
12 — TRANSFORMING BIVARIATE DENSITY FUNCTIONS

Having seen how to transform the probability density functions associated with a single
random variable, the next logical step is to see how to transform bivariate probability
density functions.

Integration with two Independent Variables

Consider f(x1, x2), a function of two independent variables. Using cartesian coordinates,
f(x1, x2) might be represented by a surface above the x1–x2 plane; the value of f(x1, x2)
at any point (x1, x2) corresponds to the height above the point.

With two independent variables, integration is normally expressed with a double-integral
sign and integration is over some range R, a specified area in the x1–x2 plane:

∫∫

R

f(x1, x2) dx1 dx2

Such an integral represents a volume. If R is a circle then this integral corresponds to the
volume of a cylinder standing on R whose upper end is cut by the surface f(x1, x2).

The following integral gives the volume of a cone whose height is h and whose base is a
circle of radius a centred on the origin (0, 0), this circle being the region R:

∫∫

R

h

(

1 −

√

x2
1 + x2

2

a

)

dx1 dx2

Note that at the centre of the circle
√

x2
1 + x2

2 = 0 and the value of the integrand is h. At

the edge of the circle
√

x2
1 + x2

2 = a and the value of the integrand is 0.

In principle, two integrations are carried out in turn:

4

∫ a

0

[

∫

√
a2

−x2

2

0

h

(

1 −

√

x2
1 + x2

2

a

)

dx1

]

dx2 (12.1)

In this rearrangement, integration is over one quadrant of the circle and the result is
multiplied by 4. For a given value of x2 integration is along a strip one end of which is at
x1 = 0 and the other end of which is at x1 =

√

a2 − x2
2. This accounts for the limits on

the inner integration.

Already, a seemingly simple example of integration with two independent variables is
beginning to become uncomfortably hard!

There are better ways of determining the volume of a cone but by judicious substitution
of both independent variables even the present approach can be greatly simplified.

Integration by Substitution of two new Variables

The general formula for integration by substitution of a new variable was given as (11.1):
∫ b

a

f(x) dx =

∫ y(b)

y(a)

f
(

x(y)
) dx

dy
dy

The transformation function is y(x) and its inverse is x(y).
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The equivalent formula when there are two independent variables is:

∫∫

Rx

f(x1, x2) dx1 dx2 =

∫∫

Ry

f
(

x1(y1, y2), x2(y1, y2)
) ∂(x1, x2)

∂(y1, y2)
dy1 dy2 (12.2)

There are two transformation functions, y1(x1, x2) and y2(x1, x2), and their inverses are
x1(y1, y2) and x1(y1, y2).

The regions Rx and Ry are identical subject to the first being specified in the x1–x2 plane
and the second being specified in the y1–y2 plane.

The item
∂(x1, x2)
∂(y1, y2)

is called a Jacobian and is defined as:

∂(x1, x2)

∂(y1, y2)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣

∣

∣

∣

∣

∣

∣

∣

=
∂x1

∂y1

∂x2

∂y2
−

∂x1

∂y2

∂x2

∂y1

To simplify (12.1) above, use the transformation functions:

y1 =
√

x2
1 + x2

2

y2 = tan−1
(x2

x1

) and their inverses
x1 = y1 cos y2

x2 = y1 sin y2

Note that:
∂(x1, x2)

∂(y1, y2)
=

∣

∣

∣

∣

∣

cos y2 −y1 sin y2

sin y2 y1 cos y2

∣

∣

∣

∣

∣

= y1

Using (12.2), the integration in (12.1) becomes:

4

∫ π

2

0

[

∫ a

0

h

(

1 −
y1

a

)

y1 dy1

]

dy2

This is, of course, simply a transformation from cartesian coordinates to polar coordinates.
In the first, a small element of area is δx1.δx2 whereas in the second a small element of
area is δy1.y1δy2.

Integration is again over one quadrant of the circle. The inner integration is along a radius
and, in the outer integration, this radius is swept through an angle of 90◦.

Continuing:

4

∫ π

2

0

h

(

a2

2
−

a3

3a

)

dy2 = 4

∫ π

2

0

h
a2

6
dy2 = 4h

a2

6

π

2
=

πa2h

3

The result is the familiar formula for the volume of a cone.
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Application to Bivariate Probability Density Functions

Formula (12.2) has direct application to the process of transforming bivariate probability
density functions. . .

Suppose X1 and X2 are two random variables whose bivariate probability density function
is f(x1, x2). It is common practice to represent a given pair of values of the two random
variables X1 and X2 as a point in the x1–x2 plane.

By definition:

P(X1, X2 lies in a specified region Rx) =

∫∫

Rx

f(x1, x2) dx1 dx2 (12.3)

Any function of a random variable (or indeed of two or more random variables) is itself a
random variable. If y1 and y2 are taken as transformation functions, both y1(X1, X2) and
y2(X1, X2) will be derived random variables. Let Y1 = y1(X1, X2) and Y2 = y2(X1, X2).

Take Ry as identical to the region Rx but specified in the y1–y2 plane. Necessarily:

P(Y1, Y2 lies in a specified region Ry) = P(X1, X2 lies in a specified region Rx)

From this and by (12.3) and (12.2):

P(Y1, Y2 lies in a specified region Ry) =

∫∫

Ry

f
(

x1(y1, y2), x2(y1, y2)
) ∂(x1, x2)

∂(y1, y2)
dy1 dy2

Notice that the integrand is expressed wholly in terms of y1 and y2.

Calling this integrand g(y1, y2):

P(Y1, Y2 lies in a specified region Ry) =

∫∫

Ry

g(y1, y2) dy1 dy2

This demonstrates that g(y1, y2) is the probability density function associated with the
two random variables Y1 and Y2.

The requirements for f and g to be single valued and non-negative are just as in the one-
variable case and it is customary for the relationship between a probability density function
f(x1, x2), the inverses x1(y1, y2) and x2(y1, y2) of a pair of transformation functions, and
the derived probability density function g(y1, y2) to be written:

g(y1, y2) = f
(

x1(y1, y2), x2(y1, y2)
)

∣

∣

∣

∣

∂(x1, x2)

∂(y1, y2)

∣

∣

∣

∣

This is directly analogous to relationship (11.4) given for the transformation of a single
random variable into another.
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Summary — Single Variable and Bivariate Transformations

In this section, a summary of the single variable case and a summary of the bivariate case
are presented together so that the correspondence between the two can readily be seen.

Transformation of a single random variable:

• Start with a random variable X.

• Assume the associated probability density function is f(x).

• Choose a transformation function y(x).

• Let the derived random variable be Y = y(X).

• Assume the associated probability density function is g(y).

• Assume the inverse of the transformation function is x(y).

• The relationship between f(x) and g(y) is:

g(y) = f
(

x(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

• As a special case, if f(x) corresponds to a uniform distribution, the relationship is:

g(y) =

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

Transformation of a pair of random variables:

• Start with two random variables X1 and X2.

• Assume the associated bivariate probability density function is f(x1, x2).

• Choose two transformation functions y1(x1, x2) and y2(x1, x2).

• Let the derived random variables be Y1 = y1(X1, X2) and Y2 = y2(X1, X2).

• Assume the associated bivariate probability density function is g(y1, y2).

• Assume the inverses of the two transformation functions are x1(y1, y2) and x2(y1, y2).

• The relationship between f(x1, x2) and g(y1, y2) is:

g(y1, y2) = f
(

x1(y1, y2), x2(y1, y2)
)

∣

∣

∣

∣

∂(x1, x2)

∂(y1, y2)

∣

∣

∣

∣

• As a special case, if f(x1, x2) corresponds to a uniform distribution, the relationship
is:

g(y1, y2) =

∣

∣

∣

∣

∂(x1, x2)

∂(y1, y2)

∣

∣

∣

∣

(12.4)
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Example — The Box–Muller Transformation

An earlier attempt to transform a uniform distribution into a normal distribution proved
unsuccessful. Fortunately the difficulties can be overcome by starting with the bivariate
equivalent of the uniform distribution.

Suppose X1 and X2 are two independent random variables each distributed Uniform(0,1).
Bringing these together leads to the following bivariate probability density function:

f(x1, x2) =

{

1, if 0 6 x1, x2 < 1

0, otherwise

Informally, the function f = 1 when (x1, x2) lies in a unit square which has one corner at
the origin but f = 0 if (x1, x2) lies outside this square.

This is the uniform distribution assumed in relationship (12.4).

Suppose that the transformation functions are:

y1 =
√

−2 ln(x1) cos(2πx2) and y2 =
√

−2 ln(x1) sin(2πx2) (12.5)

First, derive the inverse functions:

x1 = e−
1

2
(y2

1
+y2

2
) and x2 =

1

2π
tan−1

(y2

y1

)

Next, evaluate the Jacobian:

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−y1 e−
1

2
(y2

1
+y2

2
) −y2 e−

1

2
(y2

1
+y2

2
)

1
2π

−y2/y
2
1

1 + (y2/y1)
2

1
2π

1/y1

1 + (y2/y1)
2

∣

∣

∣

∣

∣

∣

∣

∣

= −
1

2π

e−
1

2
(y2

1
+y2

2
)

1 + (y2/y1)2

[

1+
(y2

y1

)2
]

From (12.4):

g(y1, y2) =

∣

∣

∣

∣

∂(x1, x2)

∂(y1, y2)

∣

∣

∣

∣

=
1

√
2π

e−
1

2
y2

1 ×
1

√
2π

e−
1

2
y2

2

Recall (10.3) and note that this bivariate probability density function corresponds to two
independent random variables Y1 and Y2 which are each distributed Normal(0,1).

It is now clear how to transform a uniform distribution into a normal distribution:

• Start with two independent random variables X1 and X2 which are each distributed
Uniform(0,1).

• From the transformation functions y1 and y2 derive two new random variables being
Y1 = y1(X1, X2) and Y2 = y2(X1, X2).

• The derived random variables will each independently be distributed Normal(0,1).

This process is known as the Box–Muller transformation.
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Box–Muller Refinement

The following procedure, written in a hypothetical programming language, makes use of the
Box–Muller transformation; repeated calls of this procedure will return random numbers
which are distributed Normal(0,1):

PROCEDURE normal

X1 = uniform(0,1)

X2 = uniform(0,1)

Y1 = sqrt(-2*ln(X1))*cos(2*pi*X2)

Y2 = sqrt(-2*ln(X1))*sin(2*pi*X2)

RETURN Y1

END

It is assumed that uniform, sqrt, ln, cos, and sin are library procedures which have the
obvious effects. In particular, repeated calls of uniform(0,1) will return random numbers
which are distributed Uniform(0,1).

Mathematically the procedure is fine but it is not altogether satisfactory from a Computer
Science point of view. Most obviously, the value Y2 is computed but never used. It would
be better to arrange for the procedure to have two states. In one state, both Y1 and Y2

would be evaluated and the value of Y1 returned. The value of Y2 would be retained so
that it could be returned on the next call when the procedure would be in the alternate
state in which no evaluation would be necessary.

The procedure also makes two calls of sqrt, two calls of ln and one each of cos and sin.
All six of these calls are quite expensive in computer time and it is possible to be much
more efficient.

Instead of starting with the two random variables X1 and X2 which are each distributed
Uniform(0,1) a better approach is to begin with two other random variables W1 and W2

whose values represent the (cartesian) coordinates of a point in a unit circle centred on
the origin. All points in the circle are equally likely, just as in the raindrops and pond
example discussed earlier.

Assuming the values of W1 and W2 are w1 and w2 respectively, the random variables X1

and X2 are then given values:

x1 = w2
1 + w2

2 and x2 =
1

2π
tan−1

(w2

w1

)

(12.6)

It will be demonstrated shortly that these derived random variables X1 and X2 are both
distributed Uniform(0,1) and can therefore be used as before.

At this stage, the introduction of the two random variables W1 and W2 hardly seems to
have led to an improvement but it will be shown that, by their use, the number of expensive
procedure calls can be greatly reduced.

To appreciate how this revised approach works and why it leads to greater efficiency, it is
necessary to revisit the circular pond. . .
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In the figure below, the coordinates of the point D are shown as (w1, w2), these being the
values of the random variables W1 and W2:

D
r w2
θ
w1

1

From the figure, r is the distance of point D from the centre and r2 = w2
1 + w2

2 but,
from (12.6), x1 = w2

1 + w2
2.

Hence:

x1 = r2 or r =
√

x1 (12.7)

The value of the derived random variable X1 is therefore the square of the distance r
of D from the centre and, from the experience of the raindrops and pond example, it is
distributed Uniform(0,1).

From the figure, θ = tan−1
(

w2

w1

)

but, from (12.6), x2 = 1
2π

tan−1
(

w2

w1

)

.

Hence:

x2 =
θ

2π
or θ = 2π x2 (12.8)

Assuming a two-argument inverse-tangent function is used (such as ATAN2 in Excel), θ will
be uniformly distributed over the range 0 to 2π. This ensures that the value of the derived
random variable X2 is distributed Uniform(0,1).

It is now clear that both X1 and X2 are distributed Uniform(0,1).

From the figure and from (12.7) and (12.8):

w1 = r cos θ =
√

x1 cos(2πx2) so cos(2πx2) =
w1
√

x1

and:

w2 = r sin θ =
√

x1 sin(2πx2) so sin(2πx2) =
w2
√

x1

The transformation functions (12.5) can therefore be rewritten:

y1 =

√

−2 ln(x1)

x1
w1 and y2 =

√

−2 ln(x1)

x1
w2 (12.9)
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The procedure written in the hypothetical programming language can now be modified to
accommodate the revised approach:

PROCEDURE normal

REPEAT

W1 = uniform(-1,+1)

W2 = uniform(-1,+1)

X1 = W1*W1+W2*W2

UNTIL X1<1

FACTOR = sqrt(-2*ln(X1)/X1)

Y1 = FACTOR*W1

Y2 = FACTOR*W2

RETURN Y1

END

The first two assignment statements in the REPEAT–UNTIL loop give values to the random
variables W1 and W2 but these values are each in the range −1 to +1. The coordinates
(w1, w2) represent a point which is guaranteed to lie inside a 2 × 2 square centred on the
origin but is not guaranteed to lie inside the unit circle.

A preliminary value w2
1 + w2

2 is assigned to the derived random variable X1; this is the
square of the distance from the origin. This value is acceptable if it is less than one. If
not, the loop is repeated and new values are determined for W1 and W2 and the derived
random variable X1.

The value assigned to the identifier FACTOR is the value of the factor common to both
expressions in (12.9). Multiplying this factor by w1 and w2 respectively provides values
for the derived random variables Y1 and Y2 which are both distributed Normal(0,1).

Notice that no value is computed for the derived random variable X2 since x2 does not
feature in the expressions in (12.9).

This procedure is more efficient that its predecessor and makes only a single call of sqrt
and a single call of ln and there are no calls of cos or sin. Nevertheless, the procedure
still makes no use of Y2. A little extra programming could save the value of Y2 for the
next call of the procedure.

Another improvement would be to enhance the procedure so that it had two arguments
MEAN and STDEV and returned a value which is distributed Normal(MEAN,STDEV2) instead
of Normal(0,1).

Nervous readers might be alarmed at what appears to be a negative argument for the sqrt
function. Remember that x1 is in the range 0 to 1 so ln(x1) is guaranteed to be negative
which ensures that −2 ln(x1) is positive.

There is a more serious cause for concern in that x1, the argument of ln, could in principle
be zero. This possibility can be trapped by modifying the condition after UNTIL to 0<X1<1

so that x1 has to be strictly greater than zero.
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