
MODULE 10 - SHEET 1

public class DiningPhilosophers

{ private static final int SIZE = 5;

public static void main(String[] args)

{ Fork[] forks = new Fork[SIZE];

for (int f = 0; f<SIZE; f++)

forks[f] = new Fork(f);

Thread[] phil = new Thread[SIZE];

for (int p = 0; p<SIZE; p++)

phil[p] = new Philosopher(p, forks[p<SIZE-1 ? p+1 : SIZE-1],

forks[p<SIZE-1 ? p : 0]);

System.out.println(" Philosopher 0 Philosopher 1 " +

" Philosopher 2 Philosopher 3 Philosopher 4\n");

phil[2].start(); phil[1].start(); phil[4].start(); phil[0].start(); phil[3].start();

}

}

class TAB

{ public static String tab(int n)

{ String s = "";

for (int i=0; i<n; i++)

s += " ";

return s;

}

}

class Fork

{ private int number;

private boolean inuse = false;

public Fork(int n)

{ this.number = n;

}

public synchronized void get(int n) throws InterruptedException

{ while (this.inuse)

{ System.out.println(TAB.tab(n) + "awaiting fork " + this.number);

this.wait();

}

System.out.println(TAB.tab(n) + "acquires fork " + this.number);

this.inuse = true;

this.notify();

}

public synchronized void put(int n) throws InterruptedException

{ while (!this.inuse)

this.wait();

System.out.println(TAB.tab(n) + "releases fork " + this.number);

this.inuse = false;

this.notify();

}

1



}

class Philosopher extends Thread

{ private int number;

private Fork first;

private Fork second;

public Philosopher(int n, Fork ff, Fork sf)

{ this.number = n;

this.first = ff;

this.second = sf;

}

public void run()

{ try

{ for (int i=0; i<3; i++)

{ System.out.println(TAB.tab(this.number) + "wants some food");

this.first.get(this.number);

this.second.get(this.number);

System.out.println(TAB.tab(this.number) + "starts his meal");

for (int j=0; j<(int)(Math.random()*3); j++)

{ System.out.println(TAB.tab(this.number) + "is still eating");

this.sleep(1000);

}

System.out.println(TAB.tab(this.number) + "has become full");

this.second.put(this.number);

this.first.put(this.number);

System.out.println(TAB.tab(this.number) + "resumes thought");

this.sleep(3000);

}

}

catch (InterruptedException e) {}

}

}

MODULE 10 - SHEET 2

public class Hash

{ private static double[] data = {637.42d, 6300.95d, 7.81d, 6300.95d,

712.72d, 4325.22d, 2.79d, 3125.77d,

813.02d, 3125.77d, 6.42d, 1234.56d};

private static double[] table = new double[630];

private static int duplicates;

static

{ for (int i=0; i<table.length; i++)

table[i] = -1.0d;

duplicates = 0;

}

public static void main(String[] args)

{ for (int i=0; i<data.length; i++)

2



{ double x = data[i];

int n = (int)x % 630; // The RHS is a hash function

while (true)

{ if (table[n]<0.0d)

{ table[n] = x;

break;

}

else

if (table[n] == x)

{ duplicates++;

break;

}

else

n = (n+1) % 630;

}

}

System.out.println("There are " + duplicates + " duplicates");

}

}

// The above program implements a hash table (the array table) which

// happens to have 630 elements. Using a for-loop in the static initializer

// each element is initalized to -1.0d to indicate ‘empty’.

//

// Test data is held in the array data and each new value is assigned to

// a variable x which is converted via a hash function into an int which

// is guaranteed to be in the range 0 to 629. The hash function of the first

// value 637.42 is 7 for example.

//

// In most cases the value of x is stored in the element of the hash table

// indexed by the hash function value. Thus 637.42 is stored in table[7].

//

// If the element is not empty then a check is made to see whether it holds

// the current value. If so, a duplicate has been detected.

//

// The element may be occupied by a non-duplicate. This first happens in the

// case of 7.81 which has the same hash function as 637.42 and in such a case

// the next element is tried instead. The assignment of (n+1)%630 ensures

// that element 0 is treated as following element 629.

//

// As the hash table is becomes fuller, it may be necessary to advance two or

// more cells to find one that is empty.

3


