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I Logic and Proof

Introduction to Logic I

Logic concerns statements in some language

Slide 101 The language can be informal (e.g. English) or formal

Logic concerns relationships between statements: consistency,

entailment, . ..

Logical proofs model human reasoning

Some statements are true, others false or perhaps meaningless, . . .

Statements .

Statements are declarative assertions:
Slide 102 Black is the colour of my true love’s hair.
They are not greetings, questions, commands, . . .:

What is the colour of my true love’s hair?
| wish my true love had hair.

Get a haircut!
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Schematic Statements .

The meta-variables X, Y, Z, ... range over ‘real’ objects

Black is the colour of X’s hair.
Black is the colour of Y.
Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?

Interpretations and Validity I

An interpretation maps meta-variables to real objects

The interpretation Y — coal satisfies the statement
Black is the colour of Y.

but the interpretation Y +— strawberries does not!

A statement A is valid if all interpretations satisfy A.
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Consistency, or Satisfiability I

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Slide 105 _ _
Examples of inconsistent sets:

{X partof Y, Y partof Z, X NOT part of Z}
{nis a positive integer, n £ 1, n# 2, ...}

satisfiable/unsatisfiable = consistent/inconsistent

Entailment, or Logical Consequence I

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfies A. We write S = A.
Slide 106

{X partof Y, Y partof Z} = X part of Z
m#1, n#2, ...} EnisNOT a positive integer
S E Alifandonlyif {—A} U S is inconsistent
= A if and only if A is valid
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Inference '

Want to check A is valid

Checking all interpretations can be effective — but if there are

infinitely many?

Slide 107

Let{Aq,...,An} E B.IfAq, ..., A, aretrue then B must be

true. Write this as the inference

A e An
B
Use inferences to construct finite proofs!
Schematic Inference Rules '
Xpartof Y Y partof Z
X part of Z

Slide 108 A valid inference:

spoke part of wheel ~ wheel part of bike
spoke part of bike

An inference may be valid even if the premises are false!

cow part of chair ~ chair part of ant
cow part of ant
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Survey of Formal Logics I

propositional logic is traditional boolean algebra.
first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions. It has been

applied to hardware verification.
modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

Why Should the Language be Formal? I

Consider this ‘definition’:
The least integer not definable using eight words

Greater than The number of atoms in the entire Universe

Also greater than The least integer not definable using eight words

e A formal language prevents AMBIGUITY.
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Syntax of Propositional Logic I

P, Q,R,... propositional letter
t true
Slide 201 ffalse
—A notA
AANB AandB
AVB AorB

A —B ifAthenB
A« B Aifandonlyif B

Semantics of Propositional Logic I

—, /\, V, — and <« are truth-functional: functions of their operands

-A AAB AVB A—B A<B
t t t t

Slide 202

Y = S S i Y
- e+ = e+ | D

f
f f t f f
t f t t f
t f f t t
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Interpretations of Propositional Logic I

An interpretation is a function from the propositional letters to {t, f}.

Slide 203 Interpretation I satisfies a formula A if the formula evaluates to t.

Write =1 A

A is valid (a tautology) if every interpretation satisfies A

Write = A

S is satisfiable if some interpretation satisfies every formula in S

Implication, Entailment, Equivalence.

A — B means simply —A V B
A = B means if =1 A then =1 B for every interpretation I
A = Bifandonlyif= A — B

Slide 204

Equivalence

A~BmeansA =BandB = A
A ~ Bifandonlyif = A < B
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Equivalences I

ANA~A
AANB~BAA
(AAB)AC~AA(BAC)
AVBAC)~(AVB)A(AVC)
ANTE~f
ANt ~A
AN—-A~f

Dual versions: exchange A, V and t, f in any equivalence

Negation Normal Form I

1. Getrid of <~ and —, leaving just A\, V, —:

A—~B~(A—B)A(B—A)
A—B~—-AVB

2. Push negations in, using de Morgan'’s laws:

—A~A
—(AAB)~—AV—B
—(AVB)~—AA—B
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From NNF to Conjunctive Normal Form I

3. Push disjunctions in, using distributive laws:
AVBAC)~(AVB)A(AVCC)
(BAC)VA~(BVA)A(CVA)

4. Simplify:

e Delete any disjunction containing P and —P
e Delete any disjunction that includes another

e Replace (PVA)A(—PV A)by A

Converting a Non-Tautology to CNF I

PVQ—=QVR
1. Elim —: —(PvQ)V(QVR)
2. Push—in: (mPA—Q)V (QVR)
3.PushVin: (mPVQVR)A(—mQV QVR)
4. Simplify: —PVQVR

Not a tautology: try P —t, Q — f, R— f
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Tautology checking using CNF I

(P—Q) —P)—P

1. Elim —: —[=(=PVQ)VPVP

2. Push—in: [—(=PVQ)A—P]VP
[(mPVQ)A—P]VP

3.PushVin: (“PVQVP)A(=PVP)

4. Simplify: tAt

t It's a tautology!
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A Simple Proof System I

Axiom Schemes
K A— (B—A)
s (A—-B—-C)—=(A—=B)—(A—=C)
DN —A — A

Inference Rule: Modus Ponens

A—B A
B

A Simple (?) Proof of A — A I

(A= ((D—A)—A))—
(A—(D—A)) —-(A—A)) bysS

A—((D—A)—A) bykK
(A—(D—=A)) = (A—A) byMP(1),(2
A — (D—A) bykK
A — A by MP,(3), (4)

(1)

(2)
()
(4)
(5)
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Some Facts about Deducibility.

A is deducible from the set S of if there is a finite proof of A starting
from elements of S. Write S - A.

Soundness Theorem. If S = A then S = A.
Completeness Theorem. If S = A then S - A.

Deduction Theorem. If SU{A} F BthenS -+ A — B.

Gentzen’s Natural Deduction Systems I

A varying context of assumptions
Each logical connective defined independently

Introduction rule for A: how to deduce A A B

A B
ANB

Elimination rules for A: what to deduce from A A B

AANB AAB
A B
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The Sequent Calculus I

SequentA1,...,Amn = B1,..., B,y means,

ifATA...NAqnthenB; V...V B,
A1, ..., A, are assumptions; By, ..., B, are goals
["and Aaresetsinl'= A

A, I'= A, Ais trivially true (basic sequent)

Sequent Calculus Rules I

Fr=AA AT=A

t
A (cut)
rAA o ATsA
“AT=A Fr=A A
A,B,T=A Fr=AA T=AB

(AT)

1
ArBT=A [=AAAB
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More Sequent Calculus Rules I

AT=A &FéA(l) r=AA,B (
\Y \Va
AVBIT=A '=AAVB

)

r=AA BT=A A,T=A,B

—1 —T
A-Br=oa r=AA_B

Easy Sequent Calculus Proofs I

AB=A
AAB= A (
SAAB—A

(AL

T)

A,B=BA
A=B,B— A
A —-B,B—A
= (A—=B)V(B—A)
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Part of a Distributive Law '

B,C=A,B -
A=AB BAC=A,B o
AV (BAC)=A,B
AV(BAC)=AVB ) similar
AV(BAC)=(AVB)A(AVC)

Second subtree proves A V (B A C) = A V C similarly

(AT

)

A Failed Proof.

A=B,C B=B,C

AVB=B,C

AVB=BVC
=AVB—=BVC |

(V1)

(Vr)

—T)

A—t, B—f, C— f falsifies unproved sequent!
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Ordered Binary Decision Diagrams I

Canonical form: essentially decision trees with sharing
e ordered propositional symbols (‘variables’)
e sharing of identical subtrees
e hashing and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f)

A FAST way of verifying digital circuits, . . .

Decision Diagram for (P V Q) AR
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Converting a Decision Diagram to an OBDD

No duplicates No redundant tests

Building OBDDs Efficiently.

Do not construct full tree! (see Bryant, §3.1)

Do not expand —, <, @ (exclusive OR) to other connectives
Treat—Zas/Z —forZDt

Recursively convert operands

Combine operand OBDDs — respecting ordering and sharing

Delete test if it proves to be redundant
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Canonical Form Algorithm I

Todo Z A Z', where Z and Z' are already canonical:
Trivial if eitheris t or f. Treat VV, —, <= similarly!

Let Z = if(P,X,Y)and Z' = if(P/, X", Y’)

If P = P’ then recursively do if (P, X A X/, YAY)

If P < P’ then recursively do if (P, X A Z', YA Z')

If P > P’ then recursively do if (P, ZA X', Z A Y')

Canonical Form of P V QQ I
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Canonical Formof PV Q — Q V RI

|

\
\

\

\
W
A
\
\
! \
I
0

Optimisations Based On Hash Tables I

Never build the same OBDD twice: share pointers
e Pointer identity: X = Y whenever X < Y
e Fast removal of redundant tests by if (P, X, X) ~ X
e Fastprocessingof X A X, XV X, X —= X, ...

Never process X A Y twice; keep table of canonical forms
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Final Observations .

The variable ordering is crucial. Consider

(P1AQ1) V-V (PnAQn)
A good orderingis P1 < Q1 < -+- < P, < Qn
A dreadful orderingis P1 < --- <P, < Q1 <--- < Qn
Many digital circuits have small OBDDs (not multiplication!)
OBDDs can solve problems in hundreds of variables

General case remains intractable!
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Outline of First-Order Logic I

Reasons about functions and relations over a set of individuals

father(father(x)) = father(father(y))
cousin(x,y)

Reasons about all and some individuals:

All men are mortal Socrates is a man
Socrates is mortal

Does not reason about all functions or all relations, . ..

Function Symbols; Terms I

Each function symbol stands for an n-place function
A constant symbol is a 0-place function symbol
A variable ranges over all individuals

A term is a variable, constant or has the form
fltr,... tn)

where f is an n.-place function symbol and t1, . . ., t,, are terms

We choose the language, adopting any desired function symbols
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Relation Symbols; Formulae.

Each relation symbol stands for an n-place relation
Equality is the 2-place relation symbol =

An atomic formula has the form
R(t1,...,tn)

where R is an n-place relation symboland tq, .. ., t,, are terms
A formula is built up from atomic formulee using —, A, V, . ..

(Later we add quantifiers)

Power of Quantifier-Free FOL '

Very expressive, given strong induction rules

Prove equivalence of mathematical functions:

p(z,0) =1 d(z,1) =z
p(z,n+1)=p(z,n) xz q(z,2 xn) =q(z x z,n)
q(z,2xn+1)=q(zx z,n) x z

Boyer/Moore Theorem Prover: checked Godel's Theorem, . ..

Many systems based on equational reasoning
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Universal and Existential Quantifiers '

Vx A forall x, A holds

Ix A there exists X such that A holds
Syntactic variations:

Vxyz A abbreviates Vx Vy Vz A
Vz.A A B s an alternative to Vz (A A B)

The variable x is bound in Vx A; compare with [ f(x)dx

Expressiveness of Quantifiers I

All men are mortal:
Vx (man(x) — mortal(x))
All mothers are female:
Vx female(mother(x))

There exists a unique X such that A, written d!x A

Ix[A(x) AVY (Aly) =y =x)]
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How do we interpret mortal(Socrates)?

Interpretation Z = (D, I) of our first-order language
D is a non-empty universe

I maps symbols to ‘real’ functions, relations

¢ a constant symbol Ilc) e D
f an n-place function symbol I[f] € D™ — D

P an n-place relation symbol I[P] C D™

How do we interpret cousin(Charles, y)?

A valuation supplies the values of free variables
It is a function V : variables — D

7Ty [t] extends V to a term t by the obvious recursion:

Tv(x] def V(x) ifxisavariable
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The Meaning of Truth — in FOL I

For interpretation Z and valuation V
):I,V P(t) if I[P](Zv[t]) holds
=z vt=u ifZy[t] equals Zy [u]

):I,V ANB if ):va A and ):I,V B
=z v XA if =7 v{m/x) A holds for some m € D

=7 A if =7,v A holds for all V

A is satisfiable if =7 A for some Z
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Free v Bound Variables '

All occurrences of x in Vx A and 3x A are bound

An occurrence of X is free if it is not bound:

¥x 3y R(x,y, f(x,z))

May rename bound variables:

Yw 3y Rw,y’, f(w,z))

Substitution for Free Variables .

A[t/x] means substitute t for x in A:

(BAC)[t/x] is Blt/x] A Clt/x]
(VxB)[t/x] is VxB

(VyB)[t/x] is YyB[t/x] (x #vy)
(Pu))lt/x] is Plult/x])

No variable in t may be bound in A!

(Yyx =y)ly/x] isnot Yyy =y!
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Some Equivalences for Quantifiers I

—(VxA) ~ Ix—A
(VxA) AB ~Vx (A AB)
(VxA)V B ~Vx(AVB)

(Vx A) A (VxB) ~ Vx (A AB)
(VxA) — B~ dx (A — B)
Vx A ~Vx A AA[t/x]

Dual versions: exchange V, d and A, V

Reasoning by Equivalences I

Ix(x =aAP(x)) ~3Ix(x =aAP(a))
~ Ix (x = a) A P(a)

~ P(a)

3z (P(z) — P(a) A P(b))
~VzP(z) — P(a) A P(b)
~VzP(z) AP(a) AP(b) — P(a) A P(b)
~ t
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Sequent Calculus Rules for V I

Alt/x],T= A ) r=AA
VxA, = A = A, VXA

Rule (V1) can create many instances of Vx A
Rule (vr) holds provided x is not free in the conclusion!

NoT allowed to prove

P(y)="P(y)
P(y)=Vy P(y)

(Vr)

Simple Example of the V Rules I

P(f(y)) = P(f(y))
Vx P(x P(f(y))

)= (Vr)
Vx P(x) = Yy P(f(y))
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Not-So-Simple Example of the V Rules I

P=0Q(y),P PQ)=Qly)
P, P — Qy)= Qly)
P, Vx (P — Q(x)) = Q(y)
P, Vx (P — Q(x)) = Vy Q(y)
Vx (P — Q(x)) =P — Yy Q(y)

| — | — | —
—
<
=
—

In (v1) we have replaced x by y

Sequent Calculus Rules for - I

AT=A o T=A AR
A, T=A Fr=A IxA

Rule (31) holds provided x is not free in the conclusion!
Rule (3r) can create many instances of I9x A

Say, to prove

Jz (P(z) — P(a) A P(b))
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Part of the d Distributive Law.
P(x) = P(x), Q(x) o)
P(x) = P(x) VvV Q(x) A
P(x) = 3y (P(y) V Q(y)) - similar A
Ix P(x) = 3y (P(y) V Q(y)) xQ(x)=Ty ...

IxP(x) vV IxQ(x) =Ty (P(y) vV Qly))

Second subtree proves Ix Q(x) = Jy (P(y) VvV Q(y)) similarly

In (3r) we have replaced y by x

(v

)

A Failed Proof.

We cannot use (31) twice with the same variable

We rename the bound variable in 3x Q(x) and get 3y Q(y)
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Clause Form .

Clause: a disjunction of literals

-K; V- V=K, VL V-
Set notation: —=Kq,...,7Kn, Ly, ...
Kowalski notation:  Ky,--- Ky — Ly,

[_],... ,LnFK],"‘

Empty clause: L]

EMPTY CLAUSE MEANS CONTRADICTION!

Outline of Clause Form Methods '

To prove A, obtain a contradiction from —A:

1. Translate —A intoCNFas A1 A--- AAn

2. Thisis the set of clauses A1, ..., Am

3. Transform the clause set, preserving consistency

Empty clause refutes —A

Empty clause set means —A is satisfiable




VII Logic and Proof

The Davis-Putnam-Logeman-Loveland Method I

1. Delete tautological clauses: {P,—P, ...}

2. For each unit clause {L},

Slide 703 e delete all clauses containing L
e delete —L from all clauses
3. Delete all clauses containing pure literals
4. Perform a case split on some literal
It's a decision procedure: it finds either a contradiction or a model.
Davis-Putnam on a Non-TautoIogyI
ConsiderPV Q — Q VR
Clauses are {P,Q} {—Q} {—R}
Slide 704

{P,Q} {—Q} {—R} initial clauses
{P} {=R} unit—Q
{—=R} unitP (also pure)
unit —R (also pure)

Clauses satisfiable by P — t, Q — f, R — f
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Example of a Case Split on P I

{=Q,R} {=R,P} {=R,Q} {=P,Q,R} {P,Q} {=P,—Q}
{=Q,R} {=R,Q} {Q,R} {=Q} ifPistrue

Slide 705
{—=R} {R} unit —=Q
[ unit R
{(—Q,R}  {=R} {—R,Q} {Q} ifPisfalse
{—Q} {Q}  unit—R
0 unit—Q

The Resolution Rule'

FromB V A and =B V Cinfer AV C

In set notation,

Slide 706 {B,Aq1,...,Am} {7B,Cq,...,Cy}
{Ah---)Am»C])---»Cn}

Some special cases:

(B}  {7B,Cy,...,Cyj (B} {~Bj
{C1,...,Cn} O
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Simple Example: ProvingP A Q — Q AP I

Hint: use =(A — B) ~ A A —B

1. Negate! —[PAQ — QAP]
2.Push—in: (PAQ)A—(QAP)
(PAQ)A(=QV—P)

Clauses: (P} {Q} {—Q,—P}

Resolve {P} and {—Q, —P} getting {—Q}
Resolve {Q} and {—Q} getting [J

Another Example I

Refute ~[(PV Q) A (PVR) = PV (Q AR)]
From (P V Q) A (P V R), get clauses {P, Q} and {P, R}
From— [P V (Q A R)] get clauses {—P} and {—Q, —R}

Resolve {—P} and {P, Q} getting {Q}
Resolve {—P} and {P, R} getting {R}
Resolve {Q} and {—Q, —R} getting {—R}
Resolve {R} and {—R} getting (]
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The Saturation Algorithm I

At start, all clauses are passive. None are active.
1. Transfer a clause (current) from passive to active.
2. Form all resolvents between current and an active clause.
3. Use new clauses to simplify both passive and active.
4. Put the new clauses into passive.

Repeat until CONTRADICTION found or passive becomes empty.

Refinements of Resolution .

Preprocessing: removing tautologies, symmetries . . .
Set of Support: working from the goal

Weighting: priority to the smallest clauses
Subsumption: deleting redundant clauses
Hyper-resolution: avoiding intermediate clauses

Indexing: data structures for speed
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Reducing FOL to Propositional Logic.

Prenex: Move quantifiers to the front

Slide 801 Skolemize: Remove quantifiers, preserving consistency
Herbrand models: Reduce the class of interpretations
Herbrand’s Thm: Contradictions have finite, ground proofs
Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Prenex Normal Form '

Convert to Negation Normal Form using additionally

—(VxA) ~ Ix—A
Slide 802 —(IxA) 2 Vx—A

Then move quantifiers to the front using

(Vx A) AB ~Vx (A AB)
(VxA) VB ~Vx(AVB)

and the similar rules for
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Skolemization '

Take a formula of the form

Vxq1 Vx2 - Vx Jy A

Choose a new k-place function symbol, say f

Delete 3y and replace y by f(x1,%2,...,Xk). We get

Vxq1 Vxo - Vxe Alf(x1,%2, ..., %) /Y]

Repeat until no 3 quantifiers remain

Example of Conversion to Clauses I

For proving 3x [P(x) — Yy P(y)]

— [3x[P(x) — Yy P(y)l] negated goal
Vx [P(x) AJdy—P(y)]  conversionto NNF
Vx 3y [P(x) A—=P(y)]  pulling 3 out
Vx [P(x) A —P(f(x))]  Skolem term f(x)

[P(x)}  {—P(f(x))}  Final clauses
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Correctness of Skolemization '

The formula Vx 3y A is consistent

it holds in some interpretation Z = (D, I)

forall x € D thereis somey € D such that A holds
some function finD — D yields suitable values of y

A[f(x)/y] holds in some Z’ extending Z so that f denotes T

r1117

the formula Vx A[f(x)/y] is consistent.

Herbrand Interpretations for a set of clauses S I

Ho 4 the set of constants in S
def
Hip1r = HiU{f(t1,...,ta) [ t1,...,th € Hy

and f is an n-place function symbol in S}

def .
= U H;  Herbrand Universe

HB ¥ P(ty,... t) | ty,... .ty € H

and P is an n-place predicate symbol in S}
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Example of an Herbrand Model I

—even(1)
even(2) clauses

even(X-Y) « even(X), even(Y)

H={1,2,1-1,1-2,2-1,2-21-(1-1),...}
HB = {even(1),even(2),even(1-1),even(1-2),...}

I[even] = {even(2),even(1-2),even(2-1),even(2-2),...}

(for model where - means product; could instead use sum!)

A Key Fact about Herbrand Interpretations I

Let S be a set of clauses.

S is unsatisfiable <= no Herbrand interpretation satisfies S
e Holds because some Herbrand model mimicks every ‘real’ model
e \We must consider only a small class of models

e Herbrand models are syntactic, easily processed by computer
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Herbrand’s Theorem '

Let S be a set of clauses.

S is unsatisfiable <> there is a finite unsatisfiable set S’ of ground

instances of clauses of S.
e Finite: we can compute it
e Instance: result of substituting for variables

e Ground: and no variables remain: it's propositional!
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Unification '

Finding a common instance of two terms

e Logic programming (Prolog)
Slide 901

Polymorphic type-checking (ML)

Constraint satisfaction problems

Resolution theorem proving for FOL

Many other theorem proving methods

Substitutions '

A finite set of replacements

0= [t]/X],...,tk/Xk]
Slide 902
where X1, .. ., Xx are distinct variables and t; # Xx;

f(t,u)0 = f(t0,u0) (terms)

P(t,u)0 = P(t0,u0) (literals)
{Ly,...,Lin}0 ={1410,...,L,,0} (clauses)
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Composing Substitutions I

Composition of ¢ and 0, written ¢ o 0, satisfies for all terms t

t(po0) = (td)6

Slide 903
1ae It is defined by (for all relevant x)

def

$ob = [(xd)0/x,...]

Consequences include 0 o [| = 0, and associativity:

(pob)oo=do(Bo0)

Most General Unifiers '

0 is a unifier of terms t and wif t0 = uo
0 is more general than ¢ if =0 o 0

Slide 904 0 is most general if it is more general than every other unifier

If © unifies t and u then so does 0 o o

t(Boo) =t0o=ubo=u(0oo0)

A most general unifier of f(a, x) and f(y, g(z)) is [a/y, g(z)/x]

The common instance is f(a, g(z))
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Algorithm for Unifying Two Terms I

Represent terms by binary trees

Each term is a Variable X, y . . ., Constant a, b . . ., or Pair (t,t’)

Constants do not unify with different Constants
Constants do not unify with Pairs

Variable x and term t: unifier is [t/x] — unless x occursin t

Cannot unify f(x) with x!

Unifying Two Pairs I

0 o 0/ unifies (t,t’) with (u, u’)

if @ unifiest withuw and 0 unifies t’0 with u’0

(t,t)(000") = (t,t")00’
= (t00',t'00")
= (u00’,u’00’)
= (u,u’)00’
= (u,u’)(000)
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Examples of Unification I

f(x,b) f(x, x) f(x, x) i(x,x,z)

fla,y) fla,b)  f(y,9(y)) j(w, a,h(w))

f(a,b) ? ? jla,a,h(a))
[a/x,b/y] FAIL FAIL [a/w, a/x, h(a)/z]

We always get a most general unifier

Theorem-Proving Examples I

(Jy VxR(x,y)) — (Vx 3y R(x,y))
Clauses after negation are {R(x, a)} and {—R(b,y)}

R(x, a) and R(b, y) have unifier [b/x, a/y]: contradiction!

(Vx Jy R(x,y)) — (Fy VxR(x,y))
Clauses after negation are {R(x, f(x))} and {—R(g(y),y)}
R(x, f(x)) and R(g(y),y) are not unifiable: occurs check

Formula is not a theorem!
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Variations on Unification '

Efficient unification algorithms: near-linear time

Indexing & Discrimination networks: fast retrieval of a unifiable term
Order-sorted unification: type-checking in Haskell
Associative/commutative operators: problems in group theory
Higher-order unification: support A-calculus

Boolean unification: reasoning about sets
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Binary Resolution I

{B)A1»"'»Am} {_‘D>C1)"'»Cn}
{A1»'-')Am»C1)-'-)Cn}G

First rename variables apart in the clauses! — say, to resolve

{P(x); and {=P(g(x))}

Always use a most general unifier (MGU)

Soundness? Same argument as for the propositional version

provided Bo = Do

Factorisation '

Collapsing similar literals in one clause:

{B1»"')BK»A1)"'»Am}
{B],A],...,Am}O'

provided Bijo = --- = Byo

Normally combined with resolution
Prove Vx 3y —(P(y,x) < —P(y,y))
The clausesare {—P(y,a),—P(y,y)} {P(y,y),Ply,a)}
Factoring yields {—P(a, a)} {P(a,a)}

Resolution yields the empty clause!
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A Non-Trivial Example I

I[P — Q)] A I [Q(x) = P] — Ix [P~ Q(x]]
Clauses are {P, ~Q(b)} {P,Q(x)} {=P,—Q(x)} {=P,Q(a)}

Resolve {P, ﬁQ( )} with {P, Q( )} getting {P}
Resolve {—P, ﬂQ( )} with {—=P, Q( )} getting {—P}
Resolve {P} with  {—=P}  getting (J

Implicit factoring: {P, P} — {P} Many other proofs!

Prolog Clauses and Their Execution I

At most one positive literal per clause!

Definite clause {—A1,...,7An,B} or B+ Aq, ..., A.
Goal clause {—Aq,...,7An} o «— Aj,...,An.

Linear resolution: a program clause with last goal clause
Left-to-right through program clauses

Left-to-right through goal clause’s literals

Depth-first search: backtracks, but still incomplete

Unification without occurs check: fast, but unsound!
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A (Pure) Prolog Program I
parent (el i zabet h, charl es).
par ent (el i zabet h, andr ew) .
parent (charles,wllian).
parent (charl es, henry).
par ent (andr ew, beatri ce).
par ent (andr ew, eugeni a) .
grand(X, Z) :- parent(X YY), parent(Y,Z2).
cousin(X,Y) :- grand(ZzZ, X), grand(Z,Y).
Prolog Execution I
:- cousin(XY).
:- grand(Z1, X), grand(Z1,Y).
.- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).
* .- parent(charles, X), grand(elizabeth,Y).
X=wi | |'i am .- grand(elizabeth,Y).
.- parent(elizabeth, Y5), parent(Y5,Y).
* .- parent (andrew,Y).
Y=beatrice - [

* = backtracking choice point

16 solutions including cousi n(wi I liamwi | | i am

and cousi n(w | I i am henry)
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The Method of Model Elimination '

A Prolog-like method; complete for First-Order Logic
Contrapositives: treat clause {A1 e eey Am} as m clauses
A — Ay, ...,7An
Ay — —A3,...,7Am, A,

Extension rule: when proving goal P, may assume —P

A brute force method: efficient but no refinements such as

subsumption

A Survey of Automatic Theorem Provers I

Hyper-resolution: Otter, Gandalf, SPASS, Vampire, ...

Model Elimination: Prolog Technology Theorem Prover, SETHEO
Parallel ME: PARTHENON, PARTHEO

Higher-Order Logic: TPS, LEO

Tableau (sequent) based: LeanTAP, 3TAP, ...
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Approaches to Equality Reasoning I

Equality is reflexive, symmetric, transitive

Equality is substitutive over functions, predicates
e Use specialized prover: Knuth-Bendix, . ..
e Assert axioms directly

e Paramodulation rule

{B[t]>A1))Am} {t:u‘>C1)"'»Cn}
{B[u],A1,...,Am,C1,...,Cn}
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Modal Operators I

W: set of possible worlds (machine states, future times, . . .)
R: accessibility relation between worlds

(W, R) is called a modal frame

OA means A is necessarily true . )
— in all accessible worlds

<A means A is possibly true

QA ~ O-A A cannot be true <> A must be false

Semantics of Propositional Modal Logic I

For a particular frame (W, R)
An interpretation I maps the propositional letters to subsets of W

w Il A means A is true in world w

w - P & w e [(P)

wiFAAB & wl-Aandwl-B

wlFOA &= vl A forall v such that R(w, V)
wlF GCA & v I A for some v such that R(w, v)




Slide 1103

Slide 1104

Logic and Proof

02

Truth and Validity in Modal Logic I

For a particular frame (W, R), and interpretation I

wlF A means A is true in world w
Fwr1A meansw |k A forallwin W

=wRr A meansw |- Aforallwandall

= A means =y r A for all frames; A is universally valid
. .. but typically we constrain R to be, say, transitive

All tautologies are universally valid

A Hilbert-Style Proof System for K I

Extend your favourite propositional proof system with

Dist O(A — B) — (DA — OB)

Inference Rule: Necessitation

Treat < as a definition

OA ¥ —o-A
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Variant Modal Logics I

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:
T OA—-A (reflexive) logic T
4 OA — OOA  (transitive) logic S4
B A— OOCA (symmetric) logic S5

And countless others!

We shall mainly look at S4

Extra Sequent Calculus Rules for S4 I

AT=A M = A" A

—— (On) (O7)
OA,T= A Fr=A OA

AT = AF N=AA

(O1)  ——————— (O7)
OA = A = A OA

def .
M = {0OB|OBeTll  Erase non-O assumptions

N {OB | OB € A}  Erase non-< goals!
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A Proof of the Distribution Axiom '

A=B,A B,A=B
A—BA=B
A — B UOA=B
O(A — B),0A=8B
O(A — B),0A = 0B o

(—1)

ol)

al)

And thus O(A — B) — (DA — OB)

Must apply (Or) first!

Part of an Operator String Equivalence I

OCA = OA
OCA = CA
COCA = A
OCOCA = CA
OOCOCA = OOCA

ot

O

L

a

(o)
(1)
(o)
(Or)

Or

In fact, OCOCA ~ OCA also OOA ~ OA

The S4 operator stringsare O < OO SO OCO OO
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Two Failed Proofs '

= A
—— (¢7)
= OCA
———— (O7)
A= 00CA
B=AAB

&
B= O(AAB) E<>1
CA . OB= O(AAB)

Can extract a countermodel from the proof attempt
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Simplifying the Sequent Calculus I

7 connectives (or 9 for modal logic):
- AV — < VYV 3 (O 9O

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: A VvV V 3 (O <)

Sequents need one side only!

Simplified Calculus: Left-OnIyI

basicc “ATl= AT=

-AA = = (cut)
A,B,T'= AT= BT=
—————— (A (V1)
AABT= AVB,T=
Alt/x], T = AT =

vy ——— (3
Vx A, T = XA, T=

Rule (31) holds provided x is not free in the conclusion!
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Left-Only Sequent Rules for S4 I

AT =
(on) — (01
OA,T=

AT=
OA "=

def .
M = {0OB|0OBeTll Erase non-O assumptions

From 14 (or 18) rules to 4 (or 6)
Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Proving Vx (P — Q(x)) =P — Yy Q(y)

Move the right-side formula to the left and convert to NNF:

P ATy —Qly), vx (=P V Q(x))=

P, ﬁQ(y),ﬂPé P, =Q(y), Qly) = o
P, =Q(y), "PV Qy) = "
—Q(y), ¥ (P Vv Q(x)) = -
P, Jy—Q(y), ¥x (P VvV Q(x)) = -
PAIy—Qly), ¥ (P VvV Q(x))=
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Adding Unification I

Rule (¥1) now inserts a new free variable:

Alz/x],T =
VXA, ['=

Let unification instantiate any free variable
In—A, B, "= try unifying A with B to make a basic sequent
Updating a variable affects entire proof tree

What about rule (31)? Skolemize!

Skolemization from NNF '

Follow tree structure; don’t pull out quantifiers!

Vy3zQ(y,z)] AIxP(x) to [VyQly,f(y))]AP(a)

Better to push quantifiers in (called miniscoping)

Proving 3x Yy [P(x) — P(y)]

Negate; convertto NNF:  Vx Jy [P(x) A —P(y)]
Pushinthe Jy: Vx[P(x) A 3y —P(y)]

Pushinthe Vx: VxP(x) A 3y —P(y)

Skolemize: VxP(x) A —P(a)
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A Proof of Ix Vy [P(x) — P(y)]

Unification chooses the term for (V1)

A Failed Proof.

Try to prove Vx [P(x) V Q(x)] = Vx P(x) V Vx Q(x)
NNF: Ix =P (x) A Ix —~Q(x), Vx [P(x) V Q(x)] =
Skolemize: =P(a) A —~Q(b), Vx [P(x) V Q(x)] =

y—a

—P(a), ~Q(b), Ply)=
—P(a), —Q

—P(a), =Q(b), Vx

—P(a) A —=Q(b), Vx
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The World’s Smallest Theorem Prover? '

prove( (A B), UnExp, Lits, FreeV,VarLin) :- !,
prove(A, [ Bl UnExp], Lits, FreeV, VarLin.
prove((A; B), UnExp, Lits, FreeV,VarLin) :- !,
prove(A UnExp, Lits, FreeV, VarLi m,
prove(B, UnExp, Lits, FreeV, VarLinm .
prove(all (X Fm), UnExp, Lits, FreeV,VarLim :- !
\'+ | engt h(FreeV, VarLi m,
copy_term((X, Fm , FreeV), (X1, FmM 1, FreeV)),
append(UnExp, [al | (X, Fm )], UnExpl),
prove( Fm 1, UnExpl, Lits, [ X1| FreeV], VarLin).
prove(Lit, ,[L|Lits],_, ) :-
(Lit = -Neg; -Lit = Neg) ->
(uni fy(Neg, L); prove(Lit,[],Lits,_, )).
prove(Lit,[Next|UnExp],Lits, FreeV,VarLim -
prove(Next, UnExp, [Lit|Lits], FreeV, VarLim.




