MODULE 4 - SHEET 1

public class Bases
{ public static void main(Stringl[] args)

{ System.out.println("65 is " + 65);
System.out.println("0x41 is " + 0x41);
System.out.println("0101 is " + 0101);
System.out.println("(int)’A’ is " + (int)’A’);

3

public class LongIntro
{ public static void main(String[] args)

{ int jack;
jack = 2000%2000%2000;
System.out.println("jack = " + jack);
long jill;
jill = 2000L*2000L*2000L;
System.out.println("jill = " + jill);
}
}
// This yields:
//
// jack = -589934592
// jill = 8000000000

public class StringlIntro
{ public static void main(Stringl[] args)
{ String a = new String("Jack");
String b = "Jill";
String ¢ = a + " and " + b;
System.out.println("c is " + c);
System.out.println("Length of c is " + c.length());
if (a.compareTo(b)<0)
System.out.println(a);
else
System.out.println(b);

}

// This yields:
//
// ¢ is Jack and Jill

// Length of c¢ is 13
// Jack

public class FormatIntro
{ public static void main(String[] args)
{ System.out.println(fmtInt(1234,7));
System.out.println(fmtInt (1234,3));
System.out.println(fmtInt (1234,-2));
}

private static String fmtInt(int n, int d)
{ String s = String.valueOf(n);
while (s.length() < d)
s =""+g;
return s;
}
}

// This yields:
//

// 1234

// 1234

// 1234

MODULE 4 - SHEET 2

public class Primes
{ private static final int SIZE=600, SQRTSIZE=25;

public static void main(String[] args)
{ boolean[] primes = new boolean[SIZE];
for (int i=2; i<SIZE; i++)
primes[i] = true;

int next = 2;
while (next < SQRTSIZE)
{ for(int i= next; i<SIZE/next; i++)
primes[i*next] = false;
do

{ next++;
} while (!primes[next]);

int line=0;
for (int i=2; i<SIZE; i++)
if (primes[i])
{ System.out.print (fmtInt(i,5));
line++;
if (1ine%10 == 0)
System.out.println();

3

private static String fmtInt(int n, int d)
{ String s = String.valueOf(n);
while (s.length() < d)

s=""+s;
return s;
}
}
// This yields:
//
// 2 3 5 7 11 13 17 19 23 29

// 31 37 41 43 47 53 59 61 67 71
// 73 79 83 89 97 101 103 107 109 113
// 127 131 137 139 149 151 157 163 167 173
// 179 181 191 193 197 199 211 223 227 229
// 233 239 241 251 257 263 269 271 277 281
// 283 293 307 311 313 317 331 337 347 349
// 353 359 367 373 379 383 389 397 401 409
// 419 421 431 433 439 443 449 457 461 463
// 467 479 487 491 499 503 509 521 523 541
// 547 557 563 569 571 577 587 589 593 599
//

// Note that 589 is divisible by 19 so there is a bug
// somewhere. Where is it? How can it be fixed?

MODULE 4 - SHEET 3

public class SwapA
{ public static void main(String[] args)
{ int i=2, j=4;
swap(i,j);
System.out.println("i is " + i);
System.out.println("j is " + j);
by

private static void swap(int a, int b)
{ int t=a;

public class SwapB
{ public static void main(Stringl[] args)
{ int[] fred = {2,4};
swap (fred) ;
System.out.println("fred[0] is " + fred[0]);
System.out.println("fred[1] is " + fred[1]);
}

private static void swap(int[] a)

{ int t=al0];
alo] = alil]l;
al1] = t;

return;

3

public class SwitchTest
{ public static void main(String[] args)
{ for (int n=0; n<12; n++)

{ switch(n)

{ case

case

case
case
case
case
case

case

case

default:

}

8:

3:

~N o O

4:

System.

break;

System.
System.

break;

System.

break;

System.

break;

System.

break;

System.

break;

System.

out

out
out

out

out

out

out

out

System.out.println();

}

.println("Luckiest of all");

.println("Very lucky");
.println("though not quite up to 8");

.println("Long lasting");

.println("Easy");

.println("0f no special interest");
.println("Very unlucky, meaning death");

.println("Not classified");

MODULE 4 - SHEET 4

public class SortProg
{ public static void main(Stringl[] args)
{ int[] vec = {5, 3, 2, 4, 6};
sort (vec) ;
for (int i=0; i<vec.length; i++)
System.out.println(vec[i]);
}

private static void sort(int[] v)
{ for (int k=1; k<v.length; k++)
{ int i=k;
while (i>0 && v[i-11>v[il)
{ int t = v[i-1];
v[i-1] = v[i];
v[i] = t;
i--;

// This yields:
//
//
//
//
//
//

o O W N

MODULE 4 - SHEET 5

public class Easter
{ private static final int YEAR = 2000;

public static void main(String[] args)
{ int date = easter(YEAR);
int day=date/10, month=date10;
System.out.println("Easter " + YEAR + " is on "

+ day + "/" + month + "/" + YEAR);
+

private static int easter(int y)
{ int a, b, ¢, d, e, f, g, h, i, k, 1, m, n, p;
a = y%19;

= y/100;

= y%100;

= b/4;

= blé;

= (b+8)/25;

= (b-f+1)/3;
(19%a+b-d-g+15)%30;
= c/4;

= ché;

= (32+2%e+2*i-h-k)%7;
= (a+11xh+22%1)/451;
= (h+1-7*m+114)/31;
= (h+1-7*m+114)%31;
return 10*(p+1)+n;

T BB HKNFBPM®HOO QO CT
I

// This yields:
//
// Easter 2000 is on 23/4/2000

public class FandBsum
{ private static final float PI=3.141593f;

public static void main(Stringl[] args)
{ int n=0;
float last=0.0f, next=1.0f/PI;

while (next > last)
{ n++;
last = next;
next += 1.0/(1000*n+PI);
}

System.out.println("Forward sum is " + next + " (" + n + " terms)");

float sum=0.0f;
for (int i=n; i>=0; i--)

sum += 1.0/(1000%i+PI);
System.out.println("Backward sum is " + sum);

}

// This yields:

//

// Forward sum is 0.33026624 (67109 terms)
// Backward sum is 0.329996

MODULE 4 - SHEET 6

public class RoundingErrors
{ private static final int LIMIT = 16;

public static void main(Stringl[] args)
{ System.out.println(" Right Wrong\n") ;

int numerator = 2;

for (int n=1; n<=LIMIT; n++, numerator *= 2)
{ float right = numerator/100.0f;
System.out.print (fmtFloat(right));
float wrong = 0.0f;
for (int i=1; i<=numerator; i++)
wrong += (float)1/(float)100;
System.out.println(fmtFloat (wrong)) ;

3

private static String fmtFloat(float x)
{ String s = String.valueOf (x);

if (x<10) return " "+ s;
if (x<100) return " "+ s
return " "+ s
}

}

// This yields:

//

// right wrong

//

// 0.02 0.02

// 0.04 0.04

// 0.08 0.07999999
// 0.16 0.16

// 0.32 0.31999996
// 0.64 0.6399997
// 1.28 1.2799991
// 2.56 2.559998
// 5.12 5.1200223
// 10.24 10.240139
// 20.48 20.480373
// 40.96 40.959133
// 81.92 81.91909

// 163.84 163.82924
// 327.68 327.6885
// 655.36 655.6885

public class RootFive
{ private static final int N = 5;

public static void main(String[] args)
{ double x = (double)N, oldx;
do
{ oldx = x;
x = 0.5d*(x+(double)N/x);
} while (Math.abs(x-o0ldx)>1.0e-10d);
System.out.println("Root " + N + " is " + x);

}

// This yields:
//
// Root 5 is 2.23606797749979

10

