
MODULE 4 - SHEET 1

public class Bases

{ public static void main(String[] args)

{ System.out.println("65 is " + 65);

System.out.println("0x41 is " + 0x41);

System.out.println("0101 is " + 0101);

System.out.println("(int)’A’ is " + (int)’A’);

}

}

public class LongIntro

{ public static void main(String[] args)

{ int jack;

jack = 2000*2000*2000;

System.out.println("jack = " + jack);

long jill;

jill = 2000L*2000L*2000L;

System.out.println("jill = " + jill);

}

}

// This yields:

//

// jack = -589934592

// jill = 8000000000

public class StringIntro

{ public static void main(String[] args)

{ String a = new String("Jack");

String b = "Jill";

String c = a + " and " + b;

System.out.println("c is " + c);

System.out.println("Length of c is " + c.length());

if (a.compareTo(b)<0)

System.out.println(a);

else

System.out.println(b);

}

}

// This yields:

//

// c is Jack and Jill

1



// Length of c is 13

// Jack

public class FormatIntro

{ public static void main(String[] args)

{ System.out.println(fmtInt(1234,7));

System.out.println(fmtInt(1234,3));

System.out.println(fmtInt(1234,-2));

}

private static String fmtInt(int n, int d)

{ String s = String.valueOf(n);

while (s.length() < d)

s = " " + s;

return s;

}

}

// This yields:

//

// 1234

// 1234

// 1234

MODULE 4 - SHEET 2

public class Primes

{ private static final int SIZE=600, SQRTSIZE=25;

public static void main(String[] args)

{ boolean[] primes = new boolean[SIZE];

for (int i=2; i<SIZE; i++)

primes[i] = true;

int next = 2;

while (next < SQRTSIZE)

{ for(int i= next; i<SIZE/next; i++)

primes[i*next] = false;

do

2



{ next++;

} while (!primes[next]);

}

int line=0;

for (int i=2; i<SIZE; i++)

if (primes[i])

{ System.out.print(fmtInt(i,5));

line++;

if (line%10 == 0)

System.out.println();

}

}

private static String fmtInt(int n, int d)

{ String s = String.valueOf(n);

while (s.length() < d)

s = " " + s;

return s;

}

}

// This yields:

//

// 2 3 5 7 11 13 17 19 23 29

// 31 37 41 43 47 53 59 61 67 71

// 73 79 83 89 97 101 103 107 109 113

// 127 131 137 139 149 151 157 163 167 173

// 179 181 191 193 197 199 211 223 227 229

// 233 239 241 251 257 263 269 271 277 281

// 283 293 307 311 313 317 331 337 347 349

// 353 359 367 373 379 383 389 397 401 409

// 419 421 431 433 439 443 449 457 461 463

// 467 479 487 491 499 503 509 521 523 541

// 547 557 563 569 571 577 587 589 593 599

//

// Note that 589 is divisible by 19 so there is a bug

// somewhere. Where is it? How can it be fixed?

3



MODULE 4 - SHEET 3

public class SwapA

{ public static void main(String[] args)

{ int i=2, j=4;

swap(i,j);

System.out.println("i is " + i);

System.out.println("j is " + j);

}

private static void swap(int a, int b)

{ int t=a;

a = b;

b = t;

return;

}

}

public class SwapB

{ public static void main(String[] args)

{ int[] fred = {2,4};

swap(fred);

System.out.println("fred[0] is " + fred[0]);

System.out.println("fred[1] is " + fred[1]);

}

private static void swap(int[] a)

{ int t=a[0];

a[0] = a[1];

a[1] = t;

4



return;

}

}

public class SwitchTest

{ public static void main(String[] args)

{ for (int n=0; n<12; n++)

{ switch(n)

{ case 8: System.out.println("Luckiest of all");

break;

case 3: System.out.println("Very lucky");

System.out.println("though not quite up to 8");

break;

case 9: System.out.println("Long lasting");

break;

case 2: System.out.println("Easy");

break;

case 1:

case 5:

case 6:

case 7: System.out.println("Of no special interest");

break;

case 4: System.out.println("Very unlucky, meaning death");

break;

default: System.out.println("Not classified");

}

System.out.println();

}

}

}

5



MODULE 4 - SHEET 4

public class SortProg

{ public static void main(String[] args)

{ int[] vec = {5, 3, 2, 4, 6};

sort(vec);

for (int i=0; i<vec.length; i++)

System.out.println(vec[i]);

}

private static void sort(int[] v)

{ for (int k=1; k<v.length; k++)

{ int i=k;

while (i>0 && v[i-1]>v[i])

{ int t = v[i-1];

v[i-1] = v[i];

v[i] = t;

i--;

}

}

}

}

// This yields:

//

// 2

// 3

// 4

// 5

// 6

6



MODULE 4 - SHEET 5

public class Easter

{ private static final int YEAR = 2000;

public static void main(String[] args)

{ int date = easter(YEAR);

int day=date/10, month=date%10;

System.out.println("Easter " + YEAR + " is on "

+ day + "/" + month + "/" + YEAR);

}

private static int easter(int y)

{ int a, b, c, d, e, f, g, h, i, k, l, m, n, p;

a = y%19;

7



b = y/100;

c = y%100;

d = b/4;

e = b%4;

f = (b+8)/25;

g = (b-f+1)/3;

h = (19*a+b-d-g+15)%30;

i = c/4;

k = c%4;

l = (32+2*e+2*i-h-k)%7;

m = (a+11*h+22*l)/451;

n = (h+l-7*m+114)/31;

p = (h+l-7*m+114)%31;

return 10*(p+1)+n;

}

}

// This yields:

//

// Easter 2000 is on 23/4/2000

public class FandBsum

{ private static final float PI=3.141593f;

public static void main(String[] args)

{ int n=0;

float last=0.0f, next=1.0f/PI;

while (next > last)

{ n++;

last = next;

next += 1.0/(1000*n+PI);

}

System.out.println("Forward sum is " + next + " (" + n + " terms)");

float sum=0.0f;

for (int i=n; i>=0; i--)

sum += 1.0/(1000*i+PI);

System.out.println("Backward sum is " + sum);

}

}

// This yields:

//

// Forward sum is 0.33026624 (67109 terms)

// Backward sum is 0.329996

8



MODULE 4 - SHEET 6

public class RoundingErrors

{ private static final int LIMIT = 16;

public static void main(String[] args)

{ System.out.println(" Right Wrong\n");

int numerator = 2;

for (int n=1; n<=LIMIT; n++, numerator *= 2)

{ float right = numerator/100.0f;

System.out.print(fmtFloat(right));

float wrong = 0.0f;

for (int i=1; i<=numerator; i++)

wrong += (float)1/(float)100;

System.out.println(fmtFloat(wrong));

}

}

private static String fmtFloat(float x)

{ String s = String.valueOf(x);

if (x<10) return " " + s;

if (x<100) return " " + s;

return " " + s;

}

}

// This yields:

//

// right wrong

//

// 0.02 0.02

9



// 0.04 0.04

// 0.08 0.07999999

// 0.16 0.16

// 0.32 0.31999996

// 0.64 0.6399997

// 1.28 1.2799991

// 2.56 2.559998

// 5.12 5.1200223

// 10.24 10.240139

// 20.48 20.480373

// 40.96 40.959133

// 81.92 81.91909

// 163.84 163.82924

// 327.68 327.6885

// 655.36 655.6885

public class RootFive

{ private static final int N = 5;

public static void main(String[] args)

{ double x = (double)N, oldx;

do

{ oldx = x;

x = 0.5d*(x+(double)N/x);

} while (Math.abs(x-oldx)>1.0e-10d);

System.out.println("Root " + N + " is " + x);

}

}

// This yields:

//

// Root 5 is 2.23606797749979

10


