MODULE 10 - SHEET 1

public class DiningPhilosophers
{ private static final int SIZE = 5;

public static void main(Stringl[] args)
{ Fork[] forks = new Fork[SIZE];

for (int f = 0; f<SIZE; f++)

forks[f] = new Fork(f);
Thread[] phil = new Thread[SIZE];
for (int p = 0; p<SIZE; p++)

phil[p] = new Philosopher(p, forks[p<SIZE-1 ? p+1 : SIZE-1],

forks[p<SIZE-1 7 p : 0]);
System.out.println(" Philosopher 0 Philosopher 1 " +
" Philosopher 2 Philosopher 3 Philosopher 4\n");

phil[2].start(); phil[1].start(); phil[4].start(); phil[0].start(); phil[3].start();

}
class TAB
{ public static String tab(int n)
{ String s = "";
for (int i=0; i<n; i++)
s +=" "
return s;
}
}

class Fork
{ private int number;
private boolean inuse = false;

public Fork(int n)
{ this.number = n;

}

public synchronized void get(int n) throws InterruptedException
{ while (this.inuse)
{ System.out.println(TAB.tab(n) + "awaiting fork " + this.number);
this.wait();
}

System.out.println(TAB.tab(n) + "acquires fork " + this.number);
this.inuse = true;
this.notify();

¥

public synchronized void put(int n) throws InterruptedException
{ while (!this.inuse)
this.wait();
System.out.println(TAB.tab(n) + "releases fork " + this.number);
this.inuse = false;
this.notify();
}



class Philosopher extends Thread
{ private int number;

private Fork first;

private Fork second;

public Philosopher(int n, Fork ff, Fork sf)
{ this.number = n;
this.first = ff;
this.second = sf;

}

public void run()
{ try
{ for (int i=0; i<3; i++)
{ System.out.println(TAB.tab(this.number) + "wants some food");
this.first.get (this.number);
this.second.get (this.number) ;
System.out.println(TAB.tab(this.number) + "starts his meal");
for (int j=0; j<(int) (Math.random()*3); j++)
{ System.out.println(TAB.tab(this.number) + "is still eating");
this.sleep(1000);
}
System.out.println(TAB.tab(this.number) + "has become full");
this.second.put(this.number) ;
this.first.put(this.number);
System.out.println(TAB.tab(this.number) + "resumes thought");
this.sleep(3000);
}
}
catch (InterruptedException e) {}
}

MODULE 10 - SHEET 2

public class Hash
{ private static double[] data = {637.42d4, 6300.95d, 7.81d, 6300.95d,
712.72d, 4325.22d, 2.79d, 3125.77d,
813.02d, 3125.77d, 6.42d, 1234.56d};
private static double[] table = new double[630];
private static int duplicates;

static
{ for (int i=0; i<table.length; i++)
table[i] = -1.0d;
duplicates = 0;
}

public static void main(String[] args)
{ for (int i=0; i<data.length; i++)



}

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

{ double x = datali]l;
int n = (int)x % 630; // The RHS is a hash function
while (true)
{ if (table[n]<0.0d)
{ table[n] = x;
break;
}
else
if (table[n] == x)
{ duplicates++;
break;
}
else
n = (n+1) % 630;
}
}
System.out.println("There are " + duplicates + " duplicates");

3

The above program implements a hash table (the array table) which
happens to have 630 elements. Using a for-loop in the static initializer
each element is initalized to -1.0d to indicate ‘empty’.

Test data is held in the array data and each new value is assigned to

a variable x which is converted via a hash function into an int which

is guaranteed to be in the range O to 629. The hash function of the first
value 637.42 is 7 for example.

In most cases the value of x is stored in the element of the hash table
indexed by the hash function value. Thus 637.42 is stored in table[7].

If the element is not empty then a check is made to see whether it holds
the current value. If so, a duplicate has been detected.

The element may be occupied by a non-duplicate. This first happens in the
case of 7.81 which has the same hash function as 637.42 and in such a case
the next element is tried instead. The assignment of (n+1)%630 ensures
that element O is treated as following element 629.

As the hash table is becomes fuller, it may be necessary to advance two or
more cells to find one that is empty.



