
Course Aims

This course aims to:

� provide you with a general understanding of how a
computer works,

� explain the structure and functions of an operating
system,

� illustrate key operating system aspects by concrete
example, and

� prepare you for future courses. . .

At the end of the course you should be able to:

� describe the fetch-execute cycle of a computer

� understand the di�erent types of information which
may be stored within a computer memory

� compare and contrast CPU scheduling algorithms

� explain the following: process, address space, �le.

� distinguish paged and segmented virtual memory.

� discuss the relative merits of Unix and NT. . .

Operating Systems | Aims Tim Harris | i

Course Outline

� Part I: Computer Organisation

{ Computer Foundations

{ Operation of a Simple Computer.

{ Input/Output.

� Part II: Operating System Functions.

{ Introduction to Operating Systems.

{ Processes & Scheduling.

{ Memory Management.

{ I/O & Device Management.

{ Filing Systems.

� Part III: Case Studies.

{ Unix.

{ Windows NT.

Operating Systems | Outline Tim Harris | ii

Recommended Reading

� Tannenbaum A S
Structured Computer Organization (3rd Ed)
Prentice-Hall 1990.

� Patterson D and Hennessy J
Computer Organization & Design (2rd Ed)
Morgan Kaufmann 1998.

� Bacon J M
Concurrent Systems (2nd Ed)
Addison Wesley 1997
(especially Part I, and Chapters 23 & 25)

� Silberschatz A, Peterson J and Galvin P
Operating Systems Concepts (5th Ed.)
Addison Wesley 1998.

� Le�er S J
The Design and Implementation of the 4.3BSD
UNIX Operating System.
Addison Wesley 1989

� Solomon D
Inside Windows NT (2nd Ed)
Microsoft Press 1998.

Operating Systems | Books Tim Harris | iii

A Chronology of Early Computing

� (several BC): abacus used for counting

� 1614: logarithms disovered (John Napier)

� 1622: invention of the slide rule (Robert Bissaker)

� 1642: First mechanical digital calculator (Pascal)

� Charles Babbage (U. Cambridge) invents:

{ 1812: \Di�erence Engine"

{ 1833: \Analytical Engine"

� 1890: First electro-mechanical punched card
data-processing machine (Hollerith, later IBM)

� 1905: Vacuum tube/triode invented (De Forest)

� 1935: the relay-based IBM 601 reaches 1 MPS.

� 1939: ABC | �rst electronic digital computer
(Atanaso� & Berry, Iowa State University)

� 1941: Z3 | �rst programmable computer (Zuse)

� Jan 1943: the Harvard Mark I (Aiken)

� Dec 1943: Colossus built at `Station X', Bletchley
Park (Newman & Wynn-Williams, et al).

Computer Organisation | Foundations Tim Harris | 1

The Von Neumann Architecture

Memory

Control
Unit

Arithmetic
Logical Unit

Accumulator

Output

Input

� 1945: ENIAC (Eckert & Mauchley, U. Penn):

{ 30 tons, 1000 square feet, 140 kW,

{ 18K vacuum tubes, 20�10-digit accumulators,

{ 100KHz, circa 300 MPS.

{ Used to calculate artillery �ring tables.

{ (1946) blinking lights for the media. . .

� But: \programming" is via plugboard) v. slow.

� 1945: von Neumann drafts \EDVAC" report:

{ design for a stored-program machine

{ Eckert & Mauchley mistakenly unattributed

Computer Organisation | Foundations Tim Harris | 2

Further Progress. . .

� 1947: \point contact" transistor invented
(Shockley, Bardeen & Brattain, Bell Labs)

� 1949: EDSAC, the world's �rst stored-program
computer (Wilkes & Wheeler, U. Cambridge)

{ 3K vacuum tubes, 300 square feet, 12 kW,

{ 500KHz, circa 650 IPS, 225 MPS.

{ 1024 17-bit words of memory in mercury
ultrasonic delay lines.

{ 31 word \operating system" (!)

� 1954: TRADIC, �rst electronic computer without
vacuum tubes (Bell Labs)

� 1954: �rst silicon (junction) transistor (TI)

� 1959: �rst integrated circuit (Kilby & Noyce, TI)

� 1964: IBM System/360, based on ICs.

� 1971: Intel 4004, �rst micro-processor (Ted Ho�):

{ 2300 transistors, 60 KIPS.

� 1978: Intel 8086/8088 (used in IBM PC).

� � 1980: �rst VLSI chip (> 100,000 transistors)

Today: � 40M transistors, � 0:18�, � 1:5 GHz.

Computer Organisation | Foundations Tim Harris | 3

Languages and Levels

C/C++ Source

ASM Source

Object File
Other Object

Files ("Libraries")

Executable File
("Machine Code")

compile

assemble

link

execute

ML/Java
Bytecode

Level 4

Level 3

Level 2

Level 1

Level 5

interpret

� Modern machines all programmable with a huge
variety of di�erent languages.

� e.g. ML, java, C++, C, python, perl, FORTRAN,
Pascal, scheme, . . .

� We can describe the operation of a computer at a
number of di�erent levels; however all of these
levels are functionally equivalent
| i.e. can perform the same set of tasks

� Each level relates to the one below via either

a. translation, or
b. interpretation.

Computer Organisation | Abstraction Tim Harris | 4

Layered Virtual Machines

Virtual Machine M5 (Language L5)

Virtual Machine M4 (Language L4)

Virtual Machine M3 (Language L3)

Meta-Language Level

Compiled Language Level

Assembly Language Level

Virtual Machine M2 (Language L2)

Virtual Machine M1 (Language L1)

Digital Logic Level

Operating System Level

Actual Machine M0 (Language L0)

Conventional Machine Level

� In one sense, there is a set of di�erent machines
M0, M1, . . . Mn, each built on top of the other.

� Can consider each machine Mi to understand only
machine language Li.

� Levels 0, -1 pot. done in Dig. Elec., Physics. . .

� This course focuses on levels 1 and 2.

� NB: all levels useful; none \the truth".

Computer Organisation | Abstraction Tim Harris | 5

A (Simple) Modern Computer

Control
Unit

 e.g. 64 MByte
2^26 x 8 =

536,870,912bits

Address Data Control

Processor

Reset

Bus

Memory
Execution

Unit

Register File
(including PC)

Sound Card

Framebuffer

Hard Disk

Super I/O

Mouse Keyboard Serial

� Processor (CPU): executes programs.

� Memory: stores both programs & data.

� Devices: for input and output.

� Bus: transfers information.

Computer Organisation | Anatomy of a Computer Tim Harris | 6

Registers and the Register File

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

0x5A

0x102034

0x2030ADCB

0x0

0x0

0x2405

0x102038

0x20 0x20000000

0x1

0x37B1CD

0xFF0000

0x102FC8

0xFFFFFFFF

0x1001D

0xEA02D1F

Computers all about operating on information:

� information arrives into memory from input devices

� memory is a essentially large byte array which can
hold any information we wish to operate on.

� computer logically takes values from memory,
performs operations, and then stores result back.

� in practice, CPU operates on registers:

{ a register is an extremely fast piece of on-chip
memory, usually either 32- or 64-bits in size.

{ modern CPUs have between 8 and 128 registers.

{ data values are loaded from memory into
registers before being operated upon,

{ and results are stored back again.

Computer Organisation | Anatomy of a Computer Tim Harris | 7

Memory Hierarchy

32K ROM

R
eg

is
te

r
Fi

le Execution
Unit

Control
Unit

Address

Data

Control

CPU

Data
Cache

Instruction
 Cache

Cache (SRAM)
Main Memory

B
us

 I
nt

er
fa

ce
 U

ni
t

64MB
DRAM

Bus

� Use cache between main memory and register: try
to hide delay in accessing (relatively) slow DRAM.

� Cache made from faster SRAM:

{ more expensive, so much smaller
{ holds copy of subset of main memory.

� Split of instruction and data at cache level)
\Harvard" architecture.

� Cache $ CPU interface uses a custom bus.

� Today have � 512KB cache, � 128MB RAM.

Computer Organisation | Anatomy of a Computer Tim Harris | 8

The Fetch-Execute Cycle

Control Unit

IBDecode

Execution Unit
R
e
g
i
s
t
e
r

F
i
l
e

PC

+

� A special register called PC holds a memory
address; on reset, initialised to 0.

� Then:

1. Instruction fetched from memory address held in
PC into instruction bu�er (IB).

2. Control Unit determines what to do: decodes
instruction.

3. Execution Unit executes instruction.

4. PC updated, and back to Step 1.

� Continues pretty much forever. . .

Computer Organisation | Central Processing Unit Tim Harris | 9

Execution Unit

Execution
Unit PC

#Ra
A

#Rb
A

Fn
K

#Rd
A

Register File

� The \calculator" part of the processor.

� Broken into parts (functional units), e.g.

{ Arithmetic Logic Unit (ALU).

{ Shifter/Rotator.

{ Multiplier.

{ Divider.

{ Memory Access Unit (MAU).

{ Branch Unit.

� Choice of functional unit determined by signals
from control unit.

Computer Organisation | Central Processing Unit Tim Harris | 10

Arithmetic Logic Unit

k

N

Carry In

Carry Out

ALU

Function
Code

input a

input b

output (d)

An N-bit ALU

N

N

� Part of the execution unit.

� Inputs from register �le; output to register �le.

� Performs simple two-operand functions:

{ a + b

{ a - b

{ a AND b

{ a OR b

{ etc.

� Typically perform all possible functions; use
function code to select (mux) output.

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 11

Number Representation
00002 016 01102 616 11002 C16

00012 116 01112 716 11012 D16

00102 216 10002 816 11102 E16

00112 316 10012 916 11112 F16

01002 416 10102 A16 100002 1016

01012 516 10112 B16 100012 1116

� a n-bit register bn�1bn�2 : : : b1b0 can represent 2n

di�erent values.

� Call bn�1 the most signi�cant bit (msb), b0 the
least signi�cant bit (lsb).

� Unsigned numbers: treat the obvious way, i.e.
val = bn�12

n�1 + bn�22
n�2 + � � �+ b12

1 + b02
0,

e.g. 11012 = 23 + 22 + 20 = 8 + 4 + 1 = 13.

� Represents values from 0 to 2n � 1 inclusive.

� For large numbers, binary is unwieldy: use
hexadecimal (base 16).

� To convert, group bits into groups of 4, e.g.
11111010102 = 0011j1110j10102 = 3EA16.

� Often use \0x" pre�x to denote hex, e.g. 0x107.

� Can use dot to separate large numbers into 16-bit
chunks, e.g. 0x3FF:FFFF .

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 12

Number Representation (2)

� What about signed numbers? Two main options:

� Sign & magnitude:

{ top (leftmost) bit
ags if negative; remaining
bits make value.

{ e.g. byte 100110112 ! �00110112 = �27.

{ represents range �(2n�1 � 1) to +(2n�1 � 1),
and the bonus value �0 (!).

� 2's complement:

{ to get �x from x, invert every bit and add 1.

{ e.g. +27 = 000110112)
�27 = (111001002 + 1) = 111001012.

{ treat 1000 : : : 0002 as �2
n�1.

{ represents range �2n�1 to +(2n�1 � 1)

� Note:

{ in both cases, top-bit means \negative".

{ both representations depend on n;

� In practice, all modern computers use 2's
complement. . .

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 13

Unsigned Arithmetic

0 0 1 1 1

0 0 1 1 0

1C2C3C4C

10110 0)(1)(1)(0)(

0)(
= =

0)(0)(1)(1)(

0)(

0C inC
outC 5C

0)(

� (we use 5-bit registers for simplicity)

� Unsigned addition: Cn means \carry":

00101 5 11110 30

+ 00111 7 + 00111 7

------------- --------------

0 01100 12 1 00101 5

------------- --------------

� Unsigned subtraction: Cn means \borrow":

11110 30 00111 7

+ 00101 -27 + 10110 -10

------------- --------------

1 00011 3 0 11101 29

------------- --------------

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 14

Signed Arithmetic

� In signed arithmetic, carry no good on its own.
Use the over
ow
ag, V = (Cn� Cn�1).

� Also have negative
ag, N = bn�1 (i.e. the msb).

� Signed addition:

00101 5 01010 10

+ 00111 7 + 00111 7

------------- --------------

0 01100 12 0 10001 -15

------------- --------------

0 1

� Signed subtraction:

01010 10 10110 -10

+ 11001 -7 + 10110 -10

------------- --------------

1 00011 3 1 01100 12

------------- --------------

1 0

� Note that in over
ow cases the sign of the result is
always wrong (i.e. the N bit is inverted).

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 15

Arithmetic & Logical Instructions

� Some common ALU instructions are:

Mnemonic C/Java Equivalent
and d a; b d = a & b;

xor d a; b d = a ^ b;

bis d a; b d = a | b;

bic d a; b d = a & (~b);

add d a; b d = a + b;

sub d a; b d = a - b;

rsb d a; b d = b - a;

shl d a; b d = a << b;

shr d a; b d = a >> b;

Both d and a must be registers; b can be a register
or a (small) constant.

� Typically also have addc and subc, which handle
carry or borrow (for multi-precision arithmetic), e.g.

add d0, a0, b0 // compute "low" part.

addc d1, a1, b1 // compute "high" part.

� May also get:

{ Arithmetic shifts: asr and asl(?)

{ Rotates: ror and rol.

Computer Organisation | Arithmetic and Logical Operations Tim Harris | 16

Conditional Execution

� Seen C;N; V ; add Z (zero), logical NOR of all bits
in output.

� Can predicate execution based on (some
combination) of
ags, e.g.

sub d, a, b // compute d = a - b

beq proc1 // if equal, goto proc1

br proc2 // otherwise goto proc2

Java equivalent approximately:

if (a==b) proc1() else proc2();

� On most computers, mainly limited to branches.

� On ARM (and IA64), everything conditional, e.g.

sub d, a, b # compute d = a - b

moveq d, #5 # if equal, d = 5;

movne d, #7 # otherwise d = 7;

Java equiv: d = (a==b) ? 5 : 7;

� \Silent" versions useful when don't really want
result, e.g. tst, teq, cmp.

Computer Organisation | Conditional Execution Tim Harris | 17

Condition Codes

SuÆx Meaning Flags
EQ, Z Equal, zero Z == 1
NE, NZ Not equal, non-zero Z == 0
MI Negative N == 1
PL Positive (incl. zero) N == 0
CS, HS Carry, higher or same C == 1
CC, LO No carry, lower C == 0
VS Over
ow V == 1
VC No over
ow V == 0
HI Higher C == 1 && Z == 0
LS Lower or same C == 0 || Z == 1
GE Greater than or equal N == V
GT Greater than N == V && Z == 0
LT Less than N != V
LE Less than or equal N != V || Z == 1

� HS, LO, etc. used for unsigned comparisons (recall
that C means \borrow").

� GE, LT, etc. used for signed comparisons: check
both N and V so always works.

Computer Organisation | Conditional Execution Tim Harris | 18

Loads & Stores

� Have variable sized values, e.g. bytes (8-bits),
words (16-bits), longwords (32-bits) and
quadwords (64-bits).

� Load or store instructions usually have a suÆx to
determine the size, e.g. `b' for byte, `w' for word,
`l' for longword.

� When storing > 1 byte, have two main options: big
endian and little endian; e.g. storing longword
0xDEADBEEF into memory at address 0x4.

Little Endian

00 01 02 03

Big Endian

04 05 06 07 08

EF BE AD DE

DE AD BE EF

If read back a byte from address 0x4, get 0xDE if
big-endian, or 0xEF if little-endian.

� Today have x86 & Alpha little endian; Sparc &
68K, big endian; Mips & ARM either.

Computer Organisation | Memory (CPU point of view) Tim Harris | 19

Addressing Modes

� An addressing mode tells the computer where the
data for an instruction is to come from.

� Get a wide variety, e.g.

Register: add r1, r2, r3

Immediate: add r1, r2, #25

PC Relative: beq 0x20

Register Indirect: ldr r1, [r2]

" + Displacement: str r1, [r2, #8]

Indexed: movl r1, (r2, r3)

Absolute/Direct: movl r1, $0xF1EA0130

Memory Indirect: addl r1, ($0xF1EA0130)

� Most modern machines are load/store) only
support �rst �ve:

{ allow at most one memory ref per instruction

{ (there are very good reasons for this)

� Note that CPU generally doesn't care what is
being held within the memory.

� i.e. up to programmer to interpret whether data is
an integer, a pixel or a few characters in a novel.

Computer Organisation | Memory (CPU point of view) Tim Harris | 20

Representing Text

� Two main standards:

1. ASCII: 7-bit code holding (English) letters,
numbers, punctuation and a few other
characters.

2. Unicode: 16-bit code supporting practically all
international alphabets and symbols.

� ASCII default on many operating systems, and on
the early Internet (e.g. e-mail).

� Unicode becoming more popular (esp UTF-8!).

� In both cases, represent in memory as either
strings or arrays: e.g. \Pub Time!"

Ox351A.25E4

Ox351A.25E8

20 62 75 50

ArrayString

65 6D 69 54

Ox351A.25EC2100xxxx

20 62

75 50

69 54

65 6D21xx

00 09

� 0x49207769736820697420776173203a2d28

Computer Organisation | Memory (Programmer's Point of View) Tim Harris | 21

Floating Point (1)

� In many cases want to deal with very large or very
small numbers.

� Use idea of \scienti�c notation", e.g. n = m� 10e

{ m is called the mantissa

{ e is called the exponent.

e.g. C = 3:01� 108 m/s.

� For computers, use binary i.e. n = m� 2e, where
m includes a \binary point".

� Both m and e can be positive or negative; typically

{ sign of mantissa given by an additional sign bit.

{ exponent is stored in a biased (excess) format.

) use n = (�1)sm� 2e�b, where 0 � m < 2 and b is
the bias.

� e.g. 4-bit mantissa & 3-bit bias-3 exponent allows
positive range [0:0012 � 2�3; 1:1112 � 24]

= [(1
8
)(1

8
), (15

8
)16], or [1

64
, 30]

Computer Organisation | Memory (Programmer's Point of View) Tim Harris | 22

Floating Point (2)

� In practice use IEEE
oating point with
normalised mantissa m = 1:xx : : : x2
) use n = (�1)s((1 +m)� 2e�b),

� Both single (float) and double (double)
precision:

S Exponent(11) Mantissa (52)

06263 5152

S Exponent(8) Mantissa (23)

022233031

Bias-127Bias-1023

� IEEE fp reserves e = 0 and e = max:

{ �0 (!): both e and m zero.

{ �1 : e = max, m zero.

{ NaNs : e = max, m non-zero.

{ denorms : e = 0, m non-zero

� Normal positive range [2�126;� 2128] for single, or
[2�1022;� 21024] for double.

� NB: still only 232/264 values | just spread out.

Computer Organisation | Memory (Programmer's Point of View) Tim Harris | 23

Data Structures

� Records / structures: each �eld stored as an o�set
from a base address.

� Variable size structures: explicitly store addresses
(pointers) inside structure, e.g.

datatype rec = node of int * int * rec

| leaf of int;

val example = node(4, 5, node(6, 7, leaf(8)));

Imagine example is stored at address 0x1000:

Address Value Comment

0x0F30 0xFFFF Constructor tag for a leaf

0x0F34 8 Integer 8
...

0x0F3C 0xFFFE Constructor tag for a node

0x0F40 6 Integer 6

0x0F44 7 Integer 7

0x0F48 0x0F30 Address of inner node
...

0x1000 0xFFFE Constructor tag for a node

0x1004 4 Integer 4

0x1008 5 Integer 5

0x100C 0x0F3C Address of inner node

Computer Organisation | Memory (Programmer's Point of View) Tim Harris | 24

Instruction Encoding

� An instruction comprises:

a. an opcode: specify what to do.
b. zero or more operands: where to get values

e.g. add r1, r2, r3 � 1010111 001 010 011

� Old machines (and x86) use variable length
encoding motivated by low code density.

� Most modern machines use �xed length encoding
for simplicity. e.g. ARM ALU operations.

00 I Opcode S Ra Rd Operand 2

31 25 24 21 20 19 16 15 1211 026

Cond

2728

and r13, r13, #31 = 0xe20dd01f =

1110 00 1 0000 0 1101 1101 000000011111

bic r3, r3, r2 = 0xe1c33002 =

1110 00 0 1110 0 0011 0011 000000000010

cmp r1, r2 = 0xe1510002 =

1110 00 0 1010 1 0001 0000 000000000010

Computer Organisation | Memory (Programmer's Point of View) Tim Harris | 25

Fetch-Execute Cycle Revisited

Control Unit

IBDecode

Execution Unit
R
e
g
i
s
t
e
r

F
i
l
e

PC

+

MAU

BU

ALU

1. CU fetches & decodes instruction and generates
(a) control signals and (b) operand information.

2. Inside EU, control signals select functional unit
(\instruction class") and operation.

3. If ALU, then read one or two registers, perform
operation, and (probably) write back result.

4. If BU, test condition and (maybe) add value to PC.

5. If MAU, generate address (\addressing mode")
and use bus to read/write value.

6. Repeat ad in�nitum.

Computer Organisation | Fetch-Execute Cycle Revisited Tim Harris | 26

Input/Output Devices

� Devices connected to processor via a bus (e.g. ISA,
PCI, AGP).

� Includes a wide range:

{ Mouse,

{ Keyboard,

{ Graphics Card,

{ Sound card,

{ Floppy drive,

{ Hard-Disk,

{ CD-Rom,

{ Network card,

{ Printer,

{ Modem

{ etc.

� Often two or more stages involved (e.g. IDE, SCSI,
RS-232, Centronics, etc.)

Computer Organisation | I/O Devices Tim Harris | 27

UARTs

A[0:x]

D[0:7]

chip select/cs

Serial Input

Serial Output

Baud
Rate

Generator

read/writer/w

� Universal Asynchronous Receiver/Transmitter:

{ stores 1 or more bytes internally.

{ converts parallel to serial.

{ outputs according to RS-232.

� Various baud rates (e.g. 1,200 { 115,200)

� Slow and simple. . . and very useful.

� Make up \serial ports" on PC.

� Max throughput � 14.4KBytes; variants up to 56K
(for modems).

Computer Organisation | I/O Devices Tim Harris | 28

Hard Disks

spindle

actuator

read-write
head

arm

rotation

platter

sector

track

cylinder

� Whirling bits of (magnetized) metal. . .

� Rotate 3,600 { 7,200 times a minute.

� Capacity � 40 GBytes (� 40� 230bytes).

Computer Organisation | I/O Devices Tim Harris | 29

Graphics Cards

hsync

from CPU

RAMDAC

Dot
Clock

vsync

Blue
Green
Red

to Monitor

Graphics
Processor

Framebuffer

VRAM/
SDRAM/
SGRAM

PCI/
AGP

� Essentially some RAM (framebu�er) and some
digital-to-analogue circuitry (RAMDAC).

� RAM holds array of pixels: picture elements.

� Resolutions e.g. 640x480, 800x600, 1024x768,
1280x1024, 1600x1200.

� Depths: 8-bit (LUT), 16-bit (RGB=555, 24-bit
(RGB=888), 32-bit (RGBA=888).

� Memory requirement = x� y� depth, e.g.
1024x768 @ 16bpp needs 1536KB.

) full-screen 50Hz video requires 7.5MBytes/s (or
60Mbits/s).

Computer Organisation | I/O Devices Tim Harris | 30

Buses

Processor Memory

Other Devices

ADDRESS

 DATA

CONTROL

� Bus = collection of shared communication wires:

✔ low cost.

✔ versatile / extensible.

✘ potential bottle-neck.

� Typically comprises address lines, data lines and
control lines (+ power/ground).

� Operates in a master-slave manner, e.g.

1. master decides to e.g. read some data.

2. master puts addr onto bus and asserts 'read'

3. slave reads addr from bus and retrieves data.

4. slave puts data onto bus.

5. master reads data from bus.

Computer Organisation | Buses, Interrupts and DMA Tim Harris | 31

Bus Hierarchy

Sound
Card

Bridge

64MByte
DIMM

Processor

C
a
c
h
e
s

64MByte
DIMM

Framebuffer

B
r
i
d
g
e

SCSI
Controller

PCI Bus (33Mhz)

Memory Bus (100Mhz)Processor
Bus

ISA Bus (8Mhz)

� In practice, have lots of di�erent buses with
di�erent characteristics e.g. data width, max
#devices, max length.

� Most buses are synchronous (share clock signal).

Computer Organisation | Buses, Interrupts and DMA Tim Harris | 32

Interrupts

� Bus reads and writes are transaction based: CPU
requests something and waits until it happens.

� But e.g. reading a block of data from a hard-disk
takes � 2ms, which is � 1; 000; 000 clock cycles!

� Interrupts provide a way to decouple CPU
requests from device responses.

1. CPU uses bus to make a request (e.g. writes
some special values to a device).

2. Device goes o� to get info.

3. Meanwhile CPU continues doing other stu�.

4. When device �nally has information, raises an
interrupt.

5. CPU uses bus to read info from device.

� When interrupt occurs, CPU vectors to handler,
then resumes using special instruction, e.g.

0x184c: add r0, r0, #8

0x1850: sub r1, r5, r6

0x1854: ldr r0, [r0]

0x1858: and r1, r1, r0

0x0020: ...

0x0024: <do stuff>

...... ...

0x0038: rti

Computer Organisation | Buses, Interrupts and DMA Tim Harris | 33

Interrupts (2)

� Interrupt lines (� 4� 8) are part of the bus.

� Often only 1 or 2 pins on chip) need to encode.

� e.g. ISA & x86:

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR78

2
5
9
A

P
I
C

Processor

Intel
Clone

 INT

 INTA

 D[0:7]

1. Device asserts IRx.

2. PIC asserts INT.

3. When CPU can interrupt, strobes INTA.

4. PIC sends interrupt number on D[0:7].

5. CPU uses number to index into a table in
memory which holds the addresses of handlers
for each interrupt.

6. CPU saves registers and jumps to handler.

Computer Organisation | Buses, Interrupts and DMA Tim Harris | 34

Direct Memory Access (DMA)

� Interrupts good, but even better is a device which
can read and write processor memory directly.

� A generic DMA \command" might include

{ source address

{ source increment / decrement / do nothing

{ sink address

{ sink increment / decrement / do nothing

{ transfer size

� Get one interrupt at end of data transfer

� DMA channels may be provided by devices
themselves:

{ e.g. a disk controller

{ pass disk address, memory address and size

{ give instruction to read or write

� Also get \stand-alone" programmable DMA
controllers.

Computer Organisation | Buses, Interrupts and DMA Tim Harris | 35

Summary

� Computers made up of four main parts:

1. Processor (including register �le, control unit
and execution unit),

2. Memory (caches, RAM, ROM),

3. Devices (disks, graphics cards, etc.), and

4. Buses (interrupts, DMA).

� Information represented in all sorts of formats:

{ signed & unsigned integers,

{ strings,

{
oating point,

{ data structures,

{ instructions.

� Can (hopefully) understand all of these at some
level, but gets pretty complex.

) to be able to actually use a computer, need an
operating system.

Computer Organisation | Summary Tim Harris | 36

What is an Operating System?

� A program which controls the execution of all
other programs (applications).

� Acts as an intermediary between the user(s) and
the computer.

� Objectives:

{ convenience,

{ eÆciency,

{ extensibility.

� Similar to a government. . .

Operating Systems | Introduction Tim Harris | 37

An Abstract View

Operating System

Hardware

A
pp

 2

A
pp

 N

A
pp

 1

� The Operating System (OS):

{ controls all execution.

{ multiplexes resources between applications.

{ abstracts away from complexity.

� Typically also have some libraries and some tools
provided with OS.

� Are these part of the OS? Is IE4 a tool?

{ no-one can agree. . .

� For us, the OS � the kernel.

Operating Systems | Introduction Tim Harris | 38

In The Beginning. . .

� 1949: First stored-program machine (EDSAC)

� to � 1955: \Open Shop".

{ large machines with vacuum tubes.

{ I/O by paper tape / punch cards.

{ user = programmer = operator.

� To reduce cost, hire an operator :

{ programmers write programs and submit
tape/cards to operator.

{ operator feeds cards, collects output from
printer.

� Management like it.

� Programmers hate it.

� Operators hate it.

) need something better.

Operating Systems | Evolution Tim Harris | 39

Batch Systems

� Introduction of tape drives allow batching of jobs:

{ programmers put jobs on cards as before.

{ all cards read onto a tape.

{ operator carries input tape to computer.

{ results written to output tape.

{ output tape taken to printer.

� Computer now has a resident monitor :

{ initially control is in monitor.

{ monitor reads job and transfer control.

{ at end of job, control transfers back to monitor.

� Even better: spooling systems.

{ use interrupt driven I/O.

{ use magnetic disk to cache input tape.

{ �re operator.

� Monitor now schedules jobs. . .

Operating Systems | Evolution Tim Harris | 40

Multi-Programming

Operating
System

Job 1

Job 2

Job 3

Job 4

Operating
System

Job 1

Job 2

Job 3

Job 4

Operating
System

Job 1

Job 2

Job 3

Job 4

Time

� Use memory to cache jobs from disk) more than
one job active simultaneously.

� Two stage scheduling:

1. select jobs to load: job scheduling.

2. select resident job to run: CPU scheduling.

� Users want more interaction) time-sharing :

� e.g. CTSS, TSO, Unix, VMS, Windows NT. . .

Operating Systems | Evolution Tim Harris | 41

Today and Tomorrow

� Single user systems: cheap and cheerful.

{ personal computers.

{ no other users) ignore protection.

{ e.g. DOS, Windows, Win 95/98, . . .

� RT Systems: power is nothing without control.

{ hard-real time: nuclear reactor safety monitor.

{ soft-real time: mp3 player.

� Parallel Processing: the need for speed.

{ SMP: 2{8 processors in a box.

{ MIMD: super-computing.

� Distributed computing: global processing?

{ Java: the network is the computer.

{ Clustering: the network is the bus.

{ CORBA: the computer is the network.

{ .NET: the network is an enabling framework. . .

Operating Systems | Evolution Tim Harris | 42

Monolithic Operating Systems

H/W

S/W

App.

App. App.

Scheduler

Device Driver Device Driver

App.

� Oldest kind of OS structure (\modern" examples
are DOS, original MacOS)

� Problem: applications can e.g.

{ trash OS software.

{ trash another application.

{ hoard CPU time.

{ abuse I/O devices.

{ etc. . .

� No good for fault containment (or multi-user).

� Need a better solution. . .

Operating Systems | Structures & Protection Mechanisms Tim Harris | 43

Dual-Mode Operation

� Want to stop buggy (or malicious) program from
doing bad things.

) provide hardware support to di�erentiate between
(at least) two modes of operation.

1. User Mode : when executing on behalf of a user
(i.e. application programs).

2. Kernel Mode : when executing on behalf of the
operating system.

� Hardware contains a mode-bit, e.g. 0 means kernel,
1 means user.

Kernel
Mode

User
Mode

reset

interrupt or fault

set user mode

� Make certain machine instructions only possible in
kernel mode. . .

Operating Systems | Structures & Protection Mechanisms Tim Harris | 44

Protecting I/O & Memory

� First try: make I/O instructions privileged.

{ applications can't mask interrupts.

{ applications can't control I/O devices.

� But:

1. Application can rewrite interrupt vectors.

2. Some devices accessed via memory

� Hence need to protect memory also. . .

� e.g. de�ne a base and a limit for each program.

Operating
System

Job 1

Job 2

Job 3

Job 4

0x0000

0x3000

0x5000

0x9800

0xD800

0xFFFF

0x5000

0x4800

limit register

base register

� Accesses outside allowed range are protected.

Operating Systems | Structures & Protection Mechanisms Tim Harris | 45

Memory Protection Hardware

CPU

vector to OS (address error)

yes

no

yes

no

base base+limit

M
em

or
y

� Hardware checks every memory reference.

� Access out of range) vector into operating
system (just as for an interrupt).

� Only allow update of base and limit registers in
kernel mode.

� Typically disable memory protection in kernel mode
(although a bad idea).

� In reality, more complex protection h/w used:

{ main schemes are segmentation and paging

{ (covered later on in course)

Operating Systems | Structures & Protection Mechanisms Tim Harris | 46

Protecting the CPU

� Need to ensure that the OS stays in control.

{ i.e. need to prevent any given application from
`hogging' the CPU the whole time.

) use a timer device.

� Usually use a countdown timer, e.g.

1. set timer to initial value (e.g. 0xFFFF).

2. every tick (e.g. 1�s), timer decrements value.

3. when value hits zero, interrupt.

� (Modern timers have programmable tick rate.)

� Hence OS gets to run periodically and do its stu�.

� Need to ensure only OS can load timer, and that
interrupt cannot be masked.

{ use same scheme as for other devices.

{ (viz. privileged instructions, memory protection)

� Same scheme can be used to implement
time-sharing (more on this later).

Operating Systems | Structures & Protection Mechanisms Tim Harris | 47

Kernel-Based Operating Systems

H/W

S/W

App.

Priv

Unpriv

App. App. App.

Kernel

Scheduler

Device Driver Device Driver

System Calls

File System Protocol Code

� Applications can't do I/O due to protection

) operating system does it on their behalf.

� Need secure way for application to invoke
operating system:

) require a special (unprivileged) instruction to
allow transition from user to kernel mode.

� Generally called a software interrupt since
operates similarly to (hardware) interrupt. . .

� Set of OS services accessible via software interrupt
mechanism called system calls.

Operating Systems | Structures & Protection Mechanisms Tim Harris | 48

Microkernel Operating Systems

H/W

S/W

App.

Priv

Unpriv

Server Device
Driver

ServerServer

App. App. App.

Kernel Scheduler

Device
Driver

� Alternative structure:

{ push some OS services into servers.

{ servers may be privileged (i.e. operate in kernel
mode).

� Increases both modularity and extensibility.

� Still access kernel via system calls, but need new
way to access servers:

) interprocess communication (IPC) schemes.

Operating Systems | Structures & Protection Mechanisms Tim Harris | 49

Kernels versus Microkernels

So why isn't everything a microkernel?

� Lots of IPC adds overhead

) microkernels usually perform less well.

� Microkernel implementation sometimes tricky:
need to worry about synchronisation.

� Microkernels often end up with redundant copies of
OS data structures.

Hence today most common operating systems blur
the distinction between kernel and microkernel.

� e.g. linux is \kernel", but has kernel modules and
certain servers.

� e.g. Windows NT was originally microkernel (3.5),
but now (4.0 onwards) pushed lots back into kernel
for performance.

� Still not clear what the best OS structure is, or
how much it really matters. . .

Operating Systems | Structures & Protection Mechanisms Tim Harris | 50

Operating System Functions

� Regardless of structure, OS needs to securely
multiplex resources, i.e.

1. protect applications from each other, yet

2. share physical resources between them.

� Also usually want to abstract away from grungy
harware, i.e. OS provides a virtual machine:

{ share CPU (in time) and provide each
application with a virtual processor,

{ allocate and protect memory, and provide
applications with their own virtual address space,

{ present a set of (relatively) hardware
independent virtual devices, and

{ divide up storage space by using �ling systems.

� Remainder of this part of the course will look at
each of the above areas in turn. . .

Operating Systems | Functions Tim Harris | 51

Process Concept

� From a user's point of view, the operating system
is there to execute programs:

{ on batch system, refer to jobs

{ on interactive system, refer to processes

{ (we'll use both terms fairly interchangeably)

� Process 6= Program:

{ a program is static, while a process is dynamic

{ in fact, a process
4
= \a program in execution"

� (Note: \program" here is pretty low level, i.e.
native machine code or executable)

� Process includes:

1. program counter

2. stack

3. data section

� Processes execute on virtual processors

Operating Systems | Processes Tim Harris | 52

Process States

Exit

Running

New

Ready

Blocked

dispatch

timeout
or yield

releaseadmit

event-waitevent

� As a process executes, it changes state:

{ New : the process is being created

{ Running : instructions are being executed

{ Ready : the process is waiting for the CPU (and
is prepared to run at any time)

{ Blocked : the process is waiting for some event
to occur (and cannot run until it does)

{ Exit: the process has �nished execution.

� The operating system is responsible for
maintaining the state of each process.

Operating Systems | Processes Tim Harris | 53

Process Control Block

Process Number (or Process ID)

Current Process State

Other CPU Registers

Memory Mangement Information

CPU Scheduling Information

Program Counter

Other Information
(e.g. list of open files, name of

executable, identity of owner, CPU
time used so far, devices owned)

Refs to previous and next PCBs

OS maintains information about every process in a
data structure called a process control block (PCB):

� Unique process identi�er

� Process state (Running, Ready, etc.)

� CPU scheduling & accounting information

� Program counter & CPU registers

� Memory management information

� . . .

Operating Systems | Processes Tim Harris | 54

Context Switching

Process A Process BOperating System

Save State into PCB A

Restore State from PCB B

Save State into PCB B

Restore State from PCB A

idle

idle

idle

executing

executing

executing

� Process Context = machine environment during
the time the process is actively using the CPU.

� i.e. context includes program counter, general
purpose registers, processor status register, . . .

� To switch between processes, the OS must:

1. save the context of the currently executing
process (if any), and

2. restore the context of that being resumed.

� Time taken depends on h/w support.

Operating Systems | Processes Tim Harris | 55

Scheduling Queues

admit
CPU

release

timeout or yield

dispatch
Ready Queue

event-waitevent

Wait Queue(s)

Job
Queue

create
(batch) (interactive)
create

� Job Queue: batch processes awaiting admission.

� Ready Queue: set of all processes residing in main
memory, ready and waiting to execute.

� Wait Queue(s): set of processes waiting for an I/O
device (or for other processes)

� Long-term & short-term schedulers:

{ Job scheduler selects which processes should be
brought into the ready queue.

{ CPU scheduler selects which process should be
executed next and allocates CPU.

Operating Systems | Process Life-cycle Tim Harris | 56

Process Creation

� Nearly all systems are hierarchical : parent
processes create children processes.

� Resource sharing:

{ parent and children share all resources.
{ children share subset of parent's resources.
{ parent and child share no resources.

� Execution:

{ parent and children execute concurrently.
{ parent waits until children terminate.

� Address space:

{ child duplicate of parent.
{ child has a program loaded into it.

� e.g. Unix:

{ fork() system call creates a new process
{ all resources shared (child is a clone).
{ execve() system call used to replace the
process' memory space with a new program.

� NT/2000: CreateProcess() system call includes
name of program to be executed.

Operating Systems | Process Life-cycle Tim Harris | 57

Process Termination

� Process executes last statement and asks the
operating system to delete it (exit):

{ output data from child to parent (wait)

{ process' resources are deallocated by the OS.

� Process performs an illegal operation, e.g.

{ makes an attempt to access memory to which it
is not authorised,

{ attempts to execute a privileged instruction

� Parent may terminate execution of child processes
(abort, kill), e.g. because

{ child has exceeded allocated resources

{ task assigned to child is no longer required

{ parent is exiting (\cascading termination")

{ (many operating systems do not allow a child to
continue if its parent terminates)

� e.g. Unix has wait(), exit() and kill()

� e.g. NT/2000 has ExitProcess() for self and
TerminateProcess() for others.

Operating Systems | Process Life-cycle Tim Harris | 58

Process Blocking

� In general a process blocks on an event, e.g.

{ an I/O device completes an operation,

{ another process sends a message

� Assume OS provides some kind of general-purpose
blocking primitive, e.g. await().

� Need care handling concurrency issues, e.g.

if(no key being pressed) {

await(keypress);

print("Key has been pressed!\n");

}

// handle keyboard input

What happens if a key is pressed at the �rst 'f' ?

� (This is a big area: lots more detail next year.)

� In this course we'll generally assume that problems
of this sort do not arise.

Operating Systems | Process Life-cycle Tim Harris | 59

CPU-I/O Burst Cycle

CPU Burst Duration (ms)

F
re

q
u

en
cy

2 4 6 8 10 12 14 16

� CPU-I/O Burst Cycle: process execution consists
of a cycle of CPU execution and I/O wait.

� Processes can be described as either:

1. I/O-bound: spends more time doing I/O that
than computation; has many short CPU bursts.

2. CPU-bound: spends more time doing
computations; has few very long CPU bursts.

� Observe most processes execute for at most a few
milliseconds before blocking

) need multiprogramming to obtain decent overall
CPU utilization.

Operating Systems | Process Life-cycle Tim Harris | 60

CPU Scheduler

Recall: CPU scheduler selects one of the ready
processes and allocates the CPU to it.

� There are a number of occasions when we
can/must choose a new process to run:

1. a running process blocks (running ! blocked)

2. a timer expires (running ! ready)

3. a waiting process unblocks (blocked ! ready)

4. a process terminates (running ! exit)

� If only make scheduling decision under 1, 4) have
a non-preemptive scheduler:

✔ simple to implement

✘ open to denial of service

{ e.g. Windows 3.11, early MacOS.

� Otherwise the scheduler is preemptive.

✔ solves denial of service problem

✘ more complicated to implement

✘ introduces concurrency problems. . .

Operating Systems | CPU Scheduling Tim Harris | 61

Idle system

What do we do if there is no ready process?

� halt processor (until interrupt arrives)

✔ saves power (and heat!)

✔ increases processor lifetime

✘ might take too long to stop and start.

� busy wait in scheduler

✔ quick response time

✘ ugly, useless

� invent idle process, always available to run

✔ gives uniform structure

✔ could use it to run checks

✘ uses some memory

✘ can slow interrupt response

In general there is a trade-o� between responsiveness
and usefulness.

Operating Systems | CPU Scheduling Tim Harris | 62

Scheduling Criteria

A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU
is being used (and not for idle process!)

2. Throughput: # of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a
particular process.

4. Waiting time: amount of time a process has been
waiting in the ready queue.

5. Response time: amount of time it takes from when
a request was submitted until the �rst response is
produced (in time-sharing systems)

Sensible scheduling strategies might be:

� Maximize throughput or CPU utilization

� Minimize average turnaround time, waiting time or
response time.

Also need to worry about fairness and liveness.

Operating Systems | CPU Scheduling Tim Harris | 63

First-Come First-Served Scheduling

� FCFS depends on order processes arrive, e.g.

Process Burst Time
P1 25
P2 4
P3 7

� If processes arrive in the order P1, P2, P3:

P1 P2 P3

0 25 29 36

{ Waiting time for P1=0; P2=25; P3=29;

{ Average waiting time: (0 + 25 + 29)=3 = 18.

� If processes arrive in the order P3, P2, P1:

P1P2P3

0 7 11 36

{ Waiting time for P1=11; P2=7; P3=0;

{ Average waiting time: (11 + 7 + 0)=3 = 6.

{ i.e. three times as good!

� First case poor due to convoy e�ect.

Operating Systems | CPU Scheduling Tim Harris | 64

SJF Scheduling

Intuition from FCFS leads us to shortest job �rst
(SJF) scheduling.

� Associate with each process the length of its next
CPU burst.

� Use these lengths to schedule the process with the
shortest time (FCFS can be used to break ties).

For example:

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

P1 P3 P2

0

P4

7 8 12 16

� Waiting time for P1=0; P2=6; P3=3; P4=7;

� Average waiting time: (0 + 6 + 3 + 7)=4 = 4.

SJF is optimal in that it gives the minimum average
waiting time for a given set of processes.

Operating Systems | CPU Scheduling Tim Harris | 65

SRTF Scheduling

� SRTF = Shortest Remaining-Time First.

� Just a preemptive version of SJF.

� i.e. if a new process arrives with a CPU burst
length less than the remaining time of the current
executing process, preempt.

For example:

Process Arrival Time Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

P1 P3P2

0

P4

2 4 5 7 11 16

P2 P1

� Waiting time for P1=9; P2=1; P3=0; P4=2;

� Average waiting time: (9 + 1 + 0 + 2)=4 = 3.

What are the problems here?

Operating Systems | CPU Scheduling Tim Harris | 66

Predicting Burst Lengths

� For both SJF and SRTF require the next \burst
length" for each process) need to estimate it.

� Can be done by using the length of previous CPU
bursts, using exponential averaging:

1. tn = actual length of nth CPU burst.

2. �n+1 = predicted value for next CPU burst.

3. For �; 0 � � � 1 de�ne:

�n+1 = �tn + (1� �)�n

� If we expand the formula we get:

�n+1 = �tn+: : :+(1��)j�tn�j+: : :+(1��)n+1�0

where �0 is some constant.

� Choose value of � according to our belief about
the system, e.g. if we believe history irrelevant,
choose � � 1 and then get �n+1 � tn.

� In general an exponential averaging scheme is a
good predictor if the variance is small.

Operating Systems | CPU Scheduling Tim Harris | 67

Round Robin Scheduling

De�ne a small �xed unit of time called a quantum (or
time-slice), typically 10-100 milliseconds. Then:

� Process at the front of the ready queue is allocated
the CPU for (up to) one quantum.

� When the time has elapsed, the process is
preempted and appended to the ready queue.

Round robin has some nice properties:

� Fair: if there are n processes in the ready queue
and the time quantum is q, then each process gets
1=nth of the CPU.

� Live: no process waits more than (n� 1)q time
units before receiving a CPU allocation.

� Typically get higher average turnaround time than
SRTF, but better average response time.

But tricky choosing correct size quantum:

� q too large) FCFS/FIFO

� q too small) context switch overhead too high.

Operating Systems | CPU Scheduling Tim Harris | 68

Static Priority Scheduling

� Associate an (integer) priority with each process

� For example:

0 system internal processes
1 interactive processes (sta�)
2 interactive processes (students)
3 batch processes.

� Then allocate CPU to the highest priority process:

{ `highest priority' typically means smallest integer

{ get preemptive and non-preemptive variants.

� e.g. SJF is a priority scheduling algorithm where
priority is the predicted next CPU burst time.

� Problem: how to resolve ties?

{ round robin with time-slicing

{ allocate quantum to each process in turn.

{ Problem: biased towards CPU intensive jobs.

� per-process quantum based on usage?
� ignore?

� Problem: starvation. . .

Operating Systems | CPU Scheduling Tim Harris | 69

Dynamic Priority Scheduling

� Use same scheduling algorithm, but allow priorities
to change over time.

� e.g. simple aging:

{ processes have a (static) base priority and a
dynamic e�ective priority.

{ if process starved for k seconds, increment
e�ective priority.

{ once process runs, reset e�ective priority.

� e.g. computed priority:

{ �rst used in Dijkstra's THE

{ time slots: . . . , t, t+ 1, . . .

{ in each time slot t, measure the CPU usage of
process j: uj

{ priority for process j in slot t+ 1:
pjt+1 = f(ujt ; p

j
t ; u

j
t�1; p

j
t�1; : : :)

{ e.g. pjt+1 = pjt=2 + kujt
{ penalises CPU bound ! supports I/O bound.

� today such computation considered acceptable. . .

Operating Systems | CPU Scheduling Tim Harris | 70

Memory Management

In a multiprogramming system:

� many processes in memory simultaneously

� every process needs memory for:

{ instructions (\code" or \text"),

{ static data (in program), and

{ dynamic data (heap and stack).

� in addition, operating system itself needs memory
for instructions and data.

) must share memory between OS and k processes.

The memory magagement subsystem handles:

1. Relocation

2. Allocation

3. Protection

4. Sharing

5. Logical Organisation

6. Physical Organisation

Operating Systems | Memory Management Tim Harris | 71

The Address Binding Problem

Consider the following simple program:

int x, y;

x = 5;

y = x + 3;

We can imagine that this would result in some
assembly code which looks something like:

str #5, [Rx] // store 5 into 'x'

ldr R1, [Rx] // load value of x from memory

add R2, R1, #3 // and add 3 to it

str R2, [Ry] // and store result in 'y'

where the expression `[addr]' means \the contents
of the memory at address addr".

Then the address binding problem is:

what values do we give Rx and Ry ?

This is a problem because we don't know where in
memory our program will be loaded when we run it:

� e.g. if loaded at 0x1000, then x and y might be
stored at 0x2000, but if loaded at 0x5000, then x

and y might be at 0x6000.

Operating Systems | Relocation Tim Harris | 72

Address Binding and Relocation

To solve the problem, we need to translate between
\program addresses" and \real addresses".

This can be done:

� at compile time:

{ requires knowledge of absolute addresses

{ e.g. DOS .com �les

� at load time:

{ when program loaded, work out position in
memory and update code with correct addresses

{ must be done every time program is loaded

{ ok for embedded systems / boot-loaders

� at run-time:

{ get some hardware to automatically translate
between program and real addresses.

{ no changes at all required to program itself.

{ most popular and
exible scheme, providing we
have the requisite hardware (MMU).

Operating Systems | Relocation Tim Harris | 73

Logical vs Physical Addresses

Mapping of logical to physical addresses is done at
run-time by Memory Management Unit (MMU), e.g.

CPU

address fault

no

yes
physical
address

limit

M
em

or
y

base

+

logical
address

Relocation Register

1. Relocation register holds the value of the base
address owned by the process.

2. Relocation register contents are added to each
memory address before it is sent to memory.

3. e.g. DOS on 80x86 | 4 relocation registers,
logical address is a tuple (s; o).

4. NB: process never sees physical address | simply
manipulates logical addresses.

5. OS has privilege to update relocation register.

Operating Systems | Relocation Tim Harris | 74

Contiguous Allocation

Given that we want multiple virtual processors, how
can we support this in a single address space?

Where do we put processes in memory?

� OS typically must be in low memory due to
location of interrupt vectors

� Easiest way is to statically divide memory into
multiple �xed size partitions:

{ bottom partition contains OS, remaining
partitions each contain exactly one process.

{ when a process terminates its partition becomes
available to new processes.

{ e.g. OS/360 MFT.

� Need to protect OS and user processes from
malicious programs:

{ use base and limit registers in MMU

{ update values when a new processes is scheduled

{ NB: solving both relocation and protection
problems at the same time!

Operating Systems | Contiguous Allocation Tim Harris | 75

Static Multiprogramming

Partitioned
Memory

Run
Queue

Blocked
Queue

A
B

C

D

Backing
Store

Main
Store

OS

� partition memory when installing OS, and allocate
pieces to di�erent job queues.

� associate jobs to a job queue according to size.

� swap job back to disk when:

{ blocked on I/O (assuming I/O is slower than the
backing store).

{ time sliced: larger the job, larger the time slice

� run job from another queue while swapping jobs

� e.g. IBM OS/360 MVT, ICL System 4

� problems: fragmentation, cannot grow partitions.

Operating Systems | Contiguous Allocation Tim Harris | 76

Dynamic Partitioning

Get more
exibility if allow partition sizes to be
dynamically chosen (e.g. OS/360 MVT) :

� OS keeps track of which areas of memory are
available and which are occupied.

� e.g. use one or more linked lists:

0000 0C04 2200 3810 4790 91E8

B0F0 B130 D708 FFFF

� When a new process arrives the OS searches for a
hole large enough to �t the process.

� To determine which hole to use for new process:

{ �rst �t: stop searching list as soon as big
enough hole is found.

{ best �t: search entire list to �nd \best" �tting
hole (i.e. smallest hole large enough)

{ worst �t: counterintuitively allocate largest hole
(again must search entire list).

� When process terminates its memory returns onto
the free list, coalescing holes where appropriate.

Operating Systems | Contiguous Allocation Tim Harris | 77

Scheduling Example

0

400K

1000K

2000K

2300K

2560K

OS

P1

P2

P3

OS

P1

P3

OS

P1

P4

P3

OS

P3

OS

P5

P3

P4 P4

0

400K

1000K

2000K

2300K

2560K

1700K

0

400K

1000K

2000K

2300K

2560K

1700K

900K

� Consider machine with total of 2560K memory.

� Operating System requires 400K.

� The following jobs are in the queue:

Process Memory Time
P1 600K 10
P2 1000K 5
P3 300K 20
P4 700K 8
P5 500K 15

Operating Systems | Contiguous Allocation Tim Harris | 78

External Fragmentation

OS

P1

P2

P3

OS

P1

P3

OS

P1

P4

P3

OS

P3

P4

P4 P5 P6

OS

P5

P3

P4

OS

P5

P3

P4

� Dynamic partitioning algorithms su�er from
external fragmentation: as processes are loaded
they leave little fragments which may not be used.

� External fragmentation exists when the total
available memory is suÆcient for a request, but is
unusable because it is split into many holes.

� Can also have problems with tiny holes

Solution: compact holes periodically.

Operating Systems | Contiguous Allocation Tim Harris | 79

Compaction

0

300K

1000K

1500K

1900K

2100K

OS

P1

P3

P4

500K
600K P2

1200K

400K

300K

200K

0

300K

800K

2100K

OS

P1

P3

P4

500K
600K P2

1200K

900K

0

300K

1000K

2100K

OS

P1

P4

P3

500K
600K P2

1200K

900K

0

300K

2100K

OS

P1

P4

P3

500K
600K P2

1500K

900K

1900K

Choosing optimal strategy quite tricky. . .

Note that:

� Require run-time relocation.

� Can be done more eÆciently when process is
moved into memory from a swap.

� Some machines used to have hardware support
(e.g. CDC Cyber).

Also get fragmentation in backing store, but in this
case compaction not really viable. . .

Operating Systems | Contiguous Allocation Tim Harris | 80

Paged Virtual Memory

CPU

M
em

or
y

logical address

physical
address

p

f

Page Table
p o

f o1

Another solution is to allow a process to exist in
non-contiguous memory, i.e.

� divide physical memory into relatively small blocks
of �xed size, called frames

� divide logical memory into blocks of the same size
called pages (typical value is 4K)

� each address generated by CPU is composed of a
page number p and page o�set o.

� MMU uses p as an index into a page table.

� page table contains associated frame number f

� usually have jpj >> jfj) need valid bit.

Operating Systems | Paging Tim Harris | 81

Paging Pros and Cons

Page 0

Page 0

Page 1

Page 2

Page n-1

Page 3

Page 4

Page 1

Page 4

Page 3

0

1

2

3

4

5

6

7

8

1
1
0
1
1

0

4
6

2
1

Virtual Memory

Physical Memory

✔ memory allocation easier.

✘ OS must keep page table per process

✔ no external fragmentation (in physical
memory at least).

✘ but get internal fragmentation.

✔ clear separation between user and system
view of memory usage.

✘ additional overhead on context switching

Operating Systems | Paging Tim Harris | 82

Structure of the Page Table

Di�erent kinds of hardware support can be provided:

� Simplest case: set of dedicated relocation registers

{ one register per page

{ OS loads the registers on context switch

{ �ne if the page table is small. . . but what if
have large number of pages ?

� Alternatively keep page table in memory

{ only one register needed in MMU (page table
base register (PTBR))

{ OS switches this when switching process

� Problem: page tables might still be very big.

{ can keep a page table length register (PTLR) to
indicate size of page table.

{ or can use more complex structure (see later)

� Problem: need to refer to memory twice for every
`actual' memory reference. . .

) use a translation lookaside bu�er (TLB)

Operating Systems | Paging Tim Harris | 83

TLB Operation

CPU

M
em

or
y

logical address
physical address

p

p o
f o

f

Page Table

1

TLB
p1
p2
p3
p4

f1
f2
f3
f4

� On memory reference present TLB with logical
memory address

� If page table entry for the page is present then get
an immediate result

� If not then make memory reference to page tables,
and update the TLB

Operating Systems | Paging Tim Harris | 84

Multilevel Page Tables

� Most modern systems can support very large
(232; 264) address spaces.

� Solution { split page table into several sub-parts

� Two level paging { page the page table

P1 Offset

Virtual Address

L2 Address

L1 Page Table
0

n

N

P2 L1 Address

Base Register

L2 Page Table
0

n

N

Leaf PTE

� For 64 bit architectures a two-level paging scheme
is not suÆcient: need further levels.

� (even some 32 bit machines have > 2 levels).

Operating Systems | Paging Tim Harris | 85

Example: x86

PTA V
D

R
W

U
S

W
T

C
D

A
C

Z
O

P
SIGN

Page Directory (Level 1)

1024
entries

L1 L2 Offset
Virtual Address

20 bits

� Page size 4K (or 4Mb).

� First lookup is in the page directory : index using
most 10 signi�cant bits.

� Address of page directory stored in internal
processor register (cr3).

� Results (normally) in the address of a page table.

Operating Systems | Paging Tim Harris | 86

Example: x86 (2)

PFA V
D

R
W

U
S

W
T

C
D

A
C

D
Y

Z
OIGN

Page Table (Level 2)

1024
entries

G
L

L1 L2 Offset
Virtual Address

20 bits

� Use next 10 bits to index into page table.

� Once retrieve page frame address, add in the o�set
(i.e. the low 12 bits).

� Notice page directory and page tables are exactly
one page each themselves.

Operating Systems | Paging Tim Harris | 87

Protection Issues

� Associate protection bits with each page { kept in
page tables (and TLB).

� e.g. one bit for read, one for write, one for execute.

� May also distinguish whether may only be accessed
when executing in kernel mode, e.g.

Frame Number VXWRK

� At the same time as address is going through page
hardware, can check protection bits.

� Attempt to violate protection causes h/w trap to
operating system code

� As before, have valid/invalid bit determining if the
page is mapped into the process address space:

{ if invalid) trap to OS handler

{ can do lots of interesting things here,
particularly with regard to sharing. . .

Operating Systems | Paging Tim Harris | 88

Shared Pages

Another advantage of paged memory is code/data
sharing, for example:

� binaries: editor, compiler etc.

� libraries: shared objects, dlls.

So how does this work?

� Implemented as two logical addresses which map
to one physical address.

� If code is re-entrant (i.e. stateless, non-self
modifying) it can be easily shared between users.

� Otherwise can use copy-on-write technique:

{ mark page as read-only in all processes.

{ if a process tries to write to page, will trap to
OS fault handler.

{ can then allocate new frame, copy data, and
create new page table mapping.

� (may use this for lazy data sharing too).

Requires additional book-keeping in OS, but worth it,
e.g. over 40Mb of shared code on my linux box.

Operating Systems | Paging Tim Harris | 89

Segmentation

procedure

stack

main()

symbols

sys library

stack

sys library

procedure

symbols

main()Limit Base
0

1

2

3

4

0

1

2

3

4

1000

200

5000

200

300

0

200

5200

5300

5600
5700

5900

6900

0

5900

200

5700

5300

Logical
Address

Space

Physical
Memory

Segment
Table

� User prefers to view memory as a set of segments
of no particular size, with no particular ordering

� Segmentation supports this user-view of memory
| logical address space is a collection of (typically
disjoint) segments.

� Segments have a name (or a number) and a length
| addresses specify segment and o�set.

� Contrast with paging where user is unaware of
memory structure (all managed invisibly).

Operating Systems | Segmentation Tim Harris | 90

Implementing Segments

� Maintain a segment table for each process:

Segment Access Base Size Others!

� If program has a very large number of segments
then the table is kept in memory, pointed to by ST
base register STBR

� Also need a ST length register STLR since number
of segs used by di�erent programs will di�er widely

� The table is part of the process context and hence
is changed on each process switch.

Algorithm:

1. Program presents address (s; d).
Check that s < STLR. If not, fault

2. Obtain table entry at reference s+ STBR, a tuple
of form (bs; ls)

3. If 0 � d < ls then this is a valid address at location
(bs; d), else fault

Operating Systems | Segmentation Tim Harris | 91

Sharing and Protection

� Big advantage of segmentation is that protection is
per segment; i.e. corresponds to logical view.

� Protection bits associated with each ST entry
checked in usual way

� e.g. instruction segments (should be non-self
modifying!) thus protected against writes etc.

� e.g. place each array in own seg) array limits
checked by hardware

� Segmentation also facilitates sharing of code/data

{ each process has its own STBR/STLR

{ sharing is enabled when two processes have
entries for the same physical locations.

{ for data segments can use copy-on-write as per
paged case.

� Several subtle caveats exist with segmentation |
e.g. jumps within shared code.

Operating Systems | Segmentation Tim Harris | 92

Sharing Segments

Per-process
Segment
Tables

Physical Memory

Shared

A

B

A

B

System
Segment

Table

[DANGEROUS] [SAFE]

Sharing segments:

� wasteful (and dangerous) to store common
information on shared segment in each process
segment table

� assign each segment a unique System Segment
Number (SSN)

� process segment table simply maps from a Process
Segment Number (PSN) to SSN

Operating Systems | Segmentation Tim Harris | 93

External Fragmentation Returns. . .

� Long term scheduler must �nd spots in memory for
all segments of a program.

� Problem now is that segs are of variable size)
leads to fragmentation.

� Tradeo� between compaction/delay depends on
average segment size

� Extremes: each process 1 seg | reduces to
variable sized partitions

� Or each byte one seg separately relocated |
quadruples memory use!

� Fixed size small segments � paging!

� In general with small average segment sizes,
external fragmentation is small.

Operating Systems | Segmentation Tim Harris | 94

I/O Hardware

� Wide variety of `devices' which interact with the
computer via I/O, e.g.

{ Human readable: graphical displays, keyboard,
mouse, printers

{ Machine readable: disks, tapes, CD, sensors

{ Communications: modems, network interfaces

� They di�er signi�cantly from one another with
regard to:

{ Data rate

{ Complexity of control

{ Unit of transfer

{ Direction of transfer

{ Data representation

{ Error handling

) diÆcult to present a uniform I/O system which
hides all the complexity.

I/O subsystem is generally the `messiest' part of OS.

Operating Systems | I/O Subsystem Tim Harris | 95

I/O Subsystem

Device Driver Layer
Device
Driver

Device
Driver

Device
Driver

Common I/O Functions

Keyboard HardDisk Network Device Layer

Virtual Device Layer

H/W

Unpriv

Priv
I/O SchedulingI/O Buffering

Application-I/O Interface

� Programs access virtual devices:

{ terminal streams not terminals

{ windows not frame bu�er

{ event stream not raw mouse

{ �les not disk blocks

{ printer spooler not parallel port

{ transport protocols not raw ethernet

� OS deals with processor{device interface:

{ I/O instructions versus memory mapped

{ I/O hardware type (e.g. 10's of serial chips)

{ polled versus interrupt driven

{ processor interrupt mechanism

Operating Systems | I/O Subsystem Tim Harris | 96

Polled Mode I/O

status

command

data (r/w)

device-busy (R/O)

command-ready (W/O)

error (R/O)

read (W/O)

write (W/O)

*

� Consider a simple device with three registers:
status, data and command.

� (Host can read and write these via bus)

� Then polled mode operation works as follows:

H repeatedly reads device busy until clear.

H sets e.g. write bit in command register, and
puts data into data register.

H sets command ready bit in status register.

D sees command ready and sets device busy.

D performs write operation.

D clears command ready & then device busy.

� What's the problem here?

Operating Systems | I/O Subsystem Tim Harris | 97

Interrupts Revisited

Recall: to handle mismatch between CPU and device
speeds, processors provide an interrupt mechanism:

� at end of each instruction, processor checks
interrupt line(s) for pending interrupt

� if line is asserted then processor:

{ saves program counter,

{ saves processor status,

{ changes processor mode, and

{ jump to well known address (or its contents)

� after interrupt-handling routine is �nished, can use
e.g. the rti instruction to resume.

Some more complex processors provide:

� multiple levels of interrupts

� hardware vectoring of interrupts

� mode dependent registers

Operating Systems | I/O Subsystem Tim Harris | 98

Interrupt-Driven I/O

Can split implementation into low-level interrupt
handler plus per-device interrupt service routine:

� Interrupt handler (processor-dependent) may:

{ save more registers.

{ establish a language environment.

{ demultiplex interrupt in software.

{ invoke appropriate interrupt service routine (ISR)

� Then ISR (device- not processor-speci�c) will:

1. for programmed I/O device:

{ transfer data.
{ clear interrupt (sometimes a side e�ect of tx).

1. for DMA device:

{ acknowledge transfer.

2. request another transfer if there are any more
I/O requests pending on device.

3. signal any waiting processes.

4. enter scheduler or return.

Question: who is scheduling who?

Operating Systems | I/O Subsystem Tim Harris | 99

Device Classes

Homogenising device API completely not possible
) OS generally splits devices into four classes:

1. Block devices (e.g. disk drives, CD):

� commands include read, write, seek

� raw I/O or �le-system access

� memory-mapped �le access possible

2. Character devices (e.g. keyboards, mice, serial):

� commands include get, put

� libraries layered on top to allow line editing

3. Network Devices

� varying enough from block and character to
have own interface

� Unix and Windows/NT use socket interface

4. Miscellaneous (e.g. clocks and timers)

� provide current time, elapsed time, timer

� ioctl (on UNIX) covers odd aspects of I/O
such as clocks and timers.

Operating Systems | I/O Subsystem Tim Harris | 100

I/O Bu�ering

� Bu�ering: OS stores (a copy of) data in memory
while transferring between devices

{ to cope with device speed mismatch

{ to cope with device transfer size mismatch

{ to maintain \copy semantics"

� OS can use various kinds of bu�ering:

1. single bu�ering | OS assigns a system bu�er to
the user request

2. double bu�ering | process consumes from one
bu�er while system �lls the next

3. circular bu�ers | most useful for bursty I/O

� Many aspects of bu�ering dictated by device type:

{ character devices) line probably suÆcient.

{ network devices) bursty (time & space).

{ block devices) lots of �xed size transfers.

{ (last usually major user of bu�er memory)

Operating Systems | I/O Subsystem Tim Harris | 101

Blocking v. Nonblocking I/O

From programmer's point of view, I/O system calls
exhibit one of three kinds of behaviour:

1. Blocking: process suspended until I/O completed

� easy to use and understand.

� insuÆcient for some needs.

2. Nonblocking: I/O call returns as much as available

� returns almost immediately with count of bytes
read or written (possibly 0).

� can be used by e.g. user interface code.

� essentially application-level \polled I/O".

3. Asynchronous: process runs while I/O executes

� I/O subsystem explicitly signals process when its
I/O request has completed.

� most
exible (and potentially eÆcient).

� . . . but also most diÆcult to use.

Most systems provide both blocking and non-blocking
I/O interfaces; fewer support asynchronous I/O.

Operating Systems | I/O Subsystem Tim Harris | 102

Other I/O Issues

� Caching: fast memory holding copy of data

{ can work with both reads and writes
{ key to I/O performance

� Scheduling:

{ e.g. ordering I/O requests via per-device queue

{ some operating systems try fairness. . .

� Spooling: queue output for a device

{ useful if device is \single user" (i.e. can serve
only one request at a time), e.g. printer.

� Device reservation:

{ system calls for acquiring or releasing exclusive
access to a device (care required)

� Error handling:

{ e.g. recover from disk read, device unavailable,
transient write failures, etc.

{ most I/O system calls return an error number or
code when an I/O request fails

{ system error logs hold problem reports.

Operating Systems | I/O Subsystem Tim Harris | 103

I/O and Performance

� I/O a major factor in system performance

{ demands CPU to execute device driver, kernel
I/O code, etc.

{ context switches due to interrupts

{ data copying

{ metwork traÆc especially stressful.

� Improving performance:

{ reduce number of context switches

{ reduce data copying

{ reduce # interrupts by using large transfers,
smart controllers, polling

{ use DMA where possible

{ balance CPU, memory, bus and I/O performance
for highest throughput.

Improving I/O performance is one of the main
remaining systems challenges. . .

Operating Systems | I/O Subsystem Tim Harris | 104

File Management

Directory
Service

Storage Service

Disk Handler

text name user file-id information requested
from file

user space

I/O subsystem

filing system

Filing systems have two main components:

1. Directory Service

� maps from names to �le identi�ers.

� handles access & existence control

2. Storage Service

� provides mechanism to store data on disk

� includes means to implement directory service

Operating Systems | Filing Systems Tim Harris | 105

File Concept

What is a �le?

� Basic abstraction for non-volatile storage.

� Typically comprises a single contiguous logical
address space.

� Internal structure:

1. None (e.g. sequence of words, bytes)

2. Simple record structures

{ lines
{ �xed length
{ variable length

3. Complex structures

{ formatted document
{ relocatable object �le

� Can simulate last two with �rst method by
inserting appropriate control characters.

� All a question of who decides:

{ operating system

{ program(mer).

Operating Systems | Files and File Meta-data Tim Harris | 106

Naming Files

Files usually have at least two kinds of `name':

1. System �le identi�er (SFID):

� (typically) a unique integer value associated with
a given �le
� SFIDs are the names used within the �ling
system itself

2. \Human" name, e.g. hello.java

� What users like to use
� Mapping from human name to SFID is held in a
directory, e.g.

Name SFID

hello.java

23812Makefile

12353

README 9742

� Directories also non-volatile) must be stored
on disk along with �les.

3. Frequently also get user �le identi�er (UFID).

� used to identify open �les (see later)

Operating Systems | Files and File Meta-data Tim Harris | 107

File Meta-data

Type (file or directory)

Location on Disk
Size in bytes

Time of creation

Access permissions

File Control Block

Metadata Table
(on disk)

f(SFID)

SFID

In addition to their contents and their name(s), �les
typically have a number of other attributes, e.g.

� Location: pointer to �le location on device

� Size: current �le size

� Type: needed if system supports di�erent types

� Protection: controls who can read, write, etc.

� Time, date, and user identi�cation: data for
protection, security and usage monitoring.

Together this information is called meta-data.
It is contained in a �le control block.

Operating Systems | Files and File Meta-data Tim Harris | 108

Directory Name Space (I)

What are the requirements for our name space?

� EÆciency: locating a �le quickly.

� Naming: user convenience

{ allow two (or more generally N) users to have
the same name for di�erent �les

{ allow one �le have several di�erent names

� Grouping: logical grouping of �les by properties
(e.g. all Java programs, all games, . . .)

First attempts:

� Single-level: one directory shared between all users

) naming problem

) grouping problem

� Two-level directory: one directory per user

{ access via pathname (e.g. bob:hello.java)

{ can have same �lename for di�erent user

{ but still no grouping capability.

Operating Systems | Directories Tim Harris | 109

Directory Name Space (II)

Ann Bob Yao

javamail A

B C G H

I J

sent

FED

� Get more
exibility with a general hierarchy.

{ directories hold �les or [further] directories

{ create/delete �les relative to a given directory

� Human name is full path name, but can get long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

{ o�er relative naming

{ login directory

{ current working directory

� What does it mean to delete a [sub]-directory?

Operating Systems | Directories Tim Harris | 110

Directory Name Space (III)

Ann Bob Yao

javamail A

B C

D E F

G H

I J

sent

� Hierarchy good, but still only one name per �le.

) extend to directed acyclic graph (DAG) structure:

{ allow shared subdirectories and �les.
{ can have multiple aliases for the same thing

� Problem: dangling references

� Solutions:

{ back-references (but variable size records)

{ reference counts.

� Problem: cycles. . .

Operating Systems | Directories Tim Harris | 111

Directory Implementation

/Ann/mail/B

Ann

Bob

Yao

Name SFID

1034

179

7182

mail

A

Name SFID

2165

5797 sent

B

C

Name SFID

434

2459

25

D

D

D

Y

Y

Y

Y

Y

N

N

N

� Directories are non-volatile) store as \�les" on
disk, each with own SFID.

� Must be di�erent types of �le (for traversal)

� Explicit directory operations include:

{ create directory

{ delete directory

{ list contents

{ select current working directory

{ insert an entry for a �le (a \link")

Operating Systems | Directories Tim Harris | 112

File Operations (I)

UFID SFID File Control Block (Copy)

1
2
3
4

23421
3250

10532
7122

location on disk, size,...
" "
" "
" "

� Opening a �le: UFID = open(<pathname>)

1. directory service recursively searches directories
for components of <pathname>

2. if all goes well, eventually get SFID of �le.

3. copy �le control block into memory.

4. create new UFID and return to caller.

� Create a new �le: UFID = create(<pathname>)

� Once have UFID can read, write, etc.

{ various modes (see next slide)

� Closing a �le: status = close(UFID)

1. copy [new] �le control block back to disk.

2. invalidate UFID

Operating Systems | Filesystem Interface Tim Harris | 113

File Operations (II)

current
file position

end of filestart of file
already accessed to be read

� Associate a cursor or �le position with each open
�le (viz. UFID), initialised to start of �le.

� Basic operations: read next or write next, e.g.

{ read(UFID, buf, nbytes), or

{ read(UFID, buf, nrecords)

� Sequential Access: above, plus rewind(UFID).

� Direct Access: read N or write N

{ allow \random" access to any part of �le.

{ can implement with seek(UFID, pos)

� Other forms of data access possible, e.g.

{ append-only (may be faster)

{ indexed sequential access mode (ISAM)

Operating Systems | Filesystem Interface Tim Harris | 114

Other Filing System Issues

� Access Control: �le owner/creator should be able
to control what can be done, and by whom.

{ access control normally a function of directory
service) checks done at �le open time

{ various types of access, e.g.

� read, write, execute, (append?),
� delete, list, rename

{ more advanced schemes possible (see later)

� Existence Control: what if a user deletes a �le?

{ probably want to keep �le in existence while
there is a valid pathname referencing it

{ plus check entire FS periodically for garbage

{ existence control can also be a factor when a �le
is renamed/moved.

� Concurrency Control: need some form of locking
to handle simultaneous access

{ may be mandatory or advisory

{ locks may be shared or exclusive

{ granularity may be �le or subset

Operating Systems | Filesystem Interface Tim Harris | 115

Unix: Introduction

� Unix �rst developed in 1969 at Bell Labs
(Thompson & Ritchie)

� Originally written in PDP-7 asm, but then (1973)
rewritten in the `new' high-level language C

) easy to port, alter, read, etc.

� 6th edition (\V6") was widely available (1976).

{ source avail) people could write new tools.
{ nice features of other OSes rolled in promptly.

� By 1978, V7 available (for both the 16-bit PDP-11
and the new 32-bit VAX-11).

� Since then, two main families:

{ AT&T: \System V", currently SVR4.
{ Berkeley: \BSD", currently 4.3BSD/4.4BSD.

� Standardisation e�orts (e.g. POSIX, X/OPEN) to
homogenise.

� Best known \UNIX" today is probably linux, but
also get FreeBSD, NetBSD, and (commercially)
Solaris, OSF/1, IRIX, and Tru64.

Unix Case Study | Introduction Tim Harris | 116

Unix Family Tree (Simpli�ed)

System V
SVR2

SVR3

SVR4

4.2BSD

4.3BSD

4.3BSD/Tahoe

4.3BSD/Reno

4.4BSD

Eighth Edition

Ninth Edition

Tenth Edition

Mach

OSF/1 SunOS 4

Solaris

Solaris 2

SunOS

SunOS 3

First Edition

Fifth Edition

Sixth Edition

Seventh Edition
3BSD

4.0BSD
4.1BSD

System III

32V

1974
1975

1977

1983
1984
1985
1986

1987
1988
1989

1990
1991
1992
1993

1969

1973

1976

1978
1979
1980
1981
1982

Unix Case Study | Introduction Tim Harris | 117

Design Features

Ritchie and Thompson writing in CACM, July 74,
identi�ed the following (new) features of UNIX:

1. A hierarchical �le system incorporating
demountable volumes.

2. Compatible �le, device and inter-process I/O.

3. The ability to initiate asynchronous processes.

4. System command language selectable on a
per-user basis.

5. Over 100 subsystems including a dozen languages.

6. A high degree of portability.

Features which were not included:

� real time

� multiprocessor support

Fixing the above is pretty hard.

Unix Case Study | Overview Tim Harris | 118

Structural Overview

System Call Interface

Application
(Process)

Application
(Process)

Application
(Process)

Kernel

User

Hardware

Process
Management

Memory
Management

Block I/O Char I/O

File System

Device Driver Device Driver Device Driver Device Driver

� Clear separation between user and kernel portions.

� Processes are unit of scheduling and protection.

� All I/O looks like operations on �les.

Unix Case Study | Overview Tim Harris | 119

File Abstraction

� A �le is an unstructured sequence of bytes.

� Represented in user-space by a �le descriptor (fd)

� Operations on �les are:

{ fd = open (pathname, mode)

{ fd = creat(pathname, mode))

{ bytes = read(fd, bu�er, nbytes)

{ count = write(fd, bu�er, nbytes)

{ reply = seek(fd, o�set, whence)

{ reply = close(fd)

� Devices represented by special �les:

{ support above operations, although perhaps
with bizarre semantics.

{ also have ioctl's: allow access to
device-speci�c functionality.

� Hierarchical structure supported by directory �les.

Unix Case Study | Files and the Filesystem Tim Harris | 120

Directory Hierarchy

/

etc/bin/ usr/dev/ home/

steve/

unix.ps index.html

jean/
hda hdb tty

� Directories map names to �les (and directories).

� Have distinguished root directory called '/'

� Fully quali�ed pathnames) perform traversal
from root.

� Every directory has '.' and '..' entries: refer to self
and parent respectively.

� Shortcut: current working directory (cwd).

� In addition shell provides access to home directory
as ~username (e.g. ~steve/)

Unix Case Study | Files and the Filesystem Tim Harris | 121

Aside: Password File

� /etc/passwd holds list of password entries.

� Each entry roughly of the form:

user-name:encrypted-passwd:home-directory:shell

� Use one-way function to encrypt passwords.

{ i.e. a function which is easy to compute in one
direction, but has a hard to compute inverse.

� To login:

1. Get user name

2. Get password

3. Encrypt password

4. Check against version in /etc/password

5. If ok, instantiate login shell.

� Publicly readable since lots of useful info there.

� Problem: o�-line attack.

� Solution: shadow passwords (/etc/shadow)

Unix Case Study | Files and the Filesystem Tim Harris | 122

File System Implementation

type mode

timestamps (x3)

direct blocks (x12)

single indirect
double indirect

triple indirect

direct
blocks

(512)

data

data

data

data

data

data

to block with 512
single indirect entries

to block with 512
double indirect entries

userid groupid

size nblocks
nlinks flags

� Inside kernel, a �le is represented by a data
structure called an index-node or i-node.

� Holds �le meta-data:

1. Owner, permissions, reference count, etc.

2. Location on disk of actual data (�le contents).

� Where is the �lename kept?

Unix Case Study | Files and the Filesystem Tim Harris | 123

Directories and Links

home/

steve/ jean/

/

doc/

.

..
unix.ps
index.html

214
78
385

56

Filename I-Node

misc 47

.

..
unix.ps
hello.txt

2

78
107

13

Filename I-Node

misc/ index.html unix.ps

hello.txt

bin/

� Directory is a �le which maps �lenames to i-nodes.

� An instance of a �le in a directory is a (hard) link.

� (this is why have reference count in i-node).

� Directories can have at most 1 (real) link. Why?

� Also get soft- or symbolic-links: a `normal' �le
which contains a �lename.

Unix Case Study | Files and the Filesystem Tim Harris | 124

On-Disk Structures

S
u

p
er

-B
lo

ck

B
o

o
t-

B
lo

ck

Inode
Table

Data
Blocks

S
u

p
er

-B
lo

ck

Inode
Table

Data
Blocks

Partition 1 Partition 2

Hard Disk

0 1 2 i i+1 j j+1 j+2 l l+1 m

� A disk is made up of a boot block followed by one
or more partitions.

� (a partition is just a contiguous range of N
�xed-size blocks of size k for some N and k).

� A Unix �le-system resides within a partition.

� Superblock contains info such as:

{ number of blocks in �le-system

{ number of free blocks in �le-system

{ start of the free-block list

{ start of the free-inode list.

{ various bookkeeping information.

Unix Case Study | Files and the Filesystem Tim Harris | 125

Mounting File-Systems

/

etc/bin/ usr/dev/ home/

hda1 hda2 hdb1

steve/ jean/

/

Mount
Point

Root File-System

File-System
on /dev/hda2

� Entire �le-systems can be mounted on an existing
directory in an already mounted �lesystem.

� At very start, only `/' exists) need to mount a
root �le-system.

� Subsequently can mount other �le-systems, e.g.
mount("/dev/hda2", "/home", options)

� Provides a uni�ed name-space: e.g. access
/home/steve/ directly.

� Cannot have hard links across mount points: why?

� What about soft links?

Unix Case Study | Files and the Filesystem Tim Harris | 126

In-Memory Tables

Process A

Process B

0
1
2
3
4

N

11
3
25
17
1

6

0
1
2
3
4

N

2
27
62
5
17

32

0 47
1

17

135

78

process-specific
file tables

system-wide
open file table

User Space

Kernel Space

Inode 78

acitve inode table

� Recall process sees �les as �le descriptors

� In implementation these are just indices into
process-speci�c open �le table

� Entries point to system-wide open �le table. Why?

� These in turn point to (in memory) inode table.

Unix Case Study | Files and the Filesystem Tim Harris | 127

Access Control

Owner Group World

R W E R W E R W E

= 0640

Owner Group World

R W E R W E R W E

= 0755

� Access control information held in each inode.

� Three bits for each of owner, group and world :
read, write and execute.

� What do these mean for directories?

� In addition have setuid and setgid bits:

{ normally processes inherit permissions of
invoking user.

{ setuid/setgid allow user to \become" someone
else when running a given program.

{ e.g. prof owns both executable test (0711 and
setuid), and score �le (0600)

) anyone user can run it.
) it can update score �le.
) but users can't cheat.

� And what do these mean for directories?

Unix Case Study | Files and the Filesystem Tim Harris | 128

Consistency Issues

� To delete a �le, use the unlink system call.

� From the shell, this is rm <filename>

� Procedure is:

1. check if user has suÆcient permissions on the
�le (must have write access).

2. check if user has suÆcient permissions on the
directory (must have write access).

3. if ok, remove entry from directory.

4. Decrement reference count on inode.

5. if now zero:

(a) free data blocks.
(b) free inode.

� If crash: must check entire �le-system:

{ check if any block unreferenced.

{ check if any block double referenced.

Unix Case Study | Files and the Filesystem Tim Harris | 129

Unix File-System: Summary

� Files are unstructured byte streams.

� Everything is a �le: `normal' �les, directories,
symbolic links, special �les.

� Hierarchy built from root (`/').

� Uni�ed name-space (multiple �le-systems may be
mounted on any leaf directory).

� Low-level implementation based around inodes.

� Disk contains list of inodes (along with, of course,
actual data blocks).

� Processes see �le descriptors: small integers
which map to system �le table.

� Permissions for owner, group and everyone else.

� Setuid/setgid allow for more
exible control.

� Care needed to ensure consistency.

Unix Case Study | Files and the Filesystem Tim Harris | 130

Unix Processes

Unix
Kernel

Address Space
per Process

Text Segment

Data Segment

Stack Segment

Free
Space

grows downward as
functions are called

grows upwards as more
memory allocated

Kernel Address Space
(shared by all)

� Recall: a process is a program in execution.

� Have three segments: text, data and stack.

� Unix processes are heavyweight.

Unix Case Study | Processes Tim Harris | 131

Unix Process Dynamics

execve exit

fork wait

parent
process

program executes

child
process zombie

process

parent process (potentially) continues

� Process represented by a process id (pid)

� Hierarchical scheme: parents create children.

� Four basic primitives:

{ pid = fork ()

{ reply = execve(pathname, argv, envp)

{ exit(status)

{ pid = wait (status)

� fork() nearly always followed by exec()

) vfork() and/or COW.

Unix Case Study | Processes Tim Harris | 132

Start of Day

� Kernel (/vmunix) loaded from disk (how?) and
execution starts.

� Root �le-system mounted.

� Process 1 (/etc/init) hand-crafted.

� init reads �le /etc/inittab and for each entry:

1. opens terminal special �le (e.g. /dev/tty0)

2. duplicates the resulting fd twice.

3. forks an /etc/tty process.

� each tty process next:

1. initialises the terminal

2. outputs the string \login:" & waits for input

3. execve()'s /bin/login

� login then:

1. outputs \password:" & waits for input

2. encrypts password and checks it against
/etc/passwd.

3. if ok, sets uid & gid, and execve()'s shell.

� Patriarch init resurrects /etc/tty on exit.

Unix Case Study | Processes Tim Harris | 133

The Shell

execve
child

process

program
executes

fg?

repeat
ad

infinitum

yes

no

fork

read get command line

issue promptwrite

exitwait
zombie
process

� Shell just a process like everything else.

� Uses path for convenience.

� Conventionally `&' speci�es background.

� Parsing stage (omitted) can do lots. . .

Unix Case Study | Processes Tim Harris | 134

Shell Examples

pwd

/home/steve

ls -F

IRAM.micro.ps gnome_sizes prog-nc.ps

Mail/ ica.tgz rafe/

OSDI99_self_paging.ps.gz lectures/ rio107/

TeX/ linbot-1.0/ src/

adag.pdf manual.ps store.ps.gz

docs/ past-papers/ wolfson/

emacs-lisp/ pbosch/ xeno_prop/

fs.html pepsi_logo.tif

cd src/

pwd

/home/steve/src

ls -F

cdq/ emacs-20.3.tar.gz misc/ read_mem.c

emacs-20.3/ ispell/ read_mem* rio007.tgz

wc read_mem.c

95 225 2262 read_mem.c

ls -lF r*

-rwxrwxr-x 1 steve user 34956 Mar 21 1999 read_mem*

-rw-rw-r-- 1 steve user 2262 Mar 21 1999 read_mem.c

-rw------- 1 steve user 28953 Aug 27 17:40 rio007.tgz

ls -l /usr/bin/X11/xterm

-rwxr-xr-x 2 root system 164328 Sep 24 18:21 /usr/bin/X11/xterm*

� Prompt is `#'.

� Use man to �nd out about commands.

� User friendly?

Unix Case Study | Processes Tim Harris | 135

Standard I/O

� Every process has three fds on creation:

{ stdin: where to read input from.

{ stdout: where to send output.

{ stderr: where to send diagnostics.

� Normally inherited from parent, but shell allows
redirection to/from a �le, e.g.:

{ ls >listing.txt

{ ls >&listing.txt

{ sh <commands.sh.

� Actual �le not always appropriate; e.g. consider:

ls >temp.txt;
wc <temp.txt >results

� Pipeline is better (e.g. ls | wc >results)

� Most Unix commands are �lters) can build
almost arbitrarily complex command lines.

� Redirection can cause some bu�ering subtleties.

Unix Case Study | Processes Tim Harris | 136

Pipes

Process BProcess A

read(fd, buf, n)write(fd, buf, n)

old data
new data

free space

� One of the basic Unix IPC schemes.

� Logically consists of a pair of fds

� e.g. reply = pipe(int fds[2])

� Concept of \full" and \empty" pipes.

� Only allows communication between processes with
a common ancestor (why?).

� Named pipes address this.

Unix Case Study | Interprocess Communication Tim Harris | 137

Signals

� Problem: pipes need planning) use signals.

� Similar to a (software) interrupt.

� Examples:

{ SIGINT : user hit Ctrl-C.

{ SIGSEGV : program error.

{ SIGCHLD : a death in the family. . .

{ SIGTERM : . . . or closer to home.

� Unix allows processes to catch signals.

� e.g. Job control:

{ SIGTTIN, SIGTTOU sent to bg processes

{ SIGCONT turns bg to fg.

{ SIGSTOP does the reverse.

� Cannot catch SIGKILL (hence kill -9)

� Signals can also be used for timers, window resize,
process tracing, . . .

Unix Case Study | Interprocess Communication Tim Harris | 138

I/O Implementation

Hardware

Device Driver Device Driver Device Driver Device Driver

Generic File System Layer

Buffer
Cache

Raw Block I/ORaw Character I/O

Cooked
Character I/O

Kernel

Kernel

User

� Recall:

{ everything accessed via the �le system.

{ two broad categories: block and char.

� Low-level stu� gory and machdep) ignore.

� Character I/O low rate but complex) most
functionality in the \cooked" interface.

� Block I/O simpler but performance matters)
emphasis on the bu�er cache.

Unix Case Study | I/O Subsystem Tim Harris | 139

The Bu�er Cache

� Basic idea: keep copy of some parts of disk in
memory for speed.

� On read do:

1. Locate relevant blocks (from inode)

2. Check if in bu�er cache.

3. If not, read from disk into memory.

4. Return data from bu�er cache.

� On write do same �rst three, and then update
version in cache, not on disk.

� \Typically" prevents 85% of implied disk transfers.

� Question: when does data actually hit disk?

� Answer: call sync every 30 seconds to
ush dirty
bu�ers to disk.

� Can cache metadata too | problems?

Unix Case Study | I/O Subsystem Tim Harris | 140

Unix Process Scheduling

� Priorities 0{127; user processes � PUSER = 50.

� Round robin within priorities, quantum 100ms.

� Priorities are based on usage and nice, i.e.

Pj(i) = Basej +
CPUj(i� 1)

4
+ 2� nicej

gives the priority of process j at the beginning of
interval i where:

CPUj(i) =
2� loadj

(2� loadj) + 1
CPUj(i� 1) + nicej

and nicej is a (partially) user controllable
adjustment parameter 2 [�20; 20].

� loadj is the sampled average length of the run
queue in which process j resides, over the last
minute of operation

� so if e.g. load is 1) � 90% of 1 seconds CPU
usage \forgotten" within 5 seconds.

Unix Case Study | Process Scheduling Tim Harris | 141

Unix Process States

fork()

ru

rk p

rb

z

sl

c

schedule

wakeup

sleep

interrupt

exit

syscall

returnreturn

preempt

same
state

ru = running (user-mode) rk = running (kernel-mode)

z = zombie p = pre-empted

sl = sleeping rb = runnable

c = created

� Note: above is simpli�ed | see CS section 23.14
for detailed descriptions of all states/transitions.

Unix Case Study | Process Scheduling Tim Harris | 142

Summary

� Main Unix features are:

{ �le abstraction

� a �le is an unstructured sequence of bytes
� (not really true for device and directory �les)

{ hierarchical namespace

� directed acyclic graph (if exclude soft links)
� can recursively mount �lesystems

{ heavy-weight processes

{ IPC: pipes & signals

{ I/O: block and character

{ dynamic priority scheduling

� base priority level for all processes
� priority is lowered if process gets to run
� over time, the past is forgotten

� But V7 had in
exible IPC, ineÆcient memory
management, and poor kernel concurrency.

� Later versions address these issues.

Unix Case Study | Summary Tim Harris | 143

Windows NT: History

After OS/2, MS decide they need \New Technology":

� 1988: Dave Cutler recruited from DEC.

� 1989: team (� 10 people) starts work on a new
OS with a micro-kernel architecture.

� July 1993: �rst version (3.1) introduced

Bloated and suckful)

� NT 3.5 released in September 1994: mainly size
and performance optimisations.

� Followed in May 1995 by NT 3.51 (support for the
Power PC, and more performance tweaks)

� July 1996: NT 4.0

{ new (windows 95) look 'n feel

{ various functions pushed back into kernel (most
notably graphics rendering functions)

� Feb 2000: NT 5.0 aka Windows 2000

{ big push to �nally kill DOS/Win 9x family

Windows XP (NT 6.0) coming June 2001. . .

NT Case Study | Introduction & Overview Tim Harris | 144

NT Design Principles

Key goals for the system were:

� portability

� security

� POSIX compliance

� multiprocessor support

� extensibility

� international support

� compatibility with MS-DOS/Windows applications

This led to the development of a system which was:

� written in high-level languages (C and C++)

� based around a micro-kernel, and

� constructed in a layered/modular fashion.

NT Case Study | Introduction & Overview Tim Harris | 145

Structural Overview

OS/2
Subsytem

OS/2
Applications

Win32
Applications

Kernel Mode

User Mode

Hardware

Native NT Interface (Sytem Calls)

Object
Manager

Process
Manager

VM
Manager

I/O
Manager

Win32
Subsytem

POSIX
Subsytem

Security
Subsytem

MS-DOS
Applications

Posix
ApplicationsWin16

Applications
Logon

Process

MS-DOS
Subsytem

Win16
Subsytem

ERNELKEVICED
Hardware Abstraction Layer (HAL)

RIVERSD

File System
Drivers

Cache
Manager

Security
Manager

LPC
Facility

XECUTIVEE

� Kernel Mode: HAL, Kernel, & Executive

� User Mode:

{ environmental subsystems

{ protection subsystem

NT Case Study | Introduction & Overview Tim Harris | 146

HAL

� Layer of software (HAL.DLL) which hides details of
underlying hardware

� e.g. interrupt mechanisms, DMA controllers,
multiprocessor communication mechanisms

� Many HALs exist with same interface but di�erent
implementation (often vendor-speci�c)

Kernel

� Foundation for the executive and the subsystems

� Execution is never preempted.

� Four main responsibilities:

1. CPU scheduling

2. interrupt and exception handling

3. low-level processor synchronisation

4. recovery after a power failure

� Kernel is objected-oriented; all objects either
dispatcher objects and control objects

NT Case Study | Low-level Functions Tim Harris | 147

Processes and Threads

NT splits the \virtual processor" into two parts:

1. A process is the unit of resource ownership.
Each process has:

� a security token,

� a virtual address space,

� a set of resources (object handles), and

� one or more threads.

2. A thread are the unit of dispatching.
Each thread has:

� a scheduling state (ready, running, etc.),

� other scheduling parameters (priority, etc),

� a context slot, and

� (generally) an associated process.

Threads are:

� co-operative: all threads in a process share the
same address space & object handles.

� lightweight: require less work to create/delete than
processes (mainly due to shared VAS).

NT Case Study | Low-level Functions Tim Harris | 148

CPU Scheduling

� Hybrid static/dynamic priority scheduling:

{ Priorities 16{31: \real time" (static priority).

{ Priorities 1{15: \variable" (dynamic) priority.

� Default quantum 2 ticks (�20ms) on Workstation,
12 ticks (�120ms) on Server.

� Threads have base and current (� base) priorities.

{ On return from I/O, current priority is boosted
by driver-speci�c amount.

{ Subsequently, current priority decays by 1 after
each completed quantum.

{ Also get boost for GUI threads awaiting input:
current priority boosted to 14 for one quantum
(but quantum also doubled)

{ Yes, this is true.

� On Workstation also get quantum stretching :

{ \. . . performance boost for the foreground
application" (window with focus)

{ fg thread gets double or triple quantum.

NT Case Study | Low-level Functions Tim Harris | 149

Object Manager

Temporary/Permanent

Object
Header Type Object

Type Name
Common Info.

Open
Close
Delete
Parse
Security
Query Name

Object Name
Object Directory

Security Descriptor

Open Handle Count

Reference Count
Type Object Pointer

Quota Charges

Open Handles List

Object
Body

Object-Specfic Data
(perhaps including

a kernel object)

Methods:

Process
1

Process
2 Process

3

� Every resource in NT is represented by an object

� The Object Manager (part of the Executive) is
responsible for:

{ creating objects and object handles

{ performing security checks

{ tracking which processes are using each object

� Typical operation:

{ handle = open(objectname, accessmode)

{ result = service(handle, arguments)

NT Case Study | Executive Functions Tim Harris | 150

Object Namespace

\

??\ device\ BaseNamedObjects\driver\

doc\

exams.tex

A: C: COM1:
Harddisk0\Serial0\Floppy0\

Partition1\ Partition2\

winnt\ temp\

� Recall: objects (optionally) have a name

� Object Manger manages a hierarchical namespace:

{ shared between all processes) sharing

{ implemented via directory objects

{ each object protected by an access control list.

{ naming domains (implemented via parse)
mean �le-system namespaces can be integrated

� Also get symbolic link objects: allow multiple
names (aliases) for the same object.

� Modi�ed view presented at API level. . .

NT Case Study | Executive Functions Tim Harris | 151

Process Manager

� Provides services for creating, deleting, and using
threads and processes.

� Very
exible:

{ no built in concept of parent/child relationships
or process hierarchies

{ processes and threads treated orthogonally.

) can support Posix, OS/2 and Win32 models.

Virtual Memory Manager

� NT employs paged virtual memory management

� The VMM provides processes with services to:

{ allocate and free virtual memory

{ modify per-page protections

� Can also share portions of memory:

{ use section objects (� software segments)

{ based verus non-based.

{ also used for memory-mapped �les

NT Case Study | Executive Functions Tim Harris | 152

I/O Manager

I/O
Manager

File
System
Driver

Intermediate
Driver

Device
Driver HAL

I/O Requests

� The I/O Manager is responsible for:

{ �le systems

{ cache management

{ device drivers

� Basic model is asynchronous:

{ each I/O operation explicitly split into a request
and a response

{ I/O Request Packet (IRP) used to hold
parameters, results, etc.

� File-system & device drivers are stackable. . .

NT Case Study | Executive Functions Tim Harris | 153

File System

� The fundamental structure of the NT �ling system
(NTFS) is a volume

{ created by the NT disk administrator utility

{ based on a logical disk partition

{ may occupy a portion of a disk, and entire disk,
or span across several disks.

� A �le in NTFS is not a simple byte stream, as in
MS-DOS or UNIX, rather, it is a structured object
consisting of attributes.

� Every �le in NTFS is described by one or more
records in an array stored in a special �le called the
Master File Table (MFT).

� NTFS has a number of advanced features, e.g.

{ security (access checks on open)

{ unicode based names

{ use of a log for eÆcient recovery

{ support for sparse and compressed �les

� (but only recently are features being used)

NT Case Study | Executive Functions Tim Harris | 154

Summary

� Main Windows NT features are:

{ layered/modular architecture:

{ generic use of objects throughout

{ multi-threaded processes

{ multiprocessor support

{ asynchronous I/O subsystem

{ advanced �ling system

{ preemptive priority-based scheduling

� Design essentially more advanced than Unix.

� Implementation of lower levels (HAL, kernel &
executive) actually rather decent.

� But: has historically been crippled by

{ almost exclusive use of Win32 API

{ legacy device drivers (e.g. VXDs)

{ lack of demand for \advanced" features

� Windows XP + Luna might �nally break free. . .

NT Case Study | Summary Tim Harris | 155

Course Review

� Part I: Computer Organisation

{ \how does a computer work?"

{ fetch-execute cycle, data representation, etc

{ NB: `circuit diagrams' not examinable

� Part II: Operating System Functions.

{ OS structures: h/w support, kernel vs. �-kernel

{ Processes: states, structures, scheduling

{ Memory: virtual addresses, sharing, protection

{ I/O subsytem: polling/interrupts, bu�ering.

{ Filing: directories, meta-data, �le operations.

� Part III: Case Studies.

{ Unix: �le abstraction, command `extensibility'

{ Windows NT: layering, objects, asynch. I/O.

NT Case Study | Summary Tim Harris | 156

