
MODULE 8 - SHEET 1

public class ThreadIntro

{ public static void main(String[] args)

{ ThreadJack jack = new ThreadJack();

ThreadJill jill = new ThreadJill();

jack.start();

jill.start();

}

}

class ThreadJack extends Thread

{ public void run()

{ for (int i=0; i<10; i++)

{ System.out.println("Jack " + i);

try

{ this.sleep(1000L);

}

catch(InterruptedException e)

{}

}

}

}

class ThreadJill extends Thread

{ public void run()

{ for (int i=0; i<10; i++)

{ System.out.println("Jill " + i);

try

{ this.sleep(500L);

}

catch(InterruptedException e)

{}

}

}

}

// This yields:

//

// Jack 0

// Jill 0

// Jill 1

// Jack 1

// Jill 2

// Jill 3

// Jack 2

// Jill 4

// Jill 5

// Jack 3

// Jill 6

// Jill 7

// Jack 4

1



// Jill 8

// Jill 9

// Jack 5

// Jack 6

// Jack 7

// Jack 8

// Jack 9

2



MODULE 8 - SHEET 2

public class BoxConcluded

{ public static void main(String[] args)

{ Square jack = new Square(6);

System.out.println("Details of jack...\n" + jack.toString());

Square jill = new Square(5);

System.out.println("Details of jill...\n" + jill);

System.out.println("Number of Squares: " + Square.total + "\n");

jack = jill;

jill = null;

System.gc();

System.runFinalization();

System.out.println("Number of Squares: " + Square.total + "\n");

System.out.println("Details of jack...\n" + jack);

}

}

class Square

{ public static int total = 0; // record the number of Squares...

private int side;

public Square(int e)

{ this.side = e;

this.total++; // ...by incrementing total.

}

public int area()

{ return this.side*this.side;

}

public String toString()

{ return "Square: Side = " + this.side + "\n" +

" Area = " + this.area() + "\n";

}

public void finalize()

{ this.total--;

}

}

// This yields:

//

// Details of jack...

// Square: Side = 6

// Area = 36

//

// Details of jill...

// Square: Side = 5

// Area = 25

//

// Number of Squares: 2

3



//

// Number of Squares: 1

//

// Details of jack...

// Square: Side = 5

// Area = 25

4



MODULE 8 - SHEET 3

public class ReverseList

{ public static void main(String[] args)

{ Link start = new Link(16);

start.put(8);

start.put(4);

start.put(64);

start.put(32);

System.out.println("List elements: " + start);

System.out.println("Element sum: " + start.sum());

Link rev = start.reverse();

System.out.println("List elements: " + rev);

System.out.println("Element sum: " + rev.sum());

}

}

class Link

{ private int val;

private Link next;

public Link(int n)

{ this.val = n;

this.next = null;

}

public void put(int k)

{ if (this.next == null)

this.next = new Link(k);

else

this.next.put(k);

}

public Link reverse()

{ if (this.next == null)

return this;

else

{ Link temp = this.next.reverse();

temp.put(this.val);

return temp;

}

}

public String toString()

{ return this.val + (this.next == null ? "" : " " + this.next.toString());

}

public int sum()

{ return this.val + (this.next == null ? 0 : this.next.sum());

}

}

5



MODULE 8 - SHEET 4

public class TreeSort

{ public static void main(String[] args)

{ Node tree = new Node(16);

tree.put(8);

tree.put(4);

tree.put(64);

tree.put(32);

System.out.println("Tree elements: " + tree);

System.out.println("Element sum: " + tree.sum());

}

}

class Node

{ private Node left;

private int val;

private Node right;

public Node(int n)

{ this.left = null;

this.val = n;

this.right = null;

}

public void put(int k)

{ if (k < this.val)

if (this.left == null)

this.left = new Node(k);

else

this.left.put(k);

else

if (this.right == null)

this.right = new Node(k);

else

this.right.put(k);

}

public String toString()

{ String s = ((this.left != null) ? this.left.toString() : "") +

this.val + " " +

((this.right != null) ? this.right.toString() : "");

return s;

}

public int sum()

{ int s = ((this.left != null) ? this.left.sum() : 0) +

this.val +

((this.right != null) ? this.right.sum() : 0);

return s;

}

}

6



MODULE 8 - SHEET 5

public class CroquetA

{ private static int count=0;

private static int[] plan = new int[28];

private static boolean[] alreadyPlayed = new boolean[193];

private static final int p1 = 1, p2 = 2, p3 = 4, p4 = 8,

p5 =16, p6 =32, p7 =64, p8 =128;

private static final int maxgame = 28;

public static void main(String[] args)

{ for (int i=0; i<=192; i++)

alreadyPlayed[i] = false;

tryit(0);

System.out.println("There are " + count + " solutions");

}

private static void tryit(int game)

{ if (game == maxgame)

{ count++;

printOut();

System.exit(0); // Abort after printing first solution

return;

}

int imposs = 0;

for (int i = game & 0x1C; i<game; i++)

imposs |= plan[i];

int poss = ~imposs & 0xFF;

int[] player = new int[8];

int k = -1;

while (poss!=0)

{ player[++k] = poss & -poss;

poss &= ~player[k];

}

for (int i=0; i<k; i++)

for (int j=i+1; j<=k; j++)

{ int pi = player[i];

int pj = player[j];

int pair = pi | pj;

if (!(alreadyPlayed[pair]))

{ plan[game] = pair;

alreadyPlayed[pair] = true;

tryit(game+1);

alreadyPlayed[pair] = false;

}

}

}

private static void printOut()

{ for (int lawn=0; lawn<4; lawn++)

{ for (int game=lawn; game<maxgame; game += 4)

System.out.print(match(plan[game]) + " ");

7



System.out.println();

}

}

private static String match(int pair)

{ String s = "";

for (int p = pair & -pair; pair != 0; p = pair & -pair)

{ switch(p)

{ case p1: s += 1; break;

case p2: s += 2; break;

case p3: s += 3; break;

case p4: s += 4; break;

case p5: s += 5; break;

case p6: s += 6; break;

case p7: s += 7; break;

case p8: s += 8;

}

pair &= ~p;

}

return s;

}

}

8


