MODULE 5 - SHEET 1

public class RecFrac
{ public static void main(Stringl[] args)
{ for (int i=0; i<=10; i++)
System.out.println(f(i));
¥

private static double f(int n)
{if (m == 0)
return 2.0d;
else
return 1.0d + 1.04/(1.0d+f(n-1));

}

// The body of method f may be written more economically:
//

// { return n==0 7 2.0d : 1.0d+1.04/(1.0d+f(n-1));

//}

public class Factorial
{ public static void main(String[] args)
{ for (int i=0; i<=10; i++)
System.out.println(fac(i));
3

private static int fac(int n)
{ return n==0 ? 1 : nxfac(n-1);

3

public class Hanoi
{ public static void main(String[] args)
{ move(s’ IIAII’ llBII’ IlCll);
}

private static void move(int n, String p, String q, String r)
{ if (n>0)
{ move(n-1, p, r, q);
System.out.println("Move disc " + n +
" from peg " + p + " to peg " + r);
move(n-1, q, p, I);

}

MODULE 5 - SHEET 2

public class FactorialWR
{ public static void main(Stringl[] args)
{ System.out.println(fac5(0));
3

private static int fac5()
{ return 5*fac4();
}

private static int fac4()
{ return 4*fac3();
}

private static int fac3()
{ return 3*fac2();
}

private static int fac2()
{ return 2*fac1();
}

private static int facl()
{ return 1*fac0();
}

private static int fac0()
{ return 1;

}

public class HanoiWR
{ public static void main(String[] args)
{ moveS("A", "B", IICII);
¥

private static void move3(String p, String q, String r)
{ move2(p, r, qQ);
System.out.println("Move disc 3" +
" from peg " + p + " to peg " + r);
move2(q, p, r);
}

private static void move2(String p, String q, String r)
{ movel(p, r, q);
System.out.println("Move disc 2" +
" from peg " + p + " to peg " + r);
movel(q, p, r);
}

private static void movel(String p, String q, String r)
{ moveO(p, r, qQ);
System.out.println("Move disc 1" +
" from peg " + p + " to peg " + r);
moveO(q, p, I);
+

private static void moveO(String p, String q, String r)
{3

MODULE 5 - SHEET 3

// The following is a complete Java program. The problem is to analyse
// the program and determine what it writes out WITHOUT keying the program
// in and running it.

public class SetUp

{ public static void main(String[] args)
{ Child alf = new Child(11);
System.out.println("alf.H is " + alf.getH());
}

class Child extends Parent
{ private int H;

public Child(int j)
{ super(j);
this.setH();
}

public void set(int j)
{ super.set(j);
this.setH();
}

private void setH()
{ this.H = 2*this.getK();
System.out.println("**x I’ve just set H to " + H + " xx*x");

}

public int getH()
{ return this.H;

}

class Parent
{ private int J, K;

public Parent(int j)
{ this.set(j);
+

protected void set(int j)
{ this.J = j;
System.out.println("**x I’ve just set J to " + J + " x*x");
setK();
}

private void setK()
{ this.K = 2xJ;
System.out.println("**x I’ve just set K to " + K + " xx*x*");

}

public int getK()
{ return this.K;

}

//
//
//
//
//
//
//

MODULE 5 - SHEET 4

The following is a complete Java program. The problem is to analyse
the program and determine what it writes out WITHOUT keying the program
in and running it. Instances of two pairs of square brackets refer

to a two-dimensional array. Thus int[4][4] 1is a 4x4 array. Note
that class GPS contains classes within itself. These are known as
member classes. The item GPS in GPS.this.i[0] indicates that the
relevant this is the one associated with the instantiation of GPS.

public class GPSprog

{

public static void main(String[] args)
{ GPS g = new GPSQ);
for (int i=0; i<4; i++)
{ for (int j=0; j<4; j++)
System.out.print(g.alil[j] + " ");
System.out.println();
}

class GPS

{

public int[][] a = new int[4][4];
private int[] i = new int[1];
private int[] j = new int[1];

public GPS(Q)
{ this.i[0] = this.gps(this.j, 4, new Passi(), new Fevalg());
}

private int gps(int[] i, final int N, Pass z, Feval v)
{ i[0] = 0;
while (i[0]I<N)
{z.p&v.fO);
i[0]++;
}
return O;

3

private abstract class Pass
{ public abstract void p(int n);
}

private class Passi extends Pass
{ public void p(int k)
{ GPS.this.i[0] = k;
b

private class Passaij extends Pass
{ public void p(int k)
{ GPS.this.a[GPS.this.i[0]][GPS.this.j[0]] = k;

private abstract class Feval
{ public abstract int £(Q);
b

private class Fevaliplusj extends Feval
{ public int f(Q)
{ return GPS.this.i[0]+GPS.this.j[0];
b

private class Fevalg extends Feval
{ public int £O
{ return GPS.this.gps(GPS.this.i, 4, new Passaij(),
new Fevaliplusj());
X

