

Logic and Proof

Computer Science Tripos Part IB
Michaelmas Term

Lawrence C Paulson
Computer Laboratory
University of Cambridge

lcp@cl.cam.ac.uk

Copyright © 2002 by Lawrence C. Paulson

Contents

1	Introduction	1
2	Propositional Logic	6
3	Gentzen's Logical Calculi	11
4	Ordered Binary Decision Diagrams	16
5	First-Order Logic	21
6	Formal Reasoning in First-Order Logic	26
7	Davis-Putnam & Propositional Resolution	31
8	Skolem Functions and Herbrand's Theorem	36
9	Unification	41
10	Resolution and Prolog	46
11	Modal Logics	51
12	Tableaux-Based Methods	56

Introduction to Logic

Logic concerns *statements* in some *language*

Slide 101

The language can be informal (e.g. English) or *formal*

Some statements are *true*, others *false* or perhaps *meaningless*, . . .

Logic concerns relationships between statements: consistency, entailment, . . .

Logical *proofs* model human reasoning

Statements

Statements are declarative assertions:

Slide 102

Black is the colour of my true love's hair.

They are not greetings, questions, commands, . . .:

What is the colour of my true love's hair?

I wish my true love had hair.

Get a haircut!

Schematic Statements

The *meta-variables* X, Y, Z, \dots range over ‘real’ objects

Slide 103

Black is the colour of X’s hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?

Interpretations and Validity

An *interpretation* maps meta-variables to real objects

Slide 104

The interpretation $Y \mapsto \text{coal}$ *satisfies* the statement

Black is the colour of Y.

but the interpretation $Y \mapsto \text{strawberries}$ does not!

A statement A is *valid* if all interpretations satisfy A .

Consistency, or Satisfiability

A set S of statements is *consistent* if some interpretation satisfies all elements of S at the same time. Otherwise S is *inconsistent*.

Slide 105

Examples of inconsistent sets:

$\{X \text{ part of } Y, Y \text{ part of } Z, X \text{ NOT part of } Z\}$

$\{n \text{ is a positive integer, } n \neq 1, n \neq 2, \dots\}$

satisfiable/unsatisfiable = consistent/inconsistent

Entailment, or Logical Consequence

A set S of statements *entails* A if every interpretation that satisfies all elements of S , also satisfies A . We write $S \models A$.

Slide 106

$\{X \text{ part of } Y, Y \text{ part of } Z\} \models X \text{ part of } Z$

$\{n \neq 1, n \neq 2, \dots\} \models n \text{ is NOT a positive integer}$

$S \models A$ if and only if $\{\neg A\} \cup S$ is inconsistent

$\models A$ if and only if A is valid

Inference

Want to check A is valid

Checking all interpretations can be effective — but if there are infinitely many?

Slide 107

Let $\{A_1, \dots, A_n\} \models B$. If A_1, \dots, A_n are true then B must be true. Write this as the inference

$$\frac{A_1 \quad \dots \quad A_n}{B}$$

Use inferences to construct finite proofs!

Schematic Inference Rules

$$\frac{X \text{ part of } Y \quad Y \text{ part of } Z}{X \text{ part of } Z}$$

Slide 108

A valid inference:

$$\frac{\text{spoke part of wheel} \quad \text{wheel part of bike}}{\text{spoke part of bike}}$$

An inference may be valid even if the premises are false!

$$\frac{\text{cow part of chair} \quad \text{chair part of ant}}{\text{cow part of ant}}$$

Survey of Formal Logics

propositional logic is traditional *boolean algebra*.

Slide 109

first-order logic can say *for all* and *there exists*.

higher-order logic reasons about sets and functions. It has been applied to hardware verification.

modal/temporal logics reason about what *must*, or *may*, happen.

type theories support *constructive mathematics*.

Why Should the Language be Formal?

Consider this ‘definition’:

Slide 110

The least integer not definable using eight words

Greater than *The number of atoms in the entire Universe*

Also greater than *The least integer not definable using eight words*

- A formal language prevents AMBIGUITY.

Syntax of Propositional Logic

P, Q, R, \dots propositional letter

t true

f false

$\neg A$ not A

$A \wedge B$ A and B

$A \vee B$ A or B

$A \rightarrow B$ if A then B

$A \leftrightarrow B$ A if and only if B

Slide 201

Semantics of Propositional Logic

$\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow are *truth-functional*: functions of their operands

Slide 202

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
t	t	f	t	t	t	t
t	f	f	f	t	f	f
f	t	t	f	t	t	f
f	f	t	f	f	t	t

Interpretations of Propositional Logic

An *interpretation* is a function from the propositional letters to $\{t, f\}$.

Slide 203

Interpretation I *satisfies* a formula A if the formula evaluates to t .

Write $\models_I A$

A is *valid* (a *tautology*) if every interpretation satisfies A

Write $\models A$

S is *satisfiable* if some interpretation satisfies every formula in S

Implication, Entailment, Equivalence

Slide 204

$A \rightarrow B$ means simply $\neg A \vee B$

$A \models B$ means if $\models_I A$ then $\models_I B$ for every interpretation I

$A \models B$ if and only if $\models A \rightarrow B$

Equivalence

$A \simeq B$ means $A \models B$ and $B \models A$

$A \simeq B$ if and only if $\models A \leftrightarrow B$

Equivalences

$$A \wedge A \simeq A$$

$$A \wedge B \simeq B \wedge A$$

$$(A \wedge B) \wedge C \simeq A \wedge (B \wedge C)$$

$$A \vee (B \wedge C) \simeq (A \vee B) \wedge (A \vee C)$$

$$A \wedge f \simeq f$$

$$A \wedge t \simeq A$$

$$A \wedge \neg A \simeq f$$

Dual versions: exchange \wedge , \vee and t , f in any equivalence

Slide 205

Negation Normal Form

1. Get rid of \leftrightarrow and \rightarrow , leaving just \wedge , \vee , \neg :

$$A \leftrightarrow B \simeq (A \rightarrow B) \wedge (B \rightarrow A)$$

$$A \rightarrow B \simeq \neg A \vee B$$

Slide 206

2. Push negations in, using de Morgan's laws:

$$\neg \neg A \simeq A$$

$$\neg (A \wedge B) \simeq \neg A \vee \neg B$$

$$\neg (A \vee B) \simeq \neg A \wedge \neg B$$

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

$$A \vee (B \wedge C) \simeq (A \vee B) \wedge (A \vee C)$$

$$(B \wedge C) \vee A \simeq (B \vee A) \wedge (C \vee A)$$

Slide 207

4. Simplify:

- Delete any disjunction containing P and $\neg P$
- Delete any disjunction that includes another
- Replace $(P \vee A) \wedge (\neg P \vee A)$ by A

Converting a Non-Tautology to CNF

$$P \vee Q \rightarrow Q \vee R$$

Slide 208

1. Elim \rightarrow : $\neg(P \vee Q) \vee (Q \vee R)$

2. Push \neg in: $(\neg P \wedge \neg Q) \vee (Q \vee R)$

3. Push \vee in: $(\neg P \vee Q \vee R) \wedge (\neg Q \vee Q \vee R)$

4. Simplify: $\neg P \vee Q \vee R$

Not a tautology: try $P \mapsto t$, $Q \mapsto f$, $R \mapsto f$

Tautology checking using CNF

$$((P \rightarrow Q) \rightarrow P) \rightarrow P$$

1. Elim \rightarrow : $\neg[\neg(\neg P \vee Q) \vee P] \vee P$
2. Push \neg in: $[\neg\neg(\neg P \vee Q) \wedge \neg P] \vee P$
 $[(\neg P \vee Q) \wedge \neg P] \vee P$
3. Push \vee in: $(\neg P \vee Q \vee P) \wedge (\neg P \vee P)$
4. Simplify: $t \wedge t$
 t *It's a tautology!*

Slide 209

A Simple Proof System

Axiom Schemes

$$K \quad A \rightarrow (B \rightarrow A)$$

$$S \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$DN \quad \neg\neg A \rightarrow A$$

Inference Rule: Modus Ponens

$$\frac{A \rightarrow B \quad A}{B}$$

Slide 301

A Simple (?) Proof of $A \rightarrow A$

$$(A \rightarrow ((D \rightarrow A) \rightarrow A)) \rightarrow \quad (1)$$

$$((A \rightarrow (D \rightarrow A)) \rightarrow (A \rightarrow A)) \quad \text{by } S$$

$$A \rightarrow ((D \rightarrow A) \rightarrow A) \quad \text{by } K \quad (2)$$

$$(A \rightarrow (D \rightarrow A)) \rightarrow (A \rightarrow A) \quad \text{by MP, (1), (2)} \quad (3)$$

$$A \rightarrow (D \rightarrow A) \quad \text{by } K \quad (4)$$

$$A \rightarrow A \quad \text{by MP, (3), (4)} \quad (5)$$

Slide 302

Slide 303

Some Facts about Deducibility

A is *deducible from* the set S if there is a finite proof of A starting from elements of S . Write $S \vdash A$.

Soundness Theorem. If $S \vdash A$ then $S \models A$.

Completeness Theorem. If $S \models A$ then $S \vdash A$.

Deduction Theorem. If $S \cup \{A\} \vdash B$ then $S \vdash A \rightarrow B$.

Slide 304

Gentzen's Natural Deduction Systems

A varying context of *assumptions*

Each logical connective defined *independently*

Introduction rule for \wedge : how to deduce $A \wedge B$

$$\frac{A \quad B}{A \wedge B}$$

Elimination rules for \wedge : what to deduce *from* $A \wedge B$

$$\frac{A \wedge B}{A} \quad \frac{A \wedge B}{B}$$

The Sequent Calculus

Sequent $A_1, \dots, A_m \Rightarrow B_1, \dots, B_n$ means,

Slide 305

if $A_1 \wedge \dots \wedge A_m$ then $B_1 \vee \dots \vee B_n$

A_1, \dots, A_m are *assumptions*; B_1, \dots, B_n are *goals*

Γ and Δ are *sets* in $\Gamma \Rightarrow \Delta$

$A, \Gamma \Rightarrow A, \Delta$ is trivially true (*basic sequent*)

Sequent Calculus Rules

$$\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text{ (cut)}$$

Slide 306

$$\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} \text{ (\neg l)} \quad \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A} \text{ (\neg r)}$$

$$\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta} \text{ (\wedge l)} \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B} \text{ (\wedge r)}$$

More Sequent Calculus Rules

Slide 307

$$\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} \text{ (}\vee\text{l)} \quad \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B} \text{ (}\vee\text{r)}$$

$$\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta} \text{ (}\rightarrow\text{l)} \quad \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \text{ (}\rightarrow\text{r)}$$

Easy Sequent Calculus Proofs

$$\frac{\overline{A, B \Rightarrow A}}{\overline{A \wedge B \Rightarrow A}} \text{ (}\wedge\text{l)} \\ \frac{\overline{A \wedge B \Rightarrow A}}{\Rightarrow A \wedge B \rightarrow A} \text{ (}\rightarrow\text{r)}$$

Slide 308

$$\frac{\overline{A, B \Rightarrow B, A}}{\overline{A \Rightarrow B, B \rightarrow A}} \text{ (}\rightarrow\text{r)} \\ \frac{\overline{A \Rightarrow B, B \rightarrow A}}{\overline{\Rightarrow A \rightarrow B, B \rightarrow A}} \text{ (}\rightarrow\text{r)} \\ \frac{\overline{\Rightarrow A \rightarrow B, B \rightarrow A}}{\Rightarrow (A \rightarrow B) \vee (B \rightarrow A)} \text{ (}\vee\text{r)}$$

Slide 309

Part of a Distributive Law

$$\frac{\frac{\frac{A \Rightarrow A, B}{B, C \Rightarrow A, B} (\wedge l) \quad \frac{B \wedge C \Rightarrow A, B}{A \wedge (B \wedge C) \Rightarrow A, B} (\vee l)}{A \vee (B \wedge C) \Rightarrow A, B} (\vee r) \quad \text{similar}}{A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C)} (\wedge r)$$

Second subtree proves $A \vee (B \wedge C) \Rightarrow A \vee C$ similarly

Slide 310

A Failed Proof

$$\frac{\frac{\frac{A \Rightarrow B, C \quad B \Rightarrow B, C}{A \vee B \Rightarrow B, C} (\vee l) \quad \frac{A \vee B \Rightarrow B \vee C}{\Rightarrow A \vee B \rightarrow B \vee C} (\rightarrow r)}{A \vee B \Rightarrow B \vee C} (\rightarrow r)}{\Rightarrow A \vee B \rightarrow B \vee C} (\rightarrow r)$$

$A \mapsto t, B \mapsto f, C \mapsto f$ falsifies unproved sequent!

Slide 401

Ordered Binary Decision Diagrams

Canonical form: essentially decision trees with sharing

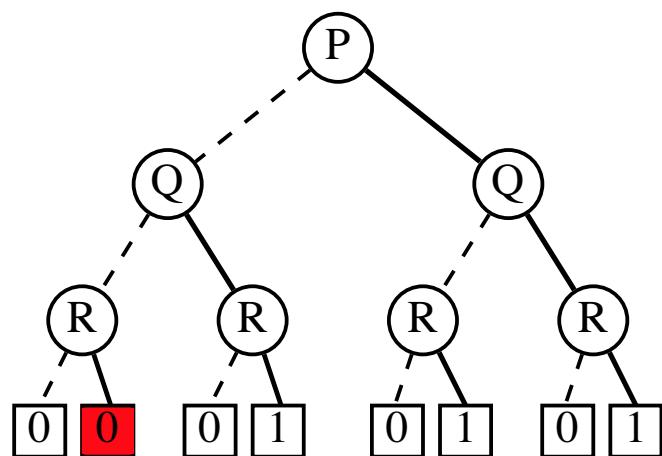
- *ordered* propositional symbols ('variables')
- *sharing* of identical subtrees
- *hashing* and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f)

A **FAST** way of verifying digital circuits, . . .

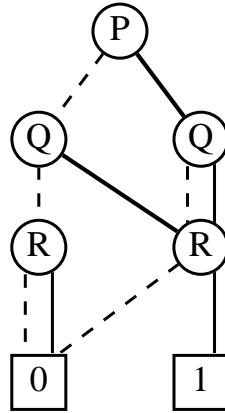
Slide 402

Decision Diagram for $(P \vee Q) \wedge R$

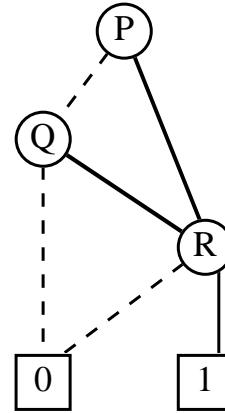


Slide 403

Converting a Decision Diagram to an OBDD



No duplicates



No redundant tests

Slide 404

Building OBDDs Efficiently

Do not construct full tree! (see Bryant, §3.1)

Do not expand \rightarrow , \leftrightarrow , \oplus (exclusive OR) to other connectives

Treat $\neg Z$ as $Z \rightarrow f$ or $Z \oplus t$

Recursively convert operands

Combine operand OBDDs — respecting ordering and sharing

Delete test if it proves to be redundant

Canonical Form Algorithm

To do $Z \wedge Z'$, where Z and Z' are already canonical:

Slide 405

Trivial if either is t or f. Treat \vee , \rightarrow , \leftrightarrow similarly!

Let $Z = \mathbf{if}(P, X, Y)$ and $Z' = \mathbf{if}(P', X', Y')$

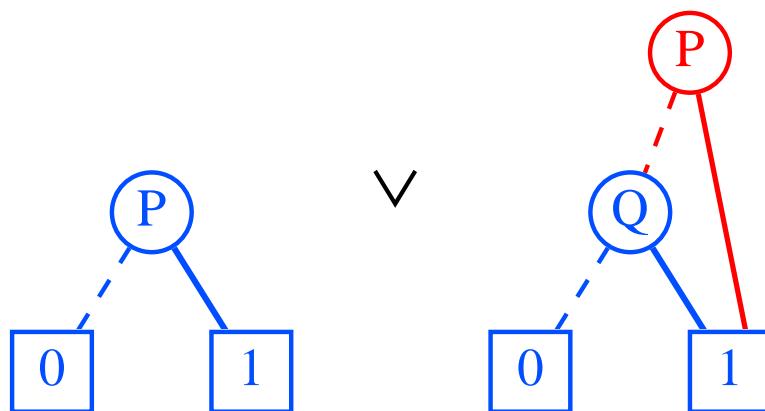
If $P = P'$ then recursively do $\mathbf{if}(P, X \wedge X', Y \wedge Y')$

If $P < P'$ then recursively do $\mathbf{if}(P, X \wedge Z', Y \wedge Z')$

If $P > P'$ then recursively do $\mathbf{if}(P', Z \wedge X', Z \wedge Y')$

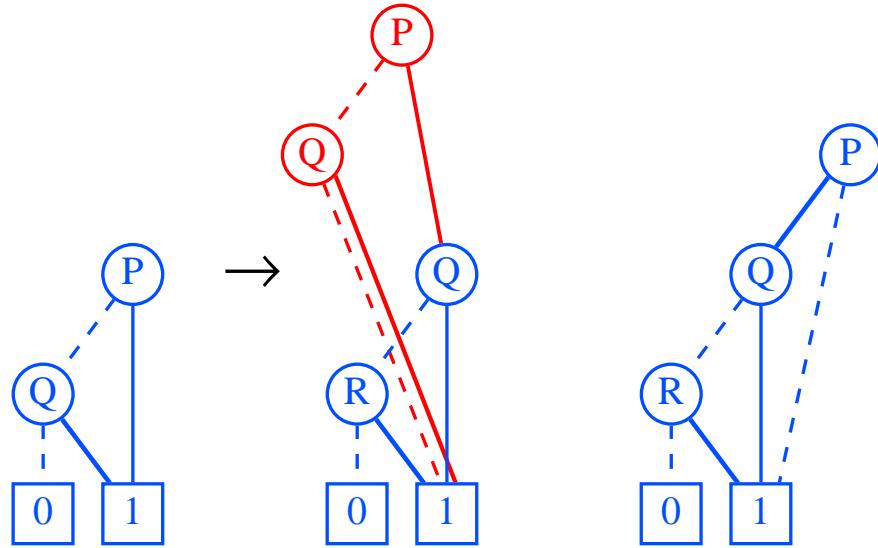
Canonical Form of $P \vee Q$

Slide 406



Slide 407

Canonical Form of $P \vee Q \rightarrow Q \vee R$



Slide 408

Optimisations Based On Hash Tables

Never build the same OBDD twice: share pointers

- Pointer identity: $X = Y$ whenever $X \leftrightarrow Y$
- Fast removal of redundant tests by $\text{if}(P, X, X) \simeq X$
- Fast processing of $X \wedge X, X \vee X, X \rightarrow X, \dots$

Never process $X \wedge Y$ twice; keep table of canonical forms

Final Observations

The variable ordering is crucial. Consider

$$(P_1 \wedge Q_1) \vee \cdots \vee (P_n \wedge Q_n)$$

Slide 409

A good ordering is $P_1 < Q_1 < \cdots < P_n < Q_n$

A dreadful ordering is $P_1 < \cdots < P_n < Q_1 < \cdots < Q_n$

Many digital circuits have small OBDDs (*not multiplication!*)

OBDDs can solve problems in hundreds of variables

General case remains intractable!

Outline of First-Order Logic

Reasons about *functions* and *relations* over a set of *individuals*

$$\frac{\text{father}(\text{father}(x)) = \text{father}(\text{father}(y))}{\text{cousin}(x, y)}$$

Slide 501

Reasons about *all* and *some* individuals:

$$\frac{\text{All men are mortal} \quad \text{Socrates is a man}}{\text{Socrates is mortal}}$$

Does not reason about *all functions* or *all relations*, . . .

Function Symbols; Terms

Each *function symbol* stands for an n -place function

A *constant symbol* is a 0-place function symbol

Slide 502

A *variable* ranges over all individuals

A *term* is a variable, constant or has the form

$$f(t_1, \dots, t_n)$$

where f is an n -place function symbol and t_1, \dots, t_n are terms

We choose the language, adopting any desired function symbols

Relation Symbols; Formulae

Each *relation symbol* stands for an n -place relation

Equality is the 2-place relation symbol $=$

Slide 503

An *atomic formula* has the form

$$R(t_1, \dots, t_n)$$

where R is an n -place relation symbol and t_1, \dots, t_n are terms

A *formula* is built up from atomic formulæ using $\neg, \wedge, \vee, \dots$

(Later we add *quantifiers*)

Power of Quantifier-Free FOL

Very expressive, given strong induction rules

Prove equivalence of mathematical functions:

Slide 504

$$\begin{array}{ll} p(z, 0) = 1 & q(z, 1) = z \\ p(z, n + 1) = p(z, n) \times z & q(z, 2 \times n) = q(z \times z, n) \\ & q(z, 2 \times n + 1) = q(z \times z, n) \times z \end{array}$$

Boyer/Moore Theorem Prover: checked Gödel's Theorem, . . .

Many systems based on *equational reasoning*

Universal and Existential Quantifiers

$\forall x A$ for all x , A holds

$\exists x A$ there exists x such that A holds

Slide 505

Syntactic variations:

$\forall x y z A$ abbreviates $\forall x \forall y \forall z A$

$\forall z . A \wedge B$ is an alternative to $\forall z (A \wedge B)$

The variable x is *bound* in $\forall x A$; compare with $\int f(x) dx$

Expressiveness of Quantifiers

All men are mortal:

$\forall x (\text{man}(x) \rightarrow \text{mortal}(x))$

Slide 506

All mothers are female:

$\forall x \text{female}(\text{mother}(x))$

There exists a unique x such that A , written $\exists! x A$

$\exists x [A(x) \wedge \forall y (A(y) \rightarrow y = x)]$

Slide 507

How do we interpret mortal(Socrates)?

Interpretation $\mathcal{I} = (D, I)$ of our first-order language

D is a non-empty *universe*

I maps symbols to ‘real’ functions, relations

c a constant symbol $I[c] \in D$

f an n -place function symbol $I[f] \in D^n \rightarrow D$

P an n -place relation symbol $I[P] \subseteq D^n$

Slide 508

How do we interpret cousin(Charles, y)?

A *valuation* supplies the values of free variables

It is a function $V : \text{variables} \rightarrow D$

$\mathcal{I}_V[t]$ extends V to a term t by the obvious recursion:

$$\mathcal{I}_V[x] \stackrel{\text{def}}{=} V(x) \quad \text{if } x \text{ is a variable}$$

$$\mathcal{I}_V[c] \stackrel{\text{def}}{=} I[c]$$

$$\mathcal{I}_V[f(t_1, \dots, t_n)] \stackrel{\text{def}}{=} I[f](\mathcal{I}_V[t_1], \dots, \mathcal{I}_V[t_n])$$

The Meaning of Truth — in FOL

For interpretation \mathcal{I} and valuation V

$\models_{\mathcal{I}, V} P(t)$ if $I[P](\mathcal{I}_V[t])$ holds

$\models_{\mathcal{I}, V} t = u$ if $\mathcal{I}_V[t]$ equals $\mathcal{I}_V[u]$

$\models_{\mathcal{I}, V} A \wedge B$ if $\models_{\mathcal{I}, V} A$ and $\models_{\mathcal{I}, V} B$

$\models_{\mathcal{I}, V} \exists x A$ if $\models_{\mathcal{I}, V\{m/x\}} A$ holds for some $m \in D$

$\models_{\mathcal{I}} A$ if $\models_{\mathcal{I}, V} A$ holds for all V

A is *satisfiable* if $\models_{\mathcal{I}} A$ for some \mathcal{I}

Slide 509

Free v Bound Variables

All occurrences of x in $\forall x A$ and $\exists x A$ are *bound*

An occurrence of x is *free* if it is not bound:

Slide 601

$$\forall x \exists y R(x, y, f(x, z))$$

May *rename* bound variables:

$$\forall w \exists y' R(w, y', f(w, z))$$

Substitution for Free Variables

$A[t/x]$ means *substitute t for x in A*:

$$(B \wedge C)[t/x] \text{ is } B[t/x] \wedge C[t/x]$$

$$(\forall x B)[t/x] \text{ is } \forall x B$$

$$(\forall y B)[t/x] \text{ is } \forall y B[t/x] \quad (x \neq y)$$

$$(P(u))[t/x] \text{ is } P(u[t/x])$$

Slide 602

No variable in t may be bound in A !

$(\forall y x = y)[y/x]$ is not $\forall y y = y$!

Slide 603

Some Equivalences for Quantifiers

$$\begin{aligned}
 \neg(\forall x A) &\simeq \exists x \neg A \\
 (\forall x A) \wedge B &\simeq \forall x (A \wedge B) \\
 (\forall x A) \vee B &\simeq \forall x (A \vee B) \\
 (\forall x A) \wedge (\forall x B) &\simeq \forall x (A \wedge B) \\
 (\forall x A) \rightarrow B &\simeq \exists x (A \rightarrow B) \\
 \forall x A &\simeq \forall x A \wedge A[t/x]
 \end{aligned}$$

Dual versions: exchange \forall, \exists and \wedge, \vee

Slide 604

Reasoning by Equivalences

$$\begin{aligned}
 \exists x (x = a \wedge P(x)) &\simeq \exists x (x = a \wedge P(a)) \\
 &\simeq \exists x (x = a) \wedge P(a) \\
 &\simeq P(a) \\
 \exists z (P(z) \rightarrow P(a) \wedge P(b)) & \\
 &\simeq \forall z P(z) \rightarrow P(a) \wedge P(b) \\
 &\simeq \forall z P(z) \wedge P(a) \wedge P(b) \rightarrow P(a) \wedge P(b) \\
 &\simeq t
 \end{aligned}$$

Sequent Calculus Rules for \forall

$$\frac{A[t/x], \Gamma \Rightarrow \Delta}{\forall x A, \Gamma \Rightarrow \Delta} \text{ (}\forall\text{l)} \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \forall x A} \text{ (}\forall\text{r)}$$

Slide 605

Rule $(\forall l)$ can create many instances of $\forall x A$

Rule $(\forall r)$ holds *provided* x is not free in the conclusion!

NOT allowed to prove

$$\frac{\overline{P(y) \Rightarrow P(y)}}{P(y) \Rightarrow \forall y P(y)} \text{ (}\forall\text{r)}$$

Simple Example of the \forall Rules

Slide 606

$$\frac{\frac{\overline{P(f(y)) \Rightarrow P(f(y))}}{\forall x P(x) \Rightarrow P(f(y))} \text{ (}\forall\text{l)}}{\forall x P(x) \Rightarrow \forall y P(f(y))} \text{ (}\forall\text{r)}$$

Slide 607

Not-So-Simple Example of the \forall Rules

$$\begin{array}{c}
 \frac{P \Rightarrow Q(y), P \quad P, Q(y) \Rightarrow Q(y)}{P, P \rightarrow Q(y) \Rightarrow Q(y)} (\rightarrow l) \\
 \frac{P, P \rightarrow Q(y) \Rightarrow Q(y)}{P, \forall x (P \rightarrow Q(x)) \Rightarrow Q(y)} (\forall l) \\
 \frac{P, \forall x (P \rightarrow Q(x)) \Rightarrow Q(y)}{P, \forall x (P \rightarrow Q(x)) \Rightarrow \forall y Q(y)} (\forall r) \\
 \frac{P, \forall x (P \rightarrow Q(x)) \Rightarrow \forall y Q(y)}{\forall x (P \rightarrow Q(x)) \Rightarrow P \rightarrow \forall y Q(y)} (\rightarrow r)
 \end{array}$$

In $(\forall l)$ we have replaced x by y

Slide 608

Sequent Calculus Rules for \exists

$$\frac{A, \Gamma \Rightarrow \Delta}{\exists x A, \Gamma \Rightarrow \Delta} (\exists l) \quad \frac{\Gamma \Rightarrow \Delta, A[t/x]}{\Gamma \Rightarrow \Delta, \exists x A} (\exists r)$$

Rule $(\exists l)$ holds *provided* x is not free in the conclusion!

Rule $(\exists r)$ can create many instances of $\exists x A$

Say, to prove

$$\exists z (P(z) \rightarrow P(a) \wedge P(b))$$

Slide 609

Part of the \exists Distributive Law

$$\frac{\frac{\frac{P(x) \Rightarrow P(x), Q(x)}{P(x) \Rightarrow P(x) \vee Q(x)} (\vee r)}{P(x) \Rightarrow \exists y (P(y) \vee Q(y))} (\exists r)}{\frac{\exists x P(x) \Rightarrow \exists y (P(y) \vee Q(y))}{\exists x P(x) \vee \exists x Q(x) \Rightarrow \exists y (P(y) \vee Q(y))} (\exists l) \quad \frac{\text{similar}}{\exists x Q(x) \Rightarrow \exists y \dots} (\exists l)} (\vee l)$$

Second subtree proves $\exists x Q(x) \Rightarrow \exists y (P(y) \vee Q(y))$ similarly

In $(\exists r)$ we have replaced y by x

Slide 610

A Failed Proof

$$\frac{\frac{\frac{P(x), Q(y) \Rightarrow P(x) \wedge Q(x)}{P(x), Q(y) \Rightarrow \exists z (P(z) \wedge Q(z))} (\exists r)}{\frac{P(x), \exists x Q(x) \Rightarrow \exists z (P(z) \wedge Q(z))}{\frac{\exists x P(x), \exists x Q(x) \Rightarrow \exists z (P(z) \wedge Q(z))}{\exists x P(x) \wedge \exists x Q(x) \Rightarrow \exists z (P(z) \wedge Q(z))} (\exists l) \quad (\wedge l)}} (\exists l) \quad (\wedge l)$$

We cannot use $(\exists l)$ twice with the same variable

We rename the bound variable in $\exists x Q(x)$ and get $\exists y Q(y)$

Clause Form

Clause: a disjunction of *literals*

$$\neg K_1 \vee \dots \vee \neg K_m \vee L_1 \vee \dots \vee L_n$$

Slide 701

Set notation: $\{\neg K_1, \dots, \neg K_m, L_1, \dots, L_n\}$

Kowalski notation: $K_1, \dots, K_m \rightarrow L_1, \dots, L_n$
 $L_1, \dots, L_n \leftarrow K_1, \dots, K_m$

Empty clause: \square

EMPTY CLAUSE MEANS CONTRADICTION!

Outline of Clause Form Methods

To prove \bar{A} , obtain a contradiction from $\neg \bar{A}$:

Slide 702

1. Translate $\neg \bar{A}$ into CNF as $\bar{A}_1 \wedge \dots \wedge \bar{A}_m$
2. This is the set of clauses $\bar{A}_1, \dots, \bar{A}_m$
3. Transform the clause set, preserving consistency

Empty clause refutes $\neg \bar{A}$

Empty clause set means $\neg \bar{A}$ is satisfiable

The Davis-Putnam-Logeman-Loveland Method

1. Delete tautological clauses: $\{P, \neg P, \dots\}$
2. For each unit clause $\{L\}$,
 - delete all clauses containing L
 - delete $\neg L$ from all clauses
3. Delete all clauses containing *pure literals*
4. Perform a *case split* on some literal

It's a **decision procedure**: it finds either a contradiction or a model.

Slide 703

Davis-Putnam on a Non-Tautology

Consider $P \vee Q \rightarrow Q \vee R$

Clauses are $\{P, Q\}$ $\{\neg Q\}$ $\{\neg R\}$

Slide 704

$\{P, Q\}$	$\{\neg Q\}$	$\{\neg R\}$	initial clauses
$\{P\}$		$\{\neg R\}$	unit $\neg Q$
		$\{\neg R\}$	unit P (also pure)
			unit $\neg R$ (also pure)

Clauses satisfiable by $P \mapsto t$, $Q \mapsto f$, $R \mapsto f$

Slide 705

Example of a Case Split on P

$$\{\neg Q, R\} \quad \{\neg R, P\} \quad \{\neg R, Q\} \quad \{\neg P, Q, R\} \quad \{P, Q\} \quad \{\neg P, \neg Q\}$$

$$\begin{array}{cccccc}
 \{\neg Q, R\} & \{\neg R, Q\} & \{Q, R\} & \{\neg Q\} & \text{if } P \text{ is true} \\
 \{\neg R\} & \{R\} & & & \text{unit } \neg Q \\
 \square & & & & \text{unit } R
 \end{array}$$

$$\begin{array}{cccccc}
 \hline
 \{\neg Q, R\} & \{\neg R\} & \{\neg R, Q\} & \{Q\} & \text{if } P \text{ is false} \\
 \{\neg Q\} & & & \{Q\} & \text{unit } \neg R \\
 & & & \square & \text{unit } \neg Q
 \end{array}$$

Slide 706

The Resolution Rule

From $B \vee A$ and $\neg B \vee C$ infer $A \vee C$

In set notation,

$$\frac{\{B, A_1, \dots, A_m\} \quad \{\neg B, C_1, \dots, C_n\}}{\{A_1, \dots, A_m, C_1, \dots, C_n\}}$$

Some special cases:

$$\frac{\{B\} \quad \{\neg B, C_1, \dots, C_n\}}{\{C_1, \dots, C_n\}} \qquad \frac{\{B\} \quad \{\neg B\}}{\square}$$

Slide 707

Simple Example: Proving $P \wedge Q \rightarrow Q \wedge P$

Hint: use $\neg(A \rightarrow B) \simeq A \wedge \neg B$

1. Negate! $\neg[P \wedge Q \rightarrow Q \wedge P]$
2. Push \neg in: $(P \wedge Q) \wedge \neg(Q \wedge P)$
 $(P \wedge Q) \wedge (\neg Q \vee \neg P)$

Clauses: $\{P\}$ $\{Q\}$ $\{\neg Q, \neg P\}$

Resolve $\{P\}$ and $\{\neg Q, \neg P\}$ getting $\{\neg Q\}$

Resolve $\{Q\}$ and $\{\neg Q\}$ getting \square

Slide 708

Another Example

Refute $\neg[(P \vee Q) \wedge (P \vee R) \rightarrow P \vee (Q \wedge R)]$

From $(P \vee Q) \wedge (P \vee R)$, get clauses $\{P, Q\}$ and $\{P, R\}$

From $\neg[P \vee (Q \wedge R)]$ get clauses $\{\neg P\}$ and $\{\neg Q, \neg R\}$

Resolve $\{\neg P\}$ and $\{P, Q\}$ getting $\{Q\}$

Resolve $\{\neg P\}$ and $\{P, R\}$ getting $\{R\}$

Resolve $\{Q\}$ and $\{\neg Q, \neg R\}$ getting $\{\neg R\}$

Resolve $\{R\}$ and $\{\neg R\}$ getting \square

The Saturation Algorithm

At start, all clauses are *passive*. None are *active*.

Slide 709

1. Transfer a clause (*current*) from *passive* to *active*.
2. Form all resolvents between *current* and an *active* clause.
3. Use new clauses to simplify both *passive* and *active*.
4. Put the new clauses into *passive*.

Repeat until CONTRADICTION found or *passive* becomes empty.

Refinements of Resolution

Slide 710

Preprocessing: removing tautologies, symmetries . . .

Set of Support: working from the goal

Weighting: priority to the smallest clauses

Subsumption: deleting redundant clauses

Hyper-resolution: avoiding intermediate clauses

Indexing: data structures for speed

Reducing FOL to Propositional Logic

Slide 801

- Prenex:* Move quantifiers to the front
- Skolemize:* Remove quantifiers, preserving consistency
- Herbrand models:* Reduce the class of interpretations
- Herbrand's Thm:* Contradictions have *finite, ground* proofs
- Unification:* Automatically find the right instantiations

Finally, combine unification with *resolution*

Prenex Normal Form

Slide 802

Convert to Negation Normal Form using additionally

$$\neg(\forall x A) \simeq \exists x \neg A$$

$$\neg(\exists x A) \simeq \forall x \neg A$$

Then move quantifiers to the front using

$$(\forall x A) \wedge B \simeq \forall x (A \wedge B)$$

$$(\forall x A) \vee B \simeq \forall x (A \vee B)$$

and the similar rules for \exists

Skolemization

Take a formula of the form

$$\forall x_1 \forall x_2 \cdots \forall x_k \exists y A$$

Slide 803

Choose a new k -place function symbol, say f

Delete $\exists y$ and replace y by $f(x_1, x_2, \dots, x_k)$. We get

$$\forall x_1 \forall x_2 \cdots \forall x_k A[f(x_1, x_2, \dots, x_k)/y]$$

Repeat until no \exists quantifiers remain

Example of Conversion to Clauses

For proving $\exists x [P(x) \rightarrow \forall y P(y)]$

Slide 804

$$\neg [\exists x [P(x) \rightarrow \forall y P(y)]] \quad \text{negated goal}$$

$$\forall x [P(x) \wedge \exists y \neg P(y)] \quad \text{conversion to NNF}$$

$$\forall x \exists y [P(x) \wedge \neg P(y)] \quad \text{pulling } \exists \text{ out}$$

$$\forall x [P(x) \wedge \neg P(f(x))] \quad \text{Skolem term } f(x)$$

$$\{P(x)\} \quad \{\neg P(f(x))\} \quad \text{Final clauses}$$

Correctness of Skolemization

The formula $\forall x \exists y A$ is consistent

Slide 805

- \iff it holds in some interpretation $\mathcal{I} = (D, I)$
- \iff for all $x \in D$ there is some $y \in D$ such that A holds
- \iff some function \hat{f} in $D \rightarrow D$ yields suitable values of y
- \iff $A[f(x)/y]$ holds in some \mathcal{I}' extending \mathcal{I} so that f denotes \hat{f}
- \iff the formula $\forall x A[f(x)/y]$ is consistent.

Herbrand Interpretations for a set of clauses S

$H_0 \stackrel{\text{def}}{=} \text{the set of constants in } S$

$H_{i+1} \stackrel{\text{def}}{=} H_i \cup \{f(t_1, \dots, t_n) \mid t_1, \dots, t_n \in H_i$

and f is an n -place function symbol in $S\}$

$H \stackrel{\text{def}}{=} \bigcup_{i \geq 0} H_i \quad \text{Herbrand Universe}$

$HB \stackrel{\text{def}}{=} \{P(t_1, \dots, t_n) \mid t_1, \dots, t_n \in H$

and P is an n -place predicate symbol in $S\}$

Slide 806

Slide 807

Example of an Herbrand Model

$$\begin{array}{l}
 \neg \text{even}(1) \\
 \text{even}(2) \\
 \text{even}(X \cdot Y) \leftarrow \text{even}(X), \text{even}(Y)
 \end{array}
 \quad \left. \right\} \text{clauses}$$

$$H = \{1, 2, 1 \cdot 1, 1 \cdot 2, 2 \cdot 1, 2 \cdot 2, 1 \cdot (1 \cdot 1), \dots\}$$

$$HB = \{\text{even}(1), \text{even}(2), \text{even}(1 \cdot 1), \text{even}(1 \cdot 2), \dots\}$$

$$I[\text{even}] = \{\text{even}(2), \text{even}(1 \cdot 2), \text{even}(2 \cdot 1), \text{even}(2 \cdot 2), \dots\}$$

(for model where \cdot means product; could instead use sum!)

A Key Fact about Herbrand Interpretations

Let S be a set of clauses.

Slide 808

S is unsatisfiable \iff no Herbrand interpretation satisfies S

- Holds because some Herbrand model mimicks every ‘real’ model
- We must consider only a small class of models
- Herbrand models are syntactic, easily processed by computer

Herbrand's Theorem

Let S be a set of clauses.

Slide 809

S is unsatisfiable \iff there is a finite unsatisfiable set S' of ground instances of clauses of S .

- **Finite**: we can compute it
- **Instance**: result of substituting for variables
- **Ground**: and no variables remain: it's propositional!

Unification

Finding a common instance of two terms

Slide 901

- Logic programming (Prolog)
- Polymorphic type-checking (ML)
- Constraint satisfaction problems
- Resolution theorem proving for FOL
- Many other theorem proving methods

Substitutions

A finite set of *replacements*

$$\theta = [t_1/x_1, \dots, t_k/x_k]$$

Slide 902

where x_1, \dots, x_k are distinct variables and $t_i \neq x_i$

$$f(t, u)\theta = f(t\theta, u\theta) \quad (\text{terms})$$

$$P(t, u)\theta = P(t\theta, u\theta) \quad (\text{literals})$$

$$\{L_1, \dots, L_m\}\theta = \{L_1\theta, \dots, L_m\theta\} \quad (\text{clauses})$$

Composing Substitutions

Composition of ϕ and θ , written $\phi \circ \theta$, satisfies for all terms t

$$t(\phi \circ \theta) = (t\phi)\theta$$

Slide 903

It is defined by (for all relevant x)

$$\phi \circ \theta \stackrel{\text{def}}{=} [(x\phi)\theta / x, \dots]$$

Consequences include $\theta \circ [] = \theta$, and *associativity*:

$$(\phi \circ \theta) \circ \sigma = \phi \circ (\theta \circ \sigma)$$

Most General Unifiers

θ is a *unifier* of terms t and u if $t\theta = u\theta$

θ is *more general* than ϕ if $\phi = \theta \circ \sigma$

Slide 904

If θ unifies t and u then so does $\theta \circ \sigma$:

$$t(\theta \circ \sigma) = t\theta\sigma = u\theta\sigma = u(\theta \circ \sigma)$$

A most general unifier of $f(a, x)$ and $f(y, g(z))$ is $[a/y, g(z)/x]$

The common instance is $f(a, g(z))$

Algorithm for Unifying Two Terms

Represent terms by *binary trees*

Each term is a *Variable* $x, y \dots$, *Constant* $a, b \dots$, or *Pair* (t, t')

Slide 905

Constants do not unify with different Constants

Constants do not unify with Pairs

Variable x and term t : unifier is $[t/x]$ — **unless** x occurs in t

Cannot unify $f(x)$ with x !

Unifying Two Pairs

$\theta \circ \theta'$ unifies (t, t') with (u, u')

if θ unifies t with u and θ' unifies $t'\theta$ with $u'\theta$

$$\begin{aligned} (t, t')(\theta \circ \theta') &= (t, t')\theta\theta' \\ &= (t\theta\theta', t'\theta\theta') \\ &= (u\theta\theta', u'\theta\theta') \\ &= (u, u')\theta\theta' \\ &= (u, u')(\theta \circ \theta') \end{aligned}$$

Slide 906

Examples of Unification

$f(x, b)$	$f(x, x)$	$f(x, x)$	$j(x, x, z)$
$f(a, y)$	$f(a, b)$	$f(y, g(y))$	$j(w, a, h(w))$
$f(a, b)$?	?	$j(a, a, h(a))$
$[a/x, b/y]$	FAIL	FAIL	$[a/w, a/x, h(a)/z]$

Slide 907

We always get a **most general** unifier

Theorem-Proving Examples

$$(\exists y \forall x R(x, y)) \rightarrow (\forall x \exists y R(x, y))$$

Clauses after negation are $\{R(x, a)\}$ and $\{\neg R(b, y)\}$

$R(x, a)$ and $R(b, y)$ have unifier $[b/x, a/y]$: *contradiction!*

Slide 908

$$(\forall x \exists y R(x, y)) \rightarrow (\exists y \forall x R(x, y))$$

Clauses after negation are $\{R(x, f(x))\}$ and $\{\neg R(g(y), y)\}$

$R(x, f(x))$ and $R(g(y), y)$ are not unifiable: *occurs check*

Formula is not a theorem!

Variations on Unification

Efficient unification algorithms: near-linear time

Slide 909

Indexing & Discrimination networks: fast retrieval of a unifiable term

Order-sorted unification: type-checking in Haskell

Associative/commutative operators: problems in group theory

Higher-order unification: support λ -calculus

Boolean unification: reasoning about sets

Binary Resolution

$$\frac{\{B, A_1, \dots, A_m\} \quad \{\neg D, C_1, \dots, C_n\}}{\{A_1, \dots, A_m, C_1, \dots, C_n\}\sigma} \quad \text{provided } B\sigma = D\sigma$$

Slide 1001

First *rename variables apart* in the clauses! — say, to resolve

$$\{P(x)\} \text{ and } \{\neg P(g(x))\}$$

Always use a *most general* unifier (MGU)

Soundness? Same argument as for the propositional version

Factorisation

Collapsing similar literals *in one clause*:

$$\frac{\{B_1, \dots, B_k, A_1, \dots, A_m\}}{\{B_1, A_1, \dots, A_m\}\sigma} \quad \text{provided } B_1\sigma = \dots = B_k\sigma$$

Slide 1002

Normally combined with resolution

Prove $\forall x \exists y \neg(P(y, x) \leftrightarrow \neg P(y, y))$

The clauses are $\{\neg P(y, a), \neg P(y, y)\} \quad \{P(y, y), P(y, a)\}$

Factoring yields $\{\neg P(a, a)\} \quad \{P(a, a)\}$

Resolution yields the empty clause!

A Non-Trivial Example

$$\exists x [P \rightarrow Q(x)] \wedge \exists x [Q(x) \rightarrow P] \rightarrow \exists x [P \leftrightarrow Q(x)]$$

Clauses are $\{P, \neg Q(b)\}$ $\{P, Q(x)\}$ $\{\neg P, \neg Q(x)\}$ $\{\neg P, Q(a)\}$

Slide 1003

Resolve $\{P, \underline{\neg Q(b)}\}$ with $\{P, \underline{Q(x)}\}$ getting $\{P\}$

Resolve $\{\neg P, \underline{\neg Q(x)}\}$ with $\{\neg P, \underline{Q(a)}\}$ getting $\{\neg P\}$

Resolve $\{P\}$ with $\{\neg P\}$ getting \square

Implicit factoring: $\{P, P\} \mapsto \{P\}$

Many other proofs!

Prolog Clauses and Their Execution

At most one positive literal per clause!

Definite clause $\{\neg A_1, \dots, \neg A_m, B\}$ or $B \leftarrow A_1, \dots, A_m$.

Goal clause $\{\neg A_1, \dots, \neg A_m\}$ or $\leftarrow A_1, \dots, A_m$.

Linear resolution: a program clause with last goal clause

Left-to-right through program clauses

Left-to-right through goal clause's literals

Depth-first search: backtracks, but still incomplete

Unification without occurs check: fast, but unsound!

Slide 1004

A (Pure) Prolog Program

```
parent(elizabeth,charles).  
parent(elizabeth,andy).  
  
parent(charles,william).  
parent(charles,henry).  
  
parent(andrew,beatrice).  
parent(andrew,eugenia).  
  
grand(X,Z) :- parent(X,Y), parent(Y,Z).  
cousin(X,Y) :- grand(Z,X), grand(Z,Y).
```

Slide 1005

Prolog Execution

```
: - cousin(X,Y).  
: - grand(Z1,X), grand(Z1,Y).  
: - parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).  
* : - parent(charles,X), grand(elizabeth,Y).  
X=william : - grand(elizabeth,Y).  
* : - parent(elizabeth,Y5), parent(Y5,Y).  
* : - parent(andrew,Y).  
Y=beatrice : - □.
```

Slide 1006

* = backtracking choice point

16 solutions including `cousin(william,william)`

and `cousin(william,henry)`

The Method of Model Elimination

A Prolog-like method; complete for First-Order Logic

Contrapositives: treat clause $\{A_1, \dots, A_m\}$ as m clauses

$$A_1 \leftarrow \neg A_2, \dots, \neg A_m$$

$$A_2 \leftarrow \neg A_3, \dots, \neg A_m, \neg A_1$$

⋮

Extension rule: when proving goal P , may assume $\neg P$

A brute force method: efficient but no refinements such as subsumption

Slide 1007

A Survey of Automatic Theorem Provers

Hyper-resolution: Otter, Gandalf, SPASS, Vampire, ...

Model Elimination: Prolog Technology Theorem Prover, SETHEO

Parallel ME: PARTHENON, PARTHEO

Higher-Order Logic: TPS, LEO

Tableau (sequent) based: LeanTAP, 3TAP, ...

Slide 1008

Approaches to Equality Reasoning

Equality is *reflexive, symmetric, transitive*

Equality is *substitutive* over functions, predicates

Slide 1009

- **Use specialized prover: Knuth-Bendix, ...**
- **Assert axioms directly**
- **Paramodulation rule**

$$\frac{\{B[t], A_1, \dots, A_m\} \quad \{t = u, C_1, \dots, C_n\}}{\{B[u], A_1, \dots, A_m, C_1, \dots, C_n\}}$$

Modal Operators

W : set of *possible worlds* (machine states, future times, . . .)

R : *accessibility relation* between worlds

(W, R) is called a *modal frame*

$\Box A$ means A is *necessarily true* } — in all **accessible** worlds
 $\Diamond A$ means A is *possibly true* }

$\neg \Diamond A \simeq \Box \neg A$ A *cannot be true* $\iff A$ *must be false*

Semantics of Propositional Modal Logic

For a particular frame (W, R)

An *interpretation* I maps the propositional letters to *subsets* of W

$w \Vdash A$ means A *is true in world* w

$$w \Vdash P \iff w \in I(P)$$

$$w \Vdash A \wedge B \iff w \Vdash A \text{ and } w \Vdash B$$

$$w \Vdash \Box A \iff \forall v \Vdash A \text{ such that } R(w, v)$$

$$w \Vdash \Diamond A \iff \exists v \Vdash A \text{ such that } R(w, v)$$

Slide 1101

Slide 1102

Truth and Validity in Modal Logic

For a particular frame (W, R) , and interpretation I

$w \Vdash A$ means A is true in world w

$\models_{W,R,I} A$ means $w \Vdash A$ for all w in W

$\models_{W,R} A$ means $w \Vdash A$ for all w and all I

$\models A$ means $\models_{W,R} A$ for all frames; A is *universally valid*

... but typically we constrain R to be, say, **transitive**

All tautologies are universally valid

Slide 1103

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

$$\text{Dist} \quad \square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$$

Slide 1104

Inference Rule: *Necessitation*

$$\frac{A}{\square A}$$

Treat \diamond as a *definition*

$$\diamond A \stackrel{\text{def}}{=} \neg \square \neg A$$

Variant Modal Logics

Start with pure modal logic, which is called K

Add *axioms* to constrain the accessibility relation:

Slide 1105

T	$\Box A \rightarrow A$	(reflexive)	logic T
4	$\Box A \rightarrow \Box \Box A$	(transitive)	logic S4
B	$A \rightarrow \Box \Diamond A$	(symmetric)	logic S5

And countless others!

We shall mainly look at S4

Extra Sequent Calculus Rules for S4

$$\frac{A, \Gamma \Rightarrow \Delta}{\Box A, \Gamma \Rightarrow \Delta} \quad (\Box l) \quad \frac{\Gamma^* \Rightarrow \Delta^*, A}{\Gamma \Rightarrow \Delta, \Box A} \quad (\Box r)$$

Slide 1106

$$\frac{A, \Gamma^* \Rightarrow \Delta^*}{\Diamond A, \Gamma \Rightarrow \Delta} \quad (\Diamond l) \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \Diamond A} \quad (\Diamond r)$$

$$\Gamma^* \stackrel{\text{def}}{=} \{\Box B \mid \Box B \in \Gamma\} \quad \text{Erase non-}\Box \text{ assumptions}$$

$$\Delta^* \stackrel{\text{def}}{=} \{\Diamond B \mid \Diamond B \in \Delta\} \quad \text{Erase non-}\Diamond \text{ goals!}$$

Slide 1107

A Proof of the Distribution Axiom

$$\begin{array}{c}
 \frac{\overline{A \Rightarrow B, A} \quad \overline{B, A \Rightarrow B}}{A \rightarrow B, A \Rightarrow B} (\rightarrow l) \\
 \frac{}{A \rightarrow B, \square A \Rightarrow B} (\square l) \\
 \frac{}{\square(A \rightarrow B), \square A \Rightarrow B} (\square l) \\
 \frac{}{\square(A \rightarrow B), \square A \Rightarrow \square B} (\square r)
 \end{array}$$

And thus $\square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$

Must apply $(\square r)$ first!

Slide 1108

Part of an Operator String Equivalence

$$\begin{array}{c}
 \frac{}{\square A \Rightarrow \diamond A} (\square l) \\
 \frac{}{\square \diamond A \Rightarrow \diamond A} (\diamond l) \\
 \frac{}{\diamond \square \diamond A \Rightarrow \diamond A} (\diamond l) \\
 \frac{}{\square \diamond \square \diamond A \Rightarrow \diamond A} (\square l) \\
 \frac{}{\square \diamond \square \diamond A \Rightarrow \square \diamond A} (\square r)
 \end{array}$$

In fact, $\square \diamond \square \diamond A \simeq \square \diamond A$ also $\square \square A \simeq \square A$

The S4 operator strings are $\square \diamond \square \diamond \square \diamond \square \square \diamond \square \square \diamond$

Two Failed Proofs

$$\frac{\frac{\frac{\Rightarrow A}{\Rightarrow \diamond A} (\diamond r)}{A \Rightarrow \square \diamond A} (\square r)}{A \Rightarrow \square \diamond A}$$

Slide 1109

$$\frac{\frac{B \Rightarrow A \wedge B}{B \Rightarrow \diamond(A \wedge B)} (\diamond r)}{\diamond A, \diamond B \Rightarrow \diamond(A \wedge B)} (\diamond l)$$

Can extract a countermodel from the proof attempt

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):

$\neg \quad \wedge \quad \vee \quad \rightarrow \quad \leftrightarrow \quad \forall \quad \exists \quad (\Box \quad \Diamond)$

Slide 1201

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in **Negation Normal Form**

Fewer connectives: $\wedge \quad \vee \quad \forall \quad \exists \quad (\Box \quad \Diamond)$

Sequents need *one side only!*

Simplified Calculus: Left-Only

$$\frac{}{\neg A, A, \Gamma \Rightarrow} \text{ (basic)} \quad \frac{\neg A, \Gamma \Rightarrow \quad A, \Gamma \Rightarrow}{\Gamma \Rightarrow} \text{ (cut)}$$

Slide 1202

$$\frac{A, B, \Gamma \Rightarrow}{A \wedge B, \Gamma \Rightarrow} \text{ (\wedge l)} \quad \frac{A, \Gamma \Rightarrow \quad B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \text{ (\vee l)}$$

$$\frac{A[t/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow} \text{ (\forall l)} \quad \frac{A, \Gamma \Rightarrow}{\exists x A, \Gamma \Rightarrow} \text{ (\exists l)}$$

Rule $(\exists l)$ holds *provided* x is not free in the conclusion!

Left-Only Sequent Rules for S4

$$\frac{A, \Gamma \Rightarrow}{\Box A, \Gamma \Rightarrow} \text{ (}\Box\text{l) } \quad \frac{A, \Gamma^* \Rightarrow}{\Diamond A, \Gamma \Rightarrow} \text{ (}\Diamond\text{l)}$$

Slide 1203

$$\Gamma^* \stackrel{\text{def}}{=} \{\Box B \mid \Box B \in \Gamma\} \quad \text{Erase non-}\Box\text{ assumptions}$$

From 14 (or 18) rules to 4 (or 6)

Left-side only system uses **proof by contradiction**

Right-side only system is an exact *dual*

Proving $\forall x (P \rightarrow Q(x)) \Rightarrow P \rightarrow \forall y Q(y)$

Move the right-side formula to the left and convert to NNF:

$$P \wedge \exists y \neg Q(y), \forall x (\neg P \vee Q(x)) \Rightarrow$$

Slide 1204

$$\frac{\frac{\frac{\frac{P, \neg Q(y), \neg P \Rightarrow \quad P, \neg Q(y), Q(y) \Rightarrow}{P, \neg Q(y), \neg P \vee Q(y) \Rightarrow} \text{ (}\vee\text{l)}}{P, \neg Q(y), \forall x (\neg P \vee Q(x)) \Rightarrow} \text{ (}\forall\text{l)}}{P, \exists y \neg Q(y), \forall x (\neg P \vee Q(x)) \Rightarrow} \text{ (}\exists\text{l)}}{P \wedge \exists y \neg Q(y), \forall x (\neg P \vee Q(x)) \Rightarrow} \text{ (}\wedge\text{l)}$$

Adding Unification

Rule $(\forall l)$ now inserts a **new** free variable:

$$\frac{A[z/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow} (\forall l)$$

Slide 1205

Let unification instantiate *any free variable*

In $\neg A, B, \Gamma \Rightarrow$ try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule $(\exists l)$? *Skolemize!*

Skolemization from NNF

Follow tree structure; don't pull out quantifiers!

$$[\forall y \exists z Q(y, z)] \wedge \exists x P(x) \quad \text{to} \quad [\forall y Q(y, f(y))] \wedge P(a)$$

Better to push quantifiers in (called **miniscoping**)

$$\text{Proving } \exists x \forall y [P(x) \rightarrow P(y)]$$

Negate; convert to NNF: $\forall x \exists y [P(x) \wedge \neg P(y)]$

Push in the $\exists y$: $\forall x [P(x) \wedge \exists y \neg P(y)]$

Push in the $\forall x$: $\forall x P(x) \wedge \exists y \neg P(y)$

Skolemize: $\forall x P(x) \wedge \neg P(a)$

Slide 1206

A Proof of $\exists x \forall y [P(x) \rightarrow P(y)]$

Slide 1207

$$\begin{array}{c}
 y \mapsto f(z) \\
 \hline
 P(y), \neg P(f(y)), P(z), \neg P(f(z)) \Rightarrow \text{(basic)} \\
 \hline
 P(y), \neg P(f(y)), P(z) \wedge \neg P(f(z)) \Rightarrow \text{(\wedge l)} \\
 \hline
 P(y), \neg P(f(y)), \forall x [P(x) \wedge \neg P(f(x))] \Rightarrow \text{(\forall l)} \\
 \hline
 P(y) \wedge \neg P(f(y)), \forall x [P(x) \wedge \neg P(f(x))] \Rightarrow \text{(\wedge l)} \\
 \hline
 \forall x [P(x) \wedge \neg P(f(x))] \Rightarrow \text{(\forall l)}
 \end{array}$$

Unification chooses the term for $(\forall l)$

A Failed Proof

Try to prove $\forall x [P(x) \vee Q(x)] \Rightarrow \forall x P(x) \vee \forall x Q(x)$

NNF: $\exists x \neg P(x) \wedge \exists x \neg Q(x), \forall x [P(x) \vee Q(x)] \Rightarrow$

Skolemize: $\neg P(a) \wedge \neg Q(b), \forall x [P(x) \vee Q(x)] \Rightarrow$

Slide 1208

$$\begin{array}{c}
 y \mapsto a \qquad y \mapsto b???
 \hline
 \neg P(a), \neg Q(b), P(y) \Rightarrow \quad \neg P(a), \neg Q(b), Q(y) \Rightarrow \text{(\vee l)} \\
 \hline
 \neg P(a), \neg Q(b), P(y) \vee Q(y) \Rightarrow \\
 \hline
 \neg P(a), \neg Q(b), \forall x [P(x) \vee Q(x)] \Rightarrow \text{(\forall l)} \\
 \hline
 \neg P(a) \wedge \neg Q(b), \forall x [P(x) \vee Q(x)] \Rightarrow \text{(\wedge l)}
 \end{array}$$

Slide 1209

The World's Smallest Theorem Prover?

```
prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,  
    prove(A,[B|UnExp],Lits,FreeV,VarLim).  
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,  
    prove(A,UnExp,Lits,FreeV,VarLim),  
    prove(B,UnExp,Lits,FreeV,VarLim).  
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,  
    \+ length(FreeV,VarLim),  
    copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),  
    append(UnExp,[all(X,Fml)],UnExp1),  
    prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).  
prove(Lit,_,[L|Lits],_,_) :-  
    (Lit = -Neg; -Lit = Neg) ->  
    (unify(Neg,L); prove(Lit,[],Lits,_,_)).  
prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-  
    prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
```