MODULE 8 - SHEET 1

public class ThreadIntro
{ public static void main(Stringl[] args)
{ ThreadJack jack = new ThreadJack();
ThreadJill jill = new ThreadJill();
jack.start();
jill.start(Q);
}

class ThreadJack extends Thread
{ public void runQ)
{ for (int i=0; i<10; i++)
{ System.out.println("Jack " + i);
try
{ this.sleep(1000L);
}
catch(InterruptedException e)

{3

class ThreadJill extends Thread
{ public void runQ)
{ for (int i=0; i<10; i++)
{ System.out.println("Jill " + i);
try
{ this.sleep(500L);
}
catch(InterruptedException e)

{3

// This yields:
//

// Jack
// Jill
// Jill
// Jack
// Jill
// Jill
// Jack
// Jill
// Jill
// Jack
// Jill
// Jill
// Jack

N WD WNRER, P, OO



//
//
//
//
//
//
//

Jill
Jill
Jack
Jack
Jack
Jack
Jack

© 00 N O 01 ©



MODULE 8 - SHEET 2

public class BoxConcluded
{ public static void main(String[] args)
{ Square jack = new Square(6);
System.out.println("Details of jack...\n" + jack.toString());
Square jill = new Square(5);
System.out.println("Details of jill...\n" + jill);

System.out.println("Number of Squares: " + Square.total + "\n");
jack = jill;
jill = null;

System.gc();

System.runFinalization();

System.out.println("Number of Squares: " + Square.total + "\n");
System.out.println("Details of jack...\n" + jack);

class Square

{ public static int total = 0; // record the number of Squares...

private int side;

public Square(int e)
{ this.side = e;
this.total++; // ...by incrementing total.
}

public int area()
{ return this.side*this.side;

}

public String toString()
{ return "Square: Side
" Area

" + this.side + "\n" +
" + this.area() + "\n";

}

public void finalize()
{ this.total--;
¥

// This yields:
//
// Details of jack...

// Square: Side = 6
// Area = 36
//

// Details of jill...
// Square: Side = 5
// Area = 25
//

// Number of Squares: 2



//

// Number of Squares: 1
//

// Details of jack...
// Square: Side = 5

// Area = 25



MODULE 8 - SHEET 3

public class Reverselist
{ public static void main(Stringl[] args)
{ Link start = new Link(16);

start.put(8);
start.put(4);
start.put (64) ;
start.put (32);
System.out.println("List elements:
System.out.println("Element sum:
Link rev = start.reverse();
System.out.println("List elements:
System.out.println("Element sum:

class Link
{ private int val;
private Link next;

public Link(int n)
{ this.val
this.next = null;

= n;

public void put(int k)
{ if (this.next == null)
this.next = new Link(k);
else
this.next.put(k);
3

public Link reverse()
{ if (this.next == null)
return this;
else
{ Link temp = this.next.reverse();
temp.put (this.val);
return temp;

}
}
public String toString()
{ return this.val + (this.next == null ? ""
}
public int sum()
{ return this.val + (this.next == null ? O :
}

n

start) ;
start.sum());

rev);
rev.sum());

" " + this.next.toString());

this.next.sum());



MODULE 8 - SHEET 4

public class TreeSort
{ public static void main(Stringl[] args)
{ Node tree = new Node(16);

tree.put(8);

tree.put(4);

tree.put(64);

tree.put(32);

System.out.println("Tree elements: " + tree);
System.out.println("Element sum: " + tree.sum());

class Node

{ private Node left;
private int val;
private Node right;

public Node(int n)

{ this.left = null;
this.val = n;
this.right =

}

null;

public void put(int k)
{ if (k < this.val)

if (this.left == null)
this.left = new Node(k);

else
this.left.put(k);

else

if (this.right == null)
this.right = new Node(k);

else
this.right.put(k);

}
public String toString()
{ String s = ((this.left != null) ? this.left.toString() : "") +
this.val + " " +
((this.right !'= null) 7 this.right.toString() : "");
return s;
}

public int sum()
{ int s = ((this.left !'= null) ? this.left.sum() : 0) +
this.val +
((this.right != null) ? this.right.sum() : 0);
return s;

}



MODULE 8 - SHEET 5

public class CroquetA

{ private
private
private
private

private

static int count=0;

static int[] plan = new int[28];

static boolean[] alreadyPlayed = new boolean[193];

static final int pl =1, p2 = 2, p3 = 4, p4 = 8,
p5 =16, p6 =32, p7 =64, p8 =128;

static final int maxgame = 28;

public static void main(String[] args)
{ for (int i=0; i<=192; i++)
alreadyPlayed[i] = false;
tryit(0);
System.out.println("There are " + count + " solutions");

3
private static void tryit(int game)
{ if (game == maxgame)
{ count++;
printOut () ;
System.exit (0); // Abort after printing first solution
return;
}

int imposs = 0;
for (int i = game & 0x1C; i<game; i++)

imposs |= plan[i];
int poss = “imposs & OxFF;
int[] player = new int[8];
int k = -1;

while (poss!=0)
{ player[++k] = poss & -poss;
poss &= “player[k];

}

for (int i=0; i<k; i++)
for (int j=i+l; j<=k; j++)

}

{ int pi = playerl[il;

int pj = player[j];
int pair = pi | pj;
if (!(alreadyPlayed[pair]))

{ plan([game] = pair;
alreadyPlayed[pair] = true;
tryit(game+1);
alreadyPlayed[pair] = false;

private static void printQOut()
{ for (int lawn=0; lawn<4; lawn++)
{ for (int game=lawn; game<maxgame; game += 4)

System.out.print (match(plan[game]) + " ");



System.out.println();
}
¥

private static String match(int pair)
{ String s = "";
for (int p = pair & -pair; pair != 0; p = pair & -pair)
{ switch(p)

{ case pl: s += 1; break;
case p2: s += 2; break;
case p3: s += 3; break;
case p4: s += 4; break;
case pb: s += 5; break;
case p6: s += 6; break;
case p7: s +=T7; break;
case p8: s += 8;

¥

pair &= “p;
}
return s;

}



