Logic and Proof

Computer Science Tripos Part IB
Michaelmas Term

Lawrence C' Paulson
Computer Laboratory
University of Cambridge

lcp@cl.cam.ac.uk

Copyright (©) 2002 by Lawrence C. Paulson

Contents

1

2

8

9

Introduction

Propositional Logic

Gentzen’s Logical Calculi

Ordered Binary Decision Diagrams
First-Order Logic

Formal Reasoning in First-Order Logic
Davis-Putnam & Propositional Resolution
Skolem Functions and Herbrand’s Theorem

Unification

10 Resolution and Prolog

11 Modal Logics

12 Tableaux-Based Methods

11

16

21

26

31

36

41

46

51

56

I Logic and Proof

Introduction to Logic I

Logic concerns statements in some language

Slide 101 The language can be informal (e.g. English) or formal

Logic concerns relationships between statements: consistency,

entailment, . ..

Logical proofs model human reasoning

Some statements are true, others false or perhaps meaningless, . . .

Statements .

Statements are declarative assertions:
Slide 102 Black is the colour of my true love’s hair.
They are not greetings, questions, commands, . . .:

What is the colour of my true love’s hair?
| wish my true love had hair.

Get a haircut!

Slide 103

Slide 104

Logic and Proof

Schematic Statements .

The meta-variables X, Y, Z, ... range over ‘real’ objects

Black is the colour of X’s hair.
Black is the colour of Y.
Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?

Interpretations and Validity I

An interpretation maps meta-variables to real objects

The interpretation Y — coal satisfies the statement
Black is the colour of Y.

but the interpretation Y +— strawberries does not!

A statement A is valid if all interpretations satisfy A.

I Logic and Proof

Consistency, or Satisfiability I

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Slide 105 _ _
Examples of inconsistent sets:

{X partof Y, Y partof Z, X NOT part of Z}
{nis a positive integer, n £ 1, n# 2, ...}

satisfiable/unsatisfiable = consistent/inconsistent

Entailment, or Logical Consequence I

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfies A. We write S = A.
Slide 106

{X partof Y, Y partof Z} = X part of Z
m#1, n#2, ...} EnisNOT a positive integer
S E Alifandonlyif {—A} U S is inconsistent
= A if and only if A is valid

I Logic and Proof

Inference '

Want to check A is valid

Checking all interpretations can be effective — but if there are

infinitely many?

Slide 107

Let{Aq,...,An} E B.IfAq, ..., A, aretrue then B must be

true. Write this as the inference

A e An
B
Use inferences to construct finite proofs!
Schematic Inference Rules '
Xpartof Y Y partof Z
X part of Z

Slide 108 A valid inference:

spoke part of wheel ~ wheel part of bike
spoke part of bike

An inference may be valid even if the premises are false!

cow part of chair ~ chair part of ant
cow part of ant

Slide 109

Slide 110

Logic and Proof

Survey of Formal Logics I

propositional logic is traditional boolean algebra.
first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions. It has been

applied to hardware verification.
modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

Why Should the Language be Formal? I

Consider this ‘definition’:
The least integer not definable using eight words

Greater than The number of atoms in the entire Universe

Also greater than The least integer not definable using eight words

e A formal language prevents AMBIGUITY.

IT Logic and Proof

Syntax of Propositional Logic I

P, Q,R,... propositional letter
t true
Slide 201 ffalse
—A notA
AANB AandB
AVB AorB

A —B ifAthenB
A« B Aifandonlyif B

Semantics of Propositional Logic I

—, /\, V, — and <« are truth-functional: functions of their operands

-A AAB AVB A—B A<B
t t t t

Slide 202

Y = S S i Y
- e+ = e+ | D

f
f f t f f
t f t t f
t f f t t

IT Logic and Proof

Interpretations of Propositional Logic I

An interpretation is a function from the propositional letters to {t, f}.

Slide 203 Interpretation I satisfies a formula A if the formula evaluates to t.

Write =1 A

A is valid (a tautology) if every interpretation satisfies A

Write = A

S is satisfiable if some interpretation satisfies every formula in S

Implication, Entailment, Equivalence.

A — B means simply —A V B
A = B means if =1 A then =1 B for every interpretation I
A = Bifandonlyif= A — B

Slide 204

Equivalence

A~BmeansA =BandB = A
A ~ Bifandonlyif = A < B

Slide 205

Slide 206

IT Logic and Proof

Equivalences I

ANA~A
AANB~BAA
(AAB)AC~AA(BAC)
AVBAC)~(AVB)A(AVC)
ANTE~f
ANt ~A
AN—-A~f

Dual versions: exchange A, V and t, f in any equivalence

Negation Normal Form I

1. Getrid of <~ and —, leaving just A\, V, —:

A—~B~(A—B)A(B—A)
A—B~—-AVB

2. Push negations in, using de Morgan'’s laws:

—A~A
—(AAB)~—AV—B
—(AVB)~—AA—B

Slide 207

Slide 208

Logic and Proof

From NNF to Conjunctive Normal Form I

3. Push disjunctions in, using distributive laws:
AVBAC)~(AVB)A(AVCC)
(BAC)VA~(BVA)A(CVA)

4. Simplify:

e Delete any disjunction containing P and —P
e Delete any disjunction that includes another

e Replace (PVA)A(—PV A)by A

Converting a Non-Tautology to CNF I

PVQ—=QVR
1. Elim —: —(PvQ)V(QVR)
2. Push—in: (mPA—Q)V (QVR)
3.PushVin: (mPVQVR)A(—mQV QVR)
4. Simplify: —PVQVR

Not a tautology: try P —t, Q — f, R— f

Slide 209

IT Logic and Proof

10

Tautology checking using CNF I

(P—Q) —P)—P

1. Elim —: —[=(=PVQ)VPVP

2. Push—in: [—(=PVQ)A—P]VP
[(mPVQ)A—P]VP

3.PushVin: (“PVQVP)A(=PVP)

4. Simplify: tAt

t It's a tautology!

Slide 301

Slide 302

11

Logic and Proof

A Simple Proof System I

Axiom Schemes
K A— (B—A)
s (A—-B—-C)—=(A—=B)—(A—=C)
DN —A — A

Inference Rule: Modus Ponens

A—B A
B

A Simple (?) Proof of A — A I

(A= ((D—A)—A))—
(A—(D—A)) —-(A—A)) bysS

A—((D—A)—A) bykK
(A—(D—=A)) = (A—A) byMP(1),(2
A — (D—A) bykK
A — A by MP,(3), (4)

(1)

(2)
()
(4)
(5)

Slide 303

Slide 304

I11 Logic and Proof

12

Some Facts about Deducibility.

A is deducible from the set S of if there is a finite proof of A starting
from elements of S. Write S - A.

Soundness Theorem. If S = A then S = A.
Completeness Theorem. If S = A then S - A.

Deduction Theorem. If SU{A} F BthenS -+ A — B.

Gentzen’s Natural Deduction Systems I

A varying context of assumptions
Each logical connective defined independently

Introduction rule for A: how to deduce A A B

A B
ANB

Elimination rules for A: what to deduce from A A B

AANB AAB
A B

Slide 305

Slide 306

I11 Logic and Proof

13

The Sequent Calculus I

SequentA1,...,Amn = B1,..., B,y means,

ifATA...NAqnthenB; V...V B,
A1, ..., A, are assumptions; By, ..., B, are goals
["and Aaresetsinl'= A

A, I'= A, Ais trivially true (basic sequent)

Sequent Calculus Rules I

Fr=AA AT=A

t
A (cut)
rAA o ATsA
“AT=A Fr=A A
A,B,T=A Fr=AA T=AB

(AT)

1
ArBT=A [=AAAB

Slide 307

Slide 308

11

Logic and Proof 14

More Sequent Calculus Rules I

AT=A &FéA(l) r=AA,B (
\Y \Va
AVBIT=A '=AAVB

)

r=AA BT=A A,T=A,B

—1 —T
A-Br=oa r=AA_B

Easy Sequent Calculus Proofs I

AB=A
AAB= A (
SAAB—A

(AL

T)

A,B=BA
A=B,B— A
A —-B,B—A
= (A—=B)V(B—A)

Slide 309

Slide 310

11

Logic and Proof

15

Part of a Distributive Law '

B,C=A,B -
A=AB BAC=A,B o
AV (BAC)=A,B
AV(BAC)=AVB) similar
AV(BAC)=(AVB)A(AVC)

Second subtree proves A V (B A C) = A V C similarly

(AT

)

A Failed Proof.

A=B,C B=B,C

AVB=B,C

AVB=BVC
=AVB—=BVC |

(V1)

(Vr)

—T)

A—t, B—f, C— f falsifies unproved sequent!

Slide 401

Slide 402

1Y

Logic and Proof

16

Ordered Binary Decision Diagrams I

Canonical form: essentially decision trees with sharing
e ordered propositional symbols (‘variables’)
e sharing of identical subtrees
e hashing and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f)

A FAST way of verifying digital circuits, . . .

Decision Diagram for (P V Q) AR

Slide 403

Slide 404

1Y

Logic and Proof

17

Converting a Decision Diagram to an OBDD

No duplicates No redundant tests

Building OBDDs Efficiently.

Do not construct full tree! (see Bryant, §3.1)

Do not expand —, <, @ (exclusive OR) to other connectives
Treat—Zas/Z —forZDt

Recursively convert operands

Combine operand OBDDs — respecting ordering and sharing

Delete test if it proves to be redundant

Slide 405

Slide 406

1Y Logic and Proof

18

Canonical Form Algorithm I

Todo Z A Z', where Z and Z' are already canonical:
Trivial if eitheris t or f. Treat VV, —, <= similarly!

Let Z = if(P,X,Y)and Z' = if(P/, X", Y’)

If P = P’ then recursively do if (P, X A X/, YAY)

If P < P’ then recursively do if (P, X A Z', YA Z')

If P > P’ then recursively do if (P, ZA X', Z A Y')

Canonical Form of P V QQ I

Slide 407

Slide 408

1Y

Logic and Proof

19

Canonical Formof PV Q — Q V RI

|

\
\

\

\
W
A
\
\
! \
I
0

Optimisations Based On Hash Tables I

Never build the same OBDD twice: share pointers
e Pointer identity: X = Y whenever X < Y
e Fast removal of redundant tests by if (P, X, X) ~ X
e Fastprocessingof X A X, XV X, X —= X, ...

Never process X A Y twice; keep table of canonical forms

Slide 409

1Y Logic and Proof

20

Final Observations .

The variable ordering is crucial. Consider

(P1AQ1) V-V (PnAQn)
A good orderingis P1 < Q1 < -+- < P, < Qn
A dreadful orderingis P1 < --- <P, < Q1 <--- < Qn
Many digital circuits have small OBDDs (not multiplication!)
OBDDs can solve problems in hundreds of variables

General case remains intractable!

Slide 501

Slide 502

Logic and Proof

21

Outline of First-Order Logic I

Reasons about functions and relations over a set of individuals

father(father(x)) = father(father(y))
cousin(x,y)

Reasons about all and some individuals:

All men are mortal Socrates is a man
Socrates is mortal

Does not reason about all functions or all relations, . ..

Function Symbols; Terms I

Each function symbol stands for an n-place function
A constant symbol is a 0-place function symbol
A variable ranges over all individuals

A term is a variable, constant or has the form
fltr,... tn)

where f is an n.-place function symbol and t1, . . ., t,, are terms

We choose the language, adopting any desired function symbols

Slide 503

Slide 504

Logic and Proof 22

Relation Symbols; Formulae.

Each relation symbol stands for an n-place relation
Equality is the 2-place relation symbol =

An atomic formula has the form
R(t1,...,tn)

where R is an n-place relation symboland tq, .. ., t,, are terms
A formula is built up from atomic formulee using —, A, V, . ..

(Later we add quantifiers)

Power of Quantifier-Free FOL '

Very expressive, given strong induction rules

Prove equivalence of mathematical functions:

p(z,0) =1 d(z,1) =z
p(z,n+1)=p(z,n) xz q(z,2 xn) =q(z x z,n)
q(z,2xn+1)=q(zx z,n) x z

Boyer/Moore Theorem Prover: checked Godel's Theorem, . ..

Many systems based on equational reasoning

Slide 505

Slide 506

Logic and Proof

23

Universal and Existential Quantifiers '

Vx A forall x, A holds

Ix A there exists X such that A holds
Syntactic variations:

Vxyz A abbreviates Vx Vy Vz A
Vz.A A B s an alternative to Vz (A A B)

The variable x is bound in Vx A; compare with [f(x)dx

Expressiveness of Quantifiers I

All men are mortal:
Vx (man(x) — mortal(x))
All mothers are female:
Vx female(mother(x))

There exists a unique X such that A, written d!x A

Ix[A(x) AVY (Aly) =y =x)]

Slide 507

Slide 508

Logic and Proof

24

How do we interpret mortal(Socrates)?

Interpretation Z = (D, I) of our first-order language
D is a non-empty universe

I maps symbols to ‘real’ functions, relations

¢ a constant symbol Ilc) e D
f an n-place function symbol I[f] € D™ — D

P an n-place relation symbol I[P] C D™

How do we interpret cousin(Charles, y)?

A valuation supplies the values of free variables
It is a function V : variables — D

7Ty [t] extends V to a term t by the obvious recursion:

Tv(x] def V(x) ifxisavariable

Slide 509

Logic and Proof

25

The Meaning of Truth — in FOL I

For interpretation Z and valuation V
):I,V P(t) if I[P](Zv[t]) holds
=z vt=u ifZy[t] equals Zy [u]

):I,V ANB if):va A and):I,V B
=z v XA if =7 v{m/x) A holds for some m € D

=7 A if =7,v A holds for all V

A is satisfiable if =7 A for some Z

Slide 601

Slide 602

VI Logic and Proof

26

Free v Bound Variables '

All occurrences of x in Vx A and 3x A are bound

An occurrence of X is free if it is not bound:

¥x 3y R(x,y, f(x,z))

May rename bound variables:

Yw 3y Rw,y’, f(w,z))

Substitution for Free Variables .

A[t/x] means substitute t for x in A:

(BAC)[t/x] is Blt/x] A Clt/x]
(VxB)[t/x] is VxB

(VyB)[t/x] is YyB[t/x] (x #vy)
(Pu))lt/x] is Plult/x])

No variable in t may be bound in A!

(Yyx =y)ly/x] isnot Yyy =y!

Slide 603

Slide 604

VI

Logic and Proof

27

Some Equivalences for Quantifiers I

—(VxA) ~ Ix—A
(VxA) AB ~Vx (A AB)
(VxA)V B ~Vx(AVB)

(Vx A) A (VxB) ~ Vx (A AB)
(VxA) — B~ dx (A — B)
Vx A ~Vx A AA[t/x]

Dual versions: exchange V, d and A, V

Reasoning by Equivalences I

Ix(x =aAP(x)) ~3Ix(x =aAP(a))
~ Ix (x = a) A P(a)

~ P(a)

3z (P(z) — P(a) A P(b))
~VzP(z) — P(a) A P(b)
~VzP(z) AP(a) AP(b) — P(a) A P(b)
~ t

Slide 605

Slide 606

VI

Logic and Proof

28

Sequent Calculus Rules for V I

Alt/x],T= A) r=AA
VxA, = A = A, VXA

Rule (V1) can create many instances of Vx A
Rule (vr) holds provided x is not free in the conclusion!

NoT allowed to prove

P(y)="P(y)
P(y)=Vy P(y)

(Vr)

Simple Example of the V Rules I

P(f(y)) = P(f(y))
Vx P(x P(f(y))

)= (Vr)
Vx P(x) = Yy P(f(y))

Slide 607

Slide 608

VI

Logic and Proof

29

Not-So-Simple Example of the V Rules I

P=0Q(y),P PQ)=Qly)
P, P — Qy)= Qly)
P, Vx (P — Q(x)) = Q(y)
P, Vx (P — Q(x)) = Vy Q(y)
Vx (P — Q(x)) =P — Yy Q(y)

| — | — | —
—
<
=
—

In (v1) we have replaced x by y

Sequent Calculus Rules for - I

AT=A o T=A AR
A, T=A Fr=A IxA

Rule (31) holds provided x is not free in the conclusion!
Rule (3r) can create many instances of I9x A

Say, to prove

Jz (P(z) — P(a) A P(b))

Slide 609

Slide 610

VI Logic and Proof 30
Part of the d Distributive Law.
P(x) = P(x), Q(x) o)
P(x) = P(x) VvV Q(x) A
P(x) = 3y (P(y) V Q(y)) - similar A
Ix P(x) = 3y (P(y) V Q(y)) xQ(x)=Ty ...

IxP(x) vV IxQ(x) =Ty (P(y) vV Qly))

Second subtree proves Ix Q(x) = Jy (P(y) VvV Q(y)) similarly

In (3r) we have replaced y by x

(v

)

A Failed Proof.

We cannot use (31) twice with the same variable

We rename the bound variable in 3x Q(x) and get 3y Q(y)

Slide 701

Slide 702

VII Logic and Proof

31

Clause Form .

Clause: a disjunction of literals

-K; V- V=K, VL V-
Set notation: —=Kq,...,7Kn, Ly, ...
Kowalski notation: Ky,--- Ky — Ly,

[_],... ,LnFK],"‘

Empty clause: L]

EMPTY CLAUSE MEANS CONTRADICTION!

Outline of Clause Form Methods '

To prove A, obtain a contradiction from —A:

1. Translate —A intoCNFas A1 A--- AAn

2. Thisis the set of clauses A1, ..., Am

3. Transform the clause set, preserving consistency

Empty clause refutes —A

Empty clause set means —A is satisfiable

VII Logic and Proof

The Davis-Putnam-Logeman-Loveland Method I

1. Delete tautological clauses: {P,—P, ...}

2. For each unit clause {L},

Slide 703 e delete all clauses containing L
e delete —L from all clauses
3. Delete all clauses containing pure literals
4. Perform a case split on some literal
It's a decision procedure: it finds either a contradiction or a model.
Davis-Putnam on a Non-TautoIogyI
ConsiderPV Q — Q VR
Clauses are {P,Q} {—Q} {—R}
Slide 704

{P,Q} {—Q} {—R} initial clauses
{P} {=R} unit—Q
{—=R} unitP (also pure)
unit —R (also pure)

Clauses satisfiable by P — t, Q — f, R — f

VII Logic and Proof

Example of a Case Split on P I

{=Q,R} {=R,P} {=R,Q} {=P,Q,R} {P,Q} {=P,—Q}
{=Q,R} {=R,Q} {Q,R} {=Q} ifPistrue

Slide 705
{—=R} {R} unit —=Q
[unit R
{(—Q,R} {=R} {—R,Q} {Q} ifPisfalse
{—Q} {Q} unit—R
0 unit—Q

The Resolution Rule'

FromB V A and =B V Cinfer AV C

In set notation,

Slide 706 {B,Aq1,...,Am} {7B,Cq,...,Cy}
{Ah---)Am»C])---»Cn}

Some special cases:

(B} {7B,Cy,...,Cyj (B} {~Bj
{C1,...,Cn} O

Slide 707

Slide 708

VII

Logic and Proof

34

Simple Example: ProvingP A Q — Q AP I

Hint: use =(A — B) ~ A A —B

1. Negate! —[PAQ — QAP]
2.Push—in: (PAQ)A—(QAP)
(PAQ)A(=QV—P)

Clauses: (P} {Q} {—Q,—P}

Resolve {P} and {—Q, —P} getting {—Q}
Resolve {Q} and {—Q} getting [J

Another Example I

Refute ~[(PV Q) A (PVR) = PV (Q AR)]
From (P V Q) A (P V R), get clauses {P, Q} and {P, R}
From— [P V (Q A R)] get clauses {—P} and {—Q, —R}

Resolve {—P} and {P, Q} getting {Q}
Resolve {—P} and {P, R} getting {R}
Resolve {Q} and {—Q, —R} getting {—R}
Resolve {R} and {—R} getting (]

Slide 709

Slide 710

VII Logic and Proof

35

The Saturation Algorithm I

At start, all clauses are passive. None are active.
1. Transfer a clause (current) from passive to active.
2. Form all resolvents between current and an active clause.
3. Use new clauses to simplify both passive and active.
4. Put the new clauses into passive.

Repeat until CONTRADICTION found or passive becomes empty.

Refinements of Resolution .

Preprocessing: removing tautologies, symmetries . . .
Set of Support: working from the goal

Weighting: priority to the smallest clauses
Subsumption: deleting redundant clauses
Hyper-resolution: avoiding intermediate clauses

Indexing: data structures for speed

VIII Logic and Proof

Reducing FOL to Propositional Logic.

Prenex: Move quantifiers to the front

Slide 801 Skolemize: Remove quantifiers, preserving consistency
Herbrand models: Reduce the class of interpretations
Herbrand’s Thm: Contradictions have finite, ground proofs
Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Prenex Normal Form '

Convert to Negation Normal Form using additionally

—(VxA) ~ Ix—A
Slide 802 —(IxA) 2 Vx—A

Then move quantifiers to the front using

(Vx A) AB ~Vx (A AB)
(VxA) VB ~Vx(AVB)

and the similar rules for

Slide 803

Slide 804

VIII Logic and Proof

37

Skolemization '

Take a formula of the form

Vxq1 Vx2 - Vx Jy A

Choose a new k-place function symbol, say f

Delete 3y and replace y by f(x1,%2,...,Xk). We get

Vxq1 Vxo - Vxe Alf(x1,%2, ..., %) /Y]

Repeat until no 3 quantifiers remain

Example of Conversion to Clauses I

For proving 3x [P(x) — Yy P(y)]

— [3x[P(x) — Yy P(y)l] negated goal
Vx [P(x) AJdy—P(y)] conversionto NNF
Vx 3y [P(x) A—=P(y)] pulling 3 out
Vx [P(x) A —P(f(x))] Skolem term f(x)

[P(x)} {—P(f(x))} Final clauses

Slide 805

Slide 806

VIII Logic and Proof

38

Correctness of Skolemization '

The formula Vx 3y A is consistent

it holds in some interpretation Z = (D, I)

forall x € D thereis somey € D such that A holds
some function finD — D yields suitable values of y

A[f(x)/y] holds in some Z’ extending Z so that f denotes T

r1117

the formula Vx A[f(x)/y] is consistent.

Herbrand Interpretations for a set of clauses S I

Ho 4 the set of constants in S
def
Hip1r = HiU{f(t1,...,ta) [t1,...,th € Hy

and f is an n-place function symbol in S}

def .
= U H; Herbrand Universe

HB ¥ P(ty,... t) | ty,... .ty € H

and P is an n-place predicate symbol in S}

Slide 807

Slide 808

VIII Logic and Proof

39

Example of an Herbrand Model I

—even(1)
even(2) clauses

even(X-Y) « even(X), even(Y)

H={1,2,1-1,1-2,2-1,2-21-(1-1),...}
HB = {even(1),even(2),even(1-1),even(1-2),...}

I[even] = {even(2),even(1-2),even(2-1),even(2-2),...}

(for model where - means product; could instead use sum!)

A Key Fact about Herbrand Interpretations I

Let S be a set of clauses.

S is unsatisfiable <= no Herbrand interpretation satisfies S
e Holds because some Herbrand model mimicks every ‘real’ model
e \We must consider only a small class of models

e Herbrand models are syntactic, easily processed by computer

Slide 809

VIII Logic and Proof

40

Herbrand’s Theorem '

Let S be a set of clauses.

S is unsatisfiable <> there is a finite unsatisfiable set S’ of ground

instances of clauses of S.
e Finite: we can compute it
e Instance: result of substituting for variables

e Ground: and no variables remain: it's propositional!

IX Logic and Proof

Unification '

Finding a common instance of two terms

e Logic programming (Prolog)
Slide 901

Polymorphic type-checking (ML)

Constraint satisfaction problems

Resolution theorem proving for FOL

Many other theorem proving methods

Substitutions '

A finite set of replacements

0= [t]/X],...,tk/Xk]
Slide 902
where X1, .. ., Xx are distinct variables and t; # Xx;

f(t,u)0 = f(t0,u0) (terms)

P(t,u)0 = P(t0,u0) (literals)
{Ly,...,Lin}0 ={1410,...,L,,0} (clauses)

IX Logic and Proof

Composing Substitutions I

Composition of ¢ and 0, written ¢ o 0, satisfies for all terms t

t(po0) = (td)6

Slide 903
1ae It is defined by (for all relevant x)

def

$ob = [(xd)0/x,...]

Consequences include 0 o [| = 0, and associativity:

(pob)oo=do(Bo0)

Most General Unifiers '

0 is a unifier of terms t and wif t0 = uo
0 is more general than ¢ if =0 o 0

Slide 904 0 is most general if it is more general than every other unifier

If © unifies t and u then so does 0 o o

t(Boo) =t0o=ubo=u(0oo0)

A most general unifier of f(a, x) and f(y, g(z)) is [a/y, g(z)/x]

The common instance is f(a, g(z))

Slide 905

Slide 906

IX

Logic and Proof

43

Algorithm for Unifying Two Terms I

Represent terms by binary trees

Each term is a Variable X, y . . ., Constant a, b . . ., or Pair (t,t’)

Constants do not unify with different Constants
Constants do not unify with Pairs

Variable x and term t: unifier is [t/x] — unless x occursin t

Cannot unify f(x) with x!

Unifying Two Pairs I

0 o 0/ unifies (t,t’) with (u, u’)

if @ unifiest withuw and 0 unifies t’0 with u’0

(t,t)(000") = (t,t")00’
= (t00',t'00")
= (u00’,u’00’)
= (u,u’)00’
= (u,u’)(000)

Slide 907

Slide 908

IX Logic and Proof

44

Examples of Unification I

f(x,b) f(x, x) f(x, x) i(x,x,z)

fla,y) fla,b) f(y,9(y)) j(w, a,h(w))

f(a,b) ? ? jla,a,h(a))
[a/x,b/y] FAIL FAIL [a/w, a/x, h(a)/z]

We always get a most general unifier

Theorem-Proving Examples I

(Jy VxR(x,y)) — (Vx 3y R(x,y))
Clauses after negation are {R(x, a)} and {—R(b,y)}

R(x, a) and R(b, y) have unifier [b/x, a/y]: contradiction!

(Vx Jy R(x,y)) — (Fy VxR(x,y))
Clauses after negation are {R(x, f(x))} and {—R(g(y),y)}
R(x, f(x)) and R(g(y),y) are not unifiable: occurs check

Formula is not a theorem!

Slide 909

IX Logic and Proof

45

Variations on Unification '

Efficient unification algorithms: near-linear time

Indexing & Discrimination networks: fast retrieval of a unifiable term
Order-sorted unification: type-checking in Haskell
Associative/commutative operators: problems in group theory
Higher-order unification: support A-calculus

Boolean unification: reasoning about sets

Slide 1001

Slide 1002

Logic and Proof

46

Binary Resolution I

{B)A1»"'»Am} {_‘D>C1)"'»Cn}
{A1»'-')Am»C1)-'-)Cn}G

First rename variables apart in the clauses! — say, to resolve

{P(x); and {=P(g(x))}

Always use a most general unifier (MGU)

Soundness? Same argument as for the propositional version

provided Bo = Do

Factorisation '

Collapsing similar literals in one clause:

{B1»"')BK»A1)"'»Am}
{B],A],...,Am}O'

provided Bijo = --- = Byo

Normally combined with resolution
Prove Vx 3y —(P(y,x) < —P(y,y))
The clausesare {—P(y,a),—P(y,y)} {P(y,y),Ply,a)}
Factoring yields {—P(a, a)} {P(a,a)}

Resolution yields the empty clause!

Slide 1003

Slide 1004

Logic and Proof

47

A Non-Trivial Example I

I[P — Q)] A I [Q(x) = P] — Ix [P~ Q(x]]
Clauses are {P, ~Q(b)} {P,Q(x)} {=P,—Q(x)} {=P,Q(a)}

Resolve {P, ﬁQ()} with {P, Q()} getting {P}
Resolve {—P, ﬂQ()} with {—=P, Q()} getting {—P}
Resolve {P} with {—=P} getting (J

Implicit factoring: {P, P} — {P} Many other proofs!

Prolog Clauses and Their Execution I

At most one positive literal per clause!

Definite clause {—A1,...,7An,B} or B+ Aq, ..., A.
Goal clause {—Aq,...,7An} o «— Aj,...,An.

Linear resolution: a program clause with last goal clause
Left-to-right through program clauses

Left-to-right through goal clause’s literals

Depth-first search: backtracks, but still incomplete

Unification without occurs check: fast, but unsound!

Slide 1005

Slide 1006

Logic and Proof 48
A (Pure) Prolog Program I
parent (el i zabet h, charl es).
par ent (el i zabet h, andr ew) .
parent (charles,wllian).
parent (charl es, henry).
par ent (andr ew, beatri ce).
par ent (andr ew, eugeni a) .
grand(X, Z) :- parent(X YY), parent(Y,Z2).
cousin(X,Y) :- grand(ZzZ, X), grand(Z,Y).
Prolog Execution I
:- cousin(XY).
:- grand(Z1, X), grand(Z1,Y).
.- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).
* .- parent(charles, X), grand(elizabeth,Y).
X=wi | |'i am .- grand(elizabeth,Y).
.- parent(elizabeth, Y5), parent(Y5,Y).
* .- parent (andrew,Y).
Y=beatrice - [

* = backtracking choice point

16 solutions including cousi n(wi I liamwi | | i am

and cousi n(w | I i am henry)

Slide 1007

Slide 1008

Logic and Proof

49

The Method of Model Elimination '

A Prolog-like method; complete for First-Order Logic
Contrapositives: treat clause {A1 e eey Am} as m clauses
A — Ay, ...,7An
Ay — —A3,...,7Am, A,

Extension rule: when proving goal P, may assume —P

A brute force method: efficient but no refinements such as

subsumption

A Survey of Automatic Theorem Provers I

Hyper-resolution: Otter, Gandalf, SPASS, Vampire, ...

Model Elimination: Prolog Technology Theorem Prover, SETHEO
Parallel ME: PARTHENON, PARTHEO

Higher-Order Logic: TPS, LEO

Tableau (sequent) based: LeanTAP, 3TAP, ...

Slide 1009

Logic and Proof

o0

Approaches to Equality Reasoning I

Equality is reflexive, symmetric, transitive

Equality is substitutive over functions, predicates
e Use specialized prover: Knuth-Bendix, . ..
e Assert axioms directly

e Paramodulation rule

{B[t]>A1))Am} {t:u‘>C1)"'»Cn}
{B[u],A1,...,Am,C1,...,Cn}

Slide 1101

Slide 1102

XI

Logic and Proof

ol

Modal Operators I

W: set of possible worlds (machine states, future times, . . .)
R: accessibility relation between worlds

(W, R) is called a modal frame

OA means A is necessarily true .)
— in all accessible worlds

<A means A is possibly true

QA ~ O-A A cannot be true <> A must be false

Semantics of Propositional Modal Logic I

For a particular frame (W, R)
An interpretation I maps the propositional letters to subsets of W

w Il A means A is true in world w

w - P & w e [(P)

wiFAAB & wl-Aandwl-B

wlFOA &= vl A forall v such that R(w, V)
wlF GCA & v I A for some v such that R(w, v)

Slide 1103

Slide 1104

Logic and Proof

02

Truth and Validity in Modal Logic I

For a particular frame (W, R), and interpretation I

wlF A means A is true in world w
Fwr1A meansw |k A forallwin W

=wRr A meansw |- Aforallwandall

= A means =y r A for all frames; A is universally valid
. .. but typically we constrain R to be, say, transitive

All tautologies are universally valid

A Hilbert-Style Proof System for K I

Extend your favourite propositional proof system with

Dist O(A — B) — (DA — OB)

Inference Rule: Necessitation

Treat < as a definition

OA ¥ —o-A

Slide 1105

Slide 1106

Logic and Proof

53

Variant Modal Logics I

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:
T OA—-A (reflexive) logic T
4 OA — OOA (transitive) logic S4
B A— OOCA (symmetric) logic S5

And countless others!

We shall mainly look at S4

Extra Sequent Calculus Rules for S4 I

AT=A M = A" A

—— (On) (O7)
OA,T= A Fr=A OA

AT = AF N=AA

(O1) ——————— (O7)
OA = A = A OA

def .
M = {0OB|OBeTll Erase non-O assumptions

N {OB | OB € A} Erase non-< goals!

Slide 1107

Slide 1108

X1 Logic and Proof

54

A Proof of the Distribution Axiom '

A=B,A B,A=B
A—BA=B
A — B UOA=B
O(A — B),0A=8B
O(A — B),0A = 0B o

(—1)

ol)

al)

And thus O(A — B) — (DA — OB)

Must apply (Or) first!

Part of an Operator String Equivalence I

OCA = OA
OCA = CA
COCA = A
OCOCA = CA
OOCOCA = OOCA

ot

O

L

a

(o)
(1)
(o)
(Or)

Or

In fact, OCOCA ~ OCA also OOA ~ OA

The S4 operator stringsare O < OO SO OCO OO

Slide 1109

XI

Logic and Proof

95

Two Failed Proofs '

= A
—— (¢7)
= OCA
———— (O7)
A= 00CA
B=AAB

&
B= O(AAB) E<>1
CA . OB= O(AAB)

Can extract a countermodel from the proof attempt

Slide 1201

Slide 1202

XII Logic and Proof

o6

Simplifying the Sequent Calculus I

7 connectives (or 9 for modal logic):
- AV — < VYV 3 (O 9O

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: A VvV V 3 (O <)

Sequents need one side only!

Simplified Calculus: Left-OnIyI

basicc “ATl= AT=

-AA = = (cut)
A,B,T'= AT= BT=
—————— (A (V1)
AABT= AVB,T=
Alt/x], T = AT =

vy ——— (3
Vx A, T = XA, T=

Rule (31) holds provided x is not free in the conclusion!

Slide 1203

Slide 1204

XII

Logic and Proof

57

Left-Only Sequent Rules for S4 I

AT =
(on) — (01
OA,T=

AT=
OA "=

def .
M = {0OB|0OBeTll Erase non-O assumptions

From 14 (or 18) rules to 4 (or 6)
Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Proving Vx (P — Q(x)) =P — Yy Q(y)

Move the right-side formula to the left and convert to NNF:

P ATy —Qly), vx (=P V Q(x))=

P, ﬁQ(y),ﬂPé P, =Q(y), Qly) = o
P, =Q(y), "PV Qy) = "
—Q(y), ¥ (P Vv Q(x)) = -
P, Jy—Q(y), ¥x (P VvV Q(x)) = -
PAIy—Qly), ¥ (P VvV Q(x))=

Slide 1205

Slide 1206

XII Logic and Proof

o8

Adding Unification I

Rule (¥1) now inserts a new free variable:

Alz/x],T =
VXA, ['=

Let unification instantiate any free variable
In—A, B, "= try unifying A with B to make a basic sequent
Updating a variable affects entire proof tree

What about rule (31)? Skolemize!

Skolemization from NNF '

Follow tree structure; don’t pull out quantifiers!

Vy3zQ(y,z)] AIxP(x) to [VyQly,f(y))]AP(a)

Better to push quantifiers in (called miniscoping)

Proving 3x Yy [P(x) — P(y)]

Negate; convertto NNF: Vx Jy [P(x) A —P(y)]
Pushinthe Jy: Vx[P(x) A 3y —P(y)]

Pushinthe Vx: VxP(x) A 3y —P(y)

Skolemize: VxP(x) A —P(a)

Slide 1207

Slide 1208

XII

Logic and Proof

99

A Proof of Ix Vy [P(x) — P(y)]

Unification chooses the term for (V1)

A Failed Proof.

Try to prove Vx [P(x) V Q(x)] = Vx P(x) V Vx Q(x)
NNF: Ix =P (x) A Ix —~Q(x), Vx [P(x) V Q(x)] =
Skolemize: =P(a) A —~Q(b), Vx [P(x) V Q(x)] =

y—a

—P(a), ~Q(b), Ply)=
—P(a), —Q

—P(a), =Q(b), Vx

—P(a) A —=Q(b), Vx

Slide 1209

XII

Logic and Proof

60

The World’s Smallest Theorem Prover? '

prove((A B), UnExp, Lits, FreeV,VarLin) :- !,
prove(A, [Bl UnExp], Lits, FreeV, VarLin.
prove((A; B), UnExp, Lits, FreeV,VarLin) :- !,
prove(A UnExp, Lits, FreeV, VarLi m,
prove(B, UnExp, Lits, FreeV, VarLinm .
prove(all (X Fm), UnExp, Lits, FreeV,VarLim :- !
\'+ | engt h(FreeV, VarLi m,
copy_term((X, Fm , FreeV), (X1, FmM 1, FreeV)),
append(UnExp, [al | (X, Fm)], UnExpl),
prove(Fm 1, UnExpl, Lits, [X1| FreeV], VarLin).
prove(Lit, ,[L|Lits],_,) :-
(Lit = -Neg; -Lit = Neg) ->
(uni fy(Neg, L); prove(Lit,[],Lits,_,)).
prove(Lit,[Next|UnExp],Lits, FreeV,VarLim -
prove(Next, UnExp, [Lit|Lits], FreeV, VarLim.

