(W Ww\WwW)\s\1/; # find sequences like 'the the’ in string
$1, $2, ... should only be used outside of a regex,\&nd?2 , ... only inside a regex.

Matching repetitions

The quantifier metacharacters, *, +, and{} allow us to determine the number of repeats of a portion of
a regex we consider to be a match. Quantifiers are put immediately after the character, character class, or
grouping that we want to specify. They have the following meanings:

* a? =match’a’ 1 or0times

e a* =match 'a’ 0 or more times, i.e., any number of times
* at+=match’a’ 1 or more times, i.e., at least once

« a{n,m} =match at leagt times, but not more thantimes.
« a{n,} =match at least or more times

« a{n} =match exactly times

Here are some examples:

[[a-z]+\s+\d*/; # match a lowercase word, at least some space, and
any number of digits
[(w+)\s+\1/; # match doubled words of arbitrary length
$year =" \d{2,4}/; # make sure year is at least 2 but not more
than 4 digits
$year =" \d{4} Od{2}/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing the regex to match.
So we have

$x = 'the cat in the hat’;
$x =" I(.*)(at)(.*)$/; # matches,

$1 = ’'thecatintheh’
$2 = ‘'at’
$3 = (0 matches)

The first quantifier* grabs as much of the string as possible while still having the regex match. The
second quantifier has no string left to it, so it matches 0 times.

perl v5.8.0 2003-08-13 199

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

200

More matching
There are a few more things you might want to know about matching operators. In the code

$pattern = 'Seuss’;
while (<>) {

print if /$pattern/;
}

perl has to re-evaluatgpattern each time through the loop. $pattern won'’t be changing, use the
/lo madifier, to only perform variable substitutions once. If you don’t want any substitutions at all, use
the special delimitem” :

$pattern = 'Seuss’;
m’'$pattern’; # matches '$pattern’, not 'Seuss’

The global modifief/lg allows the matching operator to match within a string as many times as possible.
In scalar context, successive matches against a string will/fgavgump from match to match, keeping
track of position in the string as it goes along. You can get or set the position wigbsif)e function.

For example,

$x = "cat dog house"; # 3 words
while ($x =7 /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don't want the position reset after
failure to match, add théc , as in/regex/gc

In list context//g returns a list of matched groupings, or if there are no groupings, a list of matches to the
whole regex. So

@words = ($x =~ /(\w+)/g); # matches,
$word[0] = 'cat’
$word[1] ='dog’
$word[2] = house’

Search and replace

Search and replace is performed usifrggex/replacement/modifiers . Thereplacement is
a Perl double quoted string that replaces in the string whatever is matched wiheke. The operator
=" is also used here to associate a string @/ith . If matching against_, the$ =" can be dropped.

If there is a matchs/// returns the number of substitutions made, otherwise it returns false. Here are a
few examples:

$x = "Time to feed the cat!";
$x =" s/cat/hacker/; # $x contains "Time to feed the hacker!"
$y = "quoted words™;
Sy =" s/7(*)'$/$1/; # strip single quotes,
$y contains "quoted words"

With the s/// operator, the matched variablés, $2, etc. are immediately available for use in the
replacement expression. With the global modifsétg will search and replace all occurrences of the
regex in the string:

$x ="l batted 4 for 4";

$x =" s/4/fourl; # $x contains "l batted four for 4"
$x ="l batted 4 for 4";

$x =" s/4/four/lg; # $x contains "l batted four for four"

The evaluation modifies///le wraps aneval{...} around the replacement string and the evaluated
result is substituted for the matched substring. Some examples:

2003-08-13 perl v5.8.0

PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

reverse all the words in a string
$x = "the cat in the hat";
$x =" s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

convert percentage to decimal
$x = "A 39% hit rate";
$x =" s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows tt</ can use other delimiters, suchsdd ands{}{} , and evers{}//
If single quotes are used’ , then the regex and replacement are treated as single quoted strings.

The split operator

split /regex/, string splits string into a list of substrings and returns that list. The regex
determines the character sequencegtratg is split with respect to. For example, to split a string into
words, use

$x = "Calvin and Hobbes";
@word = split As+/, $x; # $word[0] = 'Calvin’
$word[1] =’and’
$word[2] = 'Hobbes’

To extract a comma-delimited list of numbers, use
$x ="1.618,2.718, 3.142";
@const = split /\s*/, $x; # $const[0] ='1.618’
$const[1] ='2.718
$const[2] ='3.142’

If the empty regeX is used, the string is split into individual characters. If the regex has groupings, then
list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!())!, $x; # $parts[0] ="
S$parts[1] ="/
S$parts[2] = 'usr’
$parts[3] ="
$parts[4] = 'bin’
Since the first character 8k matched the regegplit prepended an empty initial element to the list.

BUGS
None.

SEE ALSO
This is just a quick start guide. For a more in-depth tutorial on regexes, see perlretut and for the reference
page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments

The author would like to thank Mark-Jason Dominus, Tom Christiansen, llya Zakharevich, Brad Hughes,
and Mike Giroux for all their helpful comments.

perl v5.8.0 2003-08-13 201

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

NAME

peristyle — Perl style guide

DESCRIPTION

202

Each programmer will, of course, have his or her own preferences in regards to formatting, but there are
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under-theflag at all times. You may turn it off
explicitly for particular portions of code via ti® warnings pragma or th& W variable if you must.
You should also always run undese strict or know the reason why not. Thise sigtrap and
evenuse diagnostics pragmas may also @ve useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-lineBLOCK should line up with the keyword that started the construct. Beyond
that, he has other preferences that aren’t so strong:

* 4-column indent.

* Opening curly on same line as keyword, if possible, otherwise line up.
e Space before the opening curly of a multi-lBeCK.

* One-lineBLOCK may be put on one line, including curlies.

* No space before the semicolon.

* Semicolon omitted in “short” one-linBLOCK.

* Space around most operators.

e Space around a “complex” subscript (inside brackets).

» Blank lines between chunks that do different things.

* Uncuddled elses.

* No space between function name and its opening parenthesis.
* Space after each comma.

» Long lines broken after an operator (except “and” and “or”).

» Space after last parenthesis matching on current line.

e Line up corresponding items vertically.

» Omit redundant punctuation as long as clarity doesn't suffer.

Larry has his reasons for each of these things, but he doesn'’t claim that everyone else’'s mind works the
same as his does.

Here are some other more substantive style issues to think about:

e Just because yaDAN do something a particular way doesn't mean that $6@ULD do it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) [11 die "Can'’t open $foo: $!";
is better than
die "Can’t open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in a modifier. On the other hand
print "Starting analysis\n" if $verbose;
is better than
$verbose && print "Starting analysis\n®;
because the main point isn’t whether the user typear not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have to
make use of the defaults. The defaults are there for lazy systems programmers writing one-shot
programs. If you want your program to be readable, consider supplying the argument.

2003-08-13 perl v5.8.0

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.8.0

Along the same lines, just because YIAN omit parentheses in many places doesn’'t mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in
Vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parentheses in the wrong place.

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl providastthe
operator so you can exit in the middle. Just “outdent” it a little to make it more visible:

LINE:
for (3;) {
statements;
last LINE if $foo;
next LINE if /"#/,
statements;
}

Don't be afraid to use loop labels —they’re there to enhance readability as well as to allow multilevel
loop breaks. See the previous example.

Avoid usinggrep() (or map() or ‘backticks' in a void context, that is, when you just throw away their
return values. Those functions all have return values, so use them. Otherwidereseld)loop or
thesystem(function instead.

For portability, when using features that may not be implemented on every machine, test the construct
in an eval to see if it fails. If you know what version or patchlevel a particular feature was
implemented, you can te$] ($PERL_VERSIONin English) to see if it will be there. The
Config module will also let you interrogate values determined byCinafigure program when Perl

was installed.

Choose mnemonic identifiers. If you can’t remember what mnemonic means, you've got a problem.

While short identifiers like$gotit — are probably ok, use underscores to separate words. It is
generally easier to redbvar_names_like_this than $VarNamesLikeThis , especially for
non-native speakers of English. It's also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for “pragma” modules likinteger andstrict . Other modules should begin with a
capital letter and use mixed case, but probably without underscores due to limitations in primitive file
systems’ representations of module names as files that must fit into a few sparse bytes.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercasebobjg->as_string()

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

If you have a really hairy regular expression, usexhenodifier and put in some whitespace to make
it look a little less like line noise. Don't use slash as a delimiter when your regexp has slashes or
backslashes.

Use the new “and” and “or” operators to avoid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators dikeand (11 Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parentheses.

Use here documents instead of repeatad() statements.

2003-08-13 203

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

204

Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.
$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;

$IDX = $ST_CTIME if $opt_c;

$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’'t mkdir $tmpdir: $!";
chdir($tmpdir) or die "can’t chdir $tmpdir: $!";

mkdir 'tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages shoulBTOERR include

which program caused the problem, what the failed system call and arguments wenERNd (
IMPORTANT) should contain the standard system error message for what went wrong. Here’s a simple
but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";
Line up your transliterations when it makes sense:
tr [abc]
[xyzl;

Think about reusability. Why waste brainpower on a one-shot when you might want to do something
like it again? Consider generalizing your code. Consider writing a module or object class. Consider
making your code run cleanly witkse strict anduse warnings (or —w) in effect. Consider
giving away your code. Consider changing your whole world view. Consider... oh, never mind.

Be consistent.
Be nice.

2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

NAME
perltrap — Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting tse warnings or use the-w switch; see perllexwarn and perlrun.
The second biggest trap is not making your entire program runnable uselestrict . The third

biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomedawk users should take special note of the following:
e The English module, loaded via
use English;
allows you to refer to special variables (If&e) with names (likebRS), as though they were Buwk;
see perlvar for details.

» Semicolons are required after all simple statements in Perl (except at the end of a block). Newline is
not a statement delimiter.

* Curly brackets are required dns andwhile s.

» Variables begin with “$”, “@" or “%” in Perl.

* Arrays index from 0. Likewise string positionssabstr()andindex()

* You have to decide whether your array has numeric or string indices.

» Hash values do not spring into existence upon mere reference.

* You have to decide whether you want to use string or numeric comparisons.

» Reading an input line does not split it for you. You get to split it to an array yourself. Asglitfe
operator has different arguments tlzavk's.

e The current input line is normally #_, not$0. It generally does not have the newline stripped. ($0
is the name of the program executed.) See perlvar.

* $<digit> does not refer to fields —it refers to substrings matched by the last match pattern.

e Theprint() statement does not add field and record separators unless $ouaset$\ . You can set
$OFSand$ORSIf you're using the English module.

* You must open your files before you print to them.

» The range operator is “..”, not comma. The comma operator works as in C.

(—~n

e The match operator is “=™", not

. (“™is the one’s complement operator, as in C.)

(-~ ~

* The exponentiation operator is “**”, not “”. “™ is the XOR operator, as in C. (You know, one
could get the feeling thatwk is basically incompatible with C.)

» The concatenation operator is “.”, not the null string. (Using the null string would repdgr
/pat/ unparsable, because the third slash would be interpreted as a division operator —the tokenizer

is in fact slightly context sensitive for operators like “/”, “?”, and “>". And in fact, “.” itself can be
the beginning of a number.)

« Thenext ,exit ,andcontinue keywords work differently.
* The following variables work differently:

perl v5.8.0 2003-08-13 205

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

206

Awk Perl

ARGC scalar @ARGYV (compare with $#ARGV)
ARGV[0] $0

FILENAME $ARGV

FNR $. - something

FS (whatever you like)
NF $#FId, or some such
NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($")

SUBSEP $;

* You cannot se$RSto a pattern, only a string.
* When in doubt, run thawk construct througla2p and see what it gives you.

C Traps

Cerebral C programmers should take note of the following:
» Curly brackets are required dn’s andwhile 's.

* You must uselsif rather tharelse if

« Thebreak andcontinue keywords from C become in Pdalst andnext , respectively. Unlike
in C, these dmotwork within ado { } while construct.

* There’s no switch statement. (But it's easy to build one on the fly.)
» Variables begin with “$”, “@" or “%” in Perl.
e Comments begin with “#”, not “/*".

* You can't take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

* ARGMnust be capitalizedbARGVI[0] is C'sargv[l] ,andargv[0] ends up ir$0.

» System calls such d@mk(), unlink(), rename() etc. return nonzero for success, not €s{em()
however, returns zero for success.)

» Signal handlers deal with signal names, not numbers. killsel to find their names on your
system.
Sed Traps

Seasonededprogrammers should take note of the following:

» Backreferences in substitutions use “$” rather than “\".

» The pattern matching metacharacters “(”, “)”, and™do not have backslashes in front.
 The range operator is , rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

» The backtick operator does variable interpolation without regard to the presence of single quotes in the
command.

» The backtick operator does no translation of the return value, wslike

» Shells (especiallgsh) do several levels of substitution on each command line. Perl does substitution
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns.

» Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except foBEGIN blocks, which execute at compile time).

2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

e The arguments are available @ARGWot$1, $2, etc.
* The environment is not automatically made available as separate scalar variables.

Perl Traps
Practicing Perl Programmers should take note of the following:

« Remember that many operations behave differently in a list context than they do in a scalar one. See
perldata for details.

» Avoid barewords if you can, especially all lowercase ones. You can't tell by just looking at it whether
a bareword is a function or a string. By using quotes on strings and parentheses on function calls, you
won't ever get them confused.

* You cannot discern from mere inspection which builtins are unary operatorshtip€) and chdir())
and which are list operators (likgint() andunlink()). (Unless prototyped, user-defined subroutines
canonly be list operators, never unary ones.) See perlop and perlsub.

» People have a hard time remembering that some functions def&ulf tw @ ARG\or whatever, but
that others which you might expect to do not.

« The <H> construct is not the name of the filehandle, it is a readline operation on that handle. The
data read is assigned$o only if the file read is the sole condition in a while loop:

while (<FH>) {1}
while (defined($_ = <FH>)) {}..
<FH>; # data discarded!

 Remember not to usewhen you need™ ; these two constructs are quite different:

$x = [fool;
$x =" [fool;

e Thedo{} constructisn’ta real loop that you can use loop control on.

« Usemy() for local variables whenever you can get away with it (but see perlform for where you
can't). Usinglocal() actually gives a local value to a global variable, which leaves you open to
unforeseen side-effects of dynamic scoping.

» If you localize an exported variable in a module, its exported value will not change. The local name
becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps

Practicing Perl4 Programmers should take note of the following Perl4-to—Perl5 specific traps.

They're crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything that's been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4 feature
with the intent to encourage usage of some other perl5 feature.

Parsing Traps
Traps that appear to stem from the new parser.

Numerical Traps
Traps having to do with numerical or mathematical operators.

General data type traps
Traps involving perl standard data types.

Context Traps — scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

perl v5.8.0 2003-08-13 207

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, along with
sorting subroutines.

OSTraps
OS-specific traps.

DBM Traps
Traps specific to the use dbmopen() , and specific dom implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submpérittug@perl.org
for inclusion. Also note that at least some of these can be caught witkettvearnings pragma or the
—w switch.

Discontinuance, Deprecation, and BugFix traps
Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

* Discontinuance
Symbols starting with

are no longer forced into package main, exce@ fatself (and@ , etc.).

package test;
$ legacy = 1;

package main;
print "\$_legacy is ",$_legacy,"\n";

perl4 prints: $_legacy is 1
perl5 prints: $_legacy is
* Deprecation
Double-colon is now a valid package separator in a variable name. Thus these behave differently in
perl4 vs. perl5, because the packages don't exist.

$a=1;$b=2;$c=3;$var=4;

print "$a::$b::$c ";

print "$var::abc::xyz\n";

perl4 prints: 1::2::3 4::abc::xyz

perl5 prints: 3
Given that:: is now the preferred package delimiter, it is debatable whether this should be classed as
a bug or not. (The older package delimiter, ' ,is used here)

$x=10;
print "x=${'x}\n" ;

perl4 prints: x=10
perl5 prints: Can't find string terminator

anywhere before EOF

You can avoid this problem, and remain compatible with perl4, if you always explicitly include the
package name:

$x=10;
print "x=${main’xj\n" ;

Also see precedence traps, for parsing

* BugFix
The second and third argumentsspiice() are now evaluated in scalar context (as the Camel
says) rather than list context.

208 2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

sub subl{return(0,2) } # return a 2-element list
sub sub2{ return(1,2,3)} # return a 3-element list
@al = ("a","b","c","d","e");
@a2 = splice(@al,&subl,&sub?);
print join(’ ’,@az2),"\n";
perl4 prints: ab
perl5 prints:cde

* Discontinuance

You can't do agoto into a block that is optimized away. Darn.

goto markerl;

for(1){
markerl:

print "Here | ish\n";
}

perl4 prints: Here | is!
perl5 errors: Can't "goto" into the middle of a foreach loop

* Discontinuance

It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter for any
kind of quote construct. Double darn.

$a = ("foo bar");
$b=qbaz;
print "a is $a, b is $b\n";

perl4 prints: a is foo bar, b is baz
perl5 errors: Bareword found where operator expected
* Discontinuance
The archaic while/iBLOCK BLOCK syntax is no longer supported.
if{1}{

print "True!";
}

else {
print "False!";
}

perl4 prints: True!
perl5 errors: syntax error at test.pl line 1, near "if {"
* BugFix
The ** operator now binds more tightly than unary minus. It was documented to work this way
before, but didn't.

print -4**2 "\n";

perl4 prints: 16

perl5 prints: -16
* Discontinuance

The meaning oforeach{} has changed slightly when it is iterating over a list which is not an array.
This used to assign the list to a temporary array, but no longer does so (for efficiency). This means
that you'll now be iterating over the actual values, not over copies of the values. Modifications to the
loop variable can change the original values.

@list = ('ab’,’abc’,’bcd’,'def’);

foreach $var (grep(/ab/,@list)){
$var = 1;

}

print (join(:’,@list));

perl v5.8.0 2003-08-13 209

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl4 prints: ab:abc:bcd:def
perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then iterate
over that. For example, you might need to change

foreach $var (grep(/ab/,@list)){
to
foreach $var (@tmp = grep(/ab/,@list){

Otherwise changingvar will clobber the values o®list . (This most often happens when you use
$_ for the loop variable, and call subroutines in the loop that don't properly lo&alize

* Discontinuance
split with no arguments now behaves ligglit "’ (which doesn’t return an initial null field if
$_ starts with whitespace), it used to behave digkt \s+/ (which does).
$_="hi mom’;
print join(’:’, split);
perl4 prints: :hi:mom
perl5 prints: hi:mom
* BugFix
Perl 4 would ignore any text which was attached te-@awitch, always taking the code snippet from

the following arg. Additionally, it would silently accept ae switch without a following arg. Both of
these behaviors have been fixed.

perl -e'print "attached to -e" 'print "separate arg"

perl4 prints: separate arg
perl5 prints: attached to -e

perl -e

perl4 prints:
perl5 dies: No code specified for -e.

* Discontinuance
In Perl 4 the return value plush was undocumented, but it was actually the last value being pushed
onto the target list. In Perl 5 the return valuepokh is documented, but has changed, it is the
number of elements in the resulting list.
@x = (existing”;
print push(@x, 'first new’, 'second new’);
perl4 prints: second new
perl5 prints: 3
* Deprecation
Some error messages will be different.

* Discontinuance
In Perl 4, if in list context the delimiters to the first argumergpdit() were??, the result would
be placed i@ _as well as being returned. Perl 5 has more respect for your subroutine arguments.

* Discontinuance

Some bugs may have been inadvertently removed. :-)
Parsing Traps
Perl4-to—Perl5 traps from having to do with parsing.

* Parsing
Note the space between . and =

$string . = "more string";
print $string;

210 2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl4 prints: more string
perl5 prints: syntax error at - line 1, near ". ="

* Parsing
Better parsing in perl 5

sub foo {}
&foo
print("hello, world\n");

perl4 prints: hello, world
perl5 prints: syntax error

* Parsing
“if it looks like a function, it is a function” rule.

print
($foo == 1) ? "is one\n" : "is zero\n";

perl4 prints: is zero
perl5 warns: "Useless use of a constant in void context" if using -w

* Parsing
String interpolation of th&#array construct differs when braces are to used around the name.

@a = (1..3);
print "${#a}";

perl4 prints: 2
perl5 fails with syntax error
@ = (1.3);
print "$#{a}";
perl4 prints: {a}
perl5 prints: 2

* Parsing

When perl seesnap { (or grep {), it has to guess whether thestarts aBLOCK or a hash

reference. If it guesses wrong, it will report a syntax error nedr Hrel the missing (or unexpected)
comma.

Use unary+ before{ on a hash reference, and unargpplied to the first thing in BLOCK (after{),
for perl to guess right all the time. (See “map” in perlfunc.)

Numerical Traps

Perl4—to—Perl5 traps having to do with numerical operators, operands, or output from same.

* Numerical
Formatted output and significant digits. In general, Perl 5 tries to be more precise. For example, on a
Solaris Sparc:

print 7.373504 - 0, "\n";
printf "%20.18f\n", 7.373504 - 0O;

Perl4 prints:
7.3750399999999996141
7.375039999999999614

Perl5 prints:
7.373504
7.375039999999999614

Notice how the first result looks better in Perl 5.

Your results may vary, since your floating point formatting routines and even floating point format
may be slightly different.

perl v5.8.0 2003-08-13 211

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

212

* Numerical
This specific item has been deleted. It demonstrated how the auto-increment operator would not

catch when a number went over the signed int limit. Fixed in version 5.003_04. But always be wary
when using large integers. If in doubt:

use Math::Biglint;

* Numerical

Assignment of return values from numeric equality tests does not work in perl5 when the test
evaluates to false (0). Logical tests now return a null, instead of 0
$p = ($test == 1);
print $p,"\n";
perl4 prints: 0
perl5 prints:

Also see “General Regular Expression Traps using s//l/, etc.” for another example of this new
feature...

* Bitwise string ops

When bitwise operators which can operate upon either numbers or sfirig$ () are given only

strings as arguments, perl4 would treat the operands as bitstrings so long as the program contained a

call to thevec() function. perl5 treats the string operands as bitstrings. (See “Bitwise String
Operators” in perlop for more details.)

$fred ="10";

$bharney = "12";

$betty = $fred & $barney;

print "$betty\n";

Uncomment the next line to change perl4’s behavior
($dummy) = vec("dummy"”, 0, 0);

Perl4 prints:
8

Perl5 prints:
10

If vec() is used anywhere in the program, both print:
10

General data type traps
Perl4-to—Perl5 traps involving most data—types, and their usage within certain expressions and/or context.
* (Arrays)

Negative array subscripts now count from the end of the array.

@a=(1,23,4,)5)
print "The third element of the array is $a[3] also expressed as $a[-2] \

perl4 prints: The third element of the array is 4 also expressed as
perl5 prints: The third element of the array is 4 also expressed as 4

* (Arrays)

Setting$#array lower now discards array elements, and makes them impossible to recover.
@a = (a,b,c,d,e);
print "Before: ",join(",@a);
$#a =1,
print ", After: " join(",@a);
$#a =3;

print ", Recovered: "join(’,@a),"\n";

perl4 prints: Before: abcde, After: ab, Recovered: abcd
perl5 prints: Before: abcde, After: ab, Recovered: ab

2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide

* (Hashes)
Hashes get defined before use

local($s,@a,%h);

die "scalar \$s defined" if defined($s);
die "array \@a defined" if defined(@a);
die "hash \%h defined" if defined(%h);

perl4 prints:
perl5 dies: hash %h defined

Perl will now generate a warning when it sees defined(@a) and defined(%h).

* (Globs)

PERLTRAP(1)

glob assignment from variable to variable will fail if the assigned variable is localized subsequent to

the assignment
@a = ("This is Perl 4);
*b = *a,
local(@a);
print @b,"\n";

perl4 prints: This is Perl 4
perl5 prints:

* (Globs)

Assigningundef to a glob has no effect in Perl 5. In Perl 4 it undefines the associated scalar (but

may have other side effects including SEGVs). Perl 5 will also waumdef

is assigned to a

typeglob. (Note that assigningndef to a typeglob is different than calling thedef function on a

typeglob (ndef *foo), which has quite a few effects.

$foo = "bar";
*foo = undef;
print $foo;

perl4 prints:

perl4 warns: "Use of uninitialized variable" if using -w

perl5 prints: bar

perl5 warns: "Undefined value assigned to typeglob" if using -w

* (Scalar String)

Changes in unary negation (of strings) This change effects both the return value and what it does to

auto(magic)increment.

$x = "aaa";
print ++$x," : ";
print -$x," : *;
print ++$x,"\n";

perld prints;aab:-0:1
perl5 prints: aab : -aab : aac

* (Constants)
perl 4 lets you modify constants:

$foo = "x";

&mod($foo);

for ($x = 0; $x < 3; $x++) {
&mod("a");

}

sub mod {
print "before: $_[0]";
$ 0] ="m"
print" after: $_[0]\n";

perl v5.8.0 2003-08-13

213

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl4:
before: x after:m
before:a after:m
before:m after:m
before:m after:m
Perls:
before: x after:m
Modification of a read-only value attempted at foo.pl line 12.
before: a
* (Scalars)

The behavior is slightly different for:
print "$x", defined $x

perl4:1
perl 5: <no output, $x is not called into existence>

* (Variable Suicide)
Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behavior for
hashes and scalars, that perl4 exhibits for only scalars.

$aGlobal{ "aKey" } = "global value";
print "MAIN:", $aGlobal{"aKey"}, "\n";
$GlobalLevel = 0;

&test(*aGlobal);

sub test {
local(*theArgument) = @_;
local(%aNewLocal); # perl 4 '= 5.001l,m
$aNewLocal{"aKey"} = "this should never appear";
print "SUB: ", $theArgument{"aKey"}, "\n";
$aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
$GlobalLevel++;
if($GlobalLevel<4) {
&test(*aNewLocal);
}

Perl4.
MAIN:global value
SUB: global value
SUB: level 0
SUB: level 1
SUB: level 2

Perl5:

MAIN:global value

SUB: global value

SUB: this should never appear
SUB: this should never appear
SUB: this should never appear

RS RERW R

Context Traps — scalar, list contexts

* (list context)
The elements of argument lists for formats are now evaluated in list context. This means you can
interpolate list values now.

214 2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

@fmt = ("foo","bar","baz");
format STDOUT=
@< @I @>>>>>
@fmt;

write;

perld errors: Please use commas to separate fields in file
perl5 prints: foo bar baz

* (scalar context)
The caller() function now returns a false value in a scalar context if there is no caller. This lets

library files determine if they're being required.
caller() ? (print "You rang?\n") : (print "Got a 0\n");

perl4 errors: There is no caller
perl5 prints: Gota 0

* (scalar context)
The comma operator in a scalar context is now guaranteed to give a scalar context to its arguments.

@y= (a','b’,’c);
$x=(1, 2 @y);
print "x = $x\n";

¢ # Thinks list context interpolates list
3 # Knows scalar uses length of list

Perl4 prints: X
Perl5 prints: X
* (list, builtin)
sprintf() is prototyped as ($;@), so its first argument is given scalar context. Thus, if passed an
array, it will probably not do what you want, unlike Perl 4:

@z = ("%s%s’, 'foo’, 'bar’);
$x = sprintf(@z);
print $x;

perl4 prints: foobar
perl5 prints: 3

printf() works the same as it did in Perl 4, though:

@z = ("%s%s’, 'foo’, 'bar’);
printf STDOUT (@2);

perl4 prints: foobar
perl5 prints: foobar

Precedence Traps

Perl4-to—Perl5 traps involving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operators that they both have. Perl 4 however,
seems to have had some inconsistencies that made the behavior differ from what was documented.

* Precedence
LHS vs. RHS of any assignment operatorHS is evaluated first in perl4, second in perl5; this can

affect the relationship between side-effects in sub—expressions.
@arr = ('left’, right’);
$a{shift @arr} = shift @arr;
print join(", keys %a);
perl4 prints: left
perl5 prints: right

* Precedence
These are now semantic errors because of precedence:

perl v5.8.0 2003-08-13 215

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

@list = (1,2,3,4,5);

%map = ("a",1,"b",2,"c",3,"d",4);

$n = shift @list + 2; # first item in list plus 2

print "nis $n, ;

$m = keys %map + 2; # number of items in hash plus 2
print "m is $m\n";

perld prints: nis 3, mis 6

perl5 errors and fails to compile

* Precedence
The precedence of assignment operators is now the same as the precedence of assignment. Perl 4
mistakenly gave them the precedence of the associated operator. So you now must parenthesize them

in expressions like
ffool ? ($a +=2) : ($a -= 2);
Otherwise
ffoo/ ? $a+=2:%a -=2
would be erroneously parsed as
(/fool ? $a +=2: $a) -= 2;
On the other hand,
$a +=/foo/ ?1:2;
now works as a C programmer would expect.

* Precedence
open FOO [T die;

is now incorrect. You need parentheses around the filehandle. Otherwise, perl5 leaves the statement
as its default precedence:

open(FOO [die);

perl4 opens or dies
perl5 opens FOO, dying only if 'FOQ’ is false, i.e. never

* Precedence
perl4 gives the special variablg, precedence, where perl5 tredts as mairpackage

$a = "x"; print "$::a";
perl 4 prints: -:a
perl 5 prints: x
* Precedence
perl4 had buggy precedence for the file test operators vis-a-vis the assignment operators. Thus,
although the precedence table for perl4 leads one to belexifoo .= "g" should parse as
((—e $foo) .="g") , it actually parses gs-e ($foo .= "g")) . In perl5, the precedence
is as documented.

-e $foo .="qg"

perl4 prints: no output
perl5 prints: Can't modify -e in concatenation

* Precedence
In perl4,keys() each()andvalues()were special high-precedence operators that operated on a single
hash, but in perl5, they are regular named unary operators. As documented, named unary operators
have lower precedence than the arithmetic and concatenation operators, but the perl4 variants
of these operators actually bind tighter thar- . . Thus, for:

%foo = 1..10;
print keys %foo - 1

216 2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl4 prints: 4
perl5 prints: Type of arg 1 to keys must be hash (not subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.
All types of RE traps.
» Regular Expression

s'lhs'rhs’ now does no interpolation on either side. It used to interpdi® but not
$rhs . (And still does not match a literal '$’ in string)
$a=1;$b=2;

$string ='1 2 $a $b’;
$string =~ s'$a’$b’;

print $string,"\n";

perl4 prints: $b 2 $a $b
perl5 prints: 1 2 $a $b

» Regular Expression
m//g now attaches its state to the searched string rather than the regular expression. (Once the scope
of a block is left for the sub, the state of the searched string is lost)

$_="ababab";
while(m/ab/g){

&doit("blah");
}

sub doit{local($_) = shift; print "Got $_ "}

perl4 prints: Got blah Got blah Got blah Got blah
perl5 prints: infinite loop blah...

» Regular Expression
Currently, if you use then//o qualifier on a regular expression within an anonymous allb,
closures generated from that anonymous sub will use the regular expression as it was compiled when
it was used the very first time in any such closure. For instance, if you say

sub build_match {
my($left,$right) = @ _;
return sub { $_[0] =" /$left stuff $right/o; };

}

$good = build_match('foo’,’bar’);

$bad = build_match(’baz’,’blarch’);

print $good->('foo stuff bar’) ? "ok\n" : "not ok\n";
print $bad->('baz stuff blarch’) ? "ok\n" : "not ok\n";
print $bad->("foo stuff bar’) ? "not ok\n" : "ok\n";

For most builds of Perl5, this will print: ok not ok not ok

build_match()will always return a sub which matches the contentBleff and$right as they
were thdfirst time thatbuild_match(was called, not as they are in the current call.

» Regular Expression
If no parentheses are used in a match, Perl4bsetts the whole match, just likg&. Perl5 does not.

"abcdef" =" /b.*e/,
print "\$+ = $+\n";

perl4 prints: bcde
perl5 prints:

» Regular Expression
substitution now returns the null string if it fails

perl v5.8.0 2003-08-13 217

PERLTRAP(1)

Perl Programmers Reference Guide PERLTRAP(1)

$string = "test";
$value = ($string =" s/fool/);
print $value, "\n";

perl4 prints: 0
perl5 prints:

Also see “Numerical Traps” for another example of this new feature.

» Regular Expression

s'lhs‘rhs’ (using backticks) is now a normal substitution, with no backtick expansion
$string =",
$string =~ s”*hostname;

print $string, "\n";

perl4 prints: <the local hostname>
perl5 prints: hostname

» Regular Expression
Stricter parsing of variables used in regular expressions

s/"(["$grpcl*$grpc[$optSplussrep]?)//o;

perld: compiles w/o error
perl5: with Scalar found where operator expected ..., near "optplus"

an added component of this example, apparently from the same script, is the actual value of the s'd
string after the substitutiorf$opt] is a character class in perl4 and an array subscript in perl5

$grpc ='a’;
$opt = 'r;

$_ ='bar;
s/"(["$grpcl*$grpc[$opt]?)/fool,
print ;

perl4 prints: foo
perl5 prints: foobar

» Regular Expression
Under perl5m?x? matches only once, likex?. Under perl4, it matched repeatedly, liké or
mix! .

$test = "once";
sub match { $test =~ m?once?; }
&match();
if(&match()) {
m?x? matches more then once
print "perl4\n“;
} else {
m?x? matches only once
print "perl5\n";

}
perl4 prints: perl4
perl5 prints: perl5

Subroutine, Signal, Sorting Traps

The general group of Perl4—to—Perl5 traps having to do with Signals, Sorting, and their related subroutines,
as well as general subroutine traps. Includes some OS-Specific traps.

* (Signals)

Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutine by
that name is defined before the compiler sees them.

218

2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

sub SeeYa { warn"Hasta la vista, baby!" }
$SIG{TERM'} = SeeYa;
print "SIGTERM is now $SIG{ TERM\n";

perl4 prints: SIGTERM is how main'SeeYa
perl5 prints: SIGTERM is now main::1 (and warns "Hasta la vista, baby!"

Use—-w to catch this one

* (Sort Subroutine)

reverse is no longer allowed as the name of a sort subroutine.

sub reverse{ print "yup "; $a <=> $b }
print sort reverse (2,1,3);

perl4 prints: yup yup 123

perl5 prints: 123
perl5 warns (if using -w): Ambiguous call resolved as CORE::reverse()

« warn() won't let you specify a filehandle.

Although it _always_ printed t6TDERR warn() would let you specify a filehandle in perl4. With
perl5 it does not.

warn STDERR "Foo!";

perl4 prints: Foo!
perl5 prints: String found where operator expected

OS Traps

* (SysV)

Under HPUX, and some other SysV OSes, one had to reset any signal handler, within the signal
handler function, each time a signal was handled with perl4. With perl5, the reset is nhow done
correctly. Any code relying on the handler _not_ being reset will have to be reworked.

Since version 5.002, Perl ussgaction()under SysV.

sub gotit {
print"Got @_... ";
}
$SIG{INT’} = 'gotit’;
$0 = 1;
$pid = fork;
if ($pid) {
KillCINT’, $pid);
sleep(1);
KillCINT’, $pid);
} else {

while (1) {sleep(10);}

}
perl4 (HPUX) prints: Got INT...
perl5 (HPUX) prints: Got INT... Got INT...

* (SysV)

perl v5.8.0

Under SysV OSeseek() on a file opened to appertt now does the right thing w.r.t. tliepen()
manpage. e.g., — When a file is opened for append, it is impossible to overwrite information already

in the file.

2003-08-13 219

PERLTRAP(1)

Perl Programmers Reference Guide PERLTRAP(1)

open(TEST,">>seek.test");
$start = tell TEST ;
foreach(1 .. 91
print TEST "$_";
}
$end = tell TEST ;
seek(TEST,$start,0);
print TEST "18 characters here";

perl4 (solaris) seek.test has: 18 characters here
perl5 (solaris) seek.testhas: 123456 7 8 9 18 characters here

Interpolation Traps

Perl4-to—Perl5 traps having to do with how things get interpolated within certain expressions, statements,
contexts, or whatever.

* Interpolation
@ now always interpolates an array in double-quotish strings.

print "To: someone@somewhere.com\n";

perl4 prints: To:someone@somewhere.com
perl <5.6.1, error : In string, @somewhere now must be written as \@so
perl >=5.6.1, warning : Possible unintended interpolation of @somewher

* Interpolation

Double-quoted strings may no longer end with an unescaped $ or @.

$foo = "foo$";
$bhar = "bar@";
print "foo is $foo, bar is $bar\n”;

perl4 prints: foo is foo$, bar is bar@
perl5 errors: Final $ should be \$ or $name

Note: perl5DOES NOTerror on the terminating @ Bbar

* Interpolation

Perl now sometimes evaluates arbitrary expressions inside braces that occur within double quotes
(usually when the opening brace is precededi by @.

@www = "buz";

$foo = "foo";

$bar = "bar";

sub foo { return "bar" };

print" [@{w.w.w} (b{main'foo} [;

perl4 prints: @{w.w.w} [(foo O
perl5 prints: (buz [bar O
Note that you canse strict; to ward off such trappiness under perl5.

* Interpolation

The construct “this is $$x” used to interpolate the pid at that point, but now tries to derefkence
3 by itself still works fine, however.

$s = "a reference";
$x = *s;
print "this is $$x\n";

perl4 prints: this is XXXx (XXX is the current pid)
perl5 prints: this is a reference

* Interpolation

220

Creation of hashes on the fly withal "EXPR" now requires either botb's to be protected in the
specification of the hash name, or both curlies to be protected. If both curlies are protected, the result
will be compatible with perl4 and perl5. This is a very common practice, and should be changed to

2003-08-13 perl v5.8.0

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

use the block form odval{} if possible.

$hashname = "foobar";

$key = "baz";

$value = 1234;

eval "\$$hashname{'$key’} = q Chvalue [
(defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

perl4 prints: Yup
perl5 prints: Nope

Changing

eval "\$$hashname{'$key’} = q Chvalue [
to

eval "\$\$hashname{'$key'} = q Chvalue [

causes the following result:

perl4 prints: Nope
perl5 prints: Yup

or, changing to
eval "\$$hashname\{'$key'\} = q Chvalue [
causes the following result:

perl4 prints: Yup
perl5 prints: Yup
and is compatible for both versions

* Interpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

perl -e "$bar=g/not/; print "This is $foo{$bar} perl5"

perl4 prints: This is not perl5
perl5 prints: This is perl5

* Interpolation
You also have to be careful about array references.

print "$foo{"

perl 4 prints: {
perl 5 prints: syntax error

* Interpolation
Similarly, watch out for:

$foo = "baz";
print "\$$foo{barj\n";

perl4 prints: $baz{bar}

perl5 prints: $
Perl 5 is looking foi$foo{bar} = which doesn’t exist, but perl 4 is happy just to exp&éfab to
“baz” by itself. Watch out for this especially ieval 's.

* Interpolation
gq() string passed teval

eval qq(
foreach \$y (keys %\$x\) {
\$count++;
}
)i

perl v5.8.0 2003-08-13 221

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl4 runs this ok
perl5 prints: Can't find string terminator ")"

DBM Traps
GeneraDBM traps.

* DBM
Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. The build of perl5 must have been linked with the same dbm/ndbm as the
default fordbmopen() to function properly withoutie 'ing to an extension dbm implementation.

dbmopen (%dbm, "file", undef);
print "ok\n";

perl4 prints: ok
perl5 prints: ok (IFF linked with -ldbm or -Indbm)

* DBM
Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. The error generated when exceeding the limit on the key/value size will
cause perl5 to exit immediately.

dbmopen(DB, "testdb",0600) (I die "couldn’t open db! $!";
$DB{'trap’} = "x" x 1024; # value too large for most dom/ndbm
print "YUP\n";

perl4 prints:
dbm store returned -1, errno 28, key "trap" at - line 3.
YUP

perl5 prints:

dbm store returned -1, errno 28, key "trap" at - line 3.
Unclassified Traps
Everything else.

e require /do trap using returned value
If the file doit.pl has:

sub foo {
$rc = do "./do.pl";
return 8;

}

print &foo, "\n";

And the do.pl file has the following single line:
return 3;

Running doit.pl gives the following:

perl 4 prints: 3 (aborts the subroutine early)
perl 5 prints: 8

Same behavior if you replade with require

e split on empty string withlIMIT specified
$string = 7,
@list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5 returns an empty list.
As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

222 2003-08-13 perl v5.8.0

PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

NAME
perlbook — Perl book information

DESCRIPTION
The Camel Book, officially known d@rogramming Perl, Third Editiorby Larry Wall et al, is the definitive
reference work covering nearly all of Perl. You can order it and other Perl books from O'Reilly &
Associates, 1-800-998-9938. Local/overseas is +1 707 829 0515. If you can locate an O'Reilly order
form, you can also fax to +1 707 829 0104. If you're web—connected, you can even mosey on over to
http://www.oreilly.com/ for an online order form.

Other Perl books from various publishers and authors can be found listed in perlfag2.

perl v5.8.0 2003-08-13 223

