
The Zebra Striped Network File System

by

John Henry Hartman

Sc. B. (Brown University) 1987
M.S. (University of California at Berkeley) 1990

A dissertation submitted in partial satisfaction of the requirements for
the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor John Ousterhout, Chair

Professor Randy Katz

Professor Ray Larson

Dr. Felipe Cabrera

1994

The Zebra Striped Network File System

Copyright © 1994

by

John Henry Hartman

All rights reserved.

i

Abstract

The Zebra Striped Network File System

by

John Henry Hartman

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor John Ousterhout, Chair

This dissertation presents a new network file system, called Zebra, that provides high
performance file access and is highly available. Zebra stripes file data across its servers, so
that multiple servers may participate in a file access and the file access bandwidth
therefore scales with the number of servers. Zebra is also highly available because it stores
parity information in the style of a RAID [Patterson88] disk array; this increases storage
costs slightly but allows the system to continue operation even while a single storage
server is unavailable.

Zebra is different from other striped network file systems in the way in which it stripes
data. Instead of striping individual files (file-based striping), Zebra forms the data written
by each client into an append-only log, which is then striped across the servers. In
addition, the parity of each log is computed and stored as the log is striped. I call this form
of striping log-based striping, and its operation is similar to that of a log-structured file
system (LFS) [Rosenblum91]. Zebra can be thought of as a log-structured network file
system: whereas LFS uses a log abstraction at the interface between a file server and its
disks, Zebra uses a log abstraction at the interface between a client and its servers. Striping
logs, instead of files, simplifies Zebra’s parity mechanism, reduces parity overhead, and
allows clients to batch together small writes.

I have built a prototype implementation of Zebra in the Sprite operating system
[Ousterhout88]. Measurements of the prototype show that Zebra provides 4-5 times the
throughput of the standard Sprite file system or NFS for large files, and a 15-300%
improvement for writing small files. The utilizations of the system resources indicate that
the prototype can scale to support a maximum aggregate write bandwidth of 20 Mbytes/
second, or about ten clients writing at their maximum rate.

and
ld like
nly is
and
eople
d nor
eful
r in

ing
with

dvice

ryn
out on
rous

en
y has
sters

Fred
fer,
rite
nce in
any
Acknowledgements

I am deeply indebted to the many people without whose friendship, guidance,
assistance this dissertation would not have been possible. First and foremost, I wou
to thank my advisor, John Ousterhout. One could not hope for a better advisor. Not o
he an outstanding computer scientist, whose work ethic, reasoning ability,
organizational skills are unparalleled, but he is also one of the most conscientious p
I’ve known. As my advisor his door was always open, and no idea was too far-fetche
any question too ill-formed for it to receive less than his full attention. I am very grat
for having been able to work with John, and I wish him the best in his new caree
industry.

I would also like to thank the other members of my dissertation and qualify
committees: Randy Katz, Felipe Cabrera, and Ray Larson. They have been involved
Zebra from start to finish and I am thankful for the help they’ve given me.

David Patterson is also deserving of special thanks. He has offered me invaluable a
on topics ranging from trends in computing to better management of one’s time.

Graduate school has many pitfalls, but Terry Lessard-Smith, Bob Miller, and Kath
Crabtree were always there to make sure I avoided them. Terry and Bob helped me
numerous occasions. Kathryn’s help was critical in dealing with Berkeley’s nume
rules and regulations.

My thanks also to Ken Lutz for his help in all of the projects with which I have be
involved. Without his engineering abilities none would have succeeded. He especiall
my thanks for keeping the SPUR running long enough for me to complete my ma
project.

I am deeply indebted to the other members of the Sprite project: Brent Welch,
Douglis, Mike Nelson, Andrew Cherenson, Adam de Boor, Bob Bruce, Mike Kup
Mendel Rosenblum, Mary Baker, Ken Shirriff, and Jim Mott-Smith, without whom Sp
would not exist and Zebra would not have been possible. Brent displayed great patie
showing me the ropes when I first joined the project. Zebra grew out of the m
ii

was
nical

my
ere all

ch a
e for
eres,
ate
rs, but
arti

heir

d me
ard
this

ve
enings
me on.

591,
rnia
discussions I had with Mendel concerning log-structured file systems. Mary’s help
invaluable during the course of Zebra project. She helped me solve many tech
problems, and never once complained about my incessant whining.

The members of the RAID project also provided much advice during my work on
thesis. Ann Chervenak, Ethan Miller, Peter Chen, Ed Lee, and Srinivasan Seshan w
wonderful to work with, and great sources of ideas and inspiration.

I must also thank all of my fellow students who have made graduate school su
pleasure. First, I have fond memories of my years spent living at the Hillegass Hous
Wayward Computer Scientists. My fellow wayward computer scientists, Ramon Cac
Steve Lucco, Ken Shirriff, Will Evans, and Mike Hohmeyer, not only kept me up-to-d
on current events and the latest research during our memorable dinner-time semina
they have also been great friends. My thanks also to Ann Chervenak, Ethan Miller, M
Hearst, Seth Teller, Paul Heckbert, Kim Keeton, Bob Boothe, and Mark Sullivan for t
friendship and support.

My debt to my parents and family is immeasurable. My parents have always offere
their unconditional support in all of my endeavors. They instilled in me the value of h
work and a job well done, and gave me the confidence in my own abilities that made
dissertation possible.

Finally, my wife Randi is deserving of much of the credit for this dissertation. Her lo
and support have been unfailing. She has been especially understanding of the ev
and weekends spent in the lab, and has always been quick to offer advice and cheer
I hope I can be as supportive of her as she has been of me.

This research was funded by NSF grant CCR-89-00029, NASA/ARPA grant NAG2-
NSF grant MIP-87-15235, ARPA contract N00600-93-C-2481, and the Califo
MICRO Program.
iii

1

.. 3
 3
.. 4
. 4
. 5

7

.. 7

.. 9
10
 11
13
13
6

16
6

18
18
20
20
20
 21
 21
 23
 24
 26
27
8
28
 29
9

 30
 30
0
31
33
 34
34
 36
Table of Contents

CHAPTER 1. Introduction ...

1.1 Zebra ..
1.2 Applicability ..
1.3 Prototype ..
1.4 Thesis Contributions ...
1.5 Dissertation Outline ..

CHAPTER 2. Background ..

2.1 File Systems ...
2.1.1 File Caches ..
2.1.2 File System Reliability and Crash Recovery ...
2.2 Disk Storage Systems ..
2.2.1 Disk Performance Improvements ..
2.2.1.1 RAID ...
2.2.2 Disk Performance Optimization .. 1
2.2.2.1 Disk Scheduling ..
2.2.2.2 File Allocation .. 1
2.2.2.3 File Clustering ...
2.2.3 Log-Structured File Systems ...
2.3 Network File Systems ..
2.3.1 Network Disks ...
2.3.2 File Block Access ..
2.3.3 File System Namespace ..
2.3.4 Client Cache Consistency ..
2.3.5 Server Crash Recovery ..
2.3.6 NFS ..
2.3.7 Sprite ...
2.3.8 AFS/DEcorum ...
2.4 Network File System Performance Limitations 2
2.4.1 File Server Bottlenecks ...
2.4.1.1 Auspex NS 6000 ...
2.4.1.2 RAID-II ... 2
2.4.1.3 DataMesh ..
2.4.2 Hotspots ...
2.5 Network File System Availability ... 3
2.5.1 File Replication ...
2.5.2 Dual-Ported Disks ...
2.6 Striped File Systems ..
2.6.1 File-Based Striping ..
2.6.2 Parallel File Systems ...
iv

37
 38

41
43
44
44
5

46
 47
 48
 48

 51
 51
52
 54
55
 55
56
. 57
57
 59
0

62
 62
 63
 64
 66
66
 68
69
70
72
. 72
 73
74
74
75
76
76
 76
 77
2.6.3 Swift ..
2.7 Summary ..

CHAPTER 3. Zebra Fundamentals ...40

3.1 Parity Computation by Clients ...
3.2 Non-Overwrite ...
3.3 Write Batching ...
3.4 Virtual Stripes ..
3.5 Append-Only Writes .. 4
3.6 Stripe Cleaning ..
3.7 Centralized Metadata Management ...
3.8 Consistency via Deltas ...
3.9 Summary ..

CHAPTER 4. Zebra Architecture ..50

4.1 Log Addresses ...
4.2 Storage Servers ..
4.2.1 Functionality ..
4.2.2 Crash Recovery ...
4.3 Clients ..
4.3.1 Reading Files ...
4.3.2 Writing Files ..
4.3.3 Storage Server Crashes ...
4.4 File Manager ..
4.4.1 Client Cache Consistency ..
4.4.2 Updating Block Maps via Deltas .. 6
4.4.3 Reading and Writing Revisited ...
4.4.4 Performance ..
4.4.5 Client Crashes ...
4.4.6 File Manager Crashes ..
4.5 Stripe Cleaner ..
4.5.1 Identifying Stripe Contents ...
4.5.2 Choosing Stripes to Clean ...
4.5.3 Synchronized Cleaning ...
4.5.4 Optimistic Cleaning ...
4.5.5 File Manager Recovery Revisited ...
4.5.6 Storage Server Crashes ...
4.5.7 Cleaning Cost ..
4.5.8 Distributed Stripe Cleaning ...
4.5.9 Stripe Cleaning Alternatives ...
4.5.10 Log Address Wrap ...
4.6 System Reconfiguration ...
4.6.1 Adding and Removing Clients ..
4.6.2 Adding Storage Servers ...
4.6.3 Removing a Storage Server ...
v

77
77
 77

79
 81
 81
 82
82
 84
84
84
 86
 86
 88
 89
 89
0

90
 92
93
94
95
 96
96
 97
 98
 98
 99
00
00
00
01

01
02
02
03
04
05

07
07
08
08
09
4.6.4 Adding Disks to Servers ..
4.6.5 Removing Disks from Servers ..
4.7 Summary ..

CHAPTER 5. Zebra Prototype ...79

5.1 Log Address Format ..
5.2 Fragment Creation ...
5.2.1 Fragment Format ...
5.2.2 Zebra Striper ..
5.2.2.1 Filling Data Fragments ...
5.2.2.2 Parity Fragments ...
5.2.2.3 Flow-Control ...
5.2.2.4 Striper Interface ..
5.3 Data Transfer ...
5.3.1 Remote Procedure Calls ..
5.3.2 Asynchronous RPC ...
5.3.3 Integrated Parity and Checksum Computations
5.4 File System Metadata ..
5.4.1 Block Map Implementation ... 9
5.4.2 Block Maps and Clients ..
5.4.3 Metadata Storage ...
5.4.4 File Manager Checkpoints ..
5.4.5 File Manager Recovery ..
5.4.6 Delta Buffer ...
5.5 Client Cache ...
5.5.1 Cache Block Writes ...
5.5.2 Cache Block Reads ..
5.6 Fragment Reconstruction ...
5.7 Stripe Cleaner ..
5.7.1 Cleaning ..
5.7.2 Cleaner Checkpoint ... 1
5.7.3 Cleaner Recovery .. 1
5.7.4 Cleaner Improvements .. 1
5.8 Storage Server .. 1
5.8.1 Volumes .. 1
5.8.2 Storage Management ... 1
5.8.2.1 Frames ... 1
5.8.2.2 Fragment Map and Free Frame List .. 1
5.8.2.3 Summary Table ... 1
5.8.2.4 Summary Table Consistency .. 1
5.8.2.5 Implementation Alternatives ... 1
5.8.3 Recovery .. 1
5.8.4 RPC Interface .. 1
5.8.4.1 Store Fragment .. 1
5.8.4.2 Retrieve Fragment ... 1
vi

09
10
10
11

13
14
14
15
17
17
20
22
24
26
26
26
28
28
29
30

31
1
32
32
35
8

9

41
142
44
5.8.4.3 Delete Fragments .. 1
5.8.4.4 Configuration .. 1
5.8.5 Performance Optimizations ... 1
5.9 Summary .. 1

CHAPTER 6. Prototype Measurements..113

6.1 Experimental Setup .. 1
6.2 Limiting Factors ... 1
6.2.1 RPC Performance .. 1
6.2.2 Disk Performance .. 1
6.3 File Access Performance ... 1
6.3.1 Performance vs. File Size .. 1
6.3.2 Large File Performance ... 1
6.3.3 Small File Performance ... 1
6.3.4 Resource Utilizations .. 1
6.3.5 File Access Summary .. 1
6.4 Scalability .. 1
6.4.1 File Manager ... 1
6.4.2 Stripe Cleaner .. 1
6.4.2.1 Cleaning Bandwidth .. 1
6.4.2.2 Cleaning Overhead .. 1
6.4.2.3 Delta Processing .. 1
6.4.3 Scalability Summary ... 1
6.5 Availability .. 13
6.5.1 Parity ... 1
6.5.2 File Manager Checkpoint and Recovery ... 1
6.5.3 Stripe Cleaner Checkpoint and Recovery ... 1
6.5.4 Availability Summary ... 13

CHAPTER 7. Conclusion ..13

7.1 Future Research in Zebra ... 1
7.2 Related Research ...
7.3 Closing Comments ... 1
vii

viii

List of Figures

Figure 2-1. File implementation. ... 8
Figure 2-2. Disk components... 12
Figure 2-3. Striping with parity. .. 14
Figure 2-4. Striping unit reconstruction... 14
Figure 2-5. Partial stripe write. .. 15
Figure 2-6. Dual-ported disks. ... 33
Figure 2-7. File-based striping for a large file. .. 35
Figure 2-8. File-based striping for a small file. ... 35
Figure 2-9. Swift architecture. ... 37
Figure 3-1. Log-based striping. ... 41
Figure 4-1. Zebra components... 50
Figure 4-2. Log address parsing. ... 52
Figure 4-3. Reading from a file.. 58
Figure 4-4. Requirements for deadlock. .. 66
Figure 4-5. Stripe cleaning. ... 67
Figure 4-6. Cleanable vs. uncleanable stripes. ... 68
Figure 4-7. Cleaner/client conflict. .. 71
Figure 4-8. Ordering deltas by their block pointers... 73
Figure 5-1. Fragment ID. ... 80
Figure 5-2. Data fragment format.. 81
Figure 5-3. Striper routines.. 85
Figure 5-4. Striper callback. .. 85
Figure 5-5. Virtual disk implementation.. 93
Figure 5-6. File manager checkpoint. .. 94
Figure 6-1. Sprite RPC bandwidth. ... 115
Figure 6-2. Raw disk bandwidth.. 116
Figure 6-3. Throughput vs. file size... 118
Figure 6-4. Write resource utilizations. ... 119
Figure 6-5. Read resource utilizations. .. 119
Figure 6-6. Total system throughput for large file writes. 120
Figure 6-7. Total system throughput for large file reads.................................... 122
Figure 6-8. Performance for small writes. ... 123
Figure 6-9. Resource utilizations... 125

ix

List of Tables

Table 4-1. Storage server interface... 53
Table 4-2. Update delta format... 61
Table 4-3. File manager delta processing... 71
Table 5-1. Frame header... 103
Table 5-2. Summary table entry. .. 105
Table 5-3. Store fragment parameters. ... 108
Table 5-4. Retrieve fragment parameters ... 109
Table 5-5. Delete fragments parameters... 110
Table 6-1. File manager delta processing... 128
Table 6-2. Cleaning overhead... 129
Table 6-3. Stripe cleaner delta processing.. 130
Table 6-4. Scalability limits. .. 131
Table 6-5. File manager checkpoint. .. 133
Table 6-6. File manager recovery... 134
Table 6-7. Stripe cleaner checkpoint.. 136
Table 6-8. Stripe cleaner recovery.. 137

ars of
their

ntage
uted
other
to the
ould be

its
an
as a

ween
latter

h as a
arger

re and
the

dence
e and

had a
the

bit-
uting

nd was
s and
ing to

ere
sible to
S

1 Introduction

The evolution of computers has been a process of decentralization. The early ye
computing were ruled by time-shared behemoths that distanced themselves from
users by machine-room doors and legions of system administrators. From their va
point in distant terminal rooms users got only a glimpse of the computer’s power, dil
by slow serial lines, dumb terminals, and the necessity of sharing the computer with
users. The dilution tended to increase over time, too, as more users were added
system and each user got a smaller and smaller share of the resources. This trend c
offset by increasing the capacity of the mainframe, but eventually it would reach
maximal configuration. There were two alternatives available at this point: buy
additional computer, or buy a computer with more of the resources in demand, such
faster processor, more memory, etc. The former required splitting the users bet
multiple computers, offsetting some the benefits of sharing a machine, whereas the
was expensive. One of the fundamental problems with a centralized resource suc
time-shared mainframe is that it does not gracefully scale to accommodate l
workloads.

Over the years computers shrank in size as advances in electronics packed mo
more transistors onto a chip. Eventually the day came when they emerged from
machine rooms in the form of personal computers and workstations and took up resi
on users’ desktops. Networks were developed to allow computers to communicat
thus allow users to share resources such as printers and files. This new organization
number of advantages over centralized, time-shared computers. First, moving
computing power closer to the user ushered in interactive computing in the form of
mapped displays and corresponding increases in productivity. Second, the comp
resources scaled with the number of users. Each user had his or her own computer a
relatively unaffected by increases in users and computers. Networks of workstation
personal computers proved to be more scalable and flexible than mainframes, lead
the slow demise of mainframes.

The migration out of the machine room was not universal, however. Left behind w
the file servers. These machines stored the users’ files and made those files acces
other computers (clients) via the network. Network file systems, such as NF
1

ervers

ich
upon
file

nce of
igher
esult
erver
ch as

e file
.

n are
the

k can
o is
ver if
orse
llel

ns of
rallel
alent
rs.

ales
l. Its
n the

upling
ad by
ith the
that
d file
given
ither
isk
e data
om the
[Sandberg85], were developed to define the interface between the clients and the s
and to allow a single server to handle many clients.

File servers were originally ordinary workstations, outfitted with more disks on wh
to store their files. Unfortunately these servers were not up to the demands placed
them. The performance of the file server is critical to the overall performance of the
system, since the speed at which a client can access a file is limited by the performa
the file server. Like their time-shared ancestors, file servers do not scale well to h
performance. Once a file server saturates the addition of more or faster clients will r
in lower performance for each client. If more performance is needed then a faster s
must be purchased. This lack of scalability has led to larger and larger file servers, su
the Auspex [Nelson93]. These special-purpose machines are tailored to provid
service to many more clients than a mere workstation-based file server can support

In the future, new styles of computing such as multi-media and parallel computatio
likely to demand much greater throughput than today’s applications, making
limitations of a single server even more severe. For example, a single video playbac
consume a substantial fraction of a file server’s bandwidth even when the vide
compressed. A cluster of workstations can easily exceed the bandwidth of a file ser
they all run video applications simultaneously, and the problems will become much w
when video resolution increases with the arrival of HDTV. Another example is para
applications. Several research groups are exploring the possibility of using collectio
workstations connected by high-speed low-latency networks to run massively pa
applications. These “distributed supercomputers” are likely to present I/O loads equiv
to traditional supercomputers, which cannot be handled by today’s network file serve

The focus of this dissertation is on developing a network file system that sc
gracefully to provide higher performance, and is highly available and reliable as wel
servers can be commodity workstations, which have a better price-performance tha
file servers of today. The general idea is to distribute, orstripe,file data across multiple
servers. This allows more than one server to participate in a file access, thereby deco
the server performance from the file access speed. Additional performance can be h
adding more servers to the system, so that the performance of the system scales w
number of servers. Availability and reliability are a concern because file systems
stripe across multiple servers are more vulnerable to server failures than centralize
systems. There are more servers to fail and therefore a higher probability that at any
time a server will be down and file data will be unavailable. Failures can be masked e
by replicating the file data or by using parity in the style of RAID [Patterson88] d
arrays. In the latter solution one of the servers in the systems stores the parity of th
on other servers; if one of the servers crashes the data it stores can be computed fr
data on the other servers.
2

bra is
uses

ilable
data
ask
way
ata
s the
single
lt is a
and
ask

than

types
d in
t file
nts,
avior
igned
ses. In
tions,
esign
t been

igned
t and
not

ch as
on,

on a

es to
to be
disk;
er

t-lived
1.1 Zebra

This dissertation introduces a new striped network file system named Zebra. Ze
designed to provide a file transfer rate that scales with the number of servers. It also
its servers efficiently, balances server loads, and provides highly reliable and ava
service without excessive overheads. Zebra increases throughput by striping file
across multiple servers, and it increases availability and reliability by using parity to m
single server failures. Zebra is different from other striped network file systems in the
in which it stripes data. Instead of striping individual files, Zebra forms all the new d
from each client into a stream, which is then striped across the servers. This allow
data from many small writes to be batched together and stored on a server in a
transfer, reducing the per-file overhead and improving server efficiency. The net resu
file system that provides high performance for writes of small files as well as for reads
writes of large files. Zebra’s style of striping also makes it easier to use parity to m
server failures. Parity is computed for the stream of newly written data, rather
individual files, and therefore has a fixed cost and simplified management.

1.2 Applicability

Zebra makes several assumptions concerning its computing environment and the
of failures that it will withstand. Zebra is designed to support UNIX workloads as foun
office/engineering environments. These workloads are characterized by shor
lifetimes, sequential file accesses, infrequent write-sharing of a file by different clie
and many small files [Baker91]. This environment is also notable because of the beh
it does not exhibit, namely random accesses to existing files. Zebra is therefore des
to handle sequential file accesses well, perhaps at the expense of random file acces
particular, this means that Zebra may not be suitable for running database applica
which tend to randomly update and read large files. This is not to say that the Zebra d
precludes good performance on such a workload, but that the current design has no
tuned to improve random access performance.

Zebra is also targeted at high-speed local-area networks. Zebra is not des
specifically to reduce network traffic. I assume that in a data transfer between a clien
server the point-to-point bandwidth of the network is not a bottleneck. Zebra is also
designed to handle network partitions. New point-to-point network architectures, su
ATM, typically include redundant links that reduce the probability of a network partiti
and make partitions less of a concern to the design of a network file system for use
local-area network.

Zebra also assumes that clients and servers will have large main-memory cach
store file data. These caches serve two purposes: to allow frequently used data
buffered and accessed in memory, without requiring an access to the server or the
and to buffer newly written file data prior to writing it to the server or the disk. The form
filters out accesses to data that are frequently read, whereas the latter filters out shor
data.
3

n the
es the
two
the

ent,
lient.
chine

t88],
a over
g the

The

200
n of
up to

S or
of 3
ebra

when
file
Sprite.

ms:

n the
cond
idth

ected
ecks

ing.

the
data
Zebra is designed to provide file service despite the loss of any single machine i
system. Multiple server failures are not handled; the loss of a second server caus
system to cease functioning, and data may be lost if disks fail catastrophically on
servers at the same time. Any number of clients may fail, however, without affecting
availability of file data. A client crash may lose newly written data cached on that cli
but it cannot lose data older than a time limit nor can it lose data written by another c
This is analogous to losing the data stored in a UNIX file system cache when the ma
crashes.

1.3 Prototype

I have implemented a Zebra prototype in the Sprite operating system [Ousterhou
and I have run a variety of benchmarks that demonstrate the advantages of Zebr
existing network file systems. Although Sprite was used as a vehicle for developin
Zebra prototype, the Zebra architecture is not dependent on Sprite in any way.
advantages of Zebra apply to network file systems in general.

The Zebra prototype is implemented on a cluster of DECstation-5000 Model
workstations, connected by an FDDI network. The workstations run a modified versio
the Sprite operating system. For reads and writes of large files the prototype achieves
2.5 Mbytes/second with 5 servers, which is 4-5 times the performance of either NF
Sprite with LFS. For small files Zebra improves performance by more than a factor
over NFS. The improvement over Sprite is only 15%, however. This is because both Z
and Sprite require the client to notify the file server of both file opens and closes, and
writing small files these notifications dominate the running time. With the addition of
name caching to both systems Zebra should have even more of an advantage over

1.4 Thesis Contributions

This thesis makes several contributions to the state of the art in network file syste

• Striping can be used to provide scalable performance in a network file system. I
prototype the total read bandwidth to three clients increased from 1.6 Mbytes/se
with one data server to 5.8 Mbytes/second with four data servers. Total write bandw
correspondingly increased from 1 Mbytes/second to 3.2 Mbytes/second. The proj
maximum performance of the prototype is about 20 Mbytes/second, due to bottlen
in keeping track of file blocks and free space.

• High availability can be achieved without sacrificing the gains provided by strip
Zebra uses a novel form of striping calledlog-based stripingthat allows parity to be
used to provide high availability without high overhead. Measurements from
prototype show that parity has no affect on single-client write bandwidth with one
server, and reduces it by only 20% with four.
4

ving
me-
mall

twork
es of

sed by
which
ingle
ce the

stored
s it

ng the

gives
tems,
ues in
file
s and

m are

a file
lure,
cludes
and

overs
rlying
to the

and
of the
it the
n of
scales
• Log-based striping allows Zebra clients to batch small writes to the servers, impro
the server efficiency and the overall system performance. With the addition of na
caching, Zebra is estimated to be nearly 60% faster than Sprite when writing s
files.

Zebra also demonstrates that the benefits of striping and parity can be had in a ne
file system without requiring a hopelessly complex architecture. There are two featur
the Zebra architecture that simplify the striping and parity implementations:

• One of the biggest advantages of the Zebra design is that the same logs that are u
Zebra clients to store file data are used as reliable communication channels over
changes in the distributed state of the file system are transmitted. Thus a s
mechanism is used to communicate changes between the components, and sin
logs are reliable, recovery from failures is made simple by re-reading the logs.

• Zebra interposes a log abstraction between the files and the disks, so that files are
in logs, which in turn are stored on the disks. This extra level of indirection make
easier to distribute the management of storage space and file metadata amo
various system components.

1.5 Dissertation Outline

The rest of this dissertation is organized in the following manner. The next chapter
more motivation and background. Topics covered are file systems, disk storage sys
network file systems, and striped file systems. Chapter 3 discusses the general iss
adding striping and parity to a network file system. Unlike a disk array, a network
system does not have a central host for striping data across the storage device
computing parity, requiring the functions handled by the RAID host to be distributed.

Chapter 4 presents the Zebra architecture. The four components of the syste
introduced (client, storage server, file managerandstripe cleaner), and their interaction
during normal system processing is described. Activities covered include reading
and writing a file. Also described is how each component recovers from its own fai
and how the rest of the system tolerates the failure of a component. The chapter con
with a description of how the configuration of the system is changed by adding
removing clients, servers, and disks.

Chapter 5 describes the implementation of the Zebra prototype. This chapter c
some of the practical aspects of building a Zebra system. Interactions with the unde
operating system are described, as are implementation details that are crucial
performance of the system.

The performance of the prototype and other network file systems is measured
analyzed in Chapter 6. First, the chapter presents performance measurements
underlying communication and storage systems used in the prototype, since they lim
prototype’s overall performance. These measurements are followed by a collectio
benchmarks that measure the file access performance of the prototype, and how it
5

were
marks
m or
file
of the
source
port up
the

s that
the
to be

neral.
with file size, the number of clients, and the number of servers. These benchmarks
also run on standard Sprite and NFS file systems, for comparison. These bench
show that Zebra provides 4-5 times the throughput of the standard Sprite file syste
NFS for large files and a 15-300% improvement for writing small files. Following the
access benchmarks is a collection of benchmarks that measure the scalability
prototype, to determine how many clients and servers can be supported before a re
saturates. The results of these benchmarks show that the current prototype can sup
to 10 clients writing at their maximum bandwidth of about 2 Mbytes/second before
stripe cleaner saturates. Finally, the chapter concludes with a set of benchmark
measure the overhead of Zebra’s availability mechanism, showing that while
overheads in the prototype are reasonable for small-scale systems, they need
optimized to support larger systems.

The concluding chapter summarizes the advantages of Zebra and of logging in ge
Fruitful areas for future research are identified.
6

s an
t this

the
k file
s in
files

s from
. The
write
file
read

, but it

ns
s by
The

en a
. The
e
, and

rlying

disk
2 Background

This chapter provides background and motivation for Zebra. The first section give
overview of file systems in general and defines some terms used throughou
dissertation. The second section describes recent techniques for improving
performance and reliability of disk storage systems. The third section covers networ
systems, followed by two sections on the performance and availability problem
network file systems, respectively. The last section covers file systems that distribute
across multiple servers.

2.1 File Systems

A file system provides an abstraction called afile that allows application programs to
store data on storage devices such as magnetic disks. The abstraction of a file differ
file system to file system, but in UNIX and Zebra, a file is merely a sequence of bytes
contents of the file are not interpreted by the file system. Applications may read and
arbitrary numbers of bytes at any offset within the file. Bytes written to the end of the
automatically extend the file. Bytes written beyond the end of the file leave holes that
as zeros. Reads beyond the end of the file return an error. Bytes may be overwritten
is not possible to insert new bytes between existing bytes.

Applications refer to files in a different manner from the file system itself. Applicatio
refer to files by their names, which are textual strings. The file system refers to file
their unique identifiers. A file may have many names, but only a single identifier.
mapping from file names to file identifiers is called the file system’sname space.
Application programs provide the file’s name to the file system when they wish to op
file; the file system uses the name and the name space to find the file’s identifier
identifier is used to create ahandle for the open session which is returned to th
application program. The handle is used in subsequent reads and writes of the file
eventually to close it.

An application may see a file as an unstructured sequence of bytes, but the unde
file system implements a file as a sequence of fixed-sizefile blocks. The file system
maintains the abstraction of a file by mapping each logical file block to a physical
7

tifies
rrect

e
art of
le
xed-
er
on’t
ock
r
iew

f its
aves.

inode
uses
entry
inode
block. This mapping information is stored in ablock mapfor each file. Thus when an
application program wishes to read a range of bytes from a file the file system iden
the logical blocks that hold the bytes, uses the file’s block map to determine the co
disk blocks to read, and returns the relevant bytes from each block.

The file system also keeps track of variousattributesfor each file, such as its size, dat
of last modification, and date of last access. The attributes and the block maps are p
what is called themetadataof the file system. Metadata is information stored in the fi
system that is not file data. In UNIX a file’s attributes and block map are stored in a fi
size data structure called aninode. Each inode in the system is numbered; this numb
serves as the unique identifier for the file. For large files whose block map w
completely fit in an inode a multi-level block map is used, in which portions of the bl
map are stored in disk blocks calledindirect blocks, pointed to by the inode or othe
indirect blocks. Figure 2-1 illustrates an application’s view of a file, the file system’s v
of a file, and how the block map implements the logical-to-physical block mapping.

The information about the file system name space is also considered part o
metadata. In UNIX the name space is a hierarchy of directories with files at the le
Each level of the hierarchy is delineated by a ‘/’ character. Thus the file name/foo/bar
refers to the filefoo within the directorybar , which in turn is in the root directory /.
Directories are nothing more than files whose data consist of the names and
numbers of other files. When an application refers to a file by name the file system
the name to traverse the directory tree; at each level it searches the directory for an
that matches the next component of the path name and uses the corresponding

Byte 1
Byte 2
Byte 3

Byte N

.

.

. .
.
.

Block 1

Block 2

Block 11

Attributes

Pointer 1
Pointer 2

Pointer 11

...

Pointer 1
Pointer 2

Pointer K

Pointer 12
Pointer 13

...

Block 2

Block 1

Block 11

DiskInode
FileFile

Abstraction Blocks

Figure 2-1. File implementation.
Applications see a file as an unstructured sequence of bytes; the file system breaks a file into
blocks. The inode maps these logical file blocks into disk blocks containing the file data. The
first ten pointers of the inode point directly at the data blocks. The eleventh pointer is indirect:
it points at a disk block full of pointers to data blocks. The last two pointers in the inode are
doubly and triply indirect, respectively.
8

tifier

ying
er to
k, as
es it

de the
e disk
cks in
he, and

that
of the

It is
the
to be
the
ffic
disk

s of
next

uffer
a is to
ave to

g
tion
disk.
ately,
ad-
into
ue

s in
isk

can be
w the
number to open the directory on the next level. This mapping of file name to file iden
is calledname lookup or name resolution.

2.1.1 File Caches

The primary limitation to file system performance is the performance of the underl
disk subsystem. Magnetic disks are mechanical devices and are inherently slow
access than memory. It takes tens of milliseconds to transfer a file block from a dis
compared to hundreds of microseconds from memory. This access gap mak
worthwhile tocache, or store, file blocks in main memory to avoid disk accesses.

There are three primary purposes of a file cache: to eliminate disk accesses, to hi
latency of those accesses that cannot be avoided, and to improve the efficiency of th
through scheduling. Disk accesses are eliminated by retaining recently used file blo
the cache. Subsequent reads or writes to those file blocks can be satisfied by the cac
don’t have to access the disk. The intent is to exploit the locality of file accesses so
most of the accesses hit in the cache, allowing the file system to operate at the speed
memory system rather than the speed of the disk.

A file cache can also eliminate disk accesses by filtering out short-lived file data.
possible that newly-written data will be deleted or overwritten while they are sitting in
cache, and before they are written to the disk. If this is the case, the data do not need
written to the disk at all. A recent study of file cache behavior found that up to 63% of
bytes written die within 30 seconds, leading to a significant reduction in disk tra
[Baker91][Hartman93]. One catch, however, is that data may need to be written to the
for reliability reasons, so that a cache cannot eliminate all disk writes, even if it i
infinite size. These cache reliability issues are described in greater detail in the
section.

The second way in which a file cache can improve file system performance is as a b
to hide the latency of those disk accesses that are not satisfied in the cache. The ide
overlap disk accesses with application processing, so that the application does not h
stop and wait for the disk. For reads the mechanism that hides disk latency is calledread-
ahead(or prefetching), and for writes it is calledwrite-behind. Read-ahead is used to brin
file blocks into the cache prior to their use by an application program. If the applica
does indeed read from those blocks then it can do so without having to wait for the
Read-ahead requires predicting what blocks will be accessed in the future; fortun
most UNIX applications read files sequentially and in their entirety [Baker91], so re
ahead can be easily done. Write-behind allows application programs to write a block
the cache without waiting for it to be written to disk. The application can contin
processing while the disk access occurs.

The third way in which file caches are beneficial to file system performance i
allowing disk accesses to be scheduled intelligently to improve disk efficiency. D
accesses do not take a fixed amount of time: accesses that are close together
completed faster than those that are far apart. Read-ahead and write-behind allo
9

ey are
to be
e total
er in
total

ve a
do
rces
in the
res
evice
The

ove
veral
cribed
st file
main

s lost
This
sh

ce of
be
the
aches
tes
One
file
f
, but
ta to
new

n the

file
1]. A

ere are
lives
blocks to be transferred between the cache and the disk in a different order than th
transferred between the cache and the application. By collecting together blocks
transferred to and from the disk the cache can schedule the transfers to minimize th
transfer time. Without a cache the blocks would have to be transferred in the ord
which the application accesses them, which would not necessarily minimize the
transfer time.

2.1.2 File System Reliability and Crash Recovery

Ideally a file system should provide reliable file service, meaning that it should ha
vanishingly small probability of losing any of the data written to it. Most file systems
not provide this level of reliability because it is too expensive, both in terms of resou
required and performance degradation. Instead, some compromises are made
reliability of the system. First, most file systems will lose data if a disk fails. Disk failu
are typically handled by backing up the contents of the file system to an archive d
such as a tape, but data will still be lost if the disk fails before the backup is made.
second threat to reliability comes from caching dirty file blocks in memory to impr
performance. Unfortunately, these blocks will be lost in a machine crash. Se
techniques are employed to minimize exposure to data lost in this manner (as des
below), but they cannot eliminate the problem entirely. Thus the guarantee that mo
systems make is that, barring a disk failure, once file data has made it to disk it will re
available until it is overwritten or deleted.

File caches use several techniques for minimizing the amount of dirty cache block
in a machine crash. Some caches write dirty blocks through to the disk immediately.
type of cache is called awrite-throughcache. A write-through cache ensures that a cra
won’t cause the file system to lose dirty blocks, but it does not improve the performan
file writes. Each time an application writes a file block it must wait for the block to
written to the disk before proceeding. A write-through cache is still beneficial to
system, however, because it improves the performance of file reads. Other types of c
delay the writing of a newly modified block to the disk. The application’s write comple
as soon as the block is in the cache, but the block is not written to disk until later.
variation on this theme writes all the dirty blocks of a file through to the disk when the
is closed. This is calledwrite-through-on-close. This improves the performance o
applications that write the same file blocks many times in a single open session
unfortunately this is an uncommon activity [Baker91]. Another scheme writes the da
disk only when the application program makes a special “fsync” request, or when the
data has reached an age limit (typically 30 seconds). This type of cache is called awrite-
backcache. A write-back cache holds dirty blocks in the cache as long as possible i
hope that they will be deleted.

One of the effects of needing to eventually write dirty blocks to the disk is that
caches are more effective at filtering out read requests than write requests [Baker9
larger cache can be expected to satisfy a larger number of read requests since th
more blocks in the cache. The same isn’t true for writes because a dirty block that
10

sk,
et al.
were
by the
more

ng a
ystem
to the

must
e the
be
will
ation

of the

ch
ion in
at the

hat it
chine
many
oots.

that
d-only
e log
t uses
eted
adata
gram
g the
85]

disk
nd to

. This
longer than the cache’s write-back time interval will have to be written to di
independent of the size of the cache. The study of cache behavior by Baker
[Baker91] found that almost all disk writes were due to the 30-second writeback, and
therefore independent of the cache size. The result is that the read/write ratio seen
disk has been skewed by the cache towards writes. This effect should grow
pronounced as memory sizes grow and caches get larger.

In addition to reliability problems caused by losing the contents of the cache duri
crash, file systems may also lose data due to inconsistencies between the file s
metadata and the data it stores. For example, consider a write that appends a block
end of a file. For the write to complete successfully both the inode and the file block
be written to the disk. If a crash occurs after the file block has been written but befor
inode is written, the file block will not be referenced by the file’s block map and will
inaccessible. Conversely, if the inode is written but not the file block then the file
contain the old contents of the disk block. In both cases the data written by the applic
is lost due to an inconsistency in the metadata.

Most file systems deal with possible metadata errors by checking the consistency
file system after a reboot. UNIX file systems use a program calledfsck to do this
checking.Fsck examines all of the files in the file system to find and repair su
problems as inaccessible blocks. The repairs do not guarantee that the operat
progress at the time of the crash will be completed properly, but they do guarantee th
file system metadata is consistent.

The biggest problem with performing a file system consistency check on reboot is t
is slow. If the file system has no idea what operation was in progress when the ma
crashed then it has no choice but to examine the entire file system. This may take
minutes to complete. Such is the case with UNIX file systems, leading to lengthy reb

The lengthy reboot time has led to the development of file systems that use alog to keep
track of file system modifications. The log is an area of the disk that contains records
describe modifications to the file system. Records are added to the log in an appen
fashion. Prior to updating the metadata the file system writes a record to the end of th
that describes the change to be made. During reboot a recovery program is run tha
the log to verify that the operation in progress at the time of the crash compl
successfully; any modifications described by the log that are not reflected in the met
are applied during recovery. The advantage of using a log is that the recovery pro
need only check the metadata referred to by the records in the log, greatly reducin
recovery time. Examples of file systems that use logging in this way are Alpine [Brown
and Cedar [Hagmann87].

2.2 Disk Storage Systems

Despite the benefits of caching file data in main memory, doing so cannot eliminate
accesses completely. Disk accesses will occur to bring new data into the cache, a
write newly created data out of the cache to ensure that they are not lost in a crash
11

effect

is to
ay in
r to
of a

ite the

e arm
m
d
rs are

tional
inder
urrent
linder
pwards

head,
atency
disk

s.
causes the performance of the underlying disk storage system to have a significant
on the overall performance of the file system.

There are two ways to improve the performance of the disk subsystem. The first
improve the performance of the disks themselves, and the second is to improve the w
which disks are used, so that the existing disks are used more efficiently. Prio
describing these techniques, however, it is necessary to describe the operation
magnetic disk in more detail.

Figure 2-2 illustrates the components of a disk. A disk contains one or moreplatters,
which are surfaced with a magnetic media and fixed to a rotatingspindle. The arm
contains magnetic heads, one for each surface of the platters, that read and wr
media. The surface of each platter is divided up into concentric circles calledtracks. The
arm moves radially across the platters to move the heads from track to track. Thes
movements are referred to asseeks. All of the tracks that are accessible at a given ar
position belong to the samecylinder. Each track is divided into smaller regions calle
sectors. A sector is the smallest unit of data that can accessed on the disk. Secto
typically 512 bytes in size, although this can be configured on some disks.

The time to access a sector is comprised of three components: seek time, rota
latency, and transfer time. Seek time is the time it takes to move the arm to the cyl
that contains the desired sector. It is directly related to the distance between the c
cylinder and the target cylinder: the larger the distance the greater the time. A one-cy
seek typically takes less than 5 ms, whereas a seek across the entire disk may take u
of 30 ms. Average seek times are in the range of 10 to 20 ms.

Rotational latency refers to the time it takes for the desired sector to rotate to the
once the head is over the correct track. To access a random sector the rotational l
will average half of the time it takes the platters to make a complete rotation. Typical
rotational speeds are 3600-7200 RPM, resulting in rotational latencies of 4.2 to 8.4 m

Sector

Platter

Track

Arm

Head

Arm

Figure 2-2. Disk components.
The platters are coated with magnetic media and are attached to the spindle, which spins. The
read/write heads are attached to the arm, which moves in and out radially. Each radial arm
position defines a track. The unit of reading and writing is called a sector. All of the tracks
accessible at the same arm position define a cylinder.

Top View Side View

Spindle

Cylinder
12

sfer
ction

rates

ster
ning
ut this
tional
igher
nsity
ead
nly

e by
in a
. This
disk
need to
rack
eady
sses

ID
ork

rs to
disk
d

lel. A

mall

will
ake
f the
f the
ther
cted
The time spent actually reading or writing data is called the transfer time. The tran
time is based on the rate at which the bits pass under the head, which in turn is a fun
of the bit density of the media and the rotational speed of the disk. Typical transfer
are 2 to 4 Mbytes/second, or 120 to 250 microseconds per sector.

2.2.1 Disk Performance Improvements

The mechanical nature of disks makes it difficult to improve their performance. Fa
seeks require more power or lighter arms (or both), as well as improved positio
electronics. Faster seeks can also be achieved by shrinking the size of the platter, b
either reduces the capacity of the disk or requires higher density. Reduced rota
latency requires higher rotational speed, resulting in higher power consumption. H
transfer rates require either higher rotational speed or higher bit density. Higher bit de
is achieved through reducing the flying height of the head or improving the h
sensitivity. The net result is that raw disk performance isn’t improving very rapidly, o
about 7% per year [Ruemmler93].

Advances have been made, however, in improving the effective disk performanc
using caching to take advantage of locality in the workload. Most disks now conta
track buffer, which is used to store the contents of the track currently being accessed
allows the disk to read the contents of the track prior to their use, improving the
access latency because those requests that are satisfied by the track buffer do not
access the disk at all. As long as there is sufficient locality in the disk workload, the t
buffer will improve the disk’s performance. One caveat is that most file systems alr
cache file data in the main memory of the computer, reducing the locality of disk acce
and reducing the effectiveness of a cache on the disk itself.

2.2.1.1 RAID

The difficulties in improving disk performance led to the development of RA
(Redundant Array of Inexpensive Disks) [Patterson88], in which many small disks w
together to provide increased performance and data availability. A RAID appea
higher-level software as a single very large and fast disk. Transfers to or from the
array are divided into blocks calledstriping units. Consecutive striping units are assigne
to different disks in the array, as shown in Figure 2-3, and can be transferred in paral
group of consecutive striping units that spans the array is called astripe. Large transfers
can proceed at the aggregate bandwidth of all the disks in the array, or multiple s
transfers can be serviced concurrently by different disks.

Since a RAID has more disks than a traditional disk storage system, disk failures
occur more often. Furthermore, a disk failure anywhere in a RAID can potentially m
the entire disk array unusable. To improve data integrity, a RAID reserves one o
striping units within each stripe for parity instead of data (see Figure 2-3): each bit o
parity striping unit contains the exclusive OR of the corresponding bits of the o
striping units in the stripe. If a disk fails, each of its striping units can be reconstru
13

n in
by

t it
small
d a
ith
the
ver,

urrent
pute

e is
rite

array
using the data and parity from the remaining striping units of the stripe, as show
Figure 2-4. This allows the file system to service accesses to the failed disk
reconstructing the desired data.

A RAID offers large improvements in throughput, data integrity, and availability, bu
presents three potential problems. The first is that the parity mechanism makes
writes expensive. If a write operation involves all of the striping units in a stripe (calle
full stripe write), then it is easy to compute the stripe’s new parity and write it along w
the data. The additional bandwidth consumed by writing the parity is only 1/N of
array’s overall bandwidth, where N is the number of striping units in a stripe. Howe
writes that don’t span an entire stripe (partial stripe writes) are much more expensive. In
order to keep the stripe’s parity consistent with its data, it is necessary to read the c
contents of the data block and corresponding parity block, use this information to com
a new parity block, then write the new data and parity blocks. A partial stripe writ
illustrated in Figure 2-5. As a result of the need to update the parity, a partial stripe w
can require up to four times as many disk accesses on a RAID as it would in a disk
without parity.

Data Parity

Figure 2-3. Striping with parity.
The storage space of a RAID disk array is divided into stripes, where each stripe contains a
striping unit on each disk of the array. All but one of the striping units hold data; the other
striping unit holds parity information that can be used to recover after a disk failure.

Stripe ⊗

1 2 3 4 6

⊗

5

Figure 2-4. Striping unit reconstruction.
A missing striping unit is reconstructed by computing the XOR of all of the other striping

units in the same stripe.
14

tem
that
ars to
any

tire
new
ps its
most

data
in

the
ing
fails

parity
n the
e it
f the
the
t be
.

to a
neck.
dth of
ytes/
e SCSI
/200
. The
high-
m can
Partial stripe writes may be expensive, but they will only have an effect on sys
performance if they occur frequently. Unfortunately there are a number of factors
conspire to ensure that this will be the case. First, the best size for a striping unit appe
be tens of kilobytes or more [Chen90], which is larger than the average file size in m
environments [Baker91], so that even writes of entire files are not likely to fill an en
stripe. Second, when a file is written the file system must update its metadata. If
blocks have been added to the file then new versions of the file’s inode, and perha
indirect blocks, will need to be written. These objects are relatively small and are al
guaranteed to be smaller than a stripe. Third, application programs can force a file’s
to disk using thefsync system call. If an application chooses to force out the data
small amounts then the RAID will have to deal with partial stripe writes.

The second problem with RAID is that a machine crash during a write may leave
affected stripe’s parity inconsistent with its data. Every write to the RAID involves writ
more than one disk since the parity disk must always be updated. If the machine
during a write it may leave some disks updated, while others are not. In this case the
will not be consistent with the contents of the stripe, leaving the stripe unprotected i
case of a disk failure. After the machine reboots it must verify the parity of the strip
was writing at the time of the crash, if any. To do so the system must keep track o
stripe it is writing so that its parity can be verified after a reboot, either by storing
information on disk or in non-volatile memory. If either of these approaches canno
used then the parity of all of the stripes in the array must be verified after the reboot

The third problem with the RAID architecture is that all the disks are attached
single machine, so its memory and I/O system are likely to be a performance bottle
For example, a SCSI I/O bus can accommodate up to eight disks, each with a bandwi
1-2 Mbytes/second, but the SCSI bus itself has a total bandwidth of only 2-10 Mb
second. Additional SCSI busses can be added, but data must also be copied from th
channel into memory and from there to a network interface. On a DECstation 5000
workstation, for example, these copies only proceed at about 6-8 Mbytes/second
Berkeley RAID project has built a special-purpose memory system with a dedicated
bandwidth path between the network and the disks [Drapeau94] but even this syste
support only a few dozen disks at full speed.

Figure 2-5. Partial stripe write.
A write that does not fill a whole stripe requires a parity update. The old data and parity must
be read, the new parity computed, and the new data and parity written. This results in four disk
accesses.

⊗ ⊗
Old Data New Data Old Parity New Parity

Data Disk Parity Disk
15

the
f an

tional
eeks
hieve
r as to

imal

tional
, and
ior to
999

inders
d to
long

o 25%

disk
ed with
r disk
, but it
n idle
ueue
s this

tations
short

k so
ring
t on

rt of
hed.
e file
2.2.2 Disk Performance Optimization

The second way of improving the performance of a disk subsystem is to optimize
way in which the file system uses its disk. The seek time and rotational latency o
access vary substantially depending on the starting location of the arm and rota
position of the disk. Performance can be improved significantly by avoiding long s
and rotational latencies. There are two types of optimizations that are used to ac
these goals. The first is to schedule outstanding disk accesses in such a manne
minimize the time it takes for them to complete. This optimization is referred to asdisk
scheduling. The second is to lay out data on disk so that it can be accessed with a min
amount of overhead.

2.2.2.1 Disk Scheduling

Disk scheduling is done by ordering pending accesses so that seek times and rota
latencies are minimized. For example, consider a disk whose arm is at cylinder 1
which needs to access sectors in cylinders 2 and 1000. Accessing cylinder 2 pr
cylinder 1000 results in seek distances of 1 cylinder and 998 cylinders, for a total of
cylinders. Accessing them in the reverse order results in seek distances of 999 cyl
and 998 cylinders (1997 total), roughly doubling the amount of seek time require
access the sectors. A recent study [Seltzer90] found that by intelligently scheduling
sequences of random requests the disk bandwidth can be improved from about 7% t
of the disk’s raw bandwidth.

Disk scheduling works best in environments where there are many pending
accesses to be scheduled. For example, the best results in the Seltzer study occurr
queue lengths of 1000. Systems with many users and many running applications pe
might generate lots of simultaneous disk accesses that can be effectively scheduled
has been shown that in the UNIX environment 70% of the disk accesses encounter a
disk, and the average queue length is less than ten [Ruemmler93]. Maximum q
lengths of over 1000 were measured on a file server serving 200 users, but queue
long were seen by less than 1% of the accesses. Maximum queue lengths on works
were less than 100. Thus, for most UNIX disk accesses the disk queue length is too
to take advantage of better scheduling policies.

2.2.2.2 File Allocation

Another technique used to improve disk performance is to lay out data on the dis
that they can be accessed efficiently. For example, in the UNIX office/enginee
environment files are usually read sequentially from start to finish. If the file is laid ou
the disk contiguously (termedcontiguous allocation), then the file can be read with a
minimal number of seeks: one potentially long seek to the cylinder containing the sta
the file, followed by short seeks to adjacent cylinders until the end of the file is reac
Thus contiguous allocation results in the minimum seek cost when accessing th
sequentially.
16

m is
d due
that
e is to
re the
y

the
t to
, even
omes
itself
ere is

is
res,
r file
n by
disk

nd on

ased

at the
are

the
. If a
to it.
ed and

of
t is
ill be
xtent.

een
f file

to a
next
tion
esent
o 1-
o

Contiguous allocation is not without its drawbacks, however. The biggest proble
that contiguous allocation can result in significant amounts of disk space being waste
to external fragmentation. External fragmentation refers to the free space on the disk
is in pieces too small to be used to store files. Consider what happens when a new fil
be stored on the disk. A contiguous region of free space must be found that can sto
file. It is unlikely that a region will be found in which the file will fit exactly; probabl
there will be free space leftover. Furthermore, the UNIX semantics of not specifying
file size when it is created and allowing files to grow by appending makes it difficul
choose a free region of the proper size. Space must be left for potential appends
though it may be left unused. As more and more files are stored in the system it bec
harder and harder to find space to store them. Eventually the file system may find
unable to store a file because there isn’t a big enough free region, even though th
plenty of free space on the disk.

An example of an existing file system that uses contiguous allocation
Bullet [van Renesse88]. Bullet does not provide UNIX semantics for the files it sto
which makes it easier to implement contiguous allocation. Space is preallocated fo
data by specifying the ultimate size of a file when it is created. Files cannot be grow
appending, nor can they be modified. Fragmentation is reduced by reorganizing the
during off-peak hours, or as necessary. During reorganization files are moved arou
the disk to eliminate any space lost due to external fragmentation.

The drawbacks of contiguous allocation have led to the development of extent-b
file systems. Examples include DTSS [Koch87] and EFS [McVoy91]. Anextentis a fixed-
sized contiguous region of the disk. The idea is that an extent is large enough so th
cost to seek to its start it negligible when amortized over all of the bytes that
subsequently transferred. This allows extent-based file systems to approach
performance of contiguous allocation. Each file is stored in a small number of extents
file grows in size beyond the end of its last extent then another extent is added
Extent-based systems avoid external fragmentation because disk space is allocat
deallocated in fixed-sized units, rather than in variable-sized files.

Extents may eliminate external fragmentation, but they introduce the problem
internal fragmentation. Internal fragmentation is space within an allocated extent tha
not used to store file data. On average one-half of the last extent allocated to a file w
left unused. This space cannot be used by another file because it is smaller than an e

The UNIX Fast File System (FFS) [McKusick84] strikes a compromise betw
contiguous allocation and extent-based allocation by allocating the disk in units o
blocks, but allocating blocks contiguously when possible. When a block is appended
file its location is chosen based upon the location of the previous block. Ideally the
contiguous block will be used. This allows many of the benefits of contiguous alloca
to be achieved without causing external fragmentation. The internal fragmentation pr
in extent-based systems is avoided by allowing disk blocks to be subdivided int
kilobyte sizefragments. The last block of a file is allowed to occupy a fragment if it is to
17

r file

the
ance
e file
monly
the
essing

us
e
r. If
n the
inder

ded to
seeks

t one
ase of
irect
fice/
nce
a file
single

ment
ing
log.
their
large
rite
two
over

essed
t the
small to fully occupy a disk block. This reduces the average internal fragmentation pe
to one half of a fragment, or 512 bytes.

2.2.2.3 File Clustering

Contiguous allocation and extent-based systems are effective at improving
performance of accessing data within a file, but they do little to improve the perform
of workloads that use many small files. In order to speed up these workloads th
system must take advantage of patterns in the accesses between files. This is com
done byclusteringfiles that are used together into the same region of the disk. If
clustering accurately reflects the usage patterns of the files then the overhead of acc
the files will be reduced.

UNIX FFS achieves clustering by dividing the disk into disjoint sets of contiguo
cylinders, calledcylinder groups, and storing all of the files within a directory in the sam
group. Thus files in the same directory are only short seeks from one anothe
applications tend to access files in the same directory within a short period of time the
overheads of doing so are reduced. Different directories are placed in different cyl
groups to spread them out and ensure that the entire disk is used.

2.2.3 Log-Structured File Systems

The allocation and clustering schemes described in the previous sections are inten
reduce both the number of seeks required to access a single file, and the length of the
required to access different files. Despite these improvements, it still takes at leas
seek to access a file. A seek must be done to the beginning of each file, and in the c
writes, additional seeks may need to be done to write the file’s inode and any ind
blocks. For workloads that contain many small files, as is the case in the UNIX of
engineering environment, this lower limit of one seek per file may be a performa
bottleneck. To improve the performance of these workloads it is necessary to design
system that can access many small files, and their corresponding metadata, in a
transfer to the disk.

The desire to allow many files to be accessed in a single transfer led to the develop
of the log-structured file system (LFS) [Rosenblum91], which is one of the underly
technologies in Zebra. A log-structured file system treats the disk like an append-only
When new file data are created or existing files are modified, the new data and
corresponding metadata are batched together and written to the end of the log in
sequential transfers. LFS is particularly effective for writing small files, since it can w
many files in a single transfer; in contrast, traditional file systems require at least
independent disk transfers for each file. Rosenblum reported a tenfold speedup
traditional file systems for writing small files.

LFS is also effective at clustering related files together so that they can be acc
efficiently. The append-only nature of the log causes files that are written at abou
18

from

y) are

es of
s the
ether;
t files

hieve

arge
require
blocks
s no
. LFS

. The
ions
ed to
ta out

ta are

e to
sures
log

ne the
e of

fter a
of its
of the
rved
runs

. By
le to
ms.
m92],

rge
arge
id the
all of

LFS
ash
same time to be clustered on the disk. This style of clustering is markedly different
that used by other file systems such as UNIX FFS. FFS useslogical clustering,in which
files that are close together in the file system name space (i.e. in the same director
stored close together on the disk. LFS, on the other hand, usestemporal clustering, in
which files that are written at the same time are stored close together. Both styl
clustering assume that the locality of reference when reading the files matche
clustering scheme. In FFS it is assumed that files in the same directory are read tog
LFS assumes that files that are written together are read together. If it is the case tha
in the same directory tend to be written together then both clustering schemes will ac
the same effect.

LFS obtains its substantial improvement in write performance by transferring l
amounts of data to the disk in a single access. These large transfers necessarily
large contiguous regions of free space on the disk. Free space is created as file
become unused due to either deletion or modification, but unfortunately there i
guarantee that this free space will naturally coalesce into large contiguous regions
solves this problem through the use of asegment cleaner, which is responsible for
garbage-collecting the free space and coalescing it into large contiguous regions
segment cleaner operates in the following way. The log is divided into fixed-size reg
calledsegments. Free segments (segments that do not contain any live file data) are us
store new portions of the log. The cleaner generates free segments by copying live da
of existing segments and appending them to the end of the log. Once the live da
copied out of a segment the entire segment is marked as free and can be reused.

In addition to improving disk performance during normal operation, LFS is also abl
recover from a crash more quickly than most file systems. Its append-only nature en
that only the tail of the log can be affected by a crash, therefore only the tail of the
needs to be examined to make sure it is consistent. Most file systems must exami
entire disk because they cannot tell which part of the disk was being written at the tim
the crash. LFS uses a checkpoint and roll-forward technique to find the end of a log a
crash and verify the consistency of the metadata. At regular intervals LFS forces all
metadata to the disk to ensure it is consistent, and stores a pointer to the current end
log in a checkpoint region in a reserved location on the disk. After a crash the rese
location is used to find the end of the log as of the most recent checkpoint. LFS then
through the log starting from the checkpoint and brings its metadata up-to-date
checking only the portion of the log created since the last checkpoint LFS is ab
recover from a crash in significantly shorter time than traditional UNIX file syste
Rosenblum reported recovery times on the order of one second for LFS [Rosenblu
as compared to many minutes for UNIX file systems.

LFS has two features that make it especially well-suited for use on a RAID: la
writes, and the ability to find the end of the log after a crash. LFS writes to the disk in l
transfers. By making these transfers larger than the RAID stripe size, LFS can avo
overhead associated with partial stripe writes to a RAID. Writes almost always span
the disks in the array, so parity can be computed efficiently. Furthermore, after a crash
knows where to find the end of the log. By integrating LFS and RAID the overall cr
19

the
the

tion
ine that
d
files

data
rver.

everal
pies.
keep

is
n the
rk to

them to
se it
file
, and

les.
ther
stead,
s the

disk

l file
hare
rver
tadata
clients
ting
recovery of the system is simplified. During the roll-forward phase of crash recovery
parity of the stripes can be verified, eliminating the need to build this mechanism into
RAID itself.

2.3 Network File Systems

A network file system is one in which the disk that stores a file and the applica
program accessing it are on separate machines connected by a network. The mach
runs the application programs is called theclient and the machine with the disks is calle
thefile server. The file system defines a protocol whereby the clients can access the
from the file server over the network. In many network file systems clients cache file
in their memories in order to improve performance and reduce the load on the file se
This introduces a consistency problem, however, since a file can be cached by s
clients at once; modifications to the file must be propagated to all of the cached co
One of the biggest differences between network file systems is the way in which they
the client caches consistent.

2.3.1 Network Disks

The simplest form of network file system is a network disk, in which the network
interposed between the file system and the disk device driver. The file system is run o
client as if the disk were local, except that disk requests are forwarded over the netwo
the server. The server simply accesses the requested data on the disk and returns
the client. A network disk is a simple way to implement a network file system, becau
only requires the insertion of a network communication layer between the existing
system and disk device driver layers. The file system is unaware that its disk is remote
similarly the disk device driver is unaware that the file system is remote.

The biggest disadvantage of a network disk is that it is difficult for clients to share fi
Each client runs its own file system; if care is not taken they will interfere with each o
as they access and modify the disk. For this reason network disks are rarely used. In
most network file systems use a higher-level protocol in which the file server manage
disk layout and clients communicate in terms of logical file blocks, rather than
blocks.

2.3.2 File Block Access

Most file systems provide an interface for clients to access data based on logica
blocks rather than physical disk blocks, since this makes it simpler for clients to s
files. Using this interface the clients read and write logical file blocks, and the file se
uses the block maps to access the correct disk blocks. Thus the disk layout and me
management are encapsulated in the file server and hidden from the clients. Since
do not access the disk directly there is no danger of them modifying the disk in conflic
ways, as is possible with a network disk.
20

nor
ullet
this

econd,
rvers.

llows
ore

ent of
esired

e to
In a

there
file
p by

r the
. In
does

ts in a

che
ache:
ensive
to the
ache

s can

when
of the
ause it

t
g the
ached
There are some file servers, however, that provide neither a logical file block
physical disk block interface. First, some network file systems, such as B
[van Renesse88], require clients to read and write whole files. The problem with
approach is that clients cannot access files that are larger than they can store. S
Zebra uses a log abstraction similar to that used in LFS between the clients and se
Clients read and write portions of a log, rather than file blocks. This arrangement a
clients to read and write multiple file blocks in a single transfer, and is described in m
detail in Chapter 3.

2.3.3 File System Namespace

The protocol between the clients and the file server must also include managem
the file system namespace. In a local file system the application program gives the d
file name to the file system via a system call. The file system then uses the nam
perform the name lookup by accessing in turn each of the directories in the path.
network file system the application is separated from the disk by a network, and thus
are two places in which the name lookup can logically occur: on the client or on the
server. In the NFS [Sandberg85] network file system the clients do the name looku
traversing the path themselves. At each level in the path the client sends alookuprequest
to the file server that includes a reference to the current directory (called afile handle) and
the name of the desired entry in the directory. The file server returns a file handle fo
entry. The client repeats the operation until the end of the path is reached
Sprite [Ousterhout88], the clients send the entire pathname to the file server, which
the name lookup and returns the resulting file handle. In either case the lookup resul
file handle to be used by subsequent read and write operations to the file.

2.3.4 Client Cache Consistency

One way of significantly improving the performance of a network file system is to ca
file data on clients. Client file caches provide many of the same benefits as a disk c
the cache absorbs some of the file traffic, replacing costly server accesses with inexp
local accesses. For writes it is also desirable to age data in the cache before writing it
server, since this filters out short-lived data. Client caching introduces a potential c
consistency problem, however, if clients share files.Read-sharing,in which several clients
have the file cached for reading, does not require any special handling. The client
read from their individual copies of the files without affecting one another.Write-sharing,
on the other hand, requires coordination of the client caches. Write-sharing occurs
several clients have a file cached and at least one of them modifies it. If the contents
caches are not synchronized a client may read obsolete file data from its cache bec
didn’t realize that another client modified the file (this is called astale data error).

It is useful to distinguish between two different forms of write-sharing:sequential
write-sharingand concurrent write-sharing. In sequential write-sharing only one clien
has the write-shared file open at a time. Several clients may be reading and writin
same file, but these accesses do not overlap. When a client writes to a file the c
21

y use

erlap,
rite-
it is

ned;
ile an

least
only
rite-
ts are
that
s it

es are
come
k it

the
ot,
hecks
me is
The
. An

g85].

of

cess.
of the
ents
sess a
may
rite

ked by

valid.
file.

been
lient
copies on the other clients become obsolete; without synchronization the clients ma
these stale copies during subsequent reads.

Concurrent write-sharing occurs when the accesses to the write-shared file ov
because multiple clients are reading and writing the file simultaneously. Concurrent w
sharing is more problematic than sequential write-sharing because with the latter
sufficient to verify that the cached copy of a file is current at the time the file is ope
concurrent write-sharing can cause the cached copy of a file to become obsolete wh
application is reading from it.

Sequential write-sharing is the most common form of sharing, accounting for at
80% of all write-sharing [Baker91], and it is also the easiest to handle since clients
need to verify that the cached copy of a file is current when they open it. Concurrent w
sharing, on the other hand, occurs infrequently yet is expensive to handle since clien
simultaneously reading and writing a file. The net result is that a single solution
handles both forms of sharing will be invoked frequently, yet will be expensive. Thu
may be beneficial to handle each form separately.

There are several ways of dealing with write-sharing. The most common approach
time-based and token-based. A time-based solution allows client caches to be
inconsistent, but only for a limited period of time. When a client modifies a file bloc
sends a copy of the block to the file server within a time limit. Clients that are caching
file block periodically check with the file server to verify that their copy is current. If n
they discard their copies and fetch new ones from the server. The interval between c
can be varied according to how often the file is modified. The advantage of this sche
that the file server need not keep track of which clients are caching a file.
disadvantage is that a client may occasionally read stale file data from its cache
example of a network file system that uses a time-based approach is NFS [Sandber

An alternative is to usetokensto ensure that clients never cache obsolete versions
files. Each file in use has two types of tokens associated with it:read tokens andwrite
tokens. Prior to accessing a file a client must hold the correct type of token for the ac
Clients obtain tokens from the file server, and the server maintains the consistency
client caches by coordinating the distribution of tokens and revoking them from cli
when necessary. The invariant maintained by the file server is that a client may pos
write token for a file only if no other client possesses a token for the same file. There
be any number of read tokens for a file, but only one write token. If a client wishes to w
a file and another client already has a read token then the read token must be revo
the file server. The mechanism employed to do this revocation is called acallback. The
server sends an unsolicited message to the client telling it that its token is no longer
Revocation of a read token causes the client to discard its cached copy of the
Revocation of a write token is more complex because the client’s copy of the file has
modified and cannot simply be discarded. This is typically handled by having the c
write the modified blocks back to the file server when the write token is revoked.
22

time-
pable

stem
r way

when
crash.
erver
ered in

g by
rite-
lients
erver
. The
only
ance

orms
ds to
sesses
one
data.

stem.
timize
to be
f the

of this
state
r the
ust be
lient
so that

ean
hat the
used
The disadvantage of using tokens to ensure client cache consistency, instead of a
based approach, is the complexity that it adds to the system. The clients must be ca
of receiving unsolicited callbacks, which violates the client/server structure of the sy
because in a callback the server makes a request of a client rather than the othe
around. The file server must keep track of all of the tokens and issue callbacks
appropriate. Furthermore, the state of the tokens must not be lost by a machine
After a client crash the server must clean up the state of the client’s tokens. After a s
crash its token state must be recovered. The details of server crash recovery are cov
the next section.

One variation on the token-based approach is to handle concurrent write-sharin
revoking all tokens, as is done in Sprite [Ousterhout88]. In this scheme concurrent w
sharing causes the server to revoke all tokens for the file, which in turn causes the c
to forward to the server all application read and write requests to the file. Since the s
has the only copy of the file the clients are guaranteed to see consistent views of it
advantage of this scheme is that it simplifies the token implementation since clients
have to obtain tokens when a file is opened, and it has little effect on system perform
since concurrent write-sharing is infrequent [Baker91].

2.3.5 Server Crash Recovery

A network file system is a collaboration between clients and servers: each perf
some of the functions required for applications to access files. This collaboration lea
dependencies in the states of the machines involved. For example, when a client pos
a token for a file both the client and the server must keep track of this fact; if either
forgets it then inconsistencies may occur, such as clients reading stale file
Interdependencies in the states of the system’s components represent thedistributed state
of the system.

Distributed state is used to improve the performance and correctness of the file sy
By knowing the state of the other components in the system each component can op
and coordinate its activities. For example, distributed state allows a token mechanism
used to keep client caches consistent, which in turn improves the performance o
system without sacrificing correctness.

The biggest problem with distributed state is that a machine crash causes some
state to be lost. When the machine reboots it will no longer contain the distributed
that it had before the crash, leaving it inconsistent with the rest of the system. Eithe
state of the system must be adjusted to account for the lost state, or the lost state m
recovered. The former approach is typically used to deal with client failures. When a c
crashes and reboots the server reinitializes the state it has associated with the client,
after the reboot the client and server states agree.

This approach doesn’t work so well for dealing with server crashes since it would m
that all the clients must be rebooted whenever the server crashes. This ensures t
clients’ states agree with the server’s, but is disruptive for the users. Sprite originally
23

ing to
there

g the
If the
lients’

rred to
such
hout
The

re the
must
r the
caches

tness,
boot.

server.
have
nism

igher
ibuted
used
nts.

t is
d as a

with
of the
from
their
te to be

ache
at it is
cause
d of
her

the
this technique for handling server crashes, but it quickly became apparent that hav
reboot the entire system when the file server crashes is unacceptable, particularly if
are a large number of clients.

There are several ways of handling server crashes that don’t require rebootin
clients. The first is to design the file system so that it contains no distributed state.
states of the clients and servers are not dependent in any way, no changes to the c
states are required when the server crashes. This type of network file system is refe
as beingstateless, and is best represented by NFS. Servers do not keep track of things
as which clients are caching which files, allowing servers to crash and reboot wit
affecting the clients (other than a pause in service while the server is down).
drawbacks of building a stateless file system are that the server cannot ensu
consistency of client caches, nor can it store any information in its main memory that
not be lost in a crash, such as dirty file blocks. These limitations mean that neithe
clients nor the servers can use write-back caches, reducing the effectiveness of the
and decreasing the overall system performance.

Most network file systems use distributed state to improve performance and correc
but incorporate recovery protocols that allow a server to recover its state after a re
One example is Sprite, which uses the clients’ states to reconstruct the state of the
The server learns from the clients which files they have cached, and which files they
open. The server uses this information to initialize its cache consistency mecha
before resuming file service to the clients. Another approach which promises h
performance and security has been proposed by Baker [Baker94]. The server’s distr
state is stored in the volatile main memory of the server in such a way that it can be re
after a crash. This allows the server to recover its state without interacting with the clie

2.3.6 NFS

The de facto standard network file system in the UNIX workstation environmen
Sun’s Network File System (NFS) [Sandberg85]. NFS was designed to be simple, an
consequence uses stateless file servers to avoid the complexity associated
maintaining and recovering distributed state. For example, servers do not keep track
contents of the clients’ caches. This allows the system to recover relatively quickly
server crashes. The clients simply wait until the server reboots, at which time
pending requests complete. No recovery protocol is needed because there is no sta
recovered.

NFS pays a price for its simplicity, however. The servers cannot guarantee client c
consistency because they do not keep track of the cache contents. This means th
possible for a client to access stale file data from its cache (a stale data error) be
another client has modified the file without its knowledge. NFS reduces the likelihoo
this happening by limiting the amount of time after a file is modified during which ot
clients may still access the old version of the file. By making this interval small enough
probability of a stale data error occurring can be made acceptably small.
24

data
t the
status
for
the
y of
cks to
han a

lient
d the
and,
client
lves
d 60
dified
les.
out

s the
rver,
ion.

a
nts

the
any
n of a

out
uring
ed
of the
eriod

the
it for

lient
, to
rite

cted
least
NFS
There are two mechanisms used by NFS to limit the interval during which a stale
error can occur. The first is that clients periodically poll the file server to ensure tha
files they are caching are not obsolete. For each cached file the client retrieves
information from the server. This status information includes the last modification time
the file, and by comparing this time with the modification time of the cached copy
client can determine if its copy is out of date. If so, the client discards its cached cop
the file and fetches a new copy from the server. When the client accesses a file it che
see how long it has been since it last retrieved the file’s status. If it has been longer t
time limit then the new status is fetched.

Determining the rate at which a client should poll the server poses a dilemma. A c
will read stale file data if a cached file has been modified since it was last polled an
polling interval has not expired. Thus it is desirable to poll frequently. On the other h
polling consumes server cycles and slows down applications. The more frequently a
polls, the more load on the server. Thus it is desirable to poll infrequently. NFS reso
this conflict by using an adaptive polling interval that varies between 3 seconds an
seconds, and is based upon the rate at which a file is modified. Files that are mo
frequently are polled frequently, and the opposite is true for infrequently modified fi
This allows clients to quickly discover modifications to files that are changing, with
unnecessary polling for stable files.

Client polling only solves the cache consistency problem if the server always ha
most recent version of a file. If another client has modified the file but not told the se
then polling done by the other clients in the system will not detect the modificat
Therefore it is important that clients let the file server know of file modifications in
timely fashion. As a result, NFS uses a write-through-on-close policy, in which clie
write back all dirty data associated with a file when they close it. A block write to
server is initiated when a block is modified, but the close does not complete until
pending writes have completed. In this way the server receives the most recent versio
file soon after the client has modified it.

The use of write-through-on-close to send dirty data to the server is not with
drawbacks. First, it does not handle the case in which another client reads the file d
the time it is open for writing. The file server will not know that the file has been modifi
and the second client will read stale file data. Second, it reduces the effectiveness
client cache at filtering short-lived file data because most files are open a very short p
of time [Baker91] and it is unlikely that the data will be deleted before it is written to
server. Third, it reduces application performance because the application must wa
dirty file blocks to be written to the server when the file is closed.

Another source of performance problems in NFS is multiplicative writes. When a c
writes a file block to the server the server must immediately write the block to disk
ensure that the block is not lost in a server crash. Unfortunately it is not sufficient to w
only the block. If the block is being added to a file then the file’s inode and any affe
indirect blocks must be written too. This means that the single block write requires at
two disk writes to complete, further reducing the performance of the server. Modern
25

and
ws
the

igh
to be

s to
is that
mplex

ache
e of
ge, an

ce the
a can
file
Sprite

es 30
e the

nue
nce.

Sprite
tions
t90].
peed,
g at a
ware.

ore
ism
fore it
rite’s
’s file
which
aring

aches,
ontact
kens.
servers address this problem with non-volatile memory (NVRAM). Modified inodes
indirect blocks are buffered in the NVRAM before being written to disk. This allo
multiple modifications to the same file to be filtered by the NVRAM, and allows
inodes and indirect blocks be written to disk in an efficient order [Moran90].

2.3.7 Sprite

The Sprite [Ousterhout88] network file system is designed to provide both h
performance and perfect cache consistency. Both of these goals require file servers
stateful, i.e. to keep track of which clients are caching which files. This allows client
use write-back caches while avoiding stale data errors. The downside of these goals
the Sprite servers are more complicated than NFS servers and must go through a co
recovery protocol after a reboot.

Sprite clients use a write-back file cache, rather than the write-through-on-close c
used in NFS. A Sprite client does not write dirty data through to the server until on
four things happens: the cache becomes full, the data reaches 30 seconds of a
application program forces the data to be written, or the server uses a callback to for
client to write the data. A write-back cache has several benefits. First, short-lived dat
be deleted from the cache without being written to the server, thereby improving
system performance and reducing the server’s load. Recent measurements of a
system found that between 36% and 63% of newly written data dies before it reach
seconds in age [Baker91][Hartman93]. Second, the write-back cache does not forc
application to wait for the data to be written when it closes a file. It can conti
processing and the data will be written back later, improving the application performa

A comparison of Sprite and NFS performance made several years ago found that
was 30-40% faster than NFS [Nelson88]. A more recent study on faster worksta
found that Sprite’s performance improved to 50-100% faster than NFS [Ousterhou
This is because NFS’s write-through-on-close policy ties application speed to disk s
whereas Sprite’s write-back policy decouples the two. Processor speed is increasin
faster rate than disk speed, allowing Sprite to make better use of newer hard
NVRAM closes the gap somewhat, but still causes high server and network loads.

Sprite’s use of a write-back cache comes with a price, however. It makes it m
difficult to maintain client cache consistency. For example, if NFS’s polling mechan
were used there could be up to a 30 second delay after an application writes a file be
is written to the server, increasing the probability of stale data errors. One of Sp
design goals was to eliminate stale data errors completely. To achieve this Sprite
servers are not stateless, unlike NFS’s servers. Each Sprite server keeps track of
clients are accessing which files, and uses this information to ensure that write-sh
does not cause a stale data error.

Sprite uses a token-based mechanism for ensuring the consistency of client c
although tokens are not explicitly passed between the clients and servers. Clients c
the server when they wish to open or close a file; these requests implicitly transfer to
26

y file

rrent
acks
file has
ified.
ly the
rsion
the

ersion
those

ever,
act the
le for
s out-
a file

ntly
it to
a file
g that

ntial
son,
These
at an

e the
file

he file
recent

to
s to
aming
e file
ility of

client
by the
The server keeps track of which files are open and which clients are caching dirt
blocks to ensure that stale data errors do not occur.

Sprite uses different mechanisms for handling sequential write-sharing and concu
write-sharing. For the former a combination of file version numbers and server callb
are used to ensure that clients always access the most recent version of a file. Each
a version number associated with it that is incremented each time the file is mod
When a client opens a file it sends an open request to the file server, and in its rep
server returns the current version number for the file. The client compares this ve
number with its cached copy of the file (if any), and if the version numbers agree
cached copy can be used. Otherwise the cached copy is invalidated. Thus the file v
numbers ensure that clients do not use cached copies of files that are older than
stored on the file server.

File version numbers are not sufficient for preventing stale data errors, how
because there is no guarantee that the version number returned by the server is in f
most recent version of the file. The write-back caches on the clients make it possib
the most recent copy of a file to be stored in a client cache, so that the server’s copy i
of-date. Sprite solves this problem through the use of callbacks. When a client closes
for which it has dirty blocks it notifies the server of this fact. If another client subseque
opens the file the server does a callback to the client with the dirty blocks to force
write them from its cache back to the server. This ensures that when a client opens
the server always returns the version number of the most recent copy, guaranteein
stale data errors do not occur.

The use of callbacks to flush dirty blocks from client caches may handle seque
write-sharing, but it does not solve the concurrent write-sharing problem. For this rea
Sprite uses a separate callback mechanism to handle concurrent write-sharing.
callbacks cause the clients to disable caching of a file. When the server detects th
open will cause concurrent write-sharing it uses callbacks to notify all clients that hav
file open that they can no longer cache the file. The clients flush all dirty blocks for the
out of their caches and invalidate their cached copies. All subsequent accesses to t
are sent through to the server, ensuring that the clients always access the most
contents of the file, even if the file is being concurrently write-shared.

2.3.8 AFS/DEcorum

The Andrew File System (AFS) [Howard88] is a distributed file system intended
support very large numbers of clients. Clients cache file data on their local disk
improve performance and to reduce the load on the servers. Clients also cache file n
information and file attributes, so that files can be accessed without contacting th
server. Both of these techniques help reduce the server load and improve the scalab
the system.

AFS uses a callback mechanism to keep the client caches consistent. When a
caches a file it assumes that the cached copy is up-to-date unless told otherwise
27

them
s have
t the
rite-
cks
ached

andle
il it is
eing
s.

tter
ncy is
nd the
to it
n for a

read
its

ns in
file is

stent it
uses

rver
ugh-
avoid

NFS,
rver
ctions

rk file

ver.
ticular
ed at
erver,
server. The server keeps track of which files each client caches so that it can notify
when their cached copies become obsolete. The server detects that cached copie
become obsolete when a client writes back dirty blocks for the file. To ensure tha
server detects the new version of a file in a timely fashion the client caches are w
through-on-close. When a client closes a file it has modified it writes all of the dirty blo
back to the server so that the server can then notify other clients that have the file c
that their copies are out-of-date and should be invalidated.

One of the problems with AFS’s cache consistency mechanism is that it does not h
concurrent write-sharing. The server does not notice that a file has been modified unt
closed, so that it cannot invalidate other cached copies of a file while the file is b
modified. During that time the other clients will use out-of-date data from their cache

Transarc’s DEcorum [Kazar90] is a commercial version of AFS that provides be
consistency guarantees and higher performance. Perfect client cache consiste
guaranteed through the use of tokens that are explicitly passed between the clients a
server. A client cannot read from a file unless it has a read token, and cannot write
unless it has a write token. The server ensures that no other client possesses a toke
file if one client has a write token for it. To do so, the server may have to revoke
tokens from clients, which causes each client to flush any dirty blocks for the file from
cache and invalidate its cached copy of the file. By controlling the issuance of toke
this manner the server is able to ensure that stale data errors do not occur, even if the
undergoing concurrent write-sharing.

Since DEcorum uses a token mechanism to ensure that client caches are consi
does not need to use write-through-on-close caches on the clients. Instead DEcorum
write-back caches in which a client only writes back a files’s dirty blocks to the se
when the file’s token is revoked. This provides higher performance than a write-thro
on-close cache because file blocks are only written to the server when necessary to
stale data errors, allowing more of the file data to die in the client cache.

2.4 Network File System Performance Limitations

A network file system as described in the last section, and as represented by
Sprite, AFS, and DEcorum, suffers from two major performance limitations: file se
bottlenecks and unequal server loads due to non-uniform file accesses. The next se
describe these limitations in more detail and the techniques used by current netwo
systems to overcome them.

2.4.1 File Server Bottlenecks

In a traditional network file system each file is stored entirely on a single ser
Although there may be many file servers in the system, when a client accesses a par
file it interacts only with the single server that stores the file. This means that the spe
which a file can be accessed is limited by the performance characteristics the file s
28

, I/O
ssor is
ies to
t 1.6
erall
fully
ands,
ire a
s or I/
ched

to
erver

require
n order
These
aths
ests.

ovide
loads
ble to
l of
erver.

hich

ing
ell

a high-
of the

ample,
ithout

h-
ional

host
including its memory bandwidth and the speed of its processor, network interface
busses, and disks. For example, on a DECstation 5000/200 workstation the proce
rated at 20 SPECmarks, memory to memory copies run at 12 Mbytes/second, cop
and from the I/O controllers run at 8 Mbytes/second, and a single disk transfers a
Mbytes/second. The saturation of any one of these server resources will limit the ov
system performance. Thus it is important that the server’s capabilities be care
matched with the clients and workloads it must serve. Increases in bandwidth dem
either through improvements in client performance or changes in workloads, will requ
corresponding increase in server performance. This may be as simple as adding disk
O busses to the server, but eventually the maximal server configuration will be rea
beyond which its performance cannot be improved.

The importance of file server performance and the difficulty of improving it leads
network file servers that are high-performance and expensive machines. File s
performance determines system performance, therefore high-performance systems
high-performance servers. Often special-purpose machines are used as file servers i
to get higher performance than could be delivered by a general-purpose computer.
machines are tailored to their file server task by having high-bandwidth data p
connecting the network to the disks and multiple processors for handling client requ
The following sections give some examples of high-performance file servers.

2.4.1.1 Auspex NS 6000

The Auspex NS 6000 [Nelson93] is a special-purpose computer designed to pr
high-performance NFS file service. The main focus is on supporting high aggregate
generated by large numbers of clients and networks. Thus the performance availa
any one client may not be especially high, but the Auspex can provide this leve
performance to many more clients than a general-purpose computer used as a file s

The Auspex is a functional multiprocessor: it contains several processors, each of w
is responsible for managing a different task related to NFS file service. Thenetwork
processorhandles all network communication and implements both the underly
network and NFS protocols. Thefile processormanages the file system metadata as w
as a cache of file blocks in a memory buffer. Thestorage processorcontrols the I/O
channels to the disks. These processors, and the cache memory, are connected by
speed bus. The division of tasks between separate processors allows overlapping
tasks so that system performance can be improved in a balanced manner. For ex
network bottlenecks can be alleviated by adding networks and network processors w
affecting the rest of the server configuration.

2.4.1.2 RAID-II

RAID-II [Drapeau94] is a research project at U.C. Berkeley to build a hig
performance network file server from a disk array and a host workstation. In a tradit
file server the disk array and the network would be connected to the I/O system of the
29

ia the
nce
nnects
disk

p the
uires

rray
like a
y are
uests
priate

ipate
ode
nnect
s the

ss by

d file
does
lt to

ributed
e
likely
server
o the

nd the
ut. The
opy of
g the

itional
y for

ilure.
ents
, it is
workstation, and data would be transferred between the network and the disk array v
workstation’s backplane and memory system. RAID-II avoids the potential performa
bottleneck presented by the host backplane via a high-performance data path that co
the disk array directly to the network. File data move between the network and the
array over this path, without entering the host. The host is responsible for setting u
data transfers, but it does not manipulate the data directly. This control function req
relatively low bandwidth, avoiding a bottleneck on the host backplane.

2.4.1.3 DataMesh

The DataMesh [Wilkes89][Wilkes91] is a storage server design consisting of an a
of processors and disks connected by a high-performance interconnect, much
parallel machine with disks attached to each node. Some of the nodes in the arra
network nodes that connect the DataMesh to the outside world and its clients. File req
are received by the network nodes and directed through the interconnect to the appro
disk node. File service performance is improved by having multiple disk nodes partic
in a file transfer in parallel. A potential bottleneck, however, is the network n
connected to the client. If the network node saturates then it will be necessary to co
the client to multiple network nodes. The DataMesh architecture does not addres
issue of coordinating multiple network nodes to participate in handling a single acce
a client.

2.4.2 Hotspots

One way of improving the aggregate performance of a network file system is to ad
servers. This does not improve the performance of accessing a single file, but it
increase the total storage capacity and bandwidth of the system. It may be difficu
balance the loads among the servers, however, since file accesses are not dist
evenly among the files. Popular files representhotspots, or data in the file system that ar
heavily used. An example is the directory that contains the system binaries, which is
to be accessed frequently. There are a couple of current techniques for balancing
loads. The first, and most common, is to manually distribute files among the servers s
loads are balanced. This is undesirable because it requires human intervention a
balance is only temporary since access patterns change and hotspots move abo
second is to replicate the files in the system so that more than one server stores a c
each file. Accesses to a file can be spread out over the replicas of the file, distributin
load across the servers. The drawbacks of using replication are that it requires add
storage, a mechanism for ensuring the consistency of the replicas, and a polic
deciding when and where to replicate what files so that server loads are balanced.

2.5 Network File System Availability

As described, the file servers in a network file system represent single points of fa
If a server crashes, all of the files that it stores will be inaccessible while it is down. Cli
that need to use any of the files on the server must wait until it reboots. Even worse
30

ques
and

s to
fails,

ients.
urces
tent.

the
es a
icas.
is an
. For
trade-
tent
ome
ted to

em to
ned
icate
on-

l see
ork
tition
s are
tions
neous
sort

vide
icus
us,
client/
icular
us on

and
possible for files to be lost if a server suffers a hardware failure. Two existing techni
of avoiding the single points of failure presented by file servers are file replication
dual-ported disks.

2.5.1 File Replication

The most common solution for providing highly available and reliable file service i
replicate each file. Each replica of a file is stored on a different server. When a server
the replicated copies of its files can be used to provide uninterrupted service to its cl
Replication is expensive, however, both in the additional storage and server reso
needed to store the replicated copies, and in the cost of keeping the replicas consis

A major difference between the different network file systems that replicate files is
way in which they maintain the consistency of the replicated copies. If a client modifi
copy of a file then that modification must eventually be propagated to all of the repl
Immediate propagation ensures that all of the replicas remain consistent, but it
expensive operation since the application must wait until all of the copies are updated
this reason most replicated file systems update the copies asynchronously. This is a
off of performance for availability, however, because the replicas will be left inconsis
if the server containing the modified copy fails before the replicas are updated. S
systems allow the user to specify the number of replicas and how they are to be upda
adjust the performance and reliability trade-off to the user’s liking.

One of the biggest advantages of a replicated file system is that it allows the syst
survive network partitions. If a network failure occurs the system may become partitio
into separate groups of machines, with each member of a partition able to commun
with the other members of the same partition but not with any other partition. In a n
replicated file system only the machines in the same partition as the file server wil
uninterrupted file service. Clients in other partitions will have to wait until the netw
reconnects for file service to be restored. In a replicated file system each par
containing copies of the needed files can continue operation. When the partition
reconnected the replicas must be brought up-to-date and any conflicting modifica
resolved. Many conflicts can be resolved automatically, but some, such as a simulta
modification of a file and a deletion of the same file, may have to be left to a human to
out.

Some examples of network file systems or file server architectures that pro
replicated copies are Locus [Walker83], Coda [Satyanarayanan90], F
[Guy90][Page91], Echo [Hisgen89], Harp [Liskov91], and Deceit [Siegel90]. Loc
Coda, and Echo are complete network file systems in the sense that they define a
server protocol for accessing files. The rest of the systems do not define a part
protocol; rather, they are layered on top of existing protocols, such as NFS, and foc
improving the reliability and availability of the file server.

Locus allows a file to be replicated among a set ofstorage sites(SS), coordinated by a
current synchronization site(CSS). A client contacts the CSS on each open and close
31

e file.
s up-
bsolete
tition
tions
s are
f files

licas
while
eans

sure
e time
ff of
ring

orted

eplica
-to-
file. To
most
most

allows
clients
miss
o the

a of a
plicas
ary.

Echo
erver
d is
log,

rather
ive

ess a
ther to
n and
t does
the CSS directs the request to a storage site containing the most recent version of th
When a file is modified on an SS it notifies the other SS’s, and they bring their copie
to-date in the background. The CSS ensures that the clients do not access the o
copies during the update. Locus can tolerate network partitions by allowing each par
to have a CSS. This can cause the replicas of a file to receive conflicting modifica
during the network partition, since each partition has its own CSS. These conflict
resolved once the partitions are reconnected. Conflict resolution for common types o
is handled automatically, otherwise the user must resolve the conflict.

Ficus uses a replication scheme similar to Locus. Ficus updates file rep
asynchronously, so that an application that modifies a file can continue processing
the modifications are propagated to the other replicas in the background. This also m
that inconsistencies are possible. Periodically a reconciliation algorithm is run to en
that the replicas are consistent. It is possible for stale data to be accessed during th
before reconciliation occurs, but the designers believe this to be a fair trade-o
performance and scalability vs. consistency. Conflicting modifications discovered du
reconciliation are handled automatically when possible, otherwise the conflict is rep
to the user.

Coda uses a read-one, write-all replication scheme in which clients can read any r
of a file, but must write them all. This does not guarantee that every replica will be up
date, because network partitions can cause some servers to miss an update to a
avoid this problem the client contacts all of the servers to determine which has the
recent copy, and reads from that one. In the normal case they all should have the
recent copy, allowing client accesses to be distributed among the servers. Coda also
clients to cache files and to operate in a disconnected manner. Servers callback
when cached files become obsolete. If the client is disconnected it will obviously
these callbacks; in this case the conflict is resolved when the client reconnects t
network.

The rest of the replicated systems use a primary copy scheme, in which one replic
file is designated as the primary copy and all accesses are directed to it. Backup re
are only used if the primary fails, in which case a backup is promoted to be the prim
Once the primary becomes available again it is brought up to date with the backup.
uses a write-ahead log to keep track of file system modifications. The primary s
writes this log to disk when a file is modified. This log is also written to the backups an
used to recover from a failure of the primary server. Harp also uses a write-ahead
except that an uninterruptible power supply is used to ensure that the log is reliable,
than writing it to disk. This allows file modifications to complete without an expens
disk access.

Deceit is an NFS-based file server that supports replicated copies. Clients acc
Deceit server as if it were a standard NFS file server. Deceit servers are pooled toge
provide highly-available service. Files can be replicated and the degree of replicatio
the update propagation policy specified by the user. If a client contacts a server tha
32

pdates
].

isks
erver,
each
er, of
mary
client
erver
isk

files.
ores.
disks.
more
iding
te the

rvive
plex.
haos

cho
tion
rted
eir
not store a replica of the desired file the request is forwarded to a server that does. U
to replicas are propagated using the ISIS distributed programming toolkit [Birman84

2.5.2 Dual-Ported Disks

Another means of providing highly available file service is to connect dual-ported d
to two servers, as shown in Figure 2-6. Each disk can be accessed by either s
preventing a server failure from making a disk inaccessible. During normal operation
disk is accessed by only one of the servers. This server is the primary server, or own
the disk. Clients access the files on a disk through its primary server. When the pri
server fails the other server takes over ownership of the disks and begins servicing
requests. Disk failures can be tolerated using mirrored disks. When the primary s
writes to a disk it also writes to a backup disk. A hardware failure of the primary d
causes the system to switch over to using the backup disk.

There are several advantages of using dual-ported disks rather than replicated
First, a server failure can be tolerated without having replicated copies of the files it st
The dual-ported disks allow the backup server to directly access the failed server’s
Second, disk failures can be tolerated using mirrored disks, rather than a
complicated replication scheme. The primary server simply writes to both disks, avo
the communication costs and computation on the backup servers needed to upda
replicas of a file.

The disadvantages of dual-ported disks are that they do not allow the system to su
network partitions, and the failover from the primary to backup server can be com
Care must be taken that only one server at a time thinks it is the owner of a disk or c
will ensue.

Two examples of highly-available file servers that use dual-ported disks are E
[Hisgen89] and HA-NFS [Bhide91a][Bhide91b]. Echo uses a combination of replica
and dual-ported disks to provide highly available file service. HA-NFS uses dual-po
disks to provide highly available NFS file service. They are very similar in th

Network

Figure 2-6. Dual-ported disks.
Each disk is connected to both servers, allowing either server to service requests to a disk.
During normal operation one of the servers is designated the primary server for each disk; the
other server only services requests if the primary fails. Each disk may contain its own file
systems, or for added reliability, the disks may be mirrored to guard against disk failures.
33

ecial
write-
stem
ccurs
ply the

es,
s the

in a
ervers
rage
d fast
e file
does

ction

ID.
lled a

t

cross

trast,
f a
files,

are
in

ides
tency,
sists
rall

l files
re 2-
on a
high
implementation. Both allow disks to be attached to multiple servers, both use sp
hardware to ensure that there is only one owner of a disk at a time, and both use a
ahead log on the disk to record file system modifications. Changes to the file sy
metadata are written to the log before being applied to the metadata. If a failure o
before the metadata has been updated the log is used by the backup server to ap
necessary changes.

2.6 Striped File Systems

A striped file systemstripes, or distributes, its file data across multiple storage devic
allowing a single file access to be served by more than one device. This allow
system’s file access bandwidth to scale with the number of devices that participate
transfer. The storage devices can be disks, I/O nodes in a parallel computer, or file s
in a network file system. Striping across disks is usually implemented in the disk sto
system, as in RAID. The disk array appears to the file system as a single large an
disk. Consecutive disk blocks may in fact be stored on separate physical disks, but th
system is not aware of this fact. The advantage of this approach is that the file system
not need to be modified. RAID was described in Section 2.2.1.1. The rest of this se
describes striped file systems for parallel computers and networks of workstations.

The terminology I use to describe striped file systems is very similar to that for RA
A collection of data that spans the servers and over which parity is computed is ca
stripe, and the portion of a stripe stored on a single server is astripe fragment. Stripe
fragments that contain file system data are calleddata fragments, whereas the fragmen
that contains the parity of the data fragments in a stripe is called aparity fragment.

2.6.1 File-Based Striping

One feature shared by all existing striped file systems is that they stripe each file a
the storage devices independently, as shown Figure 2-7. I refer to this asfile-based
striping, because each data fragment contains a set of blocks from a single file. In con
a RAID implementsdisk-based striping, because the data fragments contain blocks o
virtual disk. Thus, the striping and parity functions in a file-based system do not span
since each stripe contains the blocks of a single file.

While conceptually simple, file-based striping has two drawbacks. First, small files
difficult to handle efficiently. If a small file is striped across all of the servers as
Figure 2-8(a) then each server will only store a very small piece of the file. This prov
little performance benefit, since most of the access cost is due to network and disk la
yet it incurs overhead on every server for every file access. If the client workload con
of mainly small files then striping files in this manner may actually reduce the ove
system performance, rather than improving it. Thus it seems better to handle smal
differently than large files and to store each small file on a single server, as in Figu
8(b). This leads to problems in parity management, however. If a small file is stored
single server then its parity will consume as much space as the file itself, resulting in
34

e file.
and
at the

sive
be

the
f the
d are
n the
rent
e.

se of
ajor

tems
l file
storage overhead and double the amount of data written by a client when it writes th
In addition, the approach in Figure 2-8(b) can result in unbalanced disk utilization
server loading. Care must be taken to distribute the small files over the servers so th
loads and utilizations do not vary too much.

The second problem with file-based striping is that partial stripe writes are expen
and complicated to implement. If an existing file is modified then its parity must
updated to reflect the modification. As in a RAID, the writes of the file block and
corresponding parity block must be atomic; if only one completes the contents o
stripe, and therefore the file, may be lost. Unlike a RAID, the storage devices involve
not connected to the same computer, requiring an atomic commit protocol betwee
computers involved. There exist protocols for ensuring that two writes to two diffe
servers are carried out atomically [Bernstein81], but they are complex and expensiv

Despite the disadvantages of file-based striping, its conceptual simplicity and ea
implementation have caused it to be used in all existing striped file systems. Its m
drawbacks are related to difficulties in managing parity, making it ideal for those sys
that do not maintain parity. The following subsections describe the existing paralle

File

File Servers

Figure 2-7. File-based striping for a large file.
The file is divided up into stripe units that are distributed among the servers. Each stripe
contains one parity fragment.

1 2 3 4 5 6

1 ⊗ 2 ⊗ 3

4 ⊗ 5 ⊗ 6

1

4

2 3

5 6

Figure 2-8. File-based striping for a small file.
In (a) the file is striped evenly across the servers, resulting in small fragments on
each server. In (b) the entire file is placed on one server but the parity takes as
much space as the file.

File

File Servers

Parity

(a)

File

File Servers

Parity

(b)
35

s files

uter.
ng is
l file
use a
l file
rage

cess

CFS
e runs a
e in the
e,

les).
o the
the file

write
d for a
s, and
pies of
kept

llel
and a

s, but
s the I/
adata
ferred
en the

n to

nitiate
reby

’s
systems and network file systems that use file-based striping to allow clients to acces
in parallel from multiple servers.

2.6.2 Parallel File Systems

A parallel file system is one that stripes file data across I/O nodes in a parallel comp
The purpose of the striping is to improve the bandwidth of file accesses. The stripi
usually done by storing consecutive blocks of a file on different I/O nodes. Paralle
systems have a very different set of design criteria than network file systems, beca
parallel machine is a much more tightly-coupled environment than a network. Paralle
systems do not typically worry about failures in the interconnect, processors, or sto
systems. Examples of parallel file systems are CFS [Pierce89],sfs[LoVerso93], and
Bridge [Dibble90]. All three support standard UNIX semantics as well as parallel ac
modes that allow multiple processors to access a file concurrently.

CFS (Concurrent File System) is designed for the Intel iPSC/2 parallel computer.
has a single name process that manages the file system name space. Each I/O nod
disk process that manages the disks attached to the node. The metadata for each fil
system consists of afile structurethat contains information about the file, such as its siz
and a list of pointers to the file’s data blocks (or indirect blocks in the case of large fi
A library is used to translate I/O operations by application programs into requests t
name process and the appropriate disk processes, as specified by the contents of
structure.

CFS does not allow the processing nodes to cache file data. All file read and
operations result in an access to at least one disk process. This eliminates the nee
cache consistency protocol, but results in increased latencies, communication cost
load on the disk nodes. Interestingly, CFS does allow processing nodes to cache co
the file structure to avoid fetching it on every file access. These copies are
“adequately up to date” through “simple lazy conventions” [Pierce89].

The sfs file system [Lo Verso93] provides parallel file access on the CM-5 para
computer. The NFS protocol is used to communicate between the processing nodes
centralized processor that runs the file system. This allows sharing and caching of file
requires additional latency when accessing a file since processing nodes can’t acces
O nodes directly. They must first contact the file system node which uses the file met
to send an I/O request to each of the I/O nodes storing the file. Data are then trans
between the I/O nodes and the processing nodes. The file system node is notified wh
I/Os are complete so it can update the file metadata.

Bridge [Dibble90] is designed to allow multiple processes in a parallel applicatio
access a file concurrently. A centralized process called theBridge servermaintains the file
system metadata. One common mode of operation uses the Bridge server to i
parallel transfers. One of the nodes in a parallel application opens the file, the
becoming thejob controller. The job controller provides a list of all of the application
36

troller

etter
ledge
lock.
ach

ss file

files
g the
r by
.

and
le for
file the
ates a
the

etwork
the

iate.

the
gents
nodes to the Bridge server. Subsequent read and write operations by the job con
cause parallel transfers to occur to and from all of the application’s nodes.

Bridge applications can also determine where the blocks of a file are stored to b
configure themselves to minimize data transfers. The most obvious use of this know
is to run the job that will access a particular file block on the node that stores that b
For example, copying a file can be implemented by doing a block copy locally on e
node storing a block. Bridge reports nearly linear speedup in applications that acce
blocks in this manner.

2.6.3 Swift

Swift [Cabrera91] improves the performance of network file systems by striping
across its file servers. Clients can access a file in parallel from the servers, improvin
performance of file access. Swift also provides highly-available file service, eithe
replicating the files it stores or by storing parity in much the same manner as a RAID

Swift consists of four components:clients, storage agents, storage mediators, and
distribution agents, as shown in Figure 2-9. Clients run application programs that read
write files. The storage agents store file data. The storage mediator is responsib
managing the storage and network resources. When a client wishes to access a
storage mediator reserves the appropriate storage and network capacity and cre
transfer plan. For example, to write a file the storage mediator would decide
appropriate striping unit, preallocate space on the storage agents, and reserve n
capacity for the transfer. The storage mediator is also responsible for ensuring
consistency of client caches by using call-backs to flush client caches when appropr

A distribution agentis responsible for implementing the transfer plan created by
storage mediator. Its most important function is to stripe file data over the storage a

Storage

Client

Client

Storage
Mediator

Distribution
Agent

Agent

Storage
Agent

Storage
Agent

Figure 2-9. Swift architecture.
Clients run applications, storage agents store file data. The storage mediator allocates storage
and network resources. The distribution agent carries out the transfer plan created by the
storage mediator to transfer data between the clients and the storage agents.
37

into
agent

bution
clients

any
es.

ins is
toring
n or

t. It
ution
iles
linear
m one

ility
ions.
at the
the
ires

twork
ance

ely to
gical
oral
k in
data
be are

cols
aches.
s. A

ap to
files

er to
as specified by the transfer plan. During writes the distribution agent breaks the file
blocks which are striped across the storage agents, and during reads the distribution
reassembles the file from its constituent blocks on the storage agents. Thus the distri
agent is a potential performance bottleneck because all data read and written by the
must pass through it, but the Swift architects expect to avoid this problem by having m
distribution agents in the system, each of which is co-resident with the clients it serv

The storage mediator is a central point of failure because the metadata it conta
needed to formulate the transfer plans. Swift makes the metadata highly reliable by s
it on the storage agents, which in turn are made highly reliable through replicatio
parity.

An initial prototype of the Swift architecture was implemented as a proof of concep
did not support any of the reliability mechanisms. The storage mediator and distrib
agent functions were implemented in libraries linked into the application program. F
were striped uniformly across the storage agents. This prototype has shown nearly
speedup of file reads and writes when the number of storage agents is increased fro
to three.

Recently the Swift prototype has been reimplemented to incorporate the reliab
mechanisms [Long94]. The prototype can now support a variety of parity organizat
Measurements indicate the parity computation incurs a significant overhead, so th
resulting performance of a five-server system with parity enabled is only 53% of
original Swift prototype with the same number of servers. In other words, parity requ
less storage than replication, but it does not provide better performance.

2.7 Summary

There are many issues in designing a high-performance and highly-available ne
file system. At the lowest level the system’s performance is dependent on the perform
of the file server’s disk subsystem. Techniques such as RAID can be used effectiv
improve the disk subsystem performance, by aggregating many disks into a single lo
disk. LFS improves the efficiency of the disk subsystem through the use of temp
clustering, which allows small writes to be batched together and written to the dis
large, efficient transfers. File server performance is further improved by caching file
in its main memory, so that some disk accesses are avoided and those that cannot
scheduled efficiently.

At the next level in the system performance is improved by defining efficient proto
between the clients and servers, and by avoiding file server accesses via client file c
The data transfer protocol in most network file systems is based on logical file block
client request specifies a logical file block, and the file server uses the file’s block m
determine the corresponding disk block. This approach allows many clients to share
and hides the details of the block map from the clients, but it requires the file serv
process each individual file block that is accessed, limiting the server performance.
38

sses.
tisfied
nce,
ld be

with
hly-
files

tional
suring
se of

own
ile to
d that

red to
ide

ance
ined
ional
idual
ce is
idual
an be

e the
ious
the

ghly
lable

ping
Client file caching improves system performance by eliminating file server acce
The cache allows some of the reads and writes by application programs to be sa
locally, without contacting the server. This not only improves the file system performa
but reduces the load on the file server and allows it to service more clients that wou
possible without client caching.

At the highest level the design of a network file system must be concerned
availability and scalable performance. The standard technique for providing hig
available file service is to replicate files. This allows the clients to continue accessing
even if a server crashes. The disadvantage of replication is that it requires addi
storage space to contain the replicas, and it requires a consistency mechanism for en
that an update to a file is propagated to all of its replicas. For these reasons the u
parity to provide highly-available network file service seems appealing. RAID has sh
that parity can be used to build highly-available disk subsystems; it seems worthwh
investigate its use in network file systems. The Swift system has already demonstrate
the use of parity in a network file system does reduce the amount of storage requi
provide highly-available service, but Swift’s parity implementation does not prov
significant performance improvements over replication.

Swift has also demonstrated that striping can be used to provide scalable perform
in a network file system. In a traditional network file system the performance obta
when accessing a file is limited by the resources of the file server that stores it. Addit
servers only improve the aggregate transfer bandwidth of the system, not the indiv
transfer bandwidth. By striping file data across servers the file access performan
decoupled from the server performance, allowing both the aggregate and indiv
transfer bandwidths to be improved by adding servers. More servers means a file c
accessed at a faster rate.

The focus of the Zebra design effort has been to use striping and parity to improv
performance and availability of network file systems. Zebra’s advantage over prev
efforts in this area is that it borrows ideas from both RAID and LFS. As will be seen,
combination of striping with parity and log-based storage allocation leads to a hi
integrated system that has high server efficiency, uses striping to provide sca
performance, and uses parity to provide high availability. The details of Zebra’s stri
and parity mechanisms are found in the next chapter.
39

lized
offers
g a

om
t of the
rk file
clients
of a
and
cy.

k file
the

on is
and

use
ribed
arity

hile
full

these

f an
s
ing

ction
a log-
erface
erface
to an
Thus
3 Zebra Fundamentals

Distributed systems are at the same time better and worse than their centra
counterparts. A distributed system is better than a centralized system because it
scalable performance and high availability, but the inherent complexity of distributin
computation makes it more difficult to implement. Much of this complexity comes fr
the need to synchronize accesses to shared resources, so that each componen
system sees a consistent view of each resource. For example, if the clients of a netwo
system are sharing a file the accesses to the file must be synchronized so that the
always read the most recently written data. Thus there is a tension in the design
distributed system between the desire to distribute functionality to improve scalability
availability, and the need for synchronization to permit sharing and ensure consisten

There are several manifestations of this tension in the design of a striped networ
system. First, the striping and parity functions that in a RAID are handled by
centralized host processor must be distributed. The manner in which this distributi
done can have a significant impact on the resulting system’s performance
synchronization complexity, however. All other existing striped network file systems
file-based striping, in which individual files are striped across the servers. As desc
previously, this form of striping has several drawbacks, including excessive p
overheads for small files and the need for partial stripe writes to be atomic. Thus, w
file-based striping promises to work well in workloads dominated by large files and
stripe writes, it may have excessive overheads on workloads that don’t have
characteristics.

The inherent limitations of file-based striping led to the development in Zebra o
alternative striping scheme calledlog-based striping. Log-based striping borrows idea
from log-structured file systems (LFS) [Rosenblum91], so that instead of strip
individual files, as is done in file-based striping, Zebra interposes a log abstra
between the files and the disks and stripes the logs. Zebra can be thought of as
structured network file system: whereas LFS uses the logging approach at the int
between a file server and its disks, Zebra uses the logging approach at the int
between a client and its servers. Each Zebra client organizes its new file data in
append-only log which it then stripes across the servers, as illustrated in Figure 3-1.
40

es its

tion
e files

he file
of the
ger. To

ger to
t keep
s that
it into
by

they
and

use,
ed to

the
ripe
ata,
ed to
able
Zebra clients stripe logs containing files, rather than individual files. Each client creat
own log and computes the parity of its log as it is written to the servers.

Log-based striping alone does not solve all of the distribution and synchroniza
problems in a striped network file system, however. First, clients must be able to shar
in a consistent manner. In Zebra this mechanism is provided by thefile manager, which is
responsible for providing client access to the file system name space, for managing t
block maps, and for ensuring the consistency of client caches. Second, the contents
storage servers must agree with the file system metadata managed by the file mana
achieve this goal, Zebra clients store additional information in their logs calleddeltas,
which describe changes in the state of the file system and are used by the file mana
ensure the consistency of the file system after a crash. Finally, the file system mus
track of its free space and allocate it to store newly-written data. In Zebra this mean
the system must reclaim the free space found inside of existing stripes and coalesce
large contiguous regions in which to store new stripes. This functionality is provided
thestripe cleaner.

The remainder of this chapter looks at the design choices made in Zebra, and how
interact to provide a striped network file system that requires less overhead
synchronization than a file system that uses file-based striping.

3.1 Parity Computation by Clients

The parity computation in a striped network file system must be distributed beca
unlike a RAID, there is no centralized resource that contains all of the data need
compute a stripe’s parity. In a RAID, all of the data written by the clients pass through
RAID host, making it easy for the host to manage the parity of the stripes. For full st
writes the host simply computes the parity of the stripe and writes it along with the d
and for partial stripe writes the host reads back information from the stripe as need
compute the parity. A striped network file system, however, lacks a compar

6

3

5

2

4

1

64

File Servers

1 ⊗ 2 ⊗ 3

4 ⊗ 5 ⊗ 6

1 2 3 5

File B

File A

File C

File D

Client’s Log

Figure 3-1. Log-based striping.
Each client forms its new file data into a single append-only log and stripes this log across the
servers. In this example file A spans several servers while file B is stored entirely on a single
server. Parity is computed for the log, not for individual files.
41

ontents
ingle

data
re the
each
n its
ts the
ilar
in the
the

ds the
arity
xtra
data

er in

vers,
each

is
ll of
se to
n the

server
smit a
ment
write

can

hich
ad on
with
ork

ipe it
s the

is
red if

tripe
tripe
centralized resource that has easy access to the data being written and the current c
of the stripes. One could be added, but it would be a performance bottleneck and s
point of failure, since all data written would pass through it.

One possibility is to distribute the parity computation among the servers. After
have been written to a stripe, the servers exchange information to compute and sto
stripe’s new parity. The simplest way of doing this is to number the servers, then have
server receive a partially computed parity fragment from the previous server, XOR i
data fragment, and pass the result on to the next server. When the parity server ge
parity fragment it simply stores it. Partial stripe writes can be implemented in a sim
fashion, except that parity is only exchanged between those servers that participate
write. When a server receives a partially computed parity fragment it XORs in both
new data fragment and the old data fragment (which it reads from the disk), and sen
result on to the next server. The parity server XORs in the old parity fragment to the p
fragment it receives before storing it. This method of computing parity results in one e
network transfer for each data fragment written, since each server that receives a
fragment must also send a partially computed parity fragment to the next serv
sequence.

There are several drawbacks to performing the parity computation on the ser
however. First, computing the parity for a stripe requires an extra network transfer for
server participating in the write, doubling its cost. This is true even if a full stripe write
performed, which is particularly inefficient because the client writing the stripe has a
the data needed to compute its parity. For a full stripe write it makes more sen
compute the parity on the client and avoid the overhead of exchanging data betwee
servers.

Second, computing parity on the servers consumes server resources and reduces
performance. For each data fragment a server receives, it must also receive and tran
partially computed parity fragment, as well as read the old contents of the data frag
from its disk. The overhead represented by these activities limits the available
bandwidth provided by the server, thereby limiting the throughput that the server
support.

To avoid these problems, Zebra performs the parity computations on the clients, w
reduces the number of network transfers required to compute parity, reduces the lo
the servers, and allows the performance of the parity computation to scale
improvements in client performance. In particular, full stripe writes require fewer netw
transfers than if parity were computed on the servers. When a client writes a full str
can easily compute the stripe’s parity and write it along with the stripe. This increase
number of network transfers required to write a full stripe write by only 1/N, where N
the number of servers participating the write, instead of by the N extra transfers requi
parity is computed on the servers.

Computing parity on the clients does not improve the performance of partial s
writes, however. In fact, partial stripe writes become slightly more expensive. Partial s
42

pute
nsfer
uires
the

n the
that
ents

s it
an be
ve a

rams
is the

new
file

lock

ays in
via
f the
opy

llows
in a
can’t
st of
the
frees
ed in

the
locks
and

ripe.

ed in
writes require one extra network transfer per fragment written if the servers com
parity; not only does computing the parity on the clients require one extra network tra
per fragment written, to read back the old contents of the fragments, but it also req
two extra network transfers for the client to read and write the parity fragment. Thus
overhead of computing the parity on the client during a partial stripe write depends o
number of data fragments written. If a single fragment is written the overhead is twice
required if parity is computed on the servers. The larger the number of data fragm
written, the smaller the overhead.

The higher performance of full stripe writes versus partial stripe writes make
desirable to favor the former over the latter. This does not mean that applications c
forced to always write in units of full stripes, however; instead the file system must ha
way of batching together unrelated data from many small writes by application prog
into full stripe writes to the servers. The technique that makes this possible in Zebra
use of non-overwrite updates of file blocks, as described in the next section.

3.2 Non-Overwrite

One of the most important features of Zebra is that it updates file blocks by writing
copies, rather than updating the existing copies. File systems traditionally modify a
block by modifying its storage location on the disk, so that the old contents of the b
are overwritten with the new. This technique is known asoverwriteor update-in-place.
The result is that once a storage location has been allocated for a block, the block st
that location until it is deleted. In Zebra, however, clients do not modify file blocks
update-in-place. Instead, a client modifies a file block by appending a new copy o
block to the end of its log, then updating the file’s block map to point to the new c
rather than the old.

The use of non-overwrite to update file blocks has several advantages. First, it a
the clients to batch together blocks from different files and write them to the servers
single transfer. Since file blocks are not modified in-place, there is no reason a client
store blocks from several files in the same stripe. This not only amortizes the co
writing over more bytes, but it also allows clients perform full stripe writes instead of
more expensive partial stripe writes. Second, the elimination of update-in-place
clients to write data to any stripes they wish; just because a file block is currently stor
a particular stripe doesn’t mean that the new copy of the block has to be written to
same stripe. This means that even if several clients simultaneously modify the b
contained in a single stripe, they can write their modified blocks to different stripes
avoid the synchronization that would be required if they were to write to the same st

These advantages of using non-overwrite instead of update-in-place are describ
more detail in the following sections.
43

atch
ient
arge
o be
ation
ite to
avoids
re
rent
ify
ingle
here

a full
more
needed
ible
ipe.
d file

ients
the

ocks
uted

rent
’t need

stem
ipe.

on the
all of
form

is the

is
ripe a
3.3 Write Batching

By using a non-overwrite method of updating file blocks, Zebra allows clients to b
together file blocks from different files and write them to the servers in large, effic
transfers. This improves the write performance of the system in two ways. First, l
transfers amortize the overhead of performing a data transfer and allow parity t
computed over more bytes of data, reducing the per-byte costs. Even if an applic
performs small writes the client is able to batch these writes together into a large wr
the same stripe. This allows more data to be transferred in each server access, and it
having to perform a partial stripe write for each file block written. If file blocks a
updated in-place, then modifications to a collection of blocks each located in a diffe
stripe will require a partial stripe write for each block. By using non-overwrite to mod
file blocks, clients can write unrelated file blocks to the same stripe and perform a s
parity update that covers all of the blocks. This same technique used in the write-anyw
file layout (WAFL) [Hitz94] to reduce the cost of partial stripe writes.

Second, non-overwrite makes it possible to batch together enough data to perform
stripe write, so that not only are the transfer and parity overheads amortized over
bytes, but the overheads are reduced because additional network transfers are not
to compute the stripe’s parity. If update-in-place is used a full stripe write is only poss
if the applications that a client is running happen to modify all of the file blocks in a str
Without update-in-place, however, full stripe writes are more likely because unrelate
blocks can be written to the same stripe.

3.4 Virtual Stripes

The second advantage of not using update-in-place to modify file blocks is that cl
can write their modifications to different stripes and avoid simultaneously modifying
same stripe. If file blocks are updated in place, then two clients that wish to modify bl
in the same stripe would have to synchronize their actions so that parity is comp
correctly. In Zebra, however, the clients can simply write their modified blocks to diffe
stripes, so that they have exclusive access to the stripes they are modifying and don
to synchronize during the parity computation.

This does not completely solve the synchronization problem, however, since the sy
must guarantee that only one client at a time will write its blocks to a particular str
Zebra provides this guarantee through the use ofvirtual stripes, which provide a level of
indirection between the stripes accessed by the clients and the physical storage
storage servers. In a RAID, striping is done based upon physical disk blocks, so that
the blocks numbered zero from each disk form stripe zero, blocks numbered one
stripe one, etc. With physical striping the number of stripes in the system is fixed, as
mapping from a stripe’s name (address) to the disk blocks that store it.

It isn’t difficult in a striped file system, however, to add a level of indirection to th
mapping so that the disk blocks that store a stripe aren’t fixed. Given the name of a st
44

the
. Once
e valid

the

st, it
that

imply
lients
the

ing a

t of
n the
p,
d on

er of
space
st at

are
e are
e in a
pute

irtual
ipes,

be
le for
to a
le for
rage
it is

nts to
orage

file
is is

eating
lookup must be done to determine which disk blocks store it. Any collection of
system’s disk blocks can be used to hold the stripe, as long as it spans the servers
this indirection exists it is easy to expand the stripe name space so that there are mor
stripe names than there are disk blocks to hold them. The only limitation is that
number of existing stripes cannot exceed the size of the storage space.

The indirection provided by virtual stripes has several advantages in Zebra. Fir
allows each client to create new stripes to hold the data it writes while guaranteeing
two clients do not create stripes with the same name. The stripe name space is s
partitioned into disjoint sets, and each client assigned to a different set. Because c
create stripes in their own partition there is no danger of two clients choosing to write
same stripe simultaneously, thus eliminating the need to synchronize when choos
stripe to write.

Partitioning the stripes is also feasible with physical stripes, but it limits the amoun
data that a single client can write. Each client can only write as much data as fits i
stripes in its partition, preventing a client from writing more data if its partition fills u
even though there may be plenty of free space in other stripes. Partitioning base
virtual stripes does not suffer from this same problem, however, since the numb
virtual stripes allocated to each client can be much larger than the physical storage
in the system. The only limitation is that the total number of virtual stripes that can exi
any one time cannot exceed the storage capacity of the system.

Another advantage of using virtual stripes is that they are initially empty when they
created, making partial stripe writes less expensive. The contents of a new strip
logically zero, as is its parity fragment. Therefore, if data are appended to a new strip
partial stripe write, there is no need to read the current contents of the stripe to com
the new parity, since the current contents are known to be zero. Thus, by using v
stripes, partial stripe writes can be completed without reading data from the str
thereby improving their performance.

Finally, the use of virtual stripes allows the allocation of file blocks to stripes to
decoupled from the allocation of stripes to storage space. Clients are responsib
laying out file blocks in the stripes they create, which they do by forming the blocks in
log, and storing the log in the stripes. The servers, on the other hand, are responsib
taking the stripes they are given and storing them on their disks. The actual sto
location of a stripe isn’t of concern to the clients, as long as the servers know where
stored and return its contents on subsequent reads. Thus virtual stripes allow clie
allocate stripes and store file data in them, while the servers manage their own st
space.

3.5 Append-Only Writes

The combination of non-overwrite and virtual stripes allows Zebra clients to write
blocks to the servers without synchronizing with each other before doing so. While th
true no matter which stripes each client chooses to write, there is an advantage to tr
45

riping,
ritten

s that
g. If
n be
it is
ng so
tem.
eted
ll, a
rmer
a new

that
fect
log
rite
ly by
log,

vior is

rites
s are
ead it
two
ith a
full

tes is
a, so
hough
still

stem
erwise

a they
ough
ither
irectly.
pe to
the storage space in the virtual stripes as a log, as is done in Zebra. In log-based st
the file blocks are formed into a log that is striped across the servers. Thus the data w
by each client are appended to the end of its log. One implication of this mechanism i
a partial stripe write can only affect the stripe that contains the end of the client’s lo
the client caches the parity fragment for the end of its log, a partial stripe write ca
performed without reading the old contents of the stripe’s parity fragment. While
possible for clients to cache parity fragments in a system that is not append-only, doi
will be much less efficient since partial stripe writes may occur to any stripe in the sys
In Zebra, however, if a client performs a partial stripe write it is guaranteed to be targ
at either the stripe that contains the current end of the client’s log, or, if that stripe is fu
new stripe. In either case the client does not have to read the parity fragment, in the fo
instance because it has the parity cached, and in the latter because the parity for
stripe is logically zero.

Another advantage of confining partial stripe writes to the tails of the client logs is
there is no need to make them atomic. The failure of a partial stripe write will only af
the tail of the log. Recovery from the failure is simply a matter of finding the tail of the
and verifying that the parity for the stripe that contains it is correct. If it is not, then a w
was in progress at the time of the crash and the stripe’s parity is corrected simp
recomputing it from the existing fragments of the stripe. This effectively truncates the
and may leave the offending write in an incomplete state due to the crash. This beha
no different from other file systems that maintain UNIX semantics.

The net result of using append-only writes and virtual stripes is that partial stripe w
in Zebra are no more expensive to perform than full stripe writes. Because write
append-only, clients can cache the most recent parity fragment and avoid having to r
to perform a partial stripe write. Since clients write virtual stripes there is no danger of
clients simultaneously modifying the same stripe. Thus the overhead associated w
partial stripe write is simply the cost of writing the parity fragment, the same as in a
stripe write. This does not mean, however, that the performance of partial stripe wri
the same as full stripe writes. A partial stripe write transfers a smaller amount of dat
that the per-byte overheads are higher, leading to reduced performance. Even t
partial stripe writes aren’t as costly in Zebra as they are in other systems, it is
advantageous for each client to batch together its data to form full stripe writes.

3.6 Stripe Cleaning

One of the implications of using append-only logs to store file data is that the sy
must delete stripes at the same rate as new stripes are created to hold the logs, oth
the system will run out of storage space. Clients create new stripes to store the dat
write, instead of using the free space found in existing stripes. This means that alth
free space will appear within existing stripes as the file blocks they contain are e
superceded by new copies or deleted, this free space cannot be used by the clients d
The only way to reuse the free space in a existing stripe is for all of the data in the stri
46

med by

tripes
ue to
ta are
appear
is no

entire
there

mpty
y
ucing
ce. A
client
. The

n of
not

ust be
one
that
ck it
ond,
sistent
, for
sistent

the

so that
s the

a file
to

e file
locks.

anism
n and
be unused, so that the entire stripe can be deleted and the space it occupies reclai
the storage servers and reused for new stripes.

The problem, therefore, is one of ensuring that there is a steady supply of empty s
to be deleted to provide space to hold new stripes. This task is made more difficult d
internal fragmentation of free space within existing stripes. In the steady state, file da
deleted at the same rate at which they are created. This means that free space will
in existing stripes at the same rate at which data are written to new stripes, but there
guarantee that this free space will naturally coalesce into large regions that span
stripes. If it does not, the system will run out of empty stripes to delete, even though
is plenty of free space in existing stripes.

In Zebra the tasks of reducing internal fragmentation of free space and producing e
stripes to be deleted are handled by thestripe cleaner. The stripe cleaner operates b
cleaningstripes so that they do not contain any data that are in use, thereby prod
empty stripes to be deleted and reducing the internal fragmentation of the free spa
stripe is cleaned by copying any live data it contains to the end of the stripe cleaner’s
log, which moves the data to a new stripe and leaves the old copies unused
functioning of the stripe cleaner is described in greater detail in the next chapter.

3.7 Centralized Metadata Management

Zebra’s log-based striping makes it possible for multiple clients to share a collectio
storage servers without requiring synchronization when writing stripes, but it does
address the issue of allowing clients to share files. There are three problems that m
solved. First, the system must provide a mechanism by which a file block written by
client can be read by another client. When a client writes a file block to its log, only
client knows which stripe stores the block. If another client wishes to read the blo
must somehow discover the block’s storage location from the client that wrote it. Sec
the contents of the client caches must remain consistent, so that clients see con
views of the file contents. A client should not read obsolete file data from its cache
example. Third, clients must be able to share the file system name space in a con
fashion. For example, two clients should not be able to create two different files with
same name.

In Zebra these tasks are handled by thefile manager.The file manager’s role is to
manage the file system metadata. It synchronizes client accesses to the metadata
the clients see consistent views of the file system. First, the file manager manage
block maps that keep track of where each file block is located. When a client writes
block it notifies the file manager of the block’s new location, allowing other clients
determine the block’s storage location by querying the file manager. In this manner th
manager is able to ensure that clients always read the most recent copies of file b
The file manager operation is described in more detail in Section 4.4.

The file manager also ensures that the client caches remain consistent. The mech
for doing this is based on the Sprite cache consistency protocol. When clients ope
47

clients
hed
ut-of-

ger. If
he file
ure that

ce is
f their

ead to
ents
me

le’s
wn as
t to
d in

from
ne by
have

its
the

ebra

rage
lock
how

ather
ased

g to
t of
ripe
logs
close files they send messages to the file manager so that it can keep track of which
are modifying which files. If a client tries to open a file for which it has an obsolete cac
copy it is notified by the file manager to discard the copy. Thus clients never access o
date file data from their caches.

Finally, each operation on the file system name space is handled by the file mana
a client wishes to create a file, for example, it sends a request to the file manager. T
manager can therefore synchronize accesses to the file system name space to ens
inconsistencies do not occur.

3.8 Consistency via Deltas

One of the problems of having the file manager maintain the file system name spa
that file blocks are stored on the storage servers, but the block maps that keep track o
locations are managed by the file manager. Any inconsistency between the two can l
lost file data. For example, if a file is written to the storage servers, but a failure prev
the file manager from updating its block map, the blocks of the file may beco
inaccessible.

The solution to this problem to make the act of writing file data and updating the fi
block map atomic. To do this, Zebra borrows a technique from database systems kno
write-ahead logging. A write-ahead log is used to record a set of actions that are abou
be performed, before actually performing them. Once this information is safely store
the log, the actions are then undertaken. If a failure prevents all of the actions
occurring, the log can be used to return the system to a consistent state. This is do
using the contents of the log to finish the operations or to undo the effect of those that
already been done.

A similar solution can be used to ensure that writing a file block and recording
location is atomic. Furthermore, it is simple to integrate with log-based striping since
system already contains a log. In addition to storing file blocks in the client logs, Z
also stores descriptive information about the blocks calleddeltas. Each block stored in a
log has a delta stored along with it which describes the current and previous sto
locations of the block. This information is used after a crash to ensure that the file’s b
map has been updated properly to reflect the newly written block. The details of
deltas are processed by the file manager are given in Section 4.4.2.

3.9 Summary

The most novel feature of Zebra is its use of log-based striping to store file data, r
than the file-based striping preferred by other striped file systems. Zebra’s log-b
striping is advantageous in several ways. First, it prevents clients from havin
synchronize before writing to a stripe. Each client writes its own log to its own se
virtual stripes, so there is no danger of multiple clients modifying the same st
simultaneously. Second, partial stripe writes are confined to the ends of the client
48

tomic,
nt’s

stored
tripe
and
pe in
ws

large
that

ipe

gement
stripe
ripes. It
of its
d block
e file
resent
ith the
rough
o be
because the logs are append only. This means that a partial stripe write need not be a
since a failure can be corrected by verifying the parity of the stripe at the tail of the clie
log and truncating the log if necessary. Third, since the logs are append only and are
in virtual stripes, there is no need to read information from a stripe during a partial s
write. Data can only be written to a part of the stripe that was previously empty,
therefore logically zero, and the client can cache the parity fragment for the last stri
its log to avoid reading it during a partial stripe write. Finally, log-based striping allo
clients to batch together file data from different files and write them to the servers in
transfers. This not only improves server efficiency, but also increases the likelihood
clients will be able to perform full stripe writes, instead of the more costly partial str
writes.

The remaining issues of free space management and file system metadata mana
are handled in Zebra by the stripe cleaner and the file manager, respectively. The
cleaner produces empty stripes whose storage space can be reused to hold new st
does this by copying live data out of existing stripes and appending them to the tail
log. The file manager maintains the file system metadata, such as its name space an
maps. Clients interact with the file manager to access the metadata, allowing th
manager to ensure that the clients see consistent views of the file system. This does p
a problem, however, since the file blocks stored by the storage servers must agree w
block maps maintained by the file manager. Zebra solves this consistency problem th
the use of deltas, which allow changes in the state of the file system’s blocks t
recorded in the log so that the state can be reconstructed after a crash.
49

nents
tion
rom a

share a
run on
n the

by a
ers in
into a
rchy,
4 Zebra Architecture

This chapter describes the Zebra architecture, including descriptions of the compo
of a Zebra file system and how they interact to provide file service to the applica
programs, how the system tolerates failures, and how each component recovers f
failure. The Zebra components are shown in Figure 4-1, and consist ofclients, which are
the machines that run application programs;storage servers, which store file data; afile
manager, which manages the file system metadata; and astripe cleaner, which reclaims
unused space on the storage servers. More than one of these components may
physical machine. The file manager and stripe cleaner are system services that may
a single client, for example. It is also possible for a storage server to be a client. I
figure, however, the storage servers and clients are shown as separate machines.

A single Zebra file system is defined to be a directory hierarchy that is managed
single file manager. There may be multiple clients, storage servers, and stripe clean
the system, but only one file manager. Several file managers may be composed
larger file system by piecing together their directory hierarchies into an overall hiera

Network

Storage Servers

Clients
File Manager &
Stripe Cleaner

Figure 4-1. Zebra components.
Clients run applications; storage servers store data. The file manager and stripe cleaner can run
on any client in the system, although it is likely that one client will run both of them.
50

ra is
the
scribe

server
ervers
nce to

is that
r. In a
tion.
e file
quest
e file

that

o that
r than
by

the
to
the

e log

ed at a
e log
tripe
ripe.
log ID
e

itories
ytes

ps the
but this does not affect the design of the individual file systems. For this reason Zeb
described as if there is only a single file manager. A similar simplification is made for
stripe cleaner. There may be several stripe cleaners in a file system, but it easier to de
the operation of the stripe cleaner if it is assumed that only one exists.

The Zebra architecture is also described under the assumption that each storage
has only a single disk. However, this need not be the case. For example, storage s
could each contain several disks managed as a RAID, thereby giving the appeara
clients of a single disk with higher capacity and throughput.

4.1 Log Addresses

One of the consequences of using log-based striping instead of file-based striping
the storage servers provide a different storage abstraction than a traditional file serve
traditional network file system the file server interface provides a logical file abstrac
Clients access data stored on the server by reading and writing file blocks, and th
server uses the files’ block maps to determine which disk blocks to access. Each re
specifies the file ID and logical block number to be accessed. The file server uses th
ID to find the file’s block map (inode), then uses the block map to find the disk block
contains the desired logical file block.

In contrast, the storage server interface in Zebra implements a log abstraction, s
the data on a storage server are accessed by their locations in the client logs, rathe
their locations in files. The location of a block of data within the client logs is specified
its log address, which includes the identification of the log that holds the data and
offset of the data within the log. Thus in Zebra the mapping from logical file block
physical disk block is divided into two phases: in the first phase the client converts
logical file block into its log address, and in the second phase the server converts th
address into a physical disk address.

Log addresses are easily parsed to determine which client produced the data stor
given address, and which server stores them. This parsing is shown in Figure 4-2. Th
ID identifies which client created the log. The stripe index is the sequence of the s
within the log, and the fragment index is the sequence of the fragment within the st
The fragment index can therefore be used as a server index. The combination of the
and stripe index is called thestripe ID, since it uniquely identifies each stripe of th
system. The stripe ID plus the fragment index is called thefragment IDbecause they
uniquely identify the fragment.

4.2 Storage Servers

The storage servers are the simplest components of Zebra: they are merely repos
for stripe fragments. To a storage server a stripe fragment is simply a collection of b
identified by its log address. Each storage server keeps a fragment map that ma
fragment ID of each fragment to its disk address.
51

verhead
of the
server
r an
U is

tores
server
path
tween
s the
eases

plane,
being
on the
y look

. The
d

lightly
The use of log addresses to access data on the servers results in less server o
than if logical file addresses were used. The server does not interpret the contents
fragments that it stores, reducing the per-file or per-block overheads on the storage
when reading or writing data. Since a fragment is much larger than a file block o
average file (a fragment is 512 Kbytes in the prototype) the load on the server CP
substantially reduced.

In addition, since the server does not interpret the contents of the fragments it s
there is no need for the fragments to actually cross the host backplane at all. Some
architectures, such as RAID-II [Drapeau94], implement a high-performance data
between the network and the disk subsystem. This data path allows data to flow be
the networks and the disks without being copied to the host memory system acros
host backplane, as would be the case in a traditional file server architecture. This incr
the file server performance by avoiding the bottleneck presented by the host back
but in a traditional file system it complicates the file server software because the data
stored by the server is not easily accessible to the host CPU. The Zebra architecture,
other hand, circumvents this problem because there is no need for the host to actuall
at the contents of the fragments it stores.

4.2.1 Functionality

Storage servers provide six operations on fragments as illustrated in Table 4-1
Zebra architecture distinguishes between those fragments that store file data, calledata
fragments, and those fragments that store the parity of a stripe, calledparity fragments.
The Zebra storage servers handle data fragments and parity fragments in a s

Log ID Log Offset

Log ID Stripe Index
Fragment

Index Fragment Offset

Figure 4-2. Log address parsing.
A log address can be broken down into an index of the stripe within the log, an index of the
fragment within the stripe, and an offset within the fragment. The log ID plus stripe index is
the stripe ID and uniquely identifies a stripe; the stripe ID plus the fragment index is the
fragment ID and uniquely identifies a fragment plus the server that stores it.

Stripe ID

Fragment ID
52

to
ze of
; this

nded.
tripe
use a
copy
h
uish

re, a
uring
f the

are
being

ils to
annot

.

different manner. A data fragment is created via astoreoperation and may be appended
via appendoperations (this allows clients to store amounts of data smaller than the si
a fragment). It is an error to attempt to store a data fragment that already exists
ensures that existing data in a data fragment cannot be overwritten.

Parity fragments, on the other hand, can be overwritten but cannot have data appe
A parity fragment may be overwritten when a stripe is created via a series of partial s
writes (a write that does not span an entire stripe). Each partial stripe write can ca
new version of the parity fragment to be stored. If a parity fragment is stored when a
already exists the new copy replaces the old. Thesequenceparameter increases for eac
new copy of a parity fragment stored and is used during crash recovery to disting
between multiple copies of the parity fragment (see Section 4.2.2).

All storage server operations are synchronous and atomic. Astore operation, for
example, does not return until the fragment is safely stored on the disk. Furthermo
server failure during an operation does not leave the operation partially completed. D
recovery the server will determine whether the operation completed successfully. I
operation only partially completed before the crash, the effects of the operation
undone. Thus a failure during an append operation either results in all of the data
appended or none of them.

Failures external to the server may also cause an operation to fail. If the client fa
send all of the data associated with a store operation then obviously the operation c

Operation Parameters Effects

Store Data Fragment Fragment ID
Size
Checksum

Stores the fragment on the disk.Checksumis the
checksum of the fragment. It is an error if the
fragment already exists.

Append to Data Fragment Fragment ID
Size
Checksum

Appends data to an existing data fragment.
Checksumis the checksum of the entire fragment
including the appended data.

Store Parity Fragment Fragment ID
Size
Sequence
Checksum

Same as for storing a data fragment, except that if
the fragment already exists the new copy replaces
the old. Thesequencemust increase for each new
copy.

Retrieve Fragment Fragment ID
Offset
Size

Returns size bytes starting atoffset within the
fragment. A list of offset/size pairs may be
specified for the same fragment.

Delete Fragment Fragment ID Deletes the fragment.

Last Fragment Client ID Returns the fragment ID of the most recent
fragment stored or appended to by the client.

Table 4-1. Storage server interface.
The set of operations used by clients to store, retrieve, and delete fragments on a storage server
53

rt the

ernally
s
ay be

vers in
ritten
hese

ter a
time of
lved
gment
pared
n did
were
heck
ervers
ash.

ent to
new.
ld no

to be
pend
ert to

erver
tored
leave
stored
y. If a
ment
sing
parity
sh all
ence

torage
nsure
n the
succeed. A communication failure of this sort causes the storage server to abo
operation.

4.2.2 Crash Recovery

When a storage server crashes and recovers it must ensure that its state is both int
and externally consistent.Internal consistencymeans that the on-disk data structure
maintained by the server are consistent with one another. These data structures m
inconsistent if the crash occurred during a store or append operation.External consistency
means that the contents of the server are consistent with the contents of the other ser
the system. In particular, after a crash a server will lack fragments from any stripes w
while it was down. As part of recovery the server must reconstruct and store t
fragments.

There are two ways in which a storage server may be internally inconsistent af
crash. The first is that a store or append operation may have been in progress at the
the crash, leaving the new data only partially written to disk. This problem is so
through the use of fragment checksums. The store and append operations take a fra
checksum as a parameter as well as the data to be written. This checksum is com
with the contents of the fragment after a crash. A mismatch indicates that the operatio
not succeed. It is only necessary to verify the checksums of those fragments that
being modified at the time of the crash, although a naive implementation can simply c
all of the fragments stored on the disk. The next chapter explains how the storage s
in the Zebra prototype limit the number fragments that need to be checked after a cr

It is important that a crash during an append operation not cause the entire fragm
be lost, as would be the case if the old fragment checksum were overwritten by the
Should a crash occur between writing the checksum and data the checksum wou
longer correspond to the contents of the fragment, requiring the entire fragment
discarded. This problem can be avoided by storing the new checksum for an ap
operation in a non-overwrite manner. Should a crash occur, the server can thus rev
the old checksum for the fragment and avoid losing its previous contents.

The second possible internal inconsistency is that a crash may result in the s
having two copies of the same parity fragment. New copies of a parity fragment are s
in a non-overwrite manner, so that a crash during the store of a new copy does not
the previous version of the fragment corrupted. Once the new copy has been safely
the server updates its fragment map to point to the new copy and discards the old cop
crash should occur, however, between storing the new copy and updating the frag
map there will be two copies of the same parity fragment. This ambiguity is solved u
the sequence numbers associated with parity fragments. Each new copy of a
fragment is assigned a higher sequence number than the current copy. After a cra
copies of the fragment are discarded except for the copy with the highest sequ
number. It should be noted, however, that while this mechanism ensures that the s
server always ends up with the most recent copy of a parity fragment, it does not e
that the contents of the parity fragment are consistent with the other fragments i
54

and
ency

must
other
ontain
l still
cted

rmine
ecent
ntents
date.
ether
been
d is
n in

erver
are a
vers.

or this
essages
wn the
tail in

s the
ing to
g and
o

server

tively
ger
client
ess is

and
stripe. Such an inconsistency may occur if a client crashes while it is writing a stripe,
only writes some of the stripe’s fragments. Zebra’s handling of this potential inconsist
due to a client crash is described in Section 4.4.5.

After a recovering storage server verifies that its state is internally consistent it
verify that the fragments it stores are consistent with the fragments stored on the
servers. Once again there are two possible inconsistencies: first, the server will not c
the fragments of any stripes created while it was down; and second, the server wil
contain fragments of stripes that were deleted while it was down. The former is corre
by the server itself during recovery. The recovering server invokes thelast fragment
operation on the other servers in the system. The server uses this information to dete
the most recent stripe written by each client and compares them to the most r
fragments that it stores. Any missing stripe fragments are reconstructed using the co
of the other fragments in the stripe and stored by the server, bringing itself up-to-
Each fragment contains a descriptive block of data that makes it possible to detect wh
or not a reconstructed fragment is valid; if the reconstructed fragment has not yet
written by the client the result will be a block of zeros without a valid description, an
ignored by the server. Details of the fragment format in the prototype are give
Section 5.2.1.

A more difficult problem is that some stripes may have been deleted while the s
was down. The only way a recovering server can detect this inconsistency is to comp
complete list of the fragments it stores with the corresponding lists on the other ser
For large systems this comparison may require a significant amount of resources. F
reason Zebra storage servers depend on an external agent to replay the delete m
after a server recovers. If a delete fragment operation fails because the server is do
operation must be retried once the server reboots. This is described in more de
Section 4.5.6.

4.3 Clients

Clients are the machines where application programs execute. The client retrieve
appropriate fragments when an application reads from a file, and uses log-based strip
stripe newly written file blocks across the storage servers. The mechanics of readin
writing files during normal operation (no failures) are outlined in the following tw
sections, followed by a section describing how fragments are reconstructed during a
failure.

4.3.1 Reading Files

The interaction between a client and the storage servers when reading files is rela
simple. To read a file block the client obtains the file’s block map from the file mana
and uses it to determine the log address of the desired block. The details of how the
obtains the block map are presented in Section 4.4.3. Once the block’s log addr
known it is parsed to determine which fragment contains the desired portion of the log
55

in the
torage
orage
ment

m its
r, it is
s file
r and
te that
it in

rite
s use

an
n to

s with
to
er to
eleted
er91].

one
es the
ity to
nt to
er the
tripe

okes
ripe
e is
t, it
ent
ent
stripe

arity
py of

to be
which storage server stores the fragment. A retrieve operation is then used to obta
desired data from the server. For large files read-ahead is used to keep all of the s
servers busy. This ensures that file blocks are being transferred from all of the st
servers concurrently, and keeps all of the servers’ disks busy reading the next frag
from disk while the previous one is being transferred over the network to the client.

A Zebra client does not attempt to optimize reads of small files: each file is read fro
storage server in a separate operation, just as for a non-striped file system. Howeve
possible to prefetch small files by reading entire stripes at a time, even if they cros
boundaries. If there is locality of file access so that groups of files are written togethe
then later read together, this approach might improve read performance. I specula
such locality exists but I have not attempted to verify its existence or capitalize on
Zebra.

4.3.2 Writing Files

For Zebra to run efficiently, clients must collect large amounts of new file data and w
them to the storage servers in large batches (ideally, whole stripes). Zebra client
write-back caches that make this batching relatively easy to implement. When
application writes new data, they are placed in the client’s file cache and aren’t writte
the server until either (a) they reach a threshold age (30 seconds), (b) the cache fill
dirty data, (c) an application issues anfsync system call to request that data be written
disk, or (d) the client cache consistency protocol requests that data be written in ord
maintain consistency among client caches. In many cases files are created and d
before the threshold age is reached so their data never need to be written at all [Bak

When information does need to be written to disk, the client forms the new data into
or more stripe fragments and writes them to the storage servers. The client comput
parity as it writes the fragments and at the end of each stripe the client writes the par
complete the stripe. To benefit from multiple storage servers it is important for a clie
transfer fragments to all of the storage servers concurrently. A client can also transf
next stripe fragment to a storage server while the server is writing the current s
fragment to disk, so that both the network and the disk are kept busy.

If a client is forced to write data in small pieces (e.g., because an application inv
fsync frequently) then it fills the stripe a piece at a time, appending to the first st
fragment until it is full, then filling the second fragment, and so on until the entire strip
full. When writing partial stripes the client has two choices for dealing with parity. Firs
can delay writing the parity until the stripe is complete. This is the most effici
alternative and it is relatively safe since the client’s copy of the unwritten parity fragm
can be used to reconstruct stripes in the case of a server failure. The contents of a
will only be lost if a disk fails and the client crashes before writing the parity.

For even greater protection the client can store a new copy of the stripe’s p
fragment each time it appends to the stripe. The storage server will replace the old co
the fragment with the new. This alternative is slower because it requires the parity
56

ch

ad up
by an
tely,

about
r 6, the
ts,

rage
a file
t was
ents
kes it

stripe
; the

ts of
. For
nts in
then

ging
such
and
ode
ed in
at the
s, since
as
must
be
these
written for each partial stripe write, but it will only lead to data loss if two disks fail, whi
is even less likely than a dual failure involving a disk and a client.

The rate at which applications invokefsync will have a large impact on Zebra’s
performance (or any other file system’s) becausefsync s require synchronous disk
operations. Baker et. al [Baker92b] found that under a transaction processing worklo
to 90% of the segments written on an LFS file system were partial segments caused
fsync. Such a workload would have poor performance on Zebra as well. Fortuna
they found that on non-transaction processing workloadsfsync accounted for less than
20% of the segments written. The average size of these partial segments was
20 Kbytes. Based upon measurements of the Zebra prototype presented in Chapte
bandwidth of writing partial segments of this size is only half that of writing full segmen
so thatfsync reduces the Zebra write bandwidth by less than 10%.

4.3.3 Storage Server Crashes

Zebra’s parity mechanism allows the clients to tolerate the failure of a single sto
server using algorithms similar to those described for RAIDs [Patterson88]. To read
while a storage server is down, a client must reconstruct any stripe fragment tha
stored on the down server. This is done by computing the parity of all the other fragm
in the same stripe; the result is the missing fragment. The format of log addresses ma
simple to find the other fragments in the stripe, since all of the fragments in the same
have the same stripe ID. Writes intended for the down server are simply discarded
storage server will reconstruct them when it reboots, as described in Section 4.2.2.

For large sequential reads reconstruction is relatively inexpensive: all the fragmen
the stripe are needed anyway, so the only additional cost is the parity calculation
small reads reconstruction is expensive since it requires reading all the other fragme
the stripe. If small reads are distributed uniformly across the storage servers
reconstruction doubles the average cost of a read.

4.4 File Manager

The previous section on reading and writing files neatly avoided the issue of mana
the file system metadata. In a UNIX file system the metadata includes file attributes
as protection information, disk addresses of file blocks, directories, symbolic links,
special files for I/O devices. The metadata for each UNIX file consists of an in
containing the file attributes and disk addresses for the file blocks, as describ
Section 2.1. Zebra stores the file metadata in a similar inode structure, except th
block addresses contained in the inode are log addresses instead of disk addresse
log addresses are used to access data on the servers. I refer to these log addressesblock
pointers. Clients use the block pointers to read data from the storage servers and
update the pointers after writing to a file, since writing a file block causes it to
appended to the client’s log and thereby changes its log address. Furthermore,
57

nts to

stem
or file

-date
to

s the
adata
. In a
lized

ed the
ny of
and

esn’t
a file
an for
ck is
rites
lock
l file
block

the

bra: it
des a
accesses to the block pointers must be synchronized, otherwise it is possible for clie
see inconsistent views of the file system by using out-of-date block pointers.

The need for synchronization applies not only to the block pointers, but the file sy
metadata as a whole. Unsynchronized accesses to the file system name space
attributes, for example, can lead to inconsistent views due to the use of out-of
metadata. For example, without synchronization it is possible for two clients
simultaneously create two files with the same name. In most network file system
synchronization is done implicitly, because only the file server accesses the met
directly, allowing the server to serve as a synchronization point for the client accesses
striped network file system, however, there may not be a corresponding centra
location to perform the synchronization.

Zebra solves the metadata synchronization problems via a centralized service call
file managerthat manages the file system metadata. The file manager performs ma
the usual functions of a file server in a network file system, such as name lookup
maintaining the consistency of client file caches. However, the Zebra file manager do
store any file data; where a traditional file server would manipulate data the Zebr
manager manipulates block pointers. The file manager can be thought of as a librari
these pointers. If a client wishes to read a file block and it doesn’t know where the blo
located, it asks the file manager for the block’s log address. Similarly, when a client w
a file block it must notify the file manager of the block’s new log address so that the b
pointers can be updated. For example, consider a read operation: in a traditiona
system the client requests the data from the file server; in Zebra the client requests
pointers from the file manager, then uses the block pointers to read the data from
storage servers. Figure 4-3 illustrates this sequence of events.

The use of a file manager to manage the file metadata serves two purposes in Ze
eliminates the need for the clients to understand the metadata format, and it provi

2-Return pointers

1-Request pointers

3-Send pointers

Client

Storage Servers

Figure 4-3. Reading from a file.
To read from a file the client first requests the file’s block pointers from the file
manager (assuming it doesn’t have them cached), then uses the block pointers to
retrieve the appropriate fragments from the storage servers.

File Manager
58

only
d the
the

the
ager
ters to

be
ple, a
ently
cache
file

ck of
r the
first
ager
nt to
block
nt’s
nd to

ents
s the
rite
see a
wever,
be

ately,
nts

e and
. This
es of

es. In
s are
e state
file
file
central synchronization point for metadata modifications. To access a file a client
needs to get a list of block pointers from the file manager; it doesn’t need to understan
format of an inode. To write a file a client only needs to give the new block pointers to
file manager, instead of modifying the inode directly. This allows the format of
metadata to be changed without modifying the clients. Second, the file man
synchronizes modifications to the metadata. Clients send changes to the block poin
the file manager, which can ensure that simultaneous modifications do not occur.

4.4.1 Client Cache Consistency

If a network file system allows clients to cache file data and also allows files to
shared between clients, then cache consistency is a potential problem. For exam
client could write a file that is cached on another client; if the second client subsequ
reads the file, it must discard its stale cached data and fetch the new data. Zebra’s
consistency mechanism is similar to that used in Sprite [Nelson88]. Clients notify the
manager when they open and close files. This allows the file manager to keep tra
which clients are caching which files, and whether or not they have any dirty blocks fo
file. If a client opens a file for which another client has dirty blocks the file manager
notifies the latter client to flush the dirty blocks out to the storage servers. The file man
then applies the new block pointers to the file’s metadata, and allows the former clie
complete the file open. The client doing the open can then request the updated
pointers from the file manager. Similarly, if during an open it is discovered that the clie
cached copy of a file is obsolete the file manager tells it to discard its cached copy a
fetch new block pointers.

The situation is a bit more complex if a file is simultaneously open on several cli
and at least one of them is writing to it (concurrent write-sharing). In Sprite this cause
file server to notify all of the clients that the file is not cacheable and all read and w
accesses must go directly through to the server. This ensures that the clients
consistent view of the file because they are all accessing the same copy. Zebra, ho
doesn’t have a file server that can fill this role. One possibility is to force the file to
cached on the file manager and have it handle all of the reads and writes. Unfortun
this solution doesn’t scale well to larger number of clients. Alternatively, one of the clie
can be chosen as the synchronization point. Only that client is allowed to cache the fil
all read and write requests by the other clients must be sent to the anointed client
solution scales better since it avoids a central service that must handle all cas
concurrent write-sharing.

The cache consistency mechanism must tolerate client and file manager crash
particular a file manager crash should not cause it to lose track of which files client
currently caching and accessing. The mechanism used by Zebra to recover the cach
is similar to that used in Sprite. During file manager recovery the clients inform the
manager of which files they have open or have dirty blocks for in their caches. The
manager reconstructs the cache consistency state from this information.
59

ress,
n be
tem,
hus a
map
m to
the

n that
eed for
ss the
ey are
hus a
hem
lock’s
s that

ntain

t that
ck to
nager
or the
le, or
lock
copy

ed are
s of
4.4.2 Updating Block Maps via Deltas

When a client writes a file block to its log, and thereby changes the block’s log add
it must communicate this change to the file manager so that the file’s block map ca
updated. A failure to do so leaves the newly written block inaccessible by the file sys
even though the block may have been successfully written to the storage server. T
mechanism is needed for ensuring that writing a block and updating the file’s block
are atomic events: either they both happen or neither do. At first a solution would see
require a two-phase commit protocol to coordinate writing both the file block and
block map. One of the biggest breakthroughs in the Zebra design was the realizatio
the logs themselves can be used as reliable communication channels, avoiding the n
a complex two-phase commit. The logs are reliable because they are striped acro
servers and backed up by parity. The logs can be used for communication because th
append-only. Messages written to the log are easily read back in the same order. T
client can communicate block pointer changes to the file manager simply by writing t
to its log and allowing the file manager to read them as it needs to. The change in a b
pointer is stored in the same stripe fragment as the file block itself, which guarantee
they are written atomically because stripe fragment writes are atomic.

To make it possible to use them as reliable communication channels the logs co
two kinds of information: file blocks anddeltas. A delta identifies a change in a file
block’s storage location, and is used to communicate this change between the clien
wrote the block and the rest of the system. For example, when a client writes a file blo
a stripe fragment it also stores a delta for the block in the same fragment. The file ma
subsequently reads the delta from the log and uses it to update the block pointer f
block. Deltas are created whenever blocks are added to a file, deleted from a fi
overwritten. An overwritten file block requires a delta because the new copy of the b
is appended to the client’s log, changing the block’s log address and leaving the old
of the block unused.

There are several types of deltas in Zebra. Deltas generated by clients as describ
calledupdate deltas,since they describe an update to a block’s location. Other type
60

d are

for a
rage
new
e file
an be
ther
file
itself
s they

does
s the
ding
keeps
are
file

ne of
to

ss the
file

deltas
deltas are used for communication between other components of the system an
described later in this chapter. Update deltas have the following contents:

The deltas in the logs represent a history of the file system: by looking at the deltas
file block one can follow the changes made to that block and learn of its current sto
location from its most recent delta. The old block pointer for each delta will match the
block pointer of the previous delta, much like a sequence of dominoes. In theory th
system does not need to maintain any block maps for the files it stores: a file block c
found simply by searching the logs for its most recent delta. In reality this is a ra
inefficient way of accessing a file block; it is much faster to keep the block map for the
up to date so that the block can be found without searching the logs. The block map
is kept current, however, by processing the logs. The file manager reads deltas a
appear in the client logs and applies them to the block map.

Having the file manager process the deltas to keep the block maps up to date
introduce a complication: when a client asks for the block pointers for a file how doe
file manager know that the file’s block map is current and that there aren’t any outstan
deltas yet to be processed? The answer is that the cache consistency mechanism
track of client modifications to files and can therefore be used to determine if there
outstanding deltas for a file. As part of maintaining client cache consistency the
manager keeps track of which files each client has modified. If another client opens o
these files the file manager must first notify the client with the dirty blocks to flush them
the storage servers (if it hasn’t done so already), then the file manager must proce
deltas for the modified file before allowing the open to complete. Thus when the
manager knows that a client has modified a file it also knows that it must process the
associated with the modification.

Field Bytes Description

File ID 4 Identifies the file to which the delta applies.

File Version 4 Version of the file to which the delta applies.

Block Number 4 Index of the block within the file.

Block Size 4 Size of the block, in bytes.

Old Block Pointer 8 The block’s old log address (NULL if the
block is new).

New Block Pointer 8 The block’s new log address (NULL if the
block has been deleted).

Modification Time 4 The time when the block was last modified.

Table 4-2. Update delta format.
The contents of an update delta.
61

vely
k and
g the
e logs
id this
. The
ient
s the

fer of
ly the

imply
ed in
s the
nt. It
racts
path
ccur

dling
nager
st the
lock
sage
ge is
e file
d by
lock
rs for
nce.

ith
new, so
file
tripe
r to be

rce. It
lock
oiding
As described, the system for updating the block maps is reliable but relati
inefficient. The clients write deltas to their logs, and the file manager reads them bac
applies them to the block maps. This is much more expensive than simply havin
clients send the deltas directly to the file manager because reading the deltas from th
requires accesses to the storage servers and possibly disk accesses. To avo
performance hit Zebra uses two mechanisms for getting the deltas to the servers
primary transfer method is driven by the clients and provides unreliable yet effic
service. After a client has successfully written a fragment to a storage server it send
deltas from the fragment to the file manager. The file manager stores them in a buf
deltas it has received but not yet processed. When the file manager needs to app
deltas to the block maps (as determined by the cache consistency algorithm) it s
reads them from this buffer. If they are not found in the buffer then an error has occurr
sending them from the client to the file manager. In this case the file manager use
previously described mechanism for accessing deltas, which is reliable but inefficie
simply fetches the relevant portions of the client’s log from the storage servers, ext
the deltas, and applies them to the block maps. During normal operation the primary
is used, providing an efficient way of updating the block maps, but should an error o
the backup path can be used to reliably access the deltas.

4.4.3 Reading and Writing Revisited

The reading and writing of a file as described in Section 4.3 glossed over the han
of the file’s block map. These scenarios can now be updated to include the file ma
and how it manages the block map. Reading a file block is a two-step operation. Fir
client must fetch the block pointer from the file manager, then use it to fetch the b
itself from the appropriate stripe fragment. This results in an extra network mes
relative to a non-striped file system. For large files the overhead of this messa
negligible when compared to the overall number of messages required to transfer th
data. For small files the overhead of fetching the block pointers can be reduce
returning the first few block pointers of the file as the result of the open operation. B
pointers are relatively small compared to the blocks themselves, so that the pointe
many blocks can be returned in the result, with minimal impact on the open performa

When writing a file the client must store deltas for the file blocks in its log along w
the blocks themselves. These deltas contain the old block addresses as well as the
if the client is overwriting existing blocks it must first fetch the block pointers from the
manager so that the deltas can be filled in correctly. After the client has written a s
fragment to a storage server it sends the deltas from that fragment to the file manage
processed.

4.4.4 Performance

The performance of the file manager is a concern because it is a centralized resou
must perform name lookups for all of the clients and provide access to the file b
pointers, and hence may be a performance bottleneck. There a several ways of av
62

lient
file
ation

t-level
hirriff
a hit

ebra
rite
And
f the
avoid
for

e file
o that

d, the
ripe’s
lient
ted with
are

client’s
n files

If the
may
ent.

le to a
t falls
h and
the

e is
other

om
e log

ining
ost or
this bottleneck, however. The first is to allow clients to cache block pointers. Once a c
has retrieved the block pointers for a file there is no need to fetch them from the
manager again until they become obsolete. Second, clients can cache naming inform
so that the file manager need not be contacted for most opens and closes. Clien
name caching has been used successfully in the AFS file system [Howard88] and S
found that a name cache occupying only 40 Kbytes of a client’s memory can produce
rate of 97% [Shirriff92]. Client name caching has not been implemented in the Z
prototype described in Chapter 5 because of the difficulty in adding it to the Sp
operating system, but I would expect that a production version of Zebra would do so.
third, multiple file managers can be used, each responsible for a different portion o
file system name space. A similar solution is used by current network file systems to
file server bottlenecks. While not optimal in terms of load-balancing, it should suffice
systems with only a few file managers.

4.4.5 Client Crashes

The crash of a client has two effects on the file system that must be rectified by th
manager: the contents of the client’s cache and the state of its applications are lost, s
the client can no longer participate in the cache consistency protocol; and secon
client may have been writing a stripe at the time of the crash, perhaps leaving the st
data inconsistent with its parity. When the file manager loses communication with a c
it assumes the client has crashed and cleans up the cache consistency state associa
that client. Any open files are closed, and any write tokens owned by the client
reclaimed. The file manager then processes any unprocessed deltas in the crashed
log. Once the client’s state has been cleaned up in this manner other clients can ope
that were previously cached on the crashed client.

The file manager must also deal with inconsistent stripes caused by a client crash.
client was writing a stripe at the time of the crash then only some of the fragments
have been written, leaving the stripe’s data fragments inconsistent with its parity fragm
This inconsistency must be resolved as soon as possible since the stripe is vulnerab
server failure; therefore it cannot be delayed until the crashed client reboots. Thus i
to the file manager to fix it. When a client crashes the file manager detects the cras
verifies the consistency of the last stripe written by the client. It does so by querying
storage servers to identify the end of the client’s log (using thelast fragmentrequest), then
confirming that the last stripe of the log is complete and the parity correct. If a strip
missing a single fragment then the missing data can be reconstructed using the
stripes in the fragment. Similarly, if the parity fragment is incorrect it is computed fr
the other fragments in the stripe. If a stripe is missing more than one fragment then th
is truncated to the first missing fragment, and the parity computed for the rema
portion of the stripe. This means that data being written at the time of a crash can be l
partially written, just as in other file systems that maintain UNIX semantics.
63

of the
ients
ed. The

and
chine
lure of
er on

er is
ta is

e file
e file
e file
tadata

llows
e. It is
chine in
ilure
tadata.
stem

Zebra
e

the
es are
disk
iable,
ssing

sure
g the
and

ch as
stem
g file
en by

work
aker’s
4.4.6 File Manager Crashes

The file manager is a critical resource for the entire system because it manages all
file system metadata, including the block maps. Without the file manager the cl
cannot access the metadata, and without the metadata the files cannot be access
approach employed by Zebra to ensure that the file manager is both highly reliable
highly available is to design the file manager so that it can run on more than one ma
and can recover quickly from crashes. Using these techniques even a hardware fai
the machine hosting the file manager can be tolerated by starting a new file manag
another machine.

The first step in providing highly reliable and available service from the file manag
to ensure that it is not tied to one particular machine in the system. If the metada
stored non-redundantly on the file manager (on a local disk, for example) then th
system will be unusable whenever the file manager’s host is down, and the loss of th
manager’s disk will destroy the file system. For this reason the file manager stores th
system metadata on the storage servers, rather than on a local disk, making the me
both highly reliable and available. It is reliable because Zebra’s parity mechanism a
the contents of the storage servers to be reconstructed in the event of a server failur
available because the contents of the storage servers can be accessed by any ma
the system. If the client that is running the file manager should suffer a hardware fa
another client can easily take over as the file manager since it too can access the me
A similar approach has been proposed by Cabrera and Long for the Swift file sy
[Cabrera91] to make its storage mediator highly available.

The metadata is stored on the storage servers in a virtual disk implemented as a
file. This file, called thevirtual disk file, is stored in the file manager’s client log just lik
any other Zebra file, but it has a special file number that identifies it as containing
virtual disk. The file manager reads and writes the virtual disk, and these access
translated into reads and writes of the underlying Zebra file. Implementing the virtual
on top of a Zebra file not only ensures that the metadata is highly available and rel
because the log is protected by parity, but it also improves the performance of acce
the metadata because it is striped across the servers.

The second step in making the file manager highly available and reliable is to en
that it can quickly recover from a crash. There are three aspects to this: recoverin
current contents of the virtual disk file, recovering the state of delta processing,
recovering the distributed state of the file system not related to striping and parity, su
the state of the read and write tokens. The last item is not unique to Zebra: any file sy
must recover its distributed state after a crash. For example, in Sprite a recoverin
server determines the states of the client caches and the files each client has op
querying the clients. The issues involved in recovering the distributed state of a net
file system are outside the scope of this thesis, but are covered in great detail in B
thesis [Baker94].
64

f the
s for

lost,
locks

is to
for

it is
ion is
the
y its

file
that
ut a
oks
isk

e end

ere to
a file
that
irtual
ssed
eltas
only

very,
t may

s will
pdate
mbers

be
tency
2. For

file
by the
ncy
Zebra
ager

umber
t. The

been
ersion
The first Zebra-related issue in file manager recovery is to recover the contents o
virtual disk file at the time of the crash. One caveat, however, is that any dirty block
the virtual disk file that were in the file manager’s cache when the crash occurred are
and cannot be recovered. The best that can be done is to recover the virtual disk b
that were written to the log prior to the crash. One way to do this, albeit a slow one,
start at the end of the file manager’s client log and work backwards through it looking
deltas for the virtual disk file. While this method does produce the correct result,
likely to be unacceptably slow because it must process the entire log. A better solut
to periodically issue acheckpointthat contains a snapshot of the current block map for
virtual disk file. The file manager checkpoint is another special Zebra file, identified b
file number, that the file manager stores in its log. To create a checkpoint file the
manager first writes any dirty cache blocks for the virtual disk file to its log, to ensure
its block map is consistent with the data blocks stored in the log, then writes o
checkpoint file containing the block map. During recovery the file manager lo
backwards through its log until it finds the checkpoint file. It then reads the virtual d
file’s block map from the checkpoint, and processes the log from the checkpoint to th
and applies any deltas pertaining to the virtual disk file to its block map.

The second Zebra-related issue in recovering the file manager is determining wh
begin processing deltas once the virtual disk file has been recovered. The Zebr
manager solves this problem by storing additional information in its checkpoint file
identifies the last delta processed for each client prior to the checkpoint. Since the v
disk file is forced to the log during a checkpoint it is guaranteed that any deltas proce
prior to the checkpoint are safely reflected in the block maps, whereas any d
processed after the checkpoint may not be. During recovery the file manager need
apply the latter type of deltas to the block maps to bring the block maps up-to-date.

There are several complications associated with replaying deltas during reco
however. First, the effects of some of the deltas processed since the last checkpoin
already be reflected in the block maps, and therefore should not be reapplied. Thi
happen if the modified block maps were written out to the log before the crash. The u
deltas that should not be reapplied are easily identified because their file version nu
will be less that the current file version numbers of the files to which they apply.

The second complication is determining the order in which the deltas should
replayed. During normal operation changes in the state of the client cache consis
dictate the order in which the deltas should be applied, as described in Section 4.4.
example, when one client opens a file that was just written by another client, the
manager knows that it must process the deltas from the latter client before the open
former is allowed to complete. During recovery this dynamic cache consiste
information is unavailable, so another mechanism must be used to order the deltas.
solves this problem using the file version numbers stored in the deltas. If the file man
encounters an update delta whose version number is greater than the file’s version n
then there must be an update delta in another client’s log that should be applied firs
file manager delays processing the delta until all the intervening update deltas have
processed from the other client logs. Deadlock is not possible because the delta v
65

pplied
t that
ency,
during

lient
ans
ise it
e is

ailable

m. It
live

lient

h are
ta, to
ned.
ltas in
numbers reflect the order in which the deltas were created, so that newer deltas are a
after older deltas. For a circular dependency to occur a delta would have to exis
depends on a newer delta, as shown in Figure 4-4. Without a circular depend
deadlock cannot occur, and the file manager is guaranteed to make progress
recovery.

4.5 Stripe Cleaner

One of the implications of using an append-only log to store file data is that each c
is continually creating new stripes to hold newly created portions of its log. This me
that the system must continually reclaim the space occupied by old stripes, otherw
will run out of space in which to store new stripes. Space occupied by an old strip
reclaimed through a process calledcleaning, in which the live data in the old stripe is
copied to a new stripe, leaving the entire old stripe unused and its storage space av
to hold a new stripe.

Stripe cleaning in Zebra is handled by a use-level process called thestripe cleaner,
which is very similar in operation to the segment cleaner in a log-structured file syste
first identifies stripes with large amounts of free space, then it reads the remaining
blocks out of the stripes and writes them to a new stripe (by appending them to its c
log), as shown in Figure 4-5. Once this has been done, the stripe cleaner uses thedelete
fragment operation to delete the fragments from the storage servers.

4.5.1 Identifying Stripe Contents

To clean a stripe the cleaner must know which data in the stripe are live, and whic
no longer used. The cleaning algorithm also needs to know the age of the live da
allow it to make an intelligent decision as to the order in which stripes should be clea
The cleaner obtains the information on stripe contents and age by processing the de

A2 B1

A1B2

Log 1

Log 2

Time

Figure 4-4. Requirements for deadlock.
Two client logs are shown, each containing one delta for two files. To process delta A2 the file
manager must first process A1 and hence B2 because it precedes it in the log. Processing B2 in
turn requires processing B1, leading to a deadlock because A2 must be processed first.
Fortunately this scenario cannot occur, because it implies the deltas were created in the order
B1,B2,A1,A2, yet B1 occurs after A2 in the log.
66

ystem
tes the
block
r are
ated,
time
, not
f the
e to

r also

. Note
o the

imilar
stripe
. This
ble.
pies in
the client logs, in much the same manner as the file manager updates the file s
metadata by processing the deltas. The cleaner looks at each delta and upda
contents and age of the affected stripes accordingly: the data referred to by the old
pointer in a delta are no longer in use, while the data referred to by the new pointe
alive. The modification time in the delta indicates the time when the data were cre
allowing the age of the data in the stripe to be computed. Note that the modification
in the delta indicates the time at which the corresponding block of data was created
the stripe that holds it. It is possible for there to be large differences in the ages o
blocks in a stripe, particularly if some of the blocks were placed in the stripe du
cleaning since the cleaner favors cleaning old data.

In addition to using the deltas to adjust the stripe utilizations and ages, the cleane
appends all of the deltas for a stripe to a per-stripe file, called thestripe status file, whose
use will be described below. The stripe status files are stored as ordinary Zebra files
that a single delta can affect two different stripes; a copy of the delta is appended t
status files for both stripes.

The techniques used to make the stripe cleaner highly available and reliable are s
to those used by the file manager. The stripe cleaner’s state consists of the
utilizations, stripe status files and the cleaner’s progress in processing the client logs
information is stored in normal Zebra files so that it is both reliable and availa
Periodically the cleaner checkpoints these files to the servers to ensure that the co
the log are consistent and can be recovered after a crash.

Old Stripes

New Stripe

Dead File Block Live File Block Parity Fragment

Figure 4-5. Stripe cleaning.
Live file blocks are copied out of old stripes into new, leaving the old stripes entirely empty
and the space they occupy available for reuse. The parity of the new stripe is computed as the
data are copied. In this example the live data in three stripes are copied to a new stripe,
resulting in a net gain of two empty stripes.
67

stem
tripes
se they
lass of
yet be

s have
whose
to the

means
ill be
th the

s the
an be

tripes
tripe

tripe’s
s files.
4.5.2 Choosing Stripes to Clean

The stripe cleaner chooses stripes to clean that minimize the amount of sy
resources consumed by cleaning. The first step in choosing stripes is to divide the s
into three classes: those that cannot be cleaned, those that are trivial to clean becau
contain no live data, and stripes that can be cleaned and contain live data. The first c
stripes are those than cannot be cleaned because they contain deltas that may
needed by the file manager or the stripe cleaner. This includes stripes whose delta
not yet been processed by either the file manager and the stripe cleaner, and stripes
deltas have been processed after the last checkpoint of each. Cleaning only applies
blocks in a stripe; the deltas in a stripe are always discarded and never copied. This
that a stripe cannot be cleaned until there is no chance that the deltas it contains w
needed in the future. This can only happen if the deltas have been processed by bo
file manager and stripe cleaner and checkpoints issued. Figure 4-6 illustrate
relationship of the file manager and stripe cleaner checkpoints and stripes that c
cleaned and those that cannot.

Once the cleaner has determined which stripes may be cleaned it first looks for s
with no live data. The stripe utilization database makes this easy to do. If an empty s
is found, and it is in the cleanable regions of the logs, the cleaner then deletes the s
fragments from the storage servers and also deletes the corresponding stripe statu

Cleanable Stripes File Manager Checkpoint Cleaner Checkpoint

Client Logs

Figure 4-6. Cleanable vs. uncleanable stripes.
The cleaner can only clean stripes whose deltas have already been processed by both the file
manager and stripe cleaner prior to their most recent checkpoints.
68

hence

ses one
a. The
, i.e.,
e data
ed by
the

efit
-cost
ation
tripe,
ng
are
and
o die
hus
t the
the

hese
rity
stripe

ying
ds the

leted.
that

m.

tripe.
a file

the
e new
s to
ne in
t al.

it is
ks the
This is a common occurrence since each cleaned stripe eventually becomes empty,
this special check for empty stripes.

If there are no empty stripes and more free space is needed then the cleaner choo
or more stripes to clean from the set of stripes that are cleanable and contain live dat
policy it uses for this is identical to the one described by Rosenblum [Rosenblum91]
a cost-benefit analysis is done for each stripe, which considers both the amount of liv
in the stripe and the age of the data. Each stripe in the system is given a priority defin

, where is the average age of the live bytes in the stripe, and is
utilization of the stripe (fraction of live bytes). The priority of a stripe is simply the ben
of cleaning it divided by the cost of doing so. Stripes that have a higher benefit-to
ratio have a higher priority, and are therefore cleaned first. The numerator in the equ
is the benefit of cleaning the stripe. The amount of space reclaimed by cleaning the s

, is multiplied by the average age of the live bytes. The intuition is that you
bytes don’t live long, so cleaning them will probably have little benefit since they
likely to die on their own soon anyway. This decreases the utilization of the stripe,
reduces the cost of eventually cleaning it. On the other hand, old bytes are unlikely t
in the near future, so that the stripe’s utilization is not likely to decrease on its own. T
there is no benefit in waiting to clean a stripe containing old data. The net result is tha
benefit of cleaning a stripe is computed by multiplying the amount of free space in
stripe by its age, causing the cleaner to favor old stripes.

The cost of cleaning a stripe is in reading and rewriting the live data it contains. T
reads and writes result in a transfer of bytes. The 2 is left out of the prio
computation because it is a constant and only changes the absolute values of the
priorities and not their relative values.

4.5.3 Synchronized Cleaning

There are two steps in cleaning a stripe: identifying the live blocks, and then cop
them to a new stripe. The stripe status files make the first step easy: the cleaner rea
deltas in the stripe’s status file and finds blocks that were created but not yet de
Without the stripe status files this step would be much more difficult, since the deltas
cause blocks to become free could be spread throughout the stripes in the file syste

The second step in cleaning is copying the live blocks out of the stripe to a new s
This step is made more complicated by a potential race condition between cleaning
block and modifying it. Without synchronization a client could modify the block after
cleaner reads the old copy but before the cleaner rewrites the block, in which case th
data might be lost in favor of the rewritten copy of the old data. There are two way
avoid this race condition: locking the files to ensure exclusive access, as was do
Sprite LFS [Rosenblum91], and an optimistic approach pioneered by Seltzer e
[Seltzer93] and used in Zebra.

The most straight-forward way of avoiding a cleaning race is to lock a file when
being cleaned. The cleaner simply locks the file, cleans the desired blocks, and unloc

α 1 µ–() µ⁄ α µ

1 µ–()

2µ
69

ring

duce
files

ock
ed in
them
th the

the
er93].
ation
ck at
favors
the
handles
ean,
a race
f the

from
eing

the
as

ta is
er
aner
esn’t

k: a
d the
same
g the
ock
istency

sses a
ce: the

file
file. By locking the file the cleaner ensures that a client cannot modify a block du
cleaning.

While simple to implement, the locking approach causes lock convoys that re
overall system performance. The cleaner in the original LFS used locking to prevent
from being modified until after cleaning was finished. Unfortunately, this produced l
convoys that effectively halted all normal file accesses during cleaning and result
significant pauses. Furthermore, the need for the cleaner to lock files when cleaning
results in additional messages to the file manager, reducing the performance of bo
cleaner and the file manager.

4.5.4 Optimistic Cleaning

To avoid the performance problems associated with locking files to clean them
Zebra stripe cleaner uses an optimistic approach similar to that of Seltzer et al. [Seltz
The idea behind optimistic cleaning is that blocks are cleaned without any synchroniz
with other applications. Applications may therefore cause a race by modifying a blo
the same time it is cleaned. In the normal case no race will occur, since the cleaner
old stripes and it is unlikely that the blocks they contain will be modified during
cleaning. In the unusual case that a race does occur the system detects the race and
it by ignoring the new copy of the block produced by the cleaner. This does not m
however, that a race prevents the cleaner from making progress. If the cleaner loses
with an application it simply means that the application has produced a new version o
file block in question, and the new version is necessarily stored in a different stripe
the old version. Thus the old version of the block is no longer in use in the stripe b
cleaned, just as the cleaner intended.

To clean a file block the cleaner brings the block into its file cache without opening
file and without changing the file’s modification time. The file block is then marked
dirty so it will be appended to the end of its client log. In addition, a special type of del
created for cleaned blocks called acleaner delta, rather than an update delta. A clean
delta differs from an update delta only in that it lacks a version number, since the cle
does not know the current version numbers for the files it cleans because it do
participate in the cache consistency protocol.

In Zebra a race during cleaning is signified by two deltas for the affected bloc
cleaner delta from the cleaner, and an update delta from the other client that modifie
block. Both of these deltas have the same old block pointer because they refer to the
block in the log, as shown in Figure 4-7. The file manager detects a race by comparin
old block pointer in each delta with the block pointer in the file’s block map. These bl
pointers will always agree unless a race has occurred, because the client cache cons
protocol prevents simultaneous modification of a file block by several clients.

There are four possible scenarios that can occur when the file manager proce
delta, as shown in Table 4-3. The first two scenarios represent the cases without a ra
delta’s old block pointer matches the file manager’s current block pointer, and the
70

date
e), it
the file
from
urth
n this

elta
this
tripe
ned

 use.
manager updates its block pointer with the new block pointer in the delta. If an up
delta arrives whose old block pointer doesn’t match (the third scenario in the tabl
indicates that a cleaning race occurred and the cleaner delta was processed by
manager first. The file manager updates its block pointer with the new block pointer
the delta. If a cleaner delta arrives whose old block pointer doesn’t match (fo
scenario), a cleaning race occurred but the update delta was processed first. I
situation the cleaner delta is ignored.

In both of the cases where the file manager detects a conflict it generates areject delta,
which is placed in the client log for its machine. The old block pointer in the reject d
refers to the cleaned copy of the block and the new pointer is null to indicate that
block is now free. The reject delta is used by the stripe cleaner to keep track of s
usage; without it the stripe cleaner would have no way of knowing that the block it clea
is was rendered obsolete by a concurrent modification, and is therefore no longer in

Client LogA A'

A Cleaner’s Log

Log

File Block Update Delta Cleaner Delta

Figure 4-7. Cleaner/client conflict.
An update delta and cleaner delta have the same old block pointer, as shown by arrows. The
client has modified blockA to produce blockA’ . At the same time the cleaner has moved
blockA to a new stripe. The cleaner’s copy of the block is outdated and is therefore rejected by
the file manager.

Type of
Delta

Block Pointer
Matches?

Update
Pointer?

Issue Reject
Delta?

Update Yes Yes No

Cleaner Yes Yes No

Update No Yes Yes

Cleaner No No Yes

Table 4-3. File manager delta processing.
When a delta arrives at the file manager, the old block pointer in the delta is compared with the
current block pointer. If they do not match (the bottom two scenarios) then a conflict has
occurred.
71

t the
after a
tries

ripe
py of
rage
ut of
e file

eltas,
y the
maps

d as a
thus

rsion
hen to

e old
last
atch
lock
s not
hows
delta.

three
uld be
at all
client.
s, as
ing the
ries.
ding
aner
while

le to
t will
Another type of cleaning race is possible in which an application reads a block a
same time that it is being cleaned. For example, suppose the cleaner cleans a block
client has obtained the block pointer, but before it has read the block. If the client then
to use the out-of-date block pointer, one of two things will happen. If the block’s st
still exists then the client can use it safely, since the cleaner doesn’t modify the old co
the block. If the stripe has been deleted then the client will get an error from the sto
server when it tries to read the old copy. This error indicates that the block pointer is o
date: the client simply discards the pointer and fetches an up-to-date version from th
manager, as it would if it didn’t have a copy of the pointer in the first place.

4.5.5 File Manager Recovery Revisited

File manager recovery is made more complicated by the existence of cleaner d
since unlike update deltas they do not contain file version numbers. During recover
file manager uses the version numbers in the update deltas to apply them to the block
in the correct order. The cleaner, however, does not open a file when it cleans it, an
result does not obtain the file version number returned in the reply to an open, and
cannot store version numbers in the cleaner deltas it produces. Without the ve
numbers the file manager depends on the block pointers in the deltas to determine w
apply the cleaner deltas.

The block pointers in the deltas make it possible to order the deltas because th
block pointer in the next delta to be applied must match the new block pointer in the
delta applied, and hence the block map itself. If a delta’s old block pointer does not m
the block map then it is not the next delta to be applied. This means that if the old b
pointer in the next update delta (as determined by the delta version numbers) doe
match the block map an intervening cleaner delta must be applied first. Figure 4-8 s
an example of detecting that a cleaner delta should be applied before the next update

The cleaner deltas encountered by the file manager during recovery fall into
classes: those that should be applied between two update deltas, those that sho
applied after the last update delta for the block, and those that should not be applied
because they conflict with an update delta due to a race between the cleaner and a
The first type of cleaner deltas is applied during processing of the update delta
described in the previous paragraph. Once the file manager has completed process
update deltas it will be left with those cleaner deltas that fall into the other two catego
The file manager compares the old block pointer in each delta with the correspon
pointer in the block maps; if the pointers match the delta is applied. The remaining cle
deltas are rejected. The file manager keeps track of any reject deltas encountered
replaying the logs to ensure that duplicate reject deltas are not issued.

4.5.6 Storage Server Crashes

If the cleaner cleans a stripe while one of the storage servers is down it will be unab
delete the stripe’s fragment on the unavailable server. When the server reboots i
72

ste of
ed but
sends
nts can

t will
will

of the
at span
y so

not
ble to
ssing
f all

ltzer
more

on
aned

Zebra’s
as

r

therefore contain stripe fragments for stripes that have been deleted. To avoid this wa
storage space the stripe cleaner keeps track of fragments for stripes that were clean
could not be deleted due to a server failure. When the server reboots the cleaner re
the delete requests to it so that the storage space occupied by the unneeded fragme
be reused.

4.5.7 Cleaning Cost

One concern about the stripe cleaner is how much of the system’s resources i
consume. Cleaning cost is directly related to workload behavior: some workloads
have cleaning costs approaching zero, while in others cleaning may consume most
system’s resources. For example, a workload that creates and deletes large files th
many stripes will have a very low cleaning cost. Most stripes are either full or empt
that the cleaner does not have to copy anything to clean a stripe. While I have
measured Zebra’s cleaning overhead under real workloads, it should be compara
those for other log-structured file systems. In a synthetic transaction-proce
benchmark on a nearly full disk, Seltzer found that cleaning accounted for 60-80% o
write traffic and significantly affected system throughput [Seltzer93]. However, Se
found cleaning costs to be negligible in a software development benchmark that is
typical of workstation workloads. Rosenblum measured production usage of LFS
Sprite for several months and found that only 2-7% of the data in stripes that were cle
were live and needed to be copied [Rosenblum91]. Based on these measurements
cleaning costs should be low for the type of workstation workloads for which it w

A B

1

B C

2

D E

3Version

Old New

Update
Deltas

C D
Cleaner
Delta

Pointer Pointer

Order of application

Figure 4-8. Ordering deltas by their block pointers.
The need to apply a cleaner delta is detected by a mismatch in the old and new block pointers
in a sequence of update deltas. In this example the three update deltas are ordered by thei
version numbers. Delta 2 is applied after Delta 1 because its old block pointer B matches the
new block pointer in Delta 1. The old block pointer D in Delta 3 does not match the new block
pointer C in Delta 2, hence a cleaner delta must be applied whose old block pointer is C and
whose new block pointer is D.
73

ction-

ut its
roll-
to

as the
ed the
must
e first
control
clean,
it can

.

. The
rtition.
stripe
aning

which
in its
verall.

ect.

have
new
s are
e new
ce must

the log
e new
ding

hould
of live
not be
erver
e the
here
rs to
intended, but more work may be needed to reduce the cleaning overheads of transa
processing workloads.

4.5.8 Distributed Stripe Cleaning

The Zebra stripe cleaner is a centralized resource, leading to concerns abo
availability and performance. The former can be handled using the checkpoint and
forward mechanism previously described, but the latter is a more difficult problem
solve. The cleaner may consume only a small fraction of the system’s resources, but
size of the system scales the throughput requirements of the cleaner may exce
capabilities of the machine on which it is running. If this is the case then the cleaner
be distributed across several machines. There are two options for doing so. In th
approach a set of slave cleaners run on several machines in the system, under the
of a master cleaner. The master simply processes the deltas, decides which stripes to
and directs the slaves to do so. Since the master doesn’t actually process any data
scale up to a much larger system. All that is needed to do so is more slave cleaners

If the master/slave solution is unacceptable then a symmetric solution can be used
set of stripes in the system is partitioned and a cleaner is assigned to clean each pa
For example, the stripes for each client can be numbered sequentially with each
assigned to a cleaner in a round-robin fashion. By adding more cleaners the total cle
capacity of the system is scaled. The drawback of this approach is that the choice of
stripes to clean is no longer a global one. Each cleaner cleans the “best” stripes
partition, but there is no guarantee that this set of stripes represents the best stripes o
This results in increased cleaning costs, but I have not attempted to quantify this eff

4.5.9 Stripe Cleaning Alternatives

There are several alternatives to having a global stripe cleaner, but all of them
serious drawbacks. The first is to eliminate cleaning altogether and simply “thread”
portions of the logs into unused pieces of previous stripes. As new portions of the log
produced the existing stripes are examined to find empty spaces that can contain th
data. These spaces are guaranteed to exist because in the steady state empty spa
appear in the file system at the same rate as which new data is produced. Threading
avoids cleaning because stripes don’t need to be entirely empty to be used to stor
pieces of the log. There is a major problem with this approach, however, in that threa
the log turns every log write into an expensive partial stripe write.

A second approach is to have the servers do the cleaning internally. The servers s
always have enough free space to store new fragments, as long as the total amount
data in the system is less than the servers’ total storage capacity. This space may
contiguous, however, leading to performance problems when trying to use it. The s
can rectify this problem by cleaning, or garbage collecting, its storage space to mak
free space contiguous, allowing new fragments to be written in efficient transfers. T
are two problems with this approach, however. The first is that it requires the serve
74

cess
ecide

use.
tripe,
ck of
ot be

resses
the
r the
egin

the
s prior
at are

hat it
data to
ze of
ddress
, as a
log,
n by
As a

g the
an the
the
that a
f the
dress
dth.

ing
the log,
voids
e log
their
e that
ehow

s are
must
keep track of the live data that they are storing. This means that they will have to pro
the deltas, increasing their complexity. The bigger problem is that a server cannot d
to reuse storage space simply because the data it contains is no longer in
Reconstructing a stripe fragment requires all of the data in the other fragments in a s
regardless of whether or not that data is still in use or not. If a server discards a blo
data from a stripe then the corresponding blocks in the other fragments cann
reconstructed.

4.5.10 Log Address Wrap

One of the problems with the log addressing scheme used in Zebra is that log add
represent offsets within client logs, and it is possible for a log to grow too large for
addresses. If a client writes enough data to its log the offset can grow too large fo
fixed-size log address to represent. When the offset overflows the client will b
generating log addresses that were previously used and which may conflict with
addresses of existing stripes. The solution used by Zebra is to clean stripes in the log
to their reuse by the clients to avoid having the clients generate log addresses th
already in use.

The disadvantage of using cleaning to solve the log address wrap problem is t
consumes system resources because the stripe cleaner must continually copy live
the end of the logs. The actual cost of this copying is determined by the ratio of the si
the log address space to the amount of live data in the log, since each time the log a
wraps the entire contents of the affected log must be copied to its end. In other words
client writes to its log the cleaner must clean any live data that is already stored in the
so that the total amount of data transferred is proportional to the amount of data writte
the client (the size of the log address space), plus the amount of live data in the log.
result, if the size of log address space is close to the amount of live data in the lo
overhead of cleaning will be high, whereas an address space that is much larger th
amount of live data will have a correspondingly lower overhead. As an example, in
Zebra prototype the log address space for each client is represented by 39 bits, so
client can write up to 8 terabytes of data before its log addresses wrap. If the size o
storage servers is 8 gigabytes, then the write overhead of cleaning to avoid log ad
wrap is at most 1/1000, or one-tenth of one percent of the total system write bandwi

An alternative to this solution is to “thread” new stripes of the log around exist
stripes. In this scheme the addresses assigned to stripes do not represent offsets in
but instead are unique IDs that do not belong to existing stripes. This approach a
having two stripes with the same address, but it complicates several aspects of th
mechanism. First, the ordering of stripes within the log cannot be determined from
addresses, as can be done in Zebra. Additional information is needed for each strip
identifies the stripes that precede and succeed it in the log. Second, clients must som
obtain unique stripe IDs to use for newly created stripes. In Zebra unique stripe ID
easily generated by incrementing the log offset, but in this scheme clients
75

same

g and
re not

t be
s in
ager
egin

any
erver,
sed.

stem
rely
ool

m. All
notify
ment.

ripes
where
ruction
server
hich
tripes
ould
ional

the
synchronize to ensure that existing stripe IDs are not reused nor do clients assign the
stripe ID to more than one stripe.

4.6 System Reconfiguration

This section covers changes in the configuration of a Zebra system, such as addin
removing clients, storage servers, and disks. The file manager and stripe cleaner a
covered, since a standard Zebra system will only have one of each.

4.6.1 Adding and Removing Clients

Adding a client to a Zebra system is a two-step process. First the client mus
assigned a unique client ID that distinguishes the new client’s log from the other log
the system. The file manager is then notified of the new client and its ID. The file man
will then include the client in the cache consistency protocol and the client can b
accessing files.

Removing a client is done by having the client close all of its open files and flush
dirty blocks out of its cache. This cleans up its cache consistency state on the s
following which the client can then be removed from the system and its client ID reu

It is possible treat a client crash followed by a reboot as a removal from the sy
followed by an addition to the system. The reasons for not doing so are pu
administrative; for example, it may simplify system administration if there is a fixed p
of clients, each with a fixed client ID.

4.6.2 Adding Storage Servers

Zebra’s architecture makes it easy to add a new storage server to an existing syste
that needs to be done is to initialize the new server’s disk(s) to an empty state and
the clients, file manager, and stripe cleaner that each stripe now has one more frag
From this time on clients will stripe their logs across the new server. The existing st
can be used as-is even though they don’t cover all of the servers; in the few places
the system needs to know how many fragments there are in a stripe (such as reconst
after a server failure), it can detect the absence of a fragment for a stripe on the new
and adjust itself accordingly. Over time the old stripes will gradually be cleaned, at w
point their disk space will be used for longer stripes that span all of the servers. Old s
are likely to be cleaned before new ones since they contain fewer live data. If it sh
become desirable for a particular file to be reallocated immediately to use the addit
bandwidth of the new server, this can be done by copying the file and replacing
original with the copy.
76

st be
server.
ceeds
ner are
reated
ucted
nted
ill not

isting
that

usable
lanced
nt on
re can
cial to
orage
ored.
o the

ough
n files

to be
total

torage
disks.
s an
avoid
stripe
ervers

that
tered

m the
4.6.3 Removing a Storage Server

Removing a storage server from operation is a three-step process. First, it mu
verified that there is enough free space in the system to accommodate the loss of a
If this is not the case then files must be deleted until the total amount of free space ex
the storage capacity of the server. Second, the clients, file manager, and stripe clea
notified that stripes now have one less fragment. Once this is done any new stripes c
will not use the server that is being decommissioned. Third, the stripe cleaner is instr
to clean all the old stripes. This has the effect of moving live data from the unwa
server to the remaining servers. Once this is accomplished the unwanted server w
contain any live data and can be safely removed from the system.

4.6.4 Adding Disks to Servers

The system’s storage capacity can also be increased by adding disks to the ex
servers. This is easily done: the disks are initialized and the stripe cleaner notified
there are now more empty stripes in the system. There is one caveat, however. The
capacity of the system is only increased if the disks are added to the servers in a ba
fashion. Each fragment that a server stores must be backed up by a parity fragme
another server in the system. Thus the total number of stripes that the system can sto
be no greater than the number of fragments on the smallest server. It may be benefi
add a disk to a single server since it might make it easier for that server to allocate st
for stripe fragments, but it will not increase the total number of stripes that can be st
The total number of stripes in the system can only be increased by adding disks t
servers in a balanced fashion.

4.6.5 Removing Disks from Servers

Removing disks from servers is a three-step operation. First, there must exist en
free space in the system to tolerate the loss of the disks. If this is not the case the
must be deleted until the total amount of free space exceeds the capacity of the disks
removed. Once this is done the stripe cleaner is instructed to begin cleaning until the
number of free stripes in the system exceeds the capacity of the disks. Third, each s
server is instructed to move any fragments stored on the unwanted disks to its other
When this is completed the unwanted disks can be removed from the servers. A
optimization of the last step the storage servers can be notified in the second step to
using the unwanted disks to store new fragments. This reduces the number of new
fragments that will be stored on those disks and therefore have to be moved by the s
later, but it isn’t necessary for the correct operation of the system.

4.7 Summary

The Zebra architecture defines the framework for a striped network file system
provides scalable performance and is highly available. The Zebra architecture is cen
around the use of log-based striping to store file data. Each client creates a log fro
77

triped,
tem is
ervers
read
stores
ether,
lf up-
eated

rs; it
n the
s two
ger is
s for
ad a
the

es this
nd the

resent
lem.
og of
sists
bout

in the
and the
e log
cent

ata is
of the
ta for
new
client

d, it is
em.
data it wishes to write, and stripes the log across the storage servers. As the log is s
the client computes and stores its parity as well. The simplest component of the sys
the storage servers, which are no more than repositories for stripe fragments. The s
store the fragments written by clients, and make them available for subsequent
accesses. Should a storage server fail, the clients simply reconstruct the fragments it
by reading the remaining fragments in the same stripe and XORing their contents tog
producing the missing fragment. When the failed storage server reboots, it brings itse
to-date by reconstructing and storing the appropriate fragments of any stripes cr
while it was down.

Log-based striping only provides a mechanism for storing file data on the serve
does not define a way of keeping track of the log contents, or of the space allocation o
servers. To handle these two necessary functions the Zebra architecture use
centralized resources, the file manager and the stripe cleaner. The file mana
responsible for maintaining the metadata of the file system, including the block map
the files. Clients use the block maps to read blocks from files. If a client wishes to re
file block whose log address it doesn’t know, it simply fetches the block pointer from
file manager.

The stripe cleaner’s duty is to manage the free space on the storage servers. It do
by cleaning old stripes, so that each cleaned stripe does not contain any live data a
storage space it consumes can be reused for a new stripe.

Since the file manager and stripe cleaner are centralized resources, they rep
potential single points of failure. Zebra uses two techniques for avoiding this prob
First, both the file manager and the stripe cleaner store their state information in the l
the clients on which they are running. For the file manager this state information con
of the file system metadata, and for the stripe cleaner it consists of the information a
stripe contents. This allows the file manager and stripe cleaner to run on any client
system, since the logs can be accessed by any client. Second, both the file manager
stripe cleaner periodically checkpoint their state to the log, so that the contents of th
are consistent. After a crash, they look backwards through the log until the most re
checkpoint is found, allowing them to initialize their states and continue operation.

One of the most novel aspects of Zebra is that the mechanism used to store file d
also used as a reliable communication channel over which changes in the state
system are transmitted. When a client stores a file block in its log, it also stores a del
that block. The delta identifies the block, and describes both the block’s old and
storage locations. The file manager and stripe cleaner processes the deltas in the
logs and use them to update their states. Since the logs are reliable and time-ordere
easy for the different Zebra components to agree on the distributed state of the syst
78

t the
in by
uch

bra
ting
herent

lity
ility
at all.
e not
ebra
ut of
ashes.
ce

pose

eals
ing,
aning,
rate to
es to
what

better

n the
ss is
5 Zebra Prototype

The previous chapter provided an overview of the Zebra architecture, but left ou
details that must be addressed in an actual implementation. This chapter fills these
describing the implementation of a Zebra prototype in the Sprite operating system. M
of the complexity in implementing the prototype came from integrating the Ze
functionality with the existing operating system, and since this will vary from opera
system to operating system, those details have been omitted. Instead, the in
complexities in building the Zebra components are described.

One caveat of the prototype is that it does not implement all of the functiona
described in the last chapter; in particular some of the availability and reliab
mechanisms either require manual intervention to operate, or are not implemented
To reduce the overall implementation effort, I did not implement those features that ar
necessary to demonstrate the scalability and availability advantages of the Z
architecture. For example, the prototype does not behave correctly when it runs o
storage space, nor do clients automatically reconstruct fragments when a server cr
None of the limitations of the prototype affects the validity of the performan
measurements, however, so I did not implement them. I do, however, pro
implementations for those features the prototype lacks.

The description of the prototype is organized into eight sections, each of which d
with a different function within the prototype. These functions are log address
fragment creation, data transfer, metadata management, client caching, stripe cle
and fragment storage. Each section describes how the system components coope
provide the functionality in question, and when appropriate, how the system continu
provide the functionality despite a component failure. Each section also describes in
ways, if any, the prototype implementation is inefficient or inadequate, and proposes
ways to implement the same functionality.

5.1 Log Address Format

In Zebra, file blocks are accessed by their log addresses, i.e. their offsets withi
client logs that store them. Section 4.1 provided an overview of how a log addre
79

ut it
rtant
rtant,
file’s
all log
the log

g log

ress.
5-1
up

to 16
of the

uely
sign
hat is
te 2
type
log

than is
ffset,
g the
ies in
ying
the

fset,
broken-down into a log ID, a stripe index, a fragment index, and a fragment offset, b
did not specify the sizes of these components, since such information is not impo
when describing the architecture. The size and structure of a log address are impo
however, when implementing the architecture, since they affect the size of each
block map, as well as the interface between the clients and the storage servers. A sm
address reduces the overhead of the block maps, but increases the rate at which
addresses wrap. A large log address has the opposite effect.

The prototype strikes a balance between these two considerations by storin
addresses as two 32-bit words. The first word of a log address is called thefragment ID,
and it consists of the log ID, stripe index, and fragment index portion of the log add
The second word of the log address is simply the offset into the fragment. Figure
shows the internal structure of a fragment ID. The log ID is eight bits long, allowing for
to 256 clients in a system. Four bits are allocated for the fragment index, allowing up
fragments in a stripe, and therefore 16 storage servers in a system. The remainder
bits (20 in all) are the stripe index.

The advantage of this log address format is that it allows a fragment to be uniq
identified by the single word that is its fragment ID. This simplifies the system de
because a single-word fragment ID is simpler to manipulate and store than one t
longer. There are several disadvantages, however. First, each client can only crea24

fragments before running out of unique fragment IDs. The fragment size in the proto
is 512 Kbytes, allowing each client to write at most 8 Tbytes of data before its
addresses wrap. The second disadvantage is that a 32-bit fragment offset is larger
needed for any realistic fragment size. The prototype only uses 19 bits of the o
leaving the remaining 13 bits unused. Furthermore, there is little advantage to makin
contents of the log byte-addressable. If file blocks were aligned on 512-byte boundar
the log, for example, the fragment offset would only need to be 10 bits. The underl
problem with the log address implementation in the prototype is that while it simplifies
implementation to break a 64-bit log address into a 32-bit fragment ID and a 32-bit of
it does not make efficient use of the bits.

Log ID Stripe Number
Fragment

Index

042432

Stripe ID

Fragment ID

Figure 5-1. Fragment ID.
A stripe fragment ID is composed of a stripe ID plus a fragment index within the stripe. A
stripe ID consists of the client ID for the client that created the stripe, plus a sequence number
for the stripe that is incremented for each stripe the client writes.
80

they

the
ead of
at the
t
e
ts to
elta
at the

to be
ed at
o find
ingle
on in
ration
ding

ks at
e log
ment,
5.2 Fragment Creation

This section describes the format of the stripe fragments in the prototype, and how
are created by the clients.

5.2.1 Fragment Format

A stripe fragment containing file data (adata fragment) consists of one or more
fragmentportions, as shown in Figure 5-2. Each portion of a fragment consists of
blocks and deltas added to the fragment by a single store or append operation. Inst
storing the deltas next to the blocks they describe, the prototype stores file blocks
beginning of a fragment portion, followed by adelta regionthat contains the deltas tha
describe the blocks, and concluded by adelta trailer that describes the delta region. Th
portions of a fragment are linked together by a pointer in each delta trailer that poin
the delta trailer of the preceding portion of the fragment. This allows all of the d
regions in a fragment to be accessed by following the chain of pointers that starts
delta trailer at the end of the fragment.

This particular data fragment format was chosen because it allows several deltas
read in a single operation, and it allows the log address of a file block to be determin
the time the block is assigned to a log fragment. First, the delta regions make it easy t
and read the deltas in a fragment. All of the deltas in a region can be read in a s
operation, and the pointer in the delta trailer makes it easy to find the next delta regi
the fragment. If each delta were stored next to the block it describes, one read ope
would be required to read each delta, significantly reducing the performance of rea
deltas from the log.

The second advantage of the current fragment format is that by storing the file bloc
the beginning of each portion, and the delta region and delta trailer at the end, th
address of a file block can be assigned at the time the block is placed into the frag

File Block Delta Region Delta Trailer

Figure 5-2. Data fragment format.
Each data fragment is divided into portions, and each portion is divided into file blocks, a delta
region containing the corresponding deltas, and a delta trailer that describes the delta region
and points to the previous delta trailer in the fragment.

Log

Portion
81

xed
s the

ch in
log

e. By
n be

The
tely
ated
rtion
per-
at the
e file
k and
annot

ad of
ends
in a
h the
le to

region
ns in

hich
data
d and
nts are
with

it is
t the
it is
ains,
re not
rather than waiting until the fragment portion is complete. Delta regions are not a fi
size, hence putting the delta region at the beginning of a fragment portion cause
starting offset of the file blocks to be dependent on the size of the delta region, whi
turn is dependent on the number of file blocks in the fragment portion. Thus the
address for each file block can not be assigned until the delta region is complet
putting the delta region after the file blocks, however, the log addresses ca
immediately assigned.

In retrospect, this advantage of the prototype’s fragment format is a minor one.
intent was to allow the software that placed a file block into the log to immedia
determine the block’s log address, so that the file’s block map could be upd
accordingly. Otherwise the software would have to be notified when the fragment po
was complete, complicating the structure of the software. In reality, however, the up
levels of the software need to be notified when a block has been stored anyway, so th
state associated with the block can be updated to reflect this fact. For example, th
cache needs to know when a dirty block has been stored so that it can unlock the bloc
mark it as clean. There is no reason why the routine that performs these operations c
also update the file’s block map.

There is also no compelling reason why delta regions end with a delta trailer inste
beginning with a header. The original intent was to ensure that each client log always
with a delta trailer, making it easy to find the deltas in a fragment. To find the deltas
client log one only needs to read the trailer at its end, then chain backwards throug
delta regions using the pointers in the trailers. In retrospect it would be just as simp
start each fragment with a header that points to the first delta region, and start each
with a header that points to the next region in the fragment, thus chaining the regio
the forward direction rather than the reverse.

5.2.2 Zebra Striper

Fragments are created on the clients by a software module called thestriper.The striper
consists of a front-end and a back-end: the front-end provides an interface by w
higher-level software, such as the client file cache and the virtual disk file, can store
and deltas in the log, while the back-end takes the fragments created by the front-en
stripes them across the storage servers. This section describes how data fragme
filled, how parity fragments are created, how the front-end coordinates its operation
the back-end, and how higher-level software interfaces with the striper.

5.2.2.1 Filling Data Fragments

The front-end of the striper creates data fragments from the file blocks and deltas
given by higher-level software, such as the file cache. File blocks are located a
beginning of a fragment, allowing the striper to return the log address of a block
given. The striper simply keeps track of how much file data the current fragment cont
and places each new file block after any existing blocks. Deltas, on the other hand, a
82

delta
data

ent is
given

ll. If,
,
his

s that
s. To

the
rage
the
s to
cks
ore,

ritten
ance
at it
lling
into

cks
the
ad on

tes
es not
any
ents
el
h the
een
the

ng the

elta
lta to
nism
immediately placed in the fragment, but instead are buffered to be placed in the
region. The striper keeps track of the size of the deltas, and uses the amount of file
and size of the deltas to determine when the current fragment is full. Once the fragm
full the delta region and delta trailer are placed after the file blocks, and the fragment
to the back-end to be stored.

Sometimes it is necessary to write a fragment to the storage servers before it is fu
for example, an application invokesfsync to force a file’s dirty blocks to stable storage
the striper has no choice but to write the current fragment, even if it is not yet full. T
complicates the fragment format and the striper implementation because it mean
fragments can have multiple delta regions and can be written in multiple operation
write a non-full fragment the striper places the delta region and delta trailer after
fragment’s file blocks, and gives the fragment to the back-end to be written to the sto
servers. The difference between writing a full fragment and one that isn’t is that in
latter situation the striper does not begin filling a new fragment. Instead, it continue
place new file blocks and deltas in the current fragment until it is full. The new file blo
and deltas are placed in the fragment after the data already written. Furtherm
subsequent writes of fragment use append operations rather than store operations.

One of the biggest issues in the design of the striper is its performance. All data w
by a client must pass through the striper, so that the striper is a potential perform
bottleneck. For this reason, the striper does not make a copy of the file blocks th
handles, but instead simply manipulates pointers to the blocks. The simplest way of fi
a fragment is to allocate a buffer to hold the fragment, and copy file blocks and deltas
the buffer. Unfortunately, this solution requires the striper to copy all of the file blo
written. To avoid this bottleneck, the striper in the prototype simply keeps pointers to
data blocks in a fragment, rather than copying their contents, and thus reduces the lo
the client.

While the elimination of copies within the striper improves performance, it complica
the interface between the striper and the higher-level software. Since the striper do
make a copy of the blocks it is given, the higher-level software must not modify
blocks it gives to the striper until the striper is done with them. The prototype implem
this synchronization usingcallbacks. For each block given to the striper, the higher-lev
software also provides a callback routine to be invoked when the striper is done wit
block. The higher-level software must not modify a block until its callback has b
invoked. For example, the callback for a file block written by the file cache marks
block as clean and unlocks it, so that applications can resume accessing and modifyi
block.

The striper handles deltas differently from file blocks, since the cost of copying a d
is small relative to the cost of issuing a callback. Thus when the striper is given a de
store it simply makes a copy of the delta, instead of using the pointer/callback mecha
used for file blocks.
83

locks
egins
r to
d to

o the
e data
iven to
fer is

t-end
, there
cing

will
his the
e is a
ximum
new
he log

tore
utines
t log
a

a file
ck.
ling
n it

the
that
ses
5.2.2.2 Parity Fragments

Parity fragments are fragments that contain the parity of a stripe, rather than file b
and deltas, and as such are handled differently by the striper. When the striper b
filling a new stripe it allocates a parity fragment for the stripe, and allocates a buffe
hold the contents of the parity fragment. The contents of the parity buffer are initialize
zero. The parity buffer is filled in during the process of sending the data fragments t
storage servers, as described in the next section on data transfer. Once all of th
fragments in the stripe have been sent to the storage servers the parity fragment is g
the back-end to be sent as well. After the parity fragment has been stored its buf
deleted.

5.2.2.3 Flow-Control

The front and back ends of the striper represent a producer/consumer pair: the fron
produces fragments, and the back-end sends them. Like all producer/consumer pairs
needs to be flow control between the two, to prevent the front-end from produ
fragments faster than the back-end can send them. Without flow control, fragments
accumulate in the back-end until the system resources are exhausted. To prevent t
front-end is allowed to get at most one stripe ahead of the back-end. In effect, ther
queue of stripes between the front-end and the back-end, and the queue has a ma
size of one. Once the queue is full, the front-end is prevented from filling any
fragments, and any requests by the higher-level software to place data or deltas in t
are blocked until the queue is emptied.

5.2.2.4 Striper Interface

The striper provides an interface that allows higher levels of the client kernel to s
data and deltas in the log and receive notification once they have been stored. The ro
provided by the striper are shown in Figure 5-3. Data blocks are placed into the clien
via the StriperPlace routine. ThedataPtr and length parameters describe the dat
being placed. The state of the striper is maintained in the structure pointed to bystriperPtr,
allowing a client to write to several logs, as would happen if a client uses several Zebr
systems. ThedeltaPtr parameter points to a partially completed delta for the data blo
All of the fields of the delta (described in Section 4.4.2) are filled in by the routine cal
the striper, except for the new block pointer which will be filled in by the striper whe
places the block into the log. The delta is then stored in the log along with the data.

Callbacks are implemented using thedoneProc and doneData parameters to
StriperPlace . DoneProcpoints to the callback routine to be invoked. IfdoneProcis
NULL a callback is not done when the data block has been stored.DoneDatais a single
word in length and is passed to the callback routine without being interpreted by
striper, allowing the higher-level software to pass information between the routine
called StriperPlace and the callback routine. For example, the file cache pas
information about the cache block being written in thedoneData parameter.
84

r
hese
ent the

Two
t delta
e
ere is
In addition to thedoneDataparameter, thedoneProcroutine is also passed othe
information about the data block that was stored, as shown in Figure 5-4. T
parameters are the status of the store operation, and the fragID and offset that repres
log address at which the block was stored.

The remaining routines provided by the striper module areStriperDelta ,
StriperCallback , andStriperFlush . StriperDelta is used by the higher-
level software to store deltas in the log that don’t have a corresponding data block.
examples of when this is necessary are when a file block is deleted, and when a rejec
is issued for a cleaner delta.StriperDelta provides an interface for these deltas to b
stored in the log. The striper makes a copy of the delta, as described previously, so th
no need for a callback routine.

StriperPlace(striperPtr, length, dataPtr, deltaPtr, doneData,
doneProc)
StriperState *striperPtr; /* State of the striper. */
int length; /* Size of data. */
Address dataPtr; /* Data buffer. */
Delta *deltaPtr; /* Delta info for data. */
ClientData doneData; /* Data for callback. */
void (*doneProc)(); /* Callback routine. */

StriperDelta(striperPtr, deltaPtr)
StriperState *striperPtr; /* State of the striper. */
Delta *deltaPtr; /* Delta to be stored. */

StriperCallback(striperPtr, doneData, doneProc)
StriperState *striperPtr; /* State of the striper. */
ClientData doneData; /* Data for callback. */
void (*doneProc)(); /* Callback routine. */

StriperFlush(striperPtr, parity)
StriperState *striperPtr; /* State of the striper. */
Boolean parity; /* Flush parity too? */

Figure 5-3. Striper routines.
These procedures are provided by the striper module to the higher-level software.
StriperPlace is used to store data in the log, andStriperDeltas is used to store a
delta.StriperCallback registers a callback routine called when the log up to the current
position has been stored.StriperFlush flushes any fragments to the storage servers.

doneProc(doneData, status, fragID, offset)
ClientData doneData; /* Callback data. */
ReturnStatus status; /* Status of the store. */
int fragID; /* Data’s fragment ID. */
int offset; /* Offset in fragment. */

Figure 5-4. Striper callback.
A callback is registered byStriperPlace and StriperCallback . The callback is
associated with the current position in the log and is invoked when the log is stored up to that
position.
85

he
can be

ge

not

that
lients
width
servers

mote
l over

reply.
C does
tem in
g the
g lost
totype
lients
nt can
The

data,
to 16
ype.
RPC

n the
fer file

yle of
data

sses it
The StriperCallback routine registers a callback to be invoked when all of t
data blocks and deltas that have been placed in the client log have been stored. This
used, for example, to determine when a delta placed in the log viaStriperDelta has
actually been stored.

The StriperFlush routine flushes any unwritten data fragments to the stora
servers, and is used to implement thefsync system call. If theparity parameter is non-
zero then the parity fragment for the last stripe is written as well, even if the stripe is
full. Otherwise the last parity fragment is not written.StriperFlush is synchronous,
and does not return until all of the fragments have been safely written.

5.3 Data Transfer

One of the goals of the Zebra project is to provide high-performance file service
scales with the number of servers in the system. To achieve this goal, not only must c
use the servers efficiently, but they must use them in parallel so that the transfer band
scales. This section describes how data are transferred between the clients and the
in the prototype, allowing data transfer to be both efficient and scalable.

5.3.1 Remote Procedure Calls

The clients and servers in the Zebra prototype communicate via Sprite re
procedure calls (RPC) [Welch86]. A remote procedure call emulates a procedure cal
the network. The client sends parameters to the server, and the server sends a
Sending an RPC is a synchronous operation, so that the process that initiates an RP
not continue processing until the reply to the RPC has been received. The RPC sys
the Sprite kernel handles the details of the RPC implementation, including packagin
RPC data into network packets, sending the packets across the network, resendin
packets, and reassembling the RPC data on the receiving machine. The Zebra pro
makes use of this existing communication infrastructure to transfer data between c
and servers. New RPCs were added to read and write Zebra fragments, thus a clie
write a fragment to a server simply by invoking the RPC that sends a fragment.
underlying Sprite RPC system takes care of getting the data to the server.

There are several complications related to using RPCs to transfer fragment
however. The first is that the Sprite RPC system limits the maximum size of an RPC
Kbytes, which is significantly smaller than the 512-Kbyte fragments used in the protot
One option is to increase the maximum RPC size, but there are overheads in the
system that make this impractical, including the need to allocate buffers based upo
maximum size of an RPC. Instead, the prototype uses a sequence of RPCs to trans
data that are too large to fit in a single RPC.

The second complication is that RPCs are intended for a request/response st
communication, and therefore lack a flow control mechanism that is needed to make
transfers efficient. During an RPC the client sends a request, and the server proce
86

st, and
trol is

f the
erver
, can
on as it
emain

flow
e the
nt to
locks to
, and
t the
n the
RPC
ue to

pe to
one
rite
r. In the
the
ut is
me
does

not

ink of
ceive
erver
not ask

ts of
trol

use a
ntrol
and sends a reply. This means that the server is idle while the client sends the reque
the client is idle while the server processes the request and sends the reply. Flow con
achieved by having only one outstanding request at a time, but it limits the sum o
client and server utilizations during an RPC to at most 100%, since the client and s
computations do not overlap. Higher utilization, and therefore higher performance
only be achieved by overlapping RPCs, so that the client sends a new request as so
has finished sending the previous one. This enables both the client and server to r
busy processing RPCs, and improves the resulting transfer bandwidth.

The use of overlapping RPCs is only a partial solution, however, because it lacks a
control mechanism. As described, the client simply sends a new block of data onc
server has received the previous one. Without flow control, it is possible for the clie
send data faster than the server can process them, causing unprocessed data b
accumulate on the server. Eventually the server will run out of space for new blocks
will discard any new blocks it receives. This in turn causes the client to retransmi
discarded blocks when it fails to receive a reply for those RPCs, increasing the load o
client and the network. In effect, this causes the timeout/retransmit mechanism in the
system to be used for flow control, rather than its intended role masking packet loss d
network errors.

The lack of a flow control mechanism in the RPC system forces the Zebra prototy
implement its own forms of flow control. The prototype uses two different techniques,
for writing and one for reading. First, the striper limits the number of outstanding w
requests there can be to any one server, so that the client does not overrun the serve
prototype this limit is two, allowing a server to store a fragment to its disks while at
same time receiving the next fragment from the client. This solution is very simple b
of limited value, since it doesn’t prevent multiple clients from overloading the sa
server. Fundamentally, flow control must be driven by the sink of the data, a fact that
not fit well with the use of RPCs to write data to the servers since the servers do
initiate the RPCs.

Flow control for fragment reads is easier to handle because the client is both the s
the data and the initiator of the RPC. Clients can regulate the rate at which they re
data from the servers by limiting the number of their outstanding read requests. A s
only sends data to a client in response to a read request, and as long as a client does
for too many blocks simultaneously it will not be overrun.

The bottom line is that flow control is necessary when transferring large amoun
data, but it is difficult to achieve using an RPC system. The prototype’s flow con
mechanisms are weak at best; I would expect a production version of Zebra to
stream-based protocol for transferring file data that implements a full-fledged flow co
mechanism.
87

uires
can

cult
RPC,

r at a

se of
client
roblem
esses
d, and
t or

tions,
idth.

ation

til a
g sent
sfers

g for
eply
cess is
PCs
zation
llback
onize
PCs,
d. The
ent.

to the
width
RPCs.

everal
h the
lients
5.3.2 Asynchronous RPC

A problem of using an RPC system to transfer data in Zebra is that the system req
clients to transfer data to multiple servers simultaneously. The file transfer bandwidth
only scale with the number of servers if they are used in parallel. Concurrency is diffi
to achieve, however, using the normal RPC abstraction. When a process invokes an
it is blocked until a reply is received. Thus a single process can only use one serve
time, defeating the purpose of striping data across servers.

The standard solution to providing concurrency in RPC-based systems is the u
multiple processes. To transfer a fragment to several servers simultaneously, the
would use one process per server, each issuing RPCs to its associated server. The p
with this approach is that it requires the system to context-switch between the proc
that are transferring the data. In the best case, one context-switch per RPC is require
in the worst-case a context-switch will be required for each network packet sen
received. Furthermore, the collection of processes must synchronize their ac
increasing the data transfer overhead on the client and reducing the transfer bandw

The Zebra prototype reduces the data transfer context-switch and synchroniz
overheads through the use of a communication abstraction calledasynchronous RPC
(ARPC). An ARPC is similar to an RPC, except that the process is not blocked un
reply is received. Instead, the process can continue execution while the RPC is bein
and the reply received. This allows a single process to handle multiple data tran
simultaneously, without requiring context switches to do so.

While the ARPC protocol does allow a process to continue processing while waitin
a reply, it is more difficult in an ARPC system for the process to determine when the r
has been received. In a standard RPC this synchronization is easy because the pro
blocked until the reply arrives. The synchronization is more complicated using AR
because the process does not block. In the prototype’s ARPC system this synchroni
is implemented using callbacks. When a process initiates an ARPC, it specifies a ca
routine to be invoked when the reply is received, thus allowing the process to synchr
with the reply. In the striper, for example, fragments are sent to the servers using AR
and the callbacks are used to notify the striper when the fragments have been store
striper, in turn, invokes the callbacks associated with the file blocks stored in the fragm

The prototype uses ARPC for two purposes. First, it is used to overlap requests
same server, as described in the previous section. This provides higher data band
between a client and a server than can be achieved through a series of synchronous
Second, it is used to allow a single process to send and receive fragments from s
storage servers simultaneously. This allows the transfer performance to scale wit
number of servers in the system, without requiring one process per server on the c
and the corresponding context switches among them.
88

f each
ificant

in a
ksum

o read
each
new

hus,
uire a
ritten.

these
ork

to the
annot
tions

nt to
the N
er of

the
cant
ation
in the

t level,
the

om the
their

ksum
m of
level
en sent

level.
uffer.
o the
, the

t of a
log
5.3.3 Integrated Parity and Checksum Computations

The Zebra architecture requires the clients to compute the checksums and parity o
fragment written to the servers. These computations can potentially cause a sign
amount of overhead on the clients, because they require that each word of data
fragment be operated upon by the processor. In a simple implementation the chec
and parity operations would be performed separately. This requires the processor t
each word of the data fragment from memory to compute the checksum, then read
word of both the data fragment and the corresponding parity fragment to compute the
parity. Each word of the new parity fragment must also be written back to memory. T
the checksum and parity computations on a fragment containing N words of data req
total of 3N words of data to be read into the processor, and N words of data to be w

The Zebra prototype reduces the checksum and parity costs by integrating
computations into the RPC and network systems. At the lowest-level of the netw
system each word of a packet being sent must be copied from the host memory on
network interface board, because the network interfaces used in the prototype c
access the host memory directly. By integrating the checksum and parity computa
into this copy operation it is possible to eliminate extra reads of the data fragme
compute the checksum or parity, so that the only additional memory accesses are
reads and N writes needed to read and write the parity fragment. Thus the numb
words that must be read is reduced from 3N to N.

Although integrating the parity and checksum computations with sending of
fragment data reduced the memory bandwidth consumed, it did require signifi
modifications to the existing Sprite network and RPC systems. The biggest complic
is that various RPC and packet headers are added to the data at different levels
communication system. Since the parity and checksums are computed at the lowes
during the copy to the network device, these computations will erroneously include
headers. Rather than add a mechanism by which the headers could be excluded fr
computations, it was simpler to include the headers in the computations but negate
effect afterwards. This is relatively easy to do because both the parity and chec
computations are a simple XOR, so that if extra data is included in the XOR in the for
a header, it can be removed from the final result by XORing it in again. Thus each
that adds a header to the data removes the effect of the header after the data has be
by XORing the header into the parity and checksum results returned by the lower
The only detail is that the header changes the offset of the data within the parity b
When a network packet is sent that contains a piece of a fragment, it is XORed int
parity fragment at a particular offset. If a header is added to the data prior to the XOR
offset must be adjusted accordingly.

5.4 File System Metadata

As described in Section 4.4, the metadata of a Zebra file system is similar to tha
UNIX file system, except that the block pointers in a file’s block map contain
89

in the
ger
name

mary
ather
up-to-
r, how
red by

dard
disk

nner as
ch is

s two
g the
les.
ts of

block

out
n that
extra
t to
the

ze of
means
pace,
Zebra
not.

, the
es the

when
ks.
ceives
the
the

ce the
addresses, instead of disk addresses. Because of this similarity the file manager
prototype is a modified Sprite file server. This greatly simplified the file mana
implementation because the existing Sprite mechanisms for cache consistency,
space management, and disk layout could be used without modification. The pri
modifications made to the Sprite file server were support for storing block maps, r
than file data, and the addition of routines to process deltas to keep the block maps
date. This section describes how the block maps are implemented on the file manage
clients access the block maps, and how the block maps and other metadata are sto
the file manager to make them highly available and reliable.

5.4.1 Block Map Implementation

In theory, the block maps in Zebra are no different from the block maps in a stan
UNIX file system, except that the block pointers contain log addresses instead of
addresses. The Zebra block maps could therefore be implemented in the same ma
UNIX block maps, using inodes and indirect blocks. The disadvantage of this approa
that it changes the file system’s disk layout, since a log address in the prototype i
words long, compared to the one word required for a disk address. To avoid changin
disk layout, block maps in the prototype are implemented on top of “regular” Sprite fi
For each Zebra file there is a Sprite file in an underlying Sprite file system, the conten
which are the block map for the Zebra file. This allows the file manager to access the
map for a Zebra file simply by reading and writing its associated Sprite file.

Although storing Zebra block maps inside of Sprite files leaves the disk lay
unchanged, there are several ways in which it is less efficient than an implementatio
stores the block maps directly in the inodes. First, performance is reduced due to the
level of indirection in the block maps. The pointers in the Zebra file inodes do not poin
the Zebra file blocks directly, but instead point to disk blocks that contain pointers to
Zebra blocks. Second, the underlying Sprite file system enforces a minimum file si
512 bytes. Files smaller than that threshold are padded out to 512 bytes in size. This
that the block maps for small Zebra files consume a disproportionate amount of s
increasing their overhead and reducing the performance of accessing them. Finally,
files have a delta version number associated with them, while regular Sprite files do
Ideally, this version number would be stored in the inode for each file. In the prototype
version numbers are instead stored in the file manager’s checkpoints, which increas
checkpoint overhead. File manager checkpoints are described in Section 5.4.4.

5.4.2 Block Maps and Clients

The client uses the block map for a Zebra file to access the correct fragments
reading blocks, and to fill in the old block pointers in the deltas when writing bloc
When a client opens a Zebra file it sends an open request to the file manager, and re
in reply a handle for the underlying Sprite file that stores the block map. To obtain
block pointers for the Zebra file, the client simply uses the handle to read them from
Sprite file. The client then uses the block pointers to access the storage servers. Sin
90

e any
Zebra

not
be

pdate
n’t
me

track
le’s
ersion
rsion
ments

er to
sy to

ed, but
s the
rsion
er. It

cache
the

d to
same
d the
that it
ust be

s is
ecial
null”
s a
lients
ocol
event
o be
s this

other
ts in
is sent
client
block pointers are stored in a standard Sprite file, they are cached on the client lik
other Sprite file, avoiding the need to read them from the file manager each time the
file is read.

Although clients read block pointers from the underlying Sprite file directly, they do
write the block pointers in the same way. The block map for a Zebra file can only
modified by the file manager as it processes the deltas in the client logs. Clients do u
their own cached copy of the block map after writing a file block, however. If they did
then each time a client wrote a file block its own copy of the block map would beco
obsolete and the client would have to fetch a new copy from the file manager.

In addition to caching the block pointers for Zebra files, the clients must also keep
of the current version of each file. Every time a block is written to a Zebra file the fi
version number is incremented, so that the deltas for the file can be ordered by the v
number that they contain. The Sprite open RPC was modified to return the current ve
number when a Zebra file is opened. The client caches this version number and incre
it each time it writes a block to the file.

The purpose of the version numbers stored in the deltas is to allow the file manag
determine the order in which update deltas should be applied during recovery. It is ea
order deltas that appear in the same log, since the contents of the log are time-order
it isn’t as simple to order deltas that appear in different logs. The file manager use
version numbers to accomplish this task, by ordering the deltas according to their ve
number. It isn’t strictly necessary, however, that each delta have its own version numb
is just as easy to order the deltas if the version number is incremented only when the
consistency of a file changes, so that a different client begins modifying the file and
file’s deltas now appear in a different log. Thus all of the deltas for a file that correspon
an uninterrupted sequence of modifications will appear in the same log and have the
version number. Deltas within a sequence are ordered by their position in the log, an
sequences are ordered by the version number. The advantage of this scheme is
reduces the rate at which the file version number changes, and the processing that m
done by the clients to keep track of the version numbers.

One difficulty in using standard Sprite files to store the block pointers for Zebra file
that block deletion is not easily handled on the clients. In theory, block deletion is a sp
case of block modification: the client simply issues a delta that contains a special “
value for the new block pointer. In practice it isn’t that simple. When a client modifie
file block it must adhere to the cache consistency protocol, to ensure that multiple c
don’t try to modify the same block simultaneously. Sprite’s cache consistency prot
depends on clients notifying the file server each time they open and close files to pr
client cache inconsistencies. Unfortunately, file deletion does not require the file t
open, hence it does not invoke the cache consistency mechanism. Sprite eliminate
potential race by handling block deletion on the file server, which can ensure that no
client will modify the block as it is being deleted. This means, however, that the clien
the Zebra prototype can’t delete file blocks themselves. Instead, the delete request
to the file manager, which issues the appropriate deltas to delete the blocks. The
91

he file

ithout
nager
ted by
f the
n be
tead
me
han a

a file
t
disk
file
a file
rvers

s the
file
re its
map
ock
file
cial-
p is
shows
sses

ain
that
tual
turn
, or
Tbyte
ck
file
rds.
sends the file’s current version number to the file manager in the delete request, and t
manager returns the updated version in the reply.

5.4.3 Metadata Storage

The Zebra metadata must be highly available, since files cannot be accessed w
their block maps. To ensure that the metadata is not lost in a crash, the Zebra file ma
stores the metadata in its client log so that it is striped across the servers and protec
parity. This means that the LFS that underlies a Zebra file system is built on top o
client log, rather than a local disk. Fortunately, this change in storage location ca
implemented by modifying the block device driver used by LFS to access its disk, ins
of by modifying LFS itself. All that is needed is a device driver that provides the sa
interface to LFS as a disk, but which accesses the file manager’s client log rather t
disk. Hence the device driver provides a virtual disk interface to the client log.

The blocks of the virtual disk used by the file manager are stored in a special Zebr
called the virtual disk file. The virtual disk file has a particular file number tha
distinguishes it from “regular” Zebra files. The device driver used by LFS translates
block requests into reads and writes to the virtual disk file. Thus the virtual disk
contains the blocks of a virtual disk used by LFS to store the metadata for the Zebr
system. Since the virtual disk file is stored in the client log, it is striped across the se
and protected by parity.

The virtual disk file introduces a circular dependency, however, because it store
block maps for Zebra files, yet the virtual disk file itself is a Zebra file. The virtual disk
cannot be accessed without its block map, so clearly the virtual disk file cannot sto
own block map. The circular dependency is broken by handling and storing the block
for the virtual disk file differently from other Zebra files. The file manager keeps the bl
map for the virtual disk file in an in-memory array, instead of accessing it from a
stored in the LFS. Clients never access the virtual disk file directly, so this spe
handling on the file manager is not a problem for clients. The virtual disk block ma
stored in the file manager checkpoints, as described in the next section. Figure 5-5
how the virtual disk block map is used to map virtual disk sectors to the log addre
where they are stored.

One concern about the virtual disk block map is its size, since it must fit into the m
memory of the file manager. Block pointers in the prototype are two words long, so
there is 64 bits of overhead per 4-Kbyte file block. This implies that the size of the vir
disk file must be about 1/512 or 0.2% of the size of the file data stored, which in
implies that the virtual disk block map is about 0.2% of the size of the virtual disk file
about 0.0004% of the size of the file data. For example, a file system that contains 1
in file data will have a virtual disk file about 2 Gbytes in size, and the virtual disk blo
map will be about 4 Mbytes. Thus the virtual disk block map can easily fit into the
manager’s main memory, even for file systems that are quite large by today’s standa
92

iting
ger’s
of the
r only
oint.

tion:
f file
are
ns. To
tes it
e

as a
such

he file
int’s

map
er

ager
orage
xceed
5.4.4 File Manager Checkpoints

At regular intervals during its operation the file manager checkpoints its state by wr
it out to its client log. A checkpoint provides a consistent snapshot of the file mana
state, so that recovery from a file manager crash does not require reprocessing all
logs in the entire system to bring the block maps up-to-date. Instead, the file manage
needs to recover the state stored in the last checkpoint, then roll forward from that p

A file manager checkpoint consists of a header followed by three pieces of informa
a list of the file manager’s current positions in processing the client logs, the array o
version numbers, and the block map for the virtual disk file. Details of the format
shown in Figure 5-6. The header contains the size of each of the subsequent regio
create a checkpoint the file manager gathers all of this information together and wri
out to the log via StriperPlace . The deltas for the checkpoint are filled in so that th
checkpoint blocks appear as the blocks of a special file (like the virtual disk file, it h
unique file ID). Thus to the other entities in the system that interpret the log contents,
as the striper and the stripe cleaner, the checkpoint appears as any other file. T
manager can easily find it, however, by looking for deltas that contain the checkpo
unique ID.

The primary reason for the decision to store the file version numbers and the block
for the virtual disk in the checkpoints was that it simplified the file manag
implementation. An unfortunate consequence of this decision is that file man
checkpoints can be unreasonably large. For example, in a system with 1 Tbyte of st
space and an average file size of 20 Kbytes, the file manager checkpoint would e

Sector 1
Sector 2
Sector 3
Sector 4
Sector 5
Sector 6
Sector 7
Sector 8

Block 1

Block 2

Pointer 1
Pointer 2

Virtual Disk
Virtual Disk

File
Virtual Disk
Block Map Client Log

Sector 1
Sector 2
Sector 3
Sector 4
Sector 5
Sector 6
Sector 7
Sector 8

Figure 5-5. Virtual disk implementation.
Sectors of the virtual disk are stored in blocks of the virtual disk file. The virtual disk file
blocks are stored in the client log at locations pointed to by the virtual disk metadata. The
virtual disk metadata is stored in the file manager checkpoint (not shown) which is also stored
in the client log. This diagram is simplified to show only four sectors per block; in the
prototype there are eight.
93

tore
el of
the
map
t two

log to
tents,
p-to-

re the
in the

the
fore

imply
plete
upon

esses
200 Mbytes in size, which is clearly too large to be practical. A better solution is to s
the file version numbers in the file inodes themselves, and to use another lev
indirection to store the virtual disk block map. Instead of storing the block map in
checkpoint directly, the block map is stored in another special file and that file’s block
is stored in the checkpoint. This would reduce the size of the checkpoints by at leas
orders of magnitude.

5.4.5 File Manager Recovery

To recover from a crash, the file manager searches backwards through its client
find the most recent checkpoint, initializes its state based upon the checkpoint con
then rolls forward through the client logs and processes the deltas to bring its state u
date. In the prototype the file manager finds the end of its log by sendingconfiguration
RPCs to the storage servers to determine the newest fragment that it stored befo
crash. It then begins reading the delta regions in the log until it finds deltas that conta
file ID of the checkpoint. The checkpoint header contains the number of blocks in
checkpoint, making it easy to ensure that all of the checkpoint blocks were written be
the crash. If the most recent checkpoint is found to be incomplete, the file manager s
continues to search backwards until it finds the previous checkpoint. Once a com
checkpoint is found its blocks are read and the file manager’s state initialized based
their contents. The file manager then rolls forward through the client logs and proc
the deltas as described in Section 4.4.6.

Magic
Progress Offset
Progress Size
Version Offset
Version Size

Virtual Disk Offset
Virtual Disk Size

Client 1
Client 2

...

Client N
File 1
File 2

...

File N
Disk Block 1
Disk Block 2

...

Disk Block N

Header

Checkpoint

Progress

File Versions

Virtual Disk
Block Map

Figure 5-6. File manager checkpoint.
A checkpoint contains a header that describes the format of the rest of the checkpoint, followed
by a list of log addresses indicating the file manager’s progress in processing the client logs, a
list of file version numbers, and the block map for the virtual disk file.
94

o that
t is
lient
ing
le
can

t and

at the
file

rom
file
Sprite

uld
ake

ighly

m: the
file’s
are

s,
ssing
ssing,
ng the
the file

ether
which
To

ll the
tas are
e file
ce can

ager
could
ds by
stripe
atly
The file manager in the prototype is assumed to always run on the same client, s
during recovery the file manager always looks in the log of the client on which i
running for the last checkpoint. This reduces the file manager’s availability since the c
on which it runs could suffer a hardware failure that would prevent it from recover
quickly. This problem is easily rectified by specifying a client ID when initializing the fi
manager that tells it which client log to search for the checkpoint. The file manager
then be moved to another client and still be able to find the most recent checkpoin
reprocess the client logs.

A more pressing problem caused by moving the file manager to another client is th
underlying Sprite operating system will become confused by the move. The Sprite
system would have to be modified to allow clients to recover with a different server f
the one with which they were communicating before the crash. In particular, the new
manager needs to recover the cache consistency state that was lost in the crash. In
this information is provided by the clients, but a highly available file manager wo
require the clients to send this information to a different server instead. I did not m
these modifications to Sprite, so the Zebra prototype does not implement a h
available file manager.

5.4.6 Delta Buffer

Delta processing on the file manager is driven by the cache consistency mechanis
file manager only processes the deltas for a file when a client opens the file and the
block map is out-of-date. During the interval between their arrival and when they
processed the deltas are stored thedelta buffer. The delta buffer accumulates delta
allowing the file manager to process more than one at a time and reducing the proce
overhead. The delta buffer is also used by the stripe cleaner to obtain deltas for proce
so that the file manager and stripe cleaner share copies of deltas, thereby reduci
amount of storage needed for the deltas. Once a delta has been processed by both
manager and the stripe cleaner it is deleted from the buffer.

Although the delta buffer allows the file manager and stripe cleaner to batch tog
deltas for processing, the rate at which they process deltas must equal the rate at
deltas arrive in the buffer. If they do not, the delta buffer will grow excessively large.
avoid this problem, the delta buffer in the prototype has a fixed size, and once it is fu
file manager and stripe cleaner begin processing the deltas it contains. Each time del
placed in the buffer its size is checked, and if it is approaching the maximum size th
manager and stripe cleaner are notified to begin processing deltas so that their spa
be reused.

In retrospect, the delta buffer is an unnecessary complication in the file man
implementation. Instead of using a delta buffer, the file manager and stripe cleaner
just process deltas as they arrive. If it is desirable to reduce processing overhea
batching deltas together, this batching can be done internally to the file manager and
cleaner. This solution might not be as efficient as the delta buffer, but it would gre
simplify the implementation.
95

erves
ed in
tions
tten
; and
of file
es the

gether
ut of
or the
e
hen
file

date
file.

e
k data
mark
cked
r fills
tween

r this

d the

log.
dirty
ond,
ring
92].
log
the

is to
log

the
easy
5.5 Client Cache

Each Zebra client keeps a cache of file blocks in its main memory. This cache s
four purposes: it allows multiple reads and writes to the same file block to be handl
the cache without accessing the server; it filters out short-lived data written by applica
so that they die in the cache without being written to the server; it allows newly-wri
file blocks to be batched together and written to the servers in large, efficient transfers
it serves as a read-ahead buffer to reduce the latency and improve the performance
reads. The following sections describe in greater detail how the Zebra client cache us
striper to write file blocks to the servers, and how it implements read-ahead.

5.5.1 Cache Block Writes

The Zebra file cache uses the striper module described in Section 5.2.2 to batch to
dirty file blocks and stripe them across the storage servers. Dirty blocks are written o
the cache when the cache fills with dirty blocks, the blocks reach 30 seconds of age,
application usesfsync to force a file’s blocks be flushed. To write a dirty block, th
cache first locks the cache block so that it is not modified during the I/O operation. T
the cache initializes an update delta for the block by filling in its old block pointer and
version number. The cache block and update delta are passed toStriperPlace , which
places the cache block into the client log and fills in the new block pointer in the up
delta. The new block pointer is then used by the cache to update the block map for the

The callback routine passed toStriperPlace is used to update the state of th
cache block after its fragment has been stored on the storage servers. The callbac
parameter is a pointer to the cache block. The callback routine uses this pointer to
the cache block as no longer dirty, and to unlock it. Thus the cache block remains lo
by the cache until the striper has written it to the storage servers. Since the stripe
complete fragments before sending them to the servers there may be a long delay be
the time a block is given to the striper and when it gets stored on the servers. Fo
reason, the cache callsStriperFlush after it has written out all of dirty blocks that it
wishes. This ensures that the blocks are written to the servers in a timely fashion an
cache blocks are unlocked and can be reused.

The cache uses three techniques to optimize the layout of file blocks within the
First, it segregates dirty blocks based upon the files to which they belong. All of the
blocks from one file are placed in the log before placing blocks from another file. Sec
the dirty blocks within a file are placed in sequential order. In the UNIX office/enginee
environment files are typically read and written sequentially and their entirety [Baker
By placing the blocks in the log in sequential order they will end up in the
contiguously, improving the performance of reading them back. Third, files written by
cleaner are segregated from files written by application programs. The intent
segregate file blocks by their expected lifetimes. If file blocks are clustered in the
based upon how long they will live, all of the blocks in each fragment will die at about
same time. This makes the fragments efficiently utilized before their blocks die, and
96

has
o live
gating
g old
s are

ed to
d in
d the
hich
the file

of file
at the
ding
ahead
rs to

s that
s not
to be
there
read-
uld be
le, the
ent.

lient
che is
his the

of the
to the
lized,
r. The
ork
the

bed in
e it
ead-
to clean once they do. The expected lifetime of a file block in the UNIX environment
been measured to be proportional to its age [Baker92], so that older blocks tend t
longer than newer blocks. Thus the cleaner overheads can be reduced by segre
blocks being cleaned, which tend to be old because the cleaner favors cleanin
fragments, from blocks newly created by applications programs, so that file block
clustered based upon their expected lifetimes.

5.5.2 Cache Block Reads

When an application reads a block that is not in the cache, the file’s block map is us
fetch the missing block. The details of how the client gets the block map are foun
Section 5.4.1, but once the client has the block map it is a simple matter for it to rea
block. The fragment ID is extracted from the block pointer and parsed to determine w
server stores the fragment, and a retrieve RPC is sent to the storage server to obtain
block.

The client caches in the prototype use read-ahead to improve the performance
reads. When an application opens a file and reads the file’s first block it is assumed th
application will read the file sequentially and in its entirety. The cache then begins rea
file blocks from the storage servers before they are read by the application. Read-
serves two purposes. First, it allows the reading of file blocks from the storage serve
be overlapped with computation by the application program. Read-ahead ensure
when an application reads a block it is found in the cache, so that the application doe
have to wait for it to be read from the servers. Second, read-ahead allows file blocks
transferred from the storage servers in parallel. When an application reads from a file
is no guarantee that it will read enough data to span the servers. If, for example,
ahead were not used and an application read only one block at a time, the servers wo
accessed one-at-a-time, rather than in parallel. By reading far enough ahead in the fi
cache is able to ensure that the servers are kept busy transferring file data to the cli

The read-ahead mechanism in the prototype is implemented partially by the c
cache, and partially by the storage server. During read-ahead of a file, the client ca
responsible for ensuring that the storage servers are accessed in parallel. To do t
client issues asynchronous retrieve RPCs to the servers, based upon the contents
file’s block map. When a retrieve completes the client issues a new retrieve request
same server. This mechanism does not ensure that individual server are fully uti
however, because it does not initiate concurrent read requests to the same serve
bandwidth attainable from a single server is maximized if both its disk and its netw
interface are fully utilized, by overlapping network and disk transfers. In the prototype
storage server is responsible for overlapping network and disk transfers, as descri
Section 5.8.5. This division of labor is merely an artifact of the prototype, sinc
simplified the implementation. I expect that in a production version of Zebra the r
ahead mechanism would be implemented entirely on the clients.
97

any
ng the
to an

and
e the
cks

to the
tisfied

ally
ually
ction
loss

es this
pied
tripe
needs
ntly
hird,

n-use.
s, as

leaner

achine
isting
stripe
ervers
ta for a
tistics
r every
e ID,
status
tains
tripe’s
a file
file

hange
5.6 Fragment Reconstruction

When a storage server is down, it is the clients’ responsibility to reconstruct
fragments they need from that server. Fragment reconstruction is performed by readi
other fragments in the stripe and XORing them together. When a read is made
unavailable fragment, the client allocates buffers for the other fragments in the stripe
reads the fragments into the buffers in parallel. The buffers are then XORed to produc
missing fragment. As an optimization, the file’s block map is used to copy any file blo
that appear in the stripe’s fragments out of the buffers where they are stored and in
file cache. This allows subsequent accesses to file blocks in the same stripe to be sa
in the file cache.

Reconstruction is not automatic in the prototype: clients do not automatic
reconstruct a fragment if they cannot contact a server. Clients must be man
configured to reconstruct fragments from a particular server. Automatic reconstru
only requires integration of the reconstruction facility with the RPC system so that a
of communication triggers reconstruction, but I have not done this.

5.7 Stripe Cleaner

The stripe cleaner’s task is to reclaim unused space on the storage servers. It do
by moving live data out of old stripes into new stripes, thereby leaving the space occu
by the old stripes free of live data and available for reuse. To perform this task the s
cleaner must keep track of the state of the system’s stripes. First, to clean a stripe it
to know which of the stripe’s blocks are in-use, and which are not. Second, to intellige
choose which stripes to clean it needs to know the age of the live data in the stripes. T
to decide when to clean it needs to know how much of the system’s storage space is i
The stripe cleaner obtains this information by processing the deltas in the client log
described in Section 4.5.1. The remainder of this section describes how the stripe c
is implemented in the prototype.

The stripe cleaner in the prototype is a user-level process that runs on the same m
as the file manager. The cleaner maintains three pieces of information about the ex
stripes: the number of free stripes, a stripe statistics database, and a collection of
status files. The first is the number of stripes that can be written before the storage s
become full. The stripe cleaner decrements this number each time it processes a del
new stripe, and increments this number each time it cleans a stripe. The stripe sta
database contains the number of live bytes and the average age of those bytes fo
stripe in the system. This information is maintained in a hash table indexed by strip
and stored in the stripe cleaner’s checkpoints. The cleaner also maintains a stripe
file for each stripe in the system. Each stripe status file is a regular Zebra file that con
descriptions of changes in the states of the blocks of a stripe, and is named by the s
ID. There are two types of state changes: block creations caused by a client writing
block to the fragment, and block deletions caused by a client deleting or overwriting a
block. The description of each state change is 32 bytes in size. Since a block may c
98

erhead
ead

that a

low-
k. The
s any
their

s the
cesses
uses
has

tripes,
tripe’s
high-
ched.

el call
inters
ks as

s the
le or

inters
-level
ersion
dirty

is not
ed as
ack

that a
cleaner
ipe to
to the
ill fall
ce that

that
ation

t make
state at most twice, once to be created and once to be deleted, the resulting space ov
of the stripe status files is 64 bytes per 4-Kbyte file block, or about 2%. This overh
could be reduced by having state changes apply to a range of blocks for a file, so
single entry in a status file describes a change to several blocks of the stripe.

5.7.1 Cleaning

The cleaner starts cleaning when the number of free stripes falls below a specified
water mark, and it ceases cleaning when the number rises above a high-water mar
algorithm used by the cleaner was described in Section 4.5. The cleaner first delete
empty stripes, then prioritizes the remaining stripes and cleans them based upon
priority. An empty stripe is one that doesn’t contain any live bytes. The cleaner use
stripe statistics database to determine which stripes are empty. The cleaner then pro
the stripe status files for the empty stripes to verify that they are indeed empty, then
thedelete fragmentsRPC to delete the fragments on the storage servers. After a stripe
been deleted, the cleaner updates its state by incrementing the number of free s
removing the deleted stripe from the stripe statistics database, and deleting the s
status file. If the deletion of empty stripes raises the number of free stripes above the
water mark the cleaner ceases operation until the low-water mark is again rea
Otherwise the cleaner begins to clean stripes that contain live data.

The cleaner uses a special kernel call to clean a stripe. The parameter to the kern
is a list of block pointers for the blocks to be cleaned. The kernel uses these block po
to read the blocks from the storage servers into the file cache, then it marks the bloc
dirty so that they are written out of the cache. The kernel call for cleaning blocks ha
same effect as reading and rewriting the blocks except that (a) it doesn’t open the fi
invoke cache consistency actions, (b) the file blocks are read using the block po
provided, rather than the file’s block map, (c) the data are not copied out to the user
stripe cleaner process and back to the kernel again, (d) the last-modified time and v
number for the file are not modified, and (e) cleaner deltas are created when the
blocks are written out of the cache, rather than update deltas. The system call
synchronous; it only causes the file blocks to be brought into the cache and mark
dirty. The blocks will be written out of the cache according to the cache write-b
policies described in Section 5.5.1.

Because the cleaning system call is not synchronous, the cleaner cannot assume
stripe has been successfully cleaned once the system call returns. Instead, the
continues to process deltas and waits for the number of live bytes in the cleaned str
drop to zero. Cleaner deltas will be generated when the cleaned blocks are written
client log, and when the cleaner processes these deltas the utilization of the stripe w
to zero. Once this happens the stripe is empty and can be deleted, freeing up the spa
it occupied.

As described previously, the stripe cleaner uses an optimistic cleaning algorithm
does not prevent a race from occurring between the cleaning of a block and a modific
of the same block by a client. This does not mean, however, that the cleaner does no
99

moved
e the
at the
ine
tripe

ular
er’s
status

tatus
file,

point.
nt log
che, it

If the
ntents
d to
uring

nd the
ssing a
ill be
tripe
uced
The
s are
.

in a
scribed
from
uires
s are
n the
es free
copy
type
progress if a race occurs. The user process modified the block, so it has necessarily
to another stripe, leaving the copy of the block in the original stripe unused. Thus onc
stripe cleaner has invoked the system call to clean a stripe, it is guaranteed th
utilization of that stripe will eventually drop to zero, provided of course that the mach
on which the cleaner is running does not crash while processing the system call. S
cleaner crashes and recovery are covered in the next two sections.

5.7.2 Cleaner Checkpoint

During normal operation the cleaner checkpoints its state to its client log at reg
intervals to allow it to quickly recover from a crash. This state includes the clean
progress in processing the client logs, the stripe statistics database, and the stripe
files. The first step in creating a checkpoint is to force any dirty blocks for the stripe s
files out to its client log. The cleaner then writes a checkpoint out to a regular Zebra
alternating between two files to avoid corruption caused by a crash during a check
The checkpoint file contains both the pointers to the last delta processed in each clie
and the stripe statistics database. Once the checkpoint file has been written to the ca
is forced out to the log and the cleaner continues processing deltas.

5.7.3 Cleaner Recovery

After a crash, the cleaner recovers its state from the most recent checkpoint file.
most recent file is found to be corrupted, the older checkpoint is used instead. The co
of the checkpoint file are used to initialize the state of processing the deltas, an
initialize the stripe statistics database. The cleaner then begins processing deltas. D
this recovery phase it is possible for a delta to be applied to the statistics database a
stripe status files more than once, since a stripe cleaner crash may occur after proce
delta but before a checkpoint. If this happens, the stripe statistics database w
incorrect, and the affected status file will contain duplicate entries. The incorrect s
statistics may cause the cleaning priorities to be computed incorrectly, leading to red
cleaner performance. I have not quantified the effect of these errors, however.
duplicate entries in the stripe status files are easily detected when the status file
processed, so that there is no danger of duplicate entries causing file data to be lost

5.7.4 Cleaner Improvements

The prototype stripe cleaner has several shortcomings that preclude its use
production Zebra system. First, the cleaner does not handle log address wrap, as de
in Section 4.5. Zebra requires the cleaner to clean stripes to prevent clients
generating log addresses that conflict with stripes that already exist. This req
synchronization between the clients and the stripe cleaner to ensure that stripe
cleaned before their stripe IDs are reused. Second, the cleaner will deadlock whe
storage servers run out of free space. The cleaner produces free stripes, but requir
stripes to do so. If the system runs out of free stripes the cleaner will not be able to
live data into new stripes, and the system will come to an abrupt halt. Third, the proto
100

chine
ent

icularly
d the
the

to a
t, read
these
ust be
ould
orage
lso be
of the
end

as two
ration

cess.
ed by
entire

gment
ype
ingle
an
ers.

each
hus a
s as
d the
tores
re a
cleaner is confined to run on a single machine. It cannot be started on a different ma
if its original machine should fail. Finally, the cleaner does not retry delete fragm
operations that failed due to a crashed storage server. None of these changes is part
difficult to implement; I chose to leave them unimplemented since doing so reduce
overall implementation effort, and since they are not crucial to the validity of
prototype.

5.8 Storage Server

A Zebra storage server is simply a repository for stripe fragments. The interface
storage server consists of operations to store a new fragment, append to a fragmen
from a fragment, and delete a fragment. The Zebra architecture requires that
operations be both durable and atomic. To be durable the effects of an operation m
permanent, barring a disk failure. When a fragment is stored, for example, it sh
continue to be stored by the server until deleted by a client. Thus the state of a st
server’s fragments must be unaffected by a server crash. The operations must a
atomic, meaning that the failure of an operation due to a crash cannot leave the state
fragments only partially modified. For example, a crash during an atomic app
operation must result in either in all of the data being appended, or none of them.

In addition to these correctness constraints, the prototype storage server also h
performance goals. First, the number of disk accesses required to implement an ope
should be minimized. Ideally, each operation should require only a single disk ac
Second, crash recovery should not be proportional to the number of fragments stor
the server or the size of the disk. In particular, it should not be necessary to scan the
disk after a crash to initialize the state of a storage server.

5.8.1 Volumes

The Zebra architecture was described as if each storage server stored a single fra
of each stripe. While this is likely to be the most common configuration, the protot
does provide a level of indirection between the clients and the servers that allows a s
server to store multiple fragments of a stripe. This indirection is provided by
abstraction called avolume. Fragments are striped across volumes, rather than serv
This allows the system to be configured in a variety of ways, from having one disk on
server, to having all of the disks on a single server and configured as a RAID and t
single volume, to having all of the disks on a single server but visible to the client
separate volumes. Each volume in the system is identified by a unique integer calle
volume ID. An RPC that accesses a fragment must specify the ID of the volume that s
the fragment. For the remainder of this section a volume will be treated as if it we
single disk, and the terms will be used interchangeably.
101

of the
rver to

pace
n
single
es the
d keep

tween
simple
asily

do not
l they
ore a
to

rame,

cy of

is
cates
d by

t
ough

, its
inate

tore a
t data.
zation
a to be
nd to
5.8.2 Storage Management

This section describes the data structures used by the storage server to keep track
fragments it stores and to manage its disk space. The data structures allow the se
efficiently and reliably perform fragment operations as requested by clients.

5.8.2.1 Frames

Zebra uses a very simple scheme for storing fragments in a volume. Most of the s
in a volume is divided into fixed-sizeframes, each of which is large enough to store a
entire fragment. A frame stores at most one fragment, and a fragment is stored in a
frame. In addition to fragment data, each frame also contains a header that describ
fragment. This scheme makes it easy to manage the storage space in the volume an
track of where fragments are stored, since there is a one-to-one mapping be
fragments and frames, and the frames are a fixed-size. Accessing a fragment is as
as determining which frame it is stored in, and allocating and freeing frames is e
implemented using a list of free frames.

One consequence of using frames for storage management is that fragments that
fill a frame result in wasted space. Clients, however, do not start a new fragment unti
have filled the current one, so the wasted space is minimal. If a client is forced to st
partial fragment (because of anfsync , for example) the client uses append operations
continue to add data to the fragment until it is full.

The header in each frame contains information about the fragment stored in the f
as shown in Table 5-1. The use of theindex field is described below. Thefragment ID
contains the unique ID used to identify the stored fragment, and thefragment sizefield
contains the number of bytes in the fragment. Thefragment checksum contains the
checksum for the fragment computed by the client, and is used to verify the consisten
the frame header and the fragment after a crash. Thetimestamp contains the time when
the frame header was written. Thecompletefield indicates whether or not the fragment
in the process of being filled. When a client stores or appends to a fragment it indi
whether or not it intends to append more data to the fragment. This information is use
the storage server during crash recovery, as described in Section 5.8.3. Thecompletefield
is needed in addition to thefragment sizefield because a client may not fill a fragmen
completely before beginning a new fragment. This can happen when there isn’t en
space remaining in a fragment to hold a complete file block. Theparity and parity
sequencefields indicate whether or not the fragment is a parity fragment, and if so
sequence number. This information is used by the server during recovery to elim
duplicate copies of a parity fragment (also described in Section 5.8.3).

The header for a frame is stored adjacent to the frame data, making it possible to s
new fragment in a single disk access that writes both the header and the fragmen
Append operations to existing fragments cannot take advantage of the same optimi
because the existing fragment data are stored between the header and the dat
appended. Zebra assumes that clients normally write full fragments and rarely appe
102

ce to

. The
store
ksum
on the
st not
annot
crash.
ating
e
s the

ame,

lume
red

table
a new
map.

s

existing fragments, so it is reasonable to optimize the storage server’s performan
favor stores at the expense of appends.

Append operations are also more difficult to make atomic than store operations
atomicity of a store operation is ensured by the checksum in the frame header. If a
operation is interrupted by a crash, the checksum in the header won’t match the chec
in the fragment, and the contents of the frame can be discarded. Append operations,
other hand, modify a frame that already contains fragment data. A failed append mu
lose the previous contents of the frame. This implies that an append operation c
overwrite the contents of the frame header, since the header could be corrupted by a
To avoid this problem, each frame has two headers that are written in an altern
fashion by store and append operations. Thetimestamp fields in the frame headers mak
it easy to determine which header is more recent. If a failed append operation leave
header it was writing corrupted, the server simply uses the older header for the fr
causing the frame contents to revert to their state prior to the append.

5.8.2.2 Fragment Map and Free Frame List

The storage server maintains two in-memory data structures to keep track of the vo
contents. First, thefragment mapmakes it possible to find the frame that stores a desi
fragment. The frames in the volume are numbered, and the fragment map is a hash
that maps a fragment ID to the number of the frame that stores the fragment. When
fragment is stored a frame is allocated for it, and the mapping added to the fragment

Field Bytes Description

Magic 4 Distinctive value used for debugging

Header Index 4 Index of the header, either 0 or 1.

Fragment ID 4 ID of the fragment stored in the frame

Fragment Size 4 Number of bytes stored in the fragment.

Fragment Checksum 4 Checksum of the fragment.

Timestamp 4 Time when the subheader was written.

Complete 4 If true, data cannot be appended to the fragment.

Parity 4 If true, the frame contains a parity fragment.

Parity Sequence 4 Parity fragment sequence number (if applicable).

Table 5-1. Frame header.
Each frame has two headers with the format shown. The fragment checksum is used during
recovery to verify the consistency of the frame header and the fragment it stores. The
timestamp is used to determine which of a frame’s headers is newer. The complete, parity, and
parity sequence fields are used during recovery to update the server’s internal data structures a
described in the text.
103

arity
the
the

alled
o the
ration

py of

f the
t they
. The
, but
hat are
torage
t that

t to
ation
to be

read
r this
few

f the
cture
me
ate the
there
frame
server
e by
rizes,

elds

us
at has
When a fragment is deleted its mapping is removed from the fragment map. P
fragment overwrites are implemented by allocating a frame for the new copy of
fragment, writing the fragment to the frame, and updating the fragment’s entry in
fragment map.

The storage server also maintains an in-memory list of free frames, appropriately c
thefree frame list. Frames are removed from the list as they are allocated and added t
list as they become free. A frame can become free either as a result of a delete ope
from a client, or in the case of parity fragments, by being supplanted by a newer co
the fragment.

Copies of the fragment map and the free frame list reside only in the memory o
storage server; they are not stored in the volume. The primary reason for this is tha
are easily created from the contents of the frame headers during server recovery
simplest technique for doing so is to read all of the frame headers from the volume
this requires a disk access for each frame header, leading to server recovery times t
proportional to the amount of storage on the server. For this reason, the prototype s
server uses a different mechanism for creating the fragment map and free frame lis
requires fewer disk accesses, as described in the next section.

5.8.2.3 Summary Table

The problem with storing frame information in a frame header is that it is efficien
access for some tasks, but inefficient for others. On the one hand, storing the inform
in a frame header adjacent to the fragment data allows both header and the data
written in a single efficient transfer. On the other hand, headers make it inefficient to
the information for all of the frames, since it requires one disk access per frame. Fo
task it is preferable to cluster the frame information on disk, so it can be read in only a
transfers.

The prototype storage server resolves this dilemma by storing two copies o
information for each frame: one in the frame’s header, and the other in a data stru
called thesummary table. The summary table summarizes the contents of the fra
headers and can be read in a few large transfers, allowing the storage server to cre
free frame list and fragment map without reading all of the frame headers. Of course,
is an issue of maintaining consistency between the summary table contents and the
headers since they both describe the state of the frames. Thus, when the storage
reads the summary table it must first verify the consistency of its entries. This is don
comparing the contents of the summary table entry with the frame header it summa
as described in the next section.

The format of the entries in the summary table is shown in Table 5-2. Most of the fi
correspond to fields in the frame headers. One exception is thestatus field, which
indicates the state of the frame. Thestatusfield can be one ofempty, complete, or active,
and roughly corresponds to thecompletefield in the frame header, except that the stat
can be empty as well as complete or active. A complete frame contains a fragment th
104

e is
ther

ed in

rhead
e, and
ble is
table

ntents,
rame

frame
ncies

do not
ppend
fer to
eral
se the

he
to

ty
been finished and will not be appended to by a client. The fragment in an active fram
still being filled and might have data appended to it in the future. Clients indicate whe
or not the fragment is complete when they store and append to it, as describ
Section 5.8.4.

The summary table is stored in the volume it describes, and therefore has ove
associated with the storage it consumes. Each entry in the table is 36 bytes in siz
describes a 512 Kbyte frame. Therefore the storage overhead of the summary ta
0.007% of the size of the volume. For example, a 2 Gbyte disk will have a summary
that is 72 Kbytes in size.

5.8.2.4 Summary Table Consistency

The summary table makes it easy for the storage server to determine the frame co
but it introduces a consistency problem because it duplicates the information in the f
headers. Zebra addresses the consistency issue by allowing the summary table and
headers to become inconsistent during normal operation, and fixing any inconsiste
during crash recovery. The advantage of this approach is that fragment operations
need to write both the summary table and the frame header. Instead, store and a
operations only write the frame header, allowing stores to complete in a single trans
the volume. Delete operations only write the summary table entry, allowing sev
fragments to be deleted in a single transfer. Thus store and append operations cau
summary table to become out-of-date, whereas delete operations do not.

Field Bytes Description

Magic 4 Distinctive value used for debugging.

Frame Index 4 Number of the frame described by this entry.

Status 4 Eitherempty, complete, or active.

Fragment ID 4 ID of the fragment stored in the frame.

Fragment Size 4 Size of the fragment, in bytes.

Current Header 4 Index of most recent frame header, either 0 or 1.

Timestamp 4 Time when the frame was last written.

Parity 4 If true, fragment is a parity fragment.

Parity Sequence 4 Parity fragment sequence number (if applicable).

Table 5-2. Summary table entry.
Each entry in the summary table describes the contents of a frame, and has the format shown. T
status is used to build the fragment map and the free frame list. The current header is used
determine which frame header should be written next. The timestamp is used to verify the
consistency of the summary table entry with the frame header it describes. The parity and pari
sequence fields are used to eliminate duplicate copies of a parity fragment.
105

etected
than

f-date
istent
s and

the
g the

from
tency
entries
only
since
eans

re
es for
to be
eed to
ppend
ne to a
rs and
pty or

not
ssible
sser
there

mes,
rames
been
n on-
n
cates
and
pty

ose are
was

erver
eds to

pool.
server
e free
Inconsistencies between the frame headers and the summary table entries are d
using the timestamps they contain. If the timestamp of a summary table entry is older
the timestamp in the corresponding frame header, the summary table entry is out-o
and must be updated. A simple way of verifying that the entire summary table is cons
with the frame headers is to compare the timestamps of all of the frame header
summary table entries. Although this approach is easy to implement, it requires
storage server to read all of the frame headers, undermining the reason for havin
summary table.

A better approach, used in the Zebra prototype, is for the storage server to deduce
the summary table contents which entries might be out-of-date, and verify the consis
of only those entries. The storage server uses the status fields in the summary table
to identify the entries whose consistency is suspect. A summary table entry can
become out-of-date if a store or append operation is done to the frame it describes,
these operations write only the frame header and not the summary table entry. This m
that only those entries whose status isempty or activecan be inconsistent, since those a
the only types of frames that can be modified by a store or append operation. Entri
complete frames do not need to be checked, therefore, since they are guaranteed
consistent. Furthermore, the checksums in the headers for complete frames do not n
be checked either, because a checksum can only become invalid if a store or a
operation was in progress when a crash occurred, yet these operations cannot be do
frame that is complete. Thus the storage server only needs to check the frame heade
summary table entries for those frames whose summary table entry says they are em
active.

The restriction of consistency checks to only empty or active frames does
necessarily reduce the number of checks that must be done, however, since it is po
for all of the frames in the volume to be either empty or active. Active frames are a le
concern, because they can only occur at the tails of the clients logs, and therefore
cannot be more of them then there are clients. There is no such limit to empty fra
however. For this reason the storage server places a limit on the number of empty f
that need to be checked by limiting the number of empty frames that could have
modified since their summary table entries were written. To do this, the server uses a
disk data structure called thefree frame pool, which is a list of free frames that is stored o
the disk at the same time the summary table is written, and from which the server allo
frames. When the free frame pool runs out of frames it is filled from the free frame list
written to the volume after writing the summary table. During recovery the only em
frames the server needs to check are those that are in the free frame pool, since th
the only empty frames that could have been allocated since the summary table
written. The combination of the summary table and the free frame pool prevents the s
from having to check all of the frame headers during recovery. Instead, the server ne
check at most as many frames as there are clients plus the frames in the free frame
The free frame pool in the prototype has 256 entries, so that on reboot the storage
has to check at most 456 frames -- one for each of the 200 clients, plus the 256 in th
frame pool.
106

re to
ment
table
with
th the
ders
ctly.
only
ess, the
ably

not
e free
trying
lock,
sumes
, but I

y and
ternal
erely
es how
tency
ments

Zebra
were
The
ailed

mary
rame
at the
table

e been
erver
copy
ses the
r and
5.8.2.5 Implementation Alternatives

Most of the complexity in the storage server implementation comes from the desi
avoid reading all of the frame headers during recovery, and to batch together frag
deletions into a single write to the volume. This desire led to the use of the summary
and free frame pool, which in turn led to the complexities in keeping them consistent
the frame headers. In retrospect these design decisions were probably not wor
complexity they introduced. It would be much simpler to read all of the frame hea
during recovery and build the fragment map and free frame list from them dire
Performance may suffer, but even with the 1-Gbyte volumes used in the prototype it
requires 2048 accesses to read the frame headers. If we assume 30 ms per disk acc
total time required to read the frame headers is about one minute, which is prob
acceptable given the complexities it avoids.

Another problem with the current storage server implementation is that it does
behave correctly when it runs out of free frames. If free frames cannot be added to th
frame pool because none exist, the server simply returns an error to the client that is
to store a fragment. Unfortunately this behavior will cause the system to dead
because free fragments are only produced by cleaning, a process which itself con
free fragments. One possible solution is to pre-allocate frames for the cleaner’s use
have not added this to the prototype.

5.8.3 Recovery

To recover from a crash, a storage server must verify that its state is both internall
externally consistent. The former refers to consistency between the data structures in
to the storage server, and was the focus of the previous section. This section m
summarizes how the data structures are made consistent after a crash, and describ
the server deals with duplicate copies of the same parity fragment. External consis
refers to consistency between the fragments stored on the recovering server and frag
stored on the other servers of the system. As described in the chapter on the
architecture, a recovering server must reconstruct the fragments for stripes that
written while it was down, and delete fragments for stripes deleted while it was down.
Zebra prototype currently does not implement either of these functions, so that a f
server is not externally consistent once it has recovered.

To verify its internal consistency a recovering storage server first reads the sum
table and the free frame pool from the volume. Each frame that is either in the free f
pool or marked as active in the summary table must be processed to ensure th
checksum in its header is consistent with the data in the frame, and that its summary
entry is consistent with the frame header. Once the headers and summary table hav
verified, the storage server eliminates any duplicate copies of parity fragments. A s
may end up with two copies of the same parity fragment if it crashes after the new
has been written, but before the old copy has been deleted. The storage server u
sequence number in the summary table entries to determine which copy is olde
107

e server

mote
of the
.

data
e 5-3.
the

ment.

d
. The

not

parity

ed
ytes,
ring
y the
he
ntire
deletes it. Once these tasks have been completed, the data structures on the storag
are internally consistent and it can begin handling client accesses.

5.8.4 RPC Interface

The clients in the Zebra prototype communicate with the storage servers via re
procedure calls (RPC). The following sections describe the parameters and results
RPCs supported by Zebra, and the functionality provided by the server in each case

5.8.4.1 Store Fragment

The store fragmentRPC is used to either store a data fragment, append to a
fragment, or a store a parity fragment. The parameters of the RPC are shown in Tabl
The volume ID identifies the volume on which the fragment is to be stored, and
fragment ID identifies the fragment itself. Thechecksumis the checksum of the entire
fragment. For appends this checksum includes any data already stored in the frag
The flags field contains one or more of the following flags:append, complete ,
parity , first_RPC , and last_RPC . Theappend flag indicates that the data shoul
be appended to the end of an existing fragment, otherwise a new fragment is stored
complete flag indicates whether or not the fragment is complete, i.e. the client will
append to the fragment in the future if the flag is set. If theparity flag is set, a parity
fragment is being stored. This causes the storage server to store the new copy of the
fragment in a new frame, rather than overwriting the existing copy of the fragment.

The first_RPC andlast_RPC flags in the store RPC allow fragments to be stor
that are larger than the maximum RPC size. In the prototype, fragments are 512 Kb
but the maximum RPC is only 16 Kbytes. Zebra solves this problem by transfer
fragments that are too big to fit in a single RPC in a series of RPCs, delineated b
first_RPC and last_RPC flag. When the server receives a store RPC with t
first_RPC flag set it knows that the data in the RPC does not constitute the e

Parameter Bytes Description

Volume ID 4 Identifies volume in which to store fragment.

Fragment ID 4 Identifies the fragment to be stored.

Checksum 4 The checksum of the fragment data.

Flags 4 Valid flags are: complete , append ,
first_RPC , last_RPC , andparity .

Parity Sequence 4 Sequence number for parity fragment.

Table 5-3. Store fragment parameters.
The parameters for an RPC to store a data fragment, append to a data fragment, or store a
parity fragment.
108

. The
. The
ntil an
he
PC is

are
d

as

s
ent it

ment.
ment
imply
ervers

The
fragment and the rest of the fragment’s data will be transferred in subsequent RPCs
server simply stores the fragment data in its memory and sends a reply the client
same thing is done for subsequent RPCs containing data for the same fragment, u
RPC is seen that has thelast_RPC flag set. This flag indicates to the server that t
fragment is now complete and should be stored in the volume. The reply to the last R
not sent until the entire fragment has been safely stored in the volume.

5.8.4.2 Retrieve Fragment

Theretrieve fragmentRPC is used to retrieve data from a fragment. The parameters
shown in Table 5-4. Thevolume ID identifies the volume that contains the desire
fragment, and thefragment ID identifies the fragment to be accessed. Thesizeis the total
amount of data to be retrieved, which must be less than the size of an RPC. Theflagsfield
may have theread_ahead flag set, in which case the server performs read-ahead
described in Section 5.8.5.

The data to be retrieved are described by therange count and range list parameters,
which define a list of offset and length pairs (ranges) to be read. This allows several block
of data to be returned in a single RPC. If a range extends beyond the end of the fragm
is truncated, so that it is not an error to attempt to read beyond the end of the frag
This is useful during reconstruction because the client that is reconstructing a frag
does not necessarily know the sizes of the other fragments in the stripe. The client s
retrieves data from the fragments as if they were 512 Kbytes long, and the storage s
return only as much data as the fragments actually contain.

5.8.4.3 Delete Fragments

The delete fragmentsRPC is used to delete fragments on the storage server.
parameters to this RPC are shown in Table 5-5.

Parameter Bytes Description

Volume ID 4 Identifies volume that stores fragment.

Fragment ID 4 Identifies fragment from which to retrieve.

Size 4 Total number of bytes to be retrieved.

Flags 4 Valid flags are:read_ahead .

Range Count 4 Number of ranges to be retrieved.

Range List 4/range List of ranges to be retrieved.

Table 5-4. Retrieve fragment parameters
The parameters for an RPC to retrieve fragment data from a storage server.
109

of
each
tions

ost

the

hose

nts in
head
e
r of

et, the
o that
server
t that
out

ahead
ecause
tion
ongs.
5.8.4.4 Configuration

TheconfigurationRPC serves as a “catch-all” RPC for determining the configuration
a storage server. Its most important use is to find the most recent fragment written by
client so to allow the system to find the end of each client’s log. There are several op
to the configuration RPC:

Newest Fragment ID

The client specifies the volume ID and client ID, and the server returns the m
recent fragment ID written by the client.

Fragment Information

Given a volume ID and a fragment ID the server returns the current size of
fragment, whether or not it is complete, and its current checksum.

Flush Fragment Cache

Causes the storage server to invalidate the contents of its fragment cache, w
functionality is described in the next section.

5.8.5 Performance Optimizations

The storage server improves the performance of fragment reads by caching fragme
its memory. The cache is read-only and is intended primarily to serve as a read-a
buffer. A retrieve RPC that has theread_ahead flag set indicates to the server that th
client is reading a file sequentially, and will in the future read data from the remainde
the current fragment and from subsequent fragments in the same log. If the flag is s
server reads the remainder of the accessed fragment into the fragment cache, s
subsequent reads to the same fragment are satisfied in the cache. In addition, the
begins reading the next fragment in the same log into the cache. As a result, a clien
sequentially reads from a file that is laid out contiguously in the log can do so with
waiting for a disk access on each read. As mentioned in Section 5.5.2, the read-
mechanism in the prototype was divided between the client and the storage server b
it was simpler than implementing it entirely on the client. I expect that a produc
version of Zebra would implement the read-ahead entirely on the client, where it bel

Parameter Bytes Description

Volume ID 4 Identifies volume that stores fragments.

Fragment IDs 4/ID List of IDs of fragments to be deleted.

Table 5-5. Delete fragments parameters
The parameters for an RPC to delete fragments on a storage server.
110

copy
esses
and

d into

ent in
eds to
ed for

Zebra
uld be
ction
s and
es. The
struct
h as
file

these
of the

pter.

d the
ps in
lified
e, file
ndled
gest
f data
have

of an
ol is
rate a
flow
-based

n be
am to
esire
ably

orage
The fragment cache is read-only; writing a fragment simply invalidates any cached
instead of adding the newly written data to the cache. This may lead to extra disk acc
to read a fragment that has just been written, but it simplifies the cache design
improves the performance of the fragment writes because they don’t have to be copie
the cache.

Fragments are replaced in the cache in an least-recently-used fashion. Each fragm
the cache is tagged with the time that it was last accessed. When a new fragment ne
be brought into the cache and the cache is full, the fragment that hasn’t been access
the longest time is discarded in favor of the new fragment.

5.9 Summary

The prototype described in this chapter serves as a proof-by-existence that the
architecture can be implemented. True, the prototype lacks some features that wo
needed in a production version of Zebra, but the major components of Zebra fun
properly. Clients can read and write files, the file manager manages the block map
ensures that the client caches remain consistent, and the stripe cleaner cleans strip
file manager and stripe cleaner recover from crashes, and clients can recon
fragments. Most of what the prototype lacks are features related to availability, suc
automatic reconstruction of fragments when a server fails, and the ability to run the
manager and stripe server on any client in the system. I chose not to implement
features because they are not necessary to measure the scalability and availability
system and do not affect the performance measurements presented in the next cha

Most of the complexity in the prototype stems for the interaction between Zebra an
underlying Sprite operating system on which it is based. Storing the Zebra block ma
regular Sprite files, and thereby leaving the disk layout unchanged, greatly simp
some aspects of the implementation, but made others more complex. For exampl
version numbers could not be stored in the file inodes, so they had to be ha
differently from the other file attributes such as size and age. Probably the big
difficulty encountered was the inadequacy of using RPCs to transfer large amounts o
to multiple servers in parallel. The RPC abstraction does not allow a single process to
many outstanding requests, a deficiency that was rectified by the development
asynchronous RPC mechanism. Even more important, though, is that flow contr
essential to achieving high-performance data transfers, yet RPC does not incorpo
flow control mechanism. To get around this problem I had to add very rudimentary
control mechanisms in Zebra. In retrospect it would have been better to use a stream
protocol such as TCP/IP to transfer file data between the clients and the servers.

While some of the implementation complexity and sub-optimal performance ca
blamed on the interaction between Zebra and Sprite, there is some for which I alone
blame. First, the storage server implementation is overly complex, as a result of my d
to minimize storage server recovery time. In retrospect, the added complexity is prob
not worth the savings. Second, the checkpoints for both the file manager and st
111

e in
e file
at the
has

these
mance
servers contain too much information and are likely to become excessively larg
systems of moderate size. Third, the delta buffer is an unneeded complication on th
manager and should be eliminated. And fourth, a fragment format that has headers
beginning of the fragments is probably more intuitive than the current format which
trailers at the end. Implementation time was a major consideration in the design of
features, and I expect that an implementation that places greater emphasis on perfor
and storage overheads will avoid the mistakes made in the current prototype.
112

hapter,
This
as a
ecks
ility
e file

odel
dified
marks

is at
from

ch as
The
twork

be
twork
nts on
disk

The
e file
rs and

by a
d the
Sprite
6 Prototype Measurements

This chapter presents measurements of the prototype described in the previous c
including its file access performance, scalability limits, and availability overheads.
information can be used not only to determine the performance of file transfers
function of the number of clients, servers, and file size, but also to identify the bottlen
that limit the overall scalability of the system. The overheads of providing high availab
are also measured, including the cost of parity and of checkpoint and recovery in th
manager and stripe cleaner.

6.1 Experimental Setup

The performance measurements were collected on a cluster of DECstation-5000 M
200 workstations running a version of the Sprite operating system that has been mo
to include the Zebra prototype. The workstations are rated at about 20 integer SPEC
and each contains 32 Mbytes of memory. In the benchmarks the memory bandwidth
least as important as CPU speed; these workstations can copy large blocks of data
memory to memory at about 12 Mbytes/second, but copies to or from I/O devices su
disk controllers and network interfaces run at only about 8 Mbytes/second.
workstations are connected by an FDDI ring and each workstation has a single ne
interface. I measured the bandwidth and latency of Sprite RPCs over FDDI to
3.1 Mbytes/second and 1.3 ms, respectively. A more detailed analysis of the ne
performance is given in the next section. Each storage server stores its stripe fragme
a single DEC RZ57 disk attached to the server via a SCSI I/O bus. The maximum
bandwidth is 1.6 Mbytes/second, also described in the next section.

A total of nine workstations were available for running these experiments.
minimum configuration tested consisted of one client, one storage server, and on
manager. In the maximum configuration there were three clients, five storage serve
one file manager.

For comparison, I also measured existing network file systems, represented
standard Sprite configuration and an Ultrix/NFS configuration. The Sprite system use
same collection of workstations as the Zebra experiments, except that the standard
113

stem
ed the

U and
latile

ation
sources

onents
eason,
ower
ch file

n of
is the
ents
RPCs
PC
cribed
rated
board
lows
r than
ced

Sprite
nt to
bytes/

vs. a
ively.
ally
rall
iting

me to
ch a
le, or
network file system was used instead of Zebra, and the Sprite log-structured file sy
was used as the disk storage manager on the file server. The NFS configuration us
same client configuration as Zebra, but the file server had a slightly faster server CP
slightly faster disks. The NFS server also included a 1-Mbyte PrestoServe non-vo
RAM card for buffering disk writes.

6.2 Limiting Factors

This section presents performance measurements for the underlying communic
and storage systems used in the Zebra prototype, since the performance of these re
limits the performance of the higher-level services that use them.

6.2.1 RPC Performance

The Zebra prototype uses Sprite RPCs to send control messages between comp
and also to transfer file data between the clients and the storage servers. For this r
the performance of the underlying RPC system is of importance, since it provides a l
bound on the latency of control messages, and an upper bound on the rate at whi
data can be transferred.

Figure 6-1 shows the bandwidth of Sprite RPCs over the FDDI network as a functio
the amount of data sent in the RPC. The reply to each RPC is empty. Each data point
average of 100 iterations of sending an RPC. The line labeled “No Parity” repres
standard RPCs, which reach a peak bandwidth of 3.1 Mbytes/second for 16-Kbytes
(the maximum size of a Sprite RPC). The line labeled “Parity” shows the R
performance when the parity and checksum of the RPC data are computed. As des
in Section 5.3.3, the parity and checksum computations in the prototype are incorpo
into the RPC system, since the CPU must copy each packet to the network interface
anyway. The integration of the parity and checksum computations into this copy al
the CPU to read the data once and perform several computations on them, rathe
reading them once for each computation. RPCs with parity have slightly redu
performance, reaching a peak of 2.8 Mbytes/second, or only 90% of the standard
RPCs. These bandwidth limits constrain the file access performance of a clie
3.1 Mbytes/second for reads, since parity doesn’t need to be computed, and 2.8 M
second for writes, which require parity and a checksum.

The latency of a zero-length RPC for which parity and a checksum is computed
zero-length RPC for which they are not is 1.29 0.01 ms and 1.28 0.01 ms, respect
Thus the difference in latency between the two types of RPCs is not statistic
significant. This relatively high RPC latency has at least two implications for the ove
system performance. First, a client cannot open or close a file in less than 1.3 ms, lim
the rate at which a client can open files to at most 700 files/second. Second, the ti
fetch a block pointer from the file manager is at least 1.3 ms, limiting the rate at whi
client can read small files whose block pointers are not cached to at least 2.6 ms/fi
350 files/second.
114

RPC
rvers
erver
ck-to-
bytes,
f the
t only
es not
ernel

m. In
mory.

a given
ers, the
ector
riting
, or
6.2.2 Disk Performance

The performance of a storage server is not only limited by the performance of the
system, but it is also limited by the performance of its disk subsystem. The storage se
in the prototype store stripe fragments on a single DEC RZ57 disk connected to the s
via a SCSI bus. The disks have a published average rotational latency of 8.3 ms, a tra
track seek of 4 ms, and an average seek of 14.5 ms. The disk capacity is 1.0 G
divided into 1925 cylinders. Each track is 35.5 Kbytes in size. The raw bandwidth o
disk media is 2.5 Mbytes/second, but the disk transfers data over the SCSI bus a
1.6 Mbytes/second in asynchronous mode. The SCSI interface board in the server do
support DMA; the server must copy data between the interface board and the k
memory. I measured the speed of this copy to be 8 Mbytes/second.

Figure 6-2 shows the measured read and write bandwidth of the disk subsyste
these experiments data were transferred between the disk and a buffer in kernel me
Each data point shows the average and standard deviation of 1000 disk accesses of
size. The starting sector of each access was chosen randomly. For one-sector transf
read and write performances of the disk are roughly comparable. A read of one s
takes an average of 29.8 6.4 ms, resulting in a bandwidth of 16.8 Kbytes/second. W
one sector is slightly faster than reading, taking an average of 27.3 6.5 ms
18.3 Kbytes/second.

Figure 6-1. Sprite RPC bandwidth.
Bandwidth increases with RPC size. Dips in the performance occur when the size of the RPC
requires an additional network packet. The parity computation slows down large RPCs by
about 10%.
115

eaches
the
write

k can
on the
s this
e disk
ding
g the

ansfer
iss a
d.

rites,
urrent
quent
s the
rs. The
ahead
read-
Both read and write performance increase with access size until the access size r
64 Kbytes. At this point the write performance levels off at 1.1 Mbytes/second, while
read performance continues to improve. There are two reasons for this plateau in the
bandwidth: the SCSI protocol limits the size of a disk access to 64 Kbytes, and a dis
handle only one access at a time. This means that to access more than 64 Kbytes
disk, a series of 64-Kbyte transfers must be done, one after the other. During write
causes the disk to miss a rotation after every transfer, due to the delay caused by th
notifying the host that the write has completed, and the host responding by sen
another write request to the disk. During this delay the disk continues to rotate, causin
heads to be positioned after the starting sector of the next transfer. Thus the next tr
must wait for the disk to rotate back to the starting sector, causing the disk to m
rotation after every transfer, and the write bandwidth to level off at 1.1 Mbytes/secon

The 64 Kbyte size limit does not have the same effect on reads as it does on w
however. The disk contains a track buffer that is used to read-ahead data from the c
track. Data are read into the buffer even when a transfer ends, allowing a subse
access to the same track to be satisfied in the buffer without missing a rotation. Thu
read performance continues to improve even when accesses require several transfe
track buffer does not prevent all missed rotations, however, because it only reads
data within the current track. If the next read access is not to the current track, the

Figure 6-2. Raw disk bandwidth.
Bandwidth between the DEC RZ57 disk and the kernel memory increases with the access size.
The starting sector for each access is chosen from a uniform random distribution. The
maximum size of a single SCSI transfer is limited to 64 KBytes by the SCSI controller. Larger
accesses are divided into several SCSI transfers, but this causes large writes to miss a
revolution, limiting write performance to half of the disk media bandwidth. The track buffer
usually prevents missed revolutions on large reads.
116

data.
ations

-Kbyte
te of
server

fer rate

ses on
d the
Sprite

ource
rvers,
t the
ale to

ource
was
an an
were
end

s in
viations
to be

read
ing is
e files
g is

many
l files,
ually,
, than

ance
of the
ahead buffer may not prevent a missed rotation because it will not contain the desired
The effect of occasionally missing rotations can be seen in the larger standard devi
of the read bandwidth than write bandwidth.

Based upon these measurements, a storage server in the prototype can read 512
fragments from its disk at the rate of 1.6 Mbytes/second, and write them at the ra
1.1 Mbytes/second. These bandwidths represent upper bounds on the storage
performance, since the server cannot transfer data to the clients faster than the trans
of its disk.

6.3 File Access Performance

The benchmarks presented in this section measure the performance of file acces
Zebra, Sprite, and NFS, as a function of the number of clients, number of servers, an
sizes of the files accessed. Also presented are the resource utilizations on Zebra and
during the benchmarks. The combination of benchmark performance and res
utilizations shows that Zebra’s file access performance scales with the number of se
that batching is effective at improving server efficiency and performance, and tha
Zebra architecture is successful at shifting the load from those resources that don’t sc
those that do.

6.3.1 Performance vs. File Size

The first two file access benchmarks measure file system throughput and res
utilizations while reading and writing files of various sizes. In each experiment there
one client, one file manager, four data servers, and one parity server. The client r
application that wrote or read files, and the elapsed time and resource utilizations
measured. Files were read or written sequentially and in their entirety. Start-up and
effects for small files were avoided by having the application read or write many file
each test. Each test was run ten times and the results averaged. The standard de
were computed, but they are not shown in the graphs since they were too small
discernible.

Figure 6-3 shows read and write bandwidth as a function of file size, revealing that
and write throughput increase dramatically as file size increases. For large files, read
faster than writing; this is because the client CPU is saturated when accessing larg
and writing has the additional overhead of computing parity. For small files, writin
faster than reading; this is because Zebra’s log-based striping batches the data from
small writes together and writes them to the servers in large transfers. Reads of smal
on the other head, are not batched. Each file must be read from the servers individ
causing small file reads to have higher overhead, and therefore lower performance
small file writes.

The shapes of the curves in Figure 6-3 are also of interest. The read perform
improves as the size of the file increases, as would be expected by the amortization
117

imilar
tched
write
to be

t that

t of
server
es. The
igh
e the
ing 1-
me,

a file
the

me
twork

ly to
cause
larger
per-file overheads over more file bytes transferred. The write performance shows a s
performance increase, but this behavior is not as easily explained. Small files are ba
together, so that there are no-per file overheads on the servers. This implies that the
performance should not be influenced by the file size, causing the performance curve
flat. This clearly is not the case, so there must be per-file overheads on the clien
causes it to be more expensive to write small files than large.

The resource utilizations while writing files, shown in Figure 6-4, illustrate the effec
these per-file overheads. As the file size decreases, the utilizations of the storage
CPU and disk decrease, as would be expected because the write bandwidth decreas
file manager CPU utilization is very high for small files, however. The reason for the h
utilization is the processing of open and close messages from the client. Each tim
client opens or closes a file it must send a message to the file manager. When writ
Kbyte files, most of the time is spent in opening and closing them. At the other extre
when writing a 100-Mbyte file the open and close costs are negligible, as shown by
manager CPU utilization of less than 2%. The bottleneck when writing large files is
client CPU, which is more than 97% utilized. The client is spending all of its ti
computing parity, and copying data between the application, the kernel, and the ne
interface.

The resource utilizations when reading files, shown in Figure 6-5, behave similar
those when writing, but the knees of the curves occur at larger file sizes. This is be
Zebra batches many small writes together, but it cannot do the same for reads. Thus
file sizes are required to use the servers efficiently.

Figure 6-3. Throughput vs. file size.
A single client reads or writes files of varying size to five storage servers. Writing small files is
faster than reading due to write-behind and batching; writing large files is slower than reading
due to the parity computation.

0

1

2

3

103 104 105 106 107 108

Read
Write

T
hr

ou
gh

pu
t

(M
by

te
s/

se
co

nd
)

File Size (bytes)
118

.

Figure 6-4. Write resource utilizations.
For small files most of the time is spent opening and closing the files; for large files the client
CPU saturates. The storage server utilizations were measured on one of the five servers in the
system.

0%

20%

40%

60%

80%

100%

103 104 105 106 107 108

Client CPU

FM CPU
SS CPU
SS Disk

U
til

iz
at

io
n

File Size (bytes)

Figure 6-5. Read resource utilizations.
The curves are similar in shape to those for writing, except that the knees occur at larger file
sizes. The storage server utilizations were measured on one of the five servers in the system
For small files the loads were not equal on all of the servers, causing the fluctuations in the
curves.

0%

20%

40%

60%

80%

100%

103 104 105 106 107 108

Client CPU

FM CPU

SS CPU

SS Disk

U
til

iz
at

io
n

File Size (bytes)
119

ize of
files is
nsight

first
and

ion
t of
was
ults of
s the
tores

Zebra
imal

parity

re a
Note,
dding
ers; it
s it to
by
6.3.2 Large File Performance

The previous benchmarks showed how file access performance varied with the s
the files being accessed; in the benchmarks presented in this section the size of the
fixed, but the numbers of clients and servers are varied. These benchmarks provide i
as to how the file access performance scales with the number of servers. The
benchmark consists of an application that writes a single very large file (12 Mbytes)
then invokesfsync to force the file to disk. Each client ran an instance of this applicat
(each writing a different file) with varying numbers of servers, and the total throughpu
the system (total number of bytes written by all clients divided by elapsed time)
computed. The benchmark was also run on Sprite and NFS, for comparison. The res
the benchmark are shown in Figure 6-6. Note that the horizontal axis of the graph i
number ofdata serversin the system, where a data server is a storage server that s
data fragments, as opposed to the storage server that stores parity fragments. Each
configuration contained a parity server in addition to the data servers. Thus the min
Zebra configuration shown in Figure 6-6 consists of a single data server and a single
server.

The first conclusion to be drawn is that with two or more clients the servers a
bottleneck, since performance increases steadily with each additional server.
however, that the performance curves are not linear. The reason for this is that a
servers only improves the rate at which data can be written from the client to the serv
does not improve the rate at which the application program creates the data and write
the file cache. Thus in the limit, the write bandwidth of the entire benchmark is limited

Figure 6-6. Total system throughput for large file writes.
Each client ran a single application that wrote a 12-Mbyte file and then flushed the file to disk.
In multi-server configurations data were striped across all the servers with a fragment size of
512 Kbytes. Each Zebra configuration also included a parity server in addition to the data
servers.

0

1

2

3

4

0 1 2 3 4 5

3 clients
2 clients
1 client (no parity)
1 client
Sprite
NFS/Presto

T
ot

al
 T

hr
ou

gh
pu

t (
M

by
te

s/
se

c.
)

Data Servers
120

This is
iting

fore it
one to
at this

d “1
and

is is
ning to
neck,
otice
ers are
reases
ult, the

more
arly
d vs.
writes
block
nt is
near

f the

ance
when
r than
SCSI
cond
with

nce.
t with
rs the

d the
abeled
nly
the application performance, causing a sub-linear speedup when servers are added.
a positive result, however, because it means that the client performance is the lim
factor in Zebra, rather than server performance as in current network file systems.

The second observation is that a single client can drive at most two data servers be
saturates. Bandwidth increases when the number of data servers is increased from
two, but it does not increase as additional servers are added. The client is saturated
point, so adding servers does not improve performance.

The figure also shows the overhead of computing and storing parity. The line labelle
client (no parity)” represents the write performance of a client that does not compute
store parity. With a single data server, parity has no effect on write bandwidth. Th
because the server is the bottleneck, so that the client has plenty of resources remai
compute and store parity. With three data servers, in contrast, the client is the bottle
and the overhead of handling parity reduces the write bandwidth by about 20%. N
that the difference between the parity and no-parity lines decreases as data serv
added. As the number of data servers increases, the relative cost of parity dec
because each parity fragment protects a larger number of data fragments. As a res
parity costs drop to zero as the number of data servers goes to infinity.

The last conclusion to be drawn from the data is that Zebra uses its servers
efficiently than either Sprite or NFS. The single-server performance for Zebra is ne
twice that of the more conventional network file systems, achieving 0.9 Mbytes/secon
0.5 Mbytes/second. The reason for this is that Zebra batches file data together and
them to the server in large transfers, whereas both Sprite and NFS transfer each file
individually. Zebra also pipelines its data transfers, so that while one stripe fragme
being written to disk another is being transferred to the server. The net result is a
doubling of the single-server write performance, allowing Zebra to use nearly 82% o
disk’s raw bandwidth, as compared to 45% for the other file systems.

The second set of benchmarks, shown in Figure 6-7, measure Zebra’s perform
when reading large files. As in the write benchmarks, the servers are the bottleneck
there are three clients in the system. Zebra’s performance when reading is bette
when writing, however, because the servers can read data from their disks at the full
bandwidth of 1.6 Mbytes/second. Thus a single client reads a file at 1.5 Mbytes/se
from a single server, and three clients achieve a total bandwidth of 5.8 Mbytes/second
four data servers.

The single-client read performance also behaves similarly to the write performa
The client cannot read data fast enough to keep up with more than two servers, so tha
fewer than two servers the servers are the bottleneck, and with more than two serve
client is the bottleneck.

Figure 6-7 also shows the read performance when a server is unavailable an
fragments it stores must be reconstructed. This scenario is represented by the line l
“1 client (recon)”. With only one data server, the throughput during reconstruction is o
121

with
ction
ease
itional

ere is
d write
e file

write
ased

. This
f the

ingle
nt

Zebra,
nce
slightly less than in normal operation; this is because each parity block in a system
only one data server is a mirror image of its data block and therefore reconstru
doesn’t require any additional computation by the client. The throughput doesn’t incr
much with additional servers because the client CPU has saturated due to add
copying and exclusive-or operations to reconstruct the missing data.

6.3.3 Small File Performance

It is apparent from the measurements of bandwidth as a function of file size that th
a substantial amount of overhead associated with accessing a file. Both the read an
performance drop off dramatically as the file size decreases, coupled with a rise in th
manager utilization and a decrease in the client utilization. The decrease in
performance is particularly troublesome, because the batching provided by log-b
striping is supposed to provide the same write bandwidth independent of the file size
section examines in more detail the costs of writing a file, to determine the cause o
high overhead.

The overheads of writing a file were obtained by measuring the elapsed time for a s
client to write 2 Mbytes worth of 1-Kbyte files. The time was broken down into differe
components, and the results are shown in Figure 6-8. The benchmark was run on
Sprite, and NFS to provide insight into how Zebra improves small file write performa
over conventional file systems, and how it does not.

Figure 6-7. Total system throughput for large file reads.
Each client ran a single application that read a 12-Mbyte file. In multi-server
configurations data were striped across all the servers with a fragment size of 512
Kbytes. The line labeled “1 client (recon)” shows reconstruction performance: one
server was unavailable and the client had to reconstruct the missing stripe fragments.
In addition to the servers storing file data, each Zebra configuration had a server
storing parity.

0

1

2

3

4

5

6

0 1 2 3 4 5

3 clients
2 clients
1 client
1 client (recon)
Sprite
NFS/Presto

T
ot

al
 T

hr
ou

gh
pu

t
(M

by
te

s/
se

c.
)

Data Servers
122

tem
client

which
ta and

any
o use

prite,
mplete
ance
sfers

te as a
lock

, it is
prite
the

four
hing
ble to
To allow a more fair comparison between the different file systems, the sys
configurations were made as similar as possible. In all of the tests there was a single
that wrote the files. In both the NFS and Sprite tests there was a single file server on
the files were stored, while in the Zebra test there were two storage servers (one da
one parity) and one file manager. The use of comparable configurations allows
performance advantage by Zebra to be attributed to batching, rather than its ability t
more servers.

The three left-most bars in the figure show the measured performance of NFS, S
and Zebra when running the benchmark. As can be seen, both Zebra and Sprite co
the benchmark nearly three times as fast as NFS. The reason for this perform
improvement is that both Zebra and Sprite batch together small writes into large tran
to the disk; Zebra does so as a result of its log-based striping mechanism, and Spri
result of its underlying LFS file system. NFS, on the other hand, must write each file b
to the disk in a separate access.

Although Zebra completes the benchmark more than three times as fast as NFS
only 15% faster than Sprite. The relatively modest performance improvement over S
is less than might be expected from Zebra’s ability to batch small files. To determine
cause of this limited performance improvement I broke down the elapsed time into
components: opening and closing files, writing file data into the client file cache, flus
the client’s cache to the server, and flushing the server’s cache to disk. I was una

Figure 6-8. Performance for small writes.
A single client created 2048 files, each 1 Kbyte in length, then flushed all the files to a single
server. The elapsed time is divided into four components: the time to open and close the files,
the time for the application to write the data, the time for the client to flush its cache, and the
time for the server to flush its cache to disk. For NFS, each file was flushed as it was closed.
The two rightmost bars are estimates for Sprite and Zebra if name caching were implemented.

0

10

20

30

40

50

60

70

NFS Sprite Zebra Sprite Zebra

Open/Close

Write

Client Flush

Server Flush

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Standard Name Caching
123

as not
than
e to
e it

to the

igher
e to
mall.
lient
agrees
erver

and
alf of
over

file to
cache
of an
ce of
ed to
in the
on a

, and
name
early
now

tching.
e the
more

ra to

s than
ource
how
tions

byte
ach
ne file
e file
instrument the computers used in the NFS tests, so this breakdown of elapsed time w
possible. In the Zebra, the meaning of the last two components are slightly different
in Sprite. In Zebra the third component is the time it takes the client to flush its cach
the servers, which includes writing the data to disk. The fourth component is the tim
takes the file manager to process the deltas and write the newly modified metadata
storage servers.

The categorization of Sprite and Zebra elapsed times show that Zebra provides h
performance when writing file data, but that the benchmark is dominated by the tim
open and close the files, so that the overall performance improvement is relatively s
For the components of the benchmark in which batching helps, i.e. flushing the c
cache and flushing the server cache, Zebra is almost twice as fast as Sprite. This
with the performance numbers in Section 6.3.2, which show that Zebra’s single-s
bandwidth is nearly twice that of Sprite. Zebra does not reduce the cost of opening
closing files, however, and since the time required to do so accounts for more than h
the time to complete the benchmark, Zebra’s overall performance improvement
Sprite is only 15%.

Clients in Zebra and Sprite must send a message when opening or closing a
ensure that the client cache’s remain consistent. This is not the only solution to the
consistency problem, however, and it is possible that other solutions will have less
effect on the benchmark’s performance. For this reason, I estimated the performan
Zebra and Sprite if both implemented name caching, so that the clients do not ne
contact the file server each time they open or close a file. These estimates are shown
two right-most bars of Figure 6-8. The time to open and close the files was measured
Sprite machine with a local disk, so that file opens and closes were handled locally
the file system metadata could be cached in local memory. The bars show that
caching significantly reduces the costs of opening and closing files, so that Zebra is n
40% faster than Sprite. This makes intuitive sense, since the elapsed time is
dominated by the cache flushes, whose performance can be improved by Zebra’s ba
Furthermore, Zebra is able to take advantage of additional servers to further reduc
cache flush time. Thus Zebra’s advantages over conventional file systems are even
pronounced if name caching is used, as I would expect a production version of Zeb
do.

6.3.4 Resource Utilizations

The previous benchmarks showed that Zebra has higher read and write bandwidth
Sprite, even with only a single server in each system. This section looks at the res
utilizations in order to explain the performance differences, and provide insight into
both Zebra and Sprite will scale to larger systems and faster components. The utiliza
for three benchmarks are shown in Figure 6-9: reading 12-Mbyte files, writing 12-M
files, and writing 1-Kbyte files. The Zebra and Sprite utilizations are shown for e
benchmark. In Zebra there is one client, one data server, one parity server, and o
manager. In Sprite there is one client and one server. The utilizations are shown for th
124

, and
ed to

hen
lates
has a

the
ost

m the
lable

s and

write
time

a and
s are
f their

.

manager (file server) CPU, the client CPU, the storage server CPU (for Zebra only)
the disk (in Zebra the disk is attached to the storage server, while in Sprite it is attach
the file server).

The figure shows that Zebra and Sprite use their resources very differently w
reading and writing large files. First, Zebra has a higher disk utilization, which trans
into less time to complete the benchmark. Second, in Sprite the file server CPU
higher utilization than the client. This means that most of the work is being done by
file server. In Zebra, however, the file manager CPU utilization is less than 2%, with m
of the work being done by the clients and storage servers. Thus Zebra shifts work fro
centralized file server to the clients and storage servers, both of which are sca
resources. This allows Zebra to scale to accommodate larger numbers of client
servers before a centralized resource saturates.

The advantages of Zebra over Sprite are not as apparent in the small file
benchmark, however. As mentioned previously, this benchmark is dominated by the
to open and close the files, so there is little performance difference between Zebr
Sprite. As can be seen in the figure, the Sprite and Zebra resource utilization
comparable when writing small files, because both systems are spending most o
time opening and closing files.

Figure 6-9. Resource utilizations.
Utilizations of the file manager (FM) CPU, client CPU, storage server (SS) CPU, and the disk
during the previous three benchmarks. The Zebra system consisted of a single client, a single
file manager, and two storage servers, one of which stored parity; the Sprite system consisted
of a single client and a single file server, which served as both file manager and storage server
125

itional
the

ance
ebra’s
only

e file
er is
hieve

erhead
hen
nce

ame

width
uch

. The
s and
t there
limit

tem,
ade by
all
tions

ecks:
s, and
use all
by the
cause
a file.

must
sistent,

d the
6.3.5 File Access Summary

The file access benchmarks illustrate some of the advantages of Zebra over trad
network file systems like NFS and Sprite, including performance that scales with
number of servers in the system, and higher server efficiency. Zebra’s perform
improves as servers are added to the system, provided there are enough clients. Z
ability to scale the servers makes the client the bottleneck, so that a single client can
drive two or three servers before it saturates. This makes it possible to improve th
transfer bandwidth simply by improving the client performance. In contrast, the serv
the bottleneck in traditional network file systems, necessitating a server upgrade to ac
higher performance.

The benchmarks also revealed the necessity of name caching to reduce the ov
associated with opening and closing files. Zebra is only 15% faster than Sprite w
writing small files despite its ability to batch small files together; the modest performa
improvement is due to the cost of opening and closing each file written. With n
caching, I estimate Zebra to be 40% better than Sprite on the same benchmark.

6.4 Scalability

Although the file access benchmarks are useful for determining how access band
scales with the number of clients and servers, and with file size, they do not provide m
insight into how large the system can scale before a bottleneck limits its performance
bandwidth when accessing large files, for example, continued to improve as client
servers were added to the system. Clearly this improvement cannot go on forever, bu
weren’t enough machines available for use in the prototype to determine where the
lies.

This section focuses on bottlenecks that can limit the overall scalability of the sys
and estimates at what system size the bottlenecks will saturate. The estimates are m
looking at the bottleneck utilizations while running benchmarks on the relatively sm
system used in the prototype, then extrapolating to the system size at which the utiliza
reach 100%.

6.4.1 File Manager

The file manager performs three functions that are potential performance bottlen
managing the file system name space, managing the consistency of client cache
managing the file block maps. Managing the name space presents a bottleneck beca
name space modifications, such as the creation of files and directories, are handled
file manager. Managing the consistency of client caches is a potential bottleneck be
the file manager must process an open and close request each time a client uses
These two functions are not unique problems in Zebra: every network file system
manage the file system name space and ensure that the client caches remain con
and doing so may limit the scalability of the system. I have not, however, measure
126

culty
ct a

the
e at
it rate
oad

ts its
st, the
n the
3 and
lmost
lient

g file
f 2.6

ading

must
as two
in the

lock
delta
ory
ork

uffer.
tes/
te of

te of
which
cond,

from
of an
in its
s) to
ed. As
to the
inal
time
ager
load these two activities induce on the Zebra file manager, partially because the diffi
in determining their cost under “real” workloads, and partially because I expe
production version of Zebra to use name caching which would significantly reduce
load anyway. Shirriff [Shirriff92] has shown that name caching can be very effectiv
reducing the load on the file server (a 40-Kbyte name cache on a client produces a h
of 97%), making the load on the file manager in the prototype very different from its l
in a real system.

Management of the block maps is a problem that is both unique to Zebra and limi
overall scalability. There are two overheads caused by managing the block maps. Fir
file manager must process client requests for block pointers. An upper bound o
system bandwidth caused by this processing can be determined from Figure 6-
Figure 6-5. When reading a 100-Mbyte file, the file manager load can be attributed a
entirely to handling block pointer requests. As can be seen from the figures, a c
achieves 2.6 Mbytes/second when reading a 100-Mbyte file, with a correspondin
manager utilization of 1.3%. Thus the file manager will saturate at a client data rate o
÷ 1.3% = 223 Mbytes/second. This translates into approximately 90 clients, each re
data at the rate of 2.6 Mbytes/second.

The second overhead of managing the file block maps is that the file manager
process the deltas from the client logs and apply them to the maps. This overhead h
components: the file manager must receive the deltas from the clients and store them
delta buffer, and it must fetch deltas from the delta buffer and apply them to the b
maps. I did not measure the file manager utilization caused by putting deltas into the
buffer, but it can be estimated from the file manager’s I/O bandwidth and mem
bandwidth. To put a delta into the delta buffer it must first be copied from the netw
interface board into a kernel RPC buffer, and then from the RPC buffer to the delta b
The first copy is done by the DMA engine on the network interface at a rate of 8 Mby
second, or 6 s/delta. The second copy is done by the file manager CPU at a ra
12 Mbytes/second, or 4 s/delta. Thus the network interface will saturate at a ra
175,000 deltas/second and the file manager CPU at 200,000 deltas/second,
correspond to data rates on the clients of 684 Mbytes/second and 781 Mbytes/se
respectively.

The second component of the block map overhead is the cost of fetching the deltas
the delta buffer and applying them to the block maps. Table 6-1 shows the results
experiment in which the file manager processed 1000 deltas stored in nine stripes
own client log. The deltas were read from the delta buffer, and the block maps (inode
be updated were cached on the file manager so that no disk operations were requir
can be seen, the cost of processing the deltas dominates the cost of putting them in
delta buffer. The marginal cost of fetching a delta from the buffer is 8 s,and the marg
cost of processing it is 36 s,for a total of 44 s/deltain processing. When added to the
put them into the delta buffer, this results in 48 s/deltaof overhead on the file man
caused by processing the deltas.
127

width
te, two

lete it.
or 4-
The
file

delta

lized
: the
, and
ation
; and
can

nts
stripes
n clean
ipes
an a

lt to
mple,
file is
The per-delta processing time can be used to compute the maximum write band
that the system can support before the file manager CPU saturates. In the steady sta
deltas are generated for each block written, one to create the block and one to de
The overhead for each delta is approximately 50 s,for a total of 100 sper block. F
Kbyte blocks this translates into a bandwidth of approximately 40 Mbytes/second.
maximum write bandwidth of a client is almost 2 Mbytes/second, meaning that the
manager can support up to 20 clients writing at their maximum bandwidth before the
processing causes its CPU to saturate.

6.4.2 Stripe Cleaner

Like the file manager, the stripe cleaner limits scalability because it is a centra
service. There are three ways in which the cleaner limits system performance
maximum bandwidth of the cleaner limits the rate at which stripes can be cleaned
therefore overall system bandwidth; the overhead of controlling the cleaning oper
limits the rate at which blocks can be cleaned, and therefore the cleaning bandwidth
the overhead of processing deltas from the client logs limits the rate at which clients
generate deltas.

6.4.2.1 Cleaning Bandwidth

The first way in which the cleaner limits the overall system scalability is that the clie
cannot write new stripes any faster than the cleaner can clean old stripes, since old
must be cleaned to create storage space for new. The rate at which the cleaner ca
old stripes is in turn limited by the rate at which it can copy the live data out of the str
and to the end of its client log, and the amount of live data that must be copied to cle
stripe. Unfortunately, the latter is dependent of the workload, which makes it difficu
estimate at what point the cleaning bandwidth becomes a bottleneck. For exa
consider a workload in which very large files are created and deleted. When each

Activity
Per-Delta

(s)
Per-Stripe

 (ms)
Total
 (ms)

Get deltas 8 0.9 0.1 7.8 0.2

Process deltas 36 4.0 0.8 36.1 0.2

Stripe overhead 0.0 0.0 0.06 0.0

Overhead 0.2 0.0

Total 44 4.9 1.0 44.2 0.2

Table 6-1. File manager delta processing.
The elapsed time for the file manager to process 1000 deltas stored in nine stripes within a
single client log (the same client on which the file manager was running). The time is broken
down into four components: retrieve the deltas from the delta buffer, process the deltas,
overhead for processing a stripe, and overhead associated with invoking the processing.
128

red to
finite

d to
blum

live
e that

ad and
r can

g on
under
yet to

ance
aned,
the

mum
ripes
g a

based
must

r

deleted, the stripes it occupied are left completely empty, so that the bandwidth requi
clean them is zero. Under this workload the cleaner bandwidth can support an in
system bandwidth.

The answer to the more relevant question of what cleaning bandwidth is require
support a real workload can be estimated from the LFS studies. Rosen
[Rosenblum91] found that only 2-7% of the bytes in stripes that were cleaned were
and needed to be copied. If we use 5% as the number of live bytes in an average strip
is cleaned, this translates into a 10% cleaning overhead (each byte must be both re
written by the cleaner). While this may not seem excessive, it means that the cleane
support a maximum of 10 clients before it saturates. Clearly, the impact of cleanin
system performance bears more investigation, including a study of cleaning costs
real workloads, and the development of methods to distribute the cleaner, but I have
do either of these tasks.

6.4.2.2 Cleaning Overhead

The computation required to control the cleaning operation is also a perform
bottleneck. Cleaning requires processing to determine which stripes should be cle
and to initiate the cleaning of each live block within those stripes. Table 6-2 itemizes
overheads of cleaning 100 stripes, each containing 126 live blocks. This is the maxi
number of 4-Kbyte blocks that can be stored in a 512-Kbyte fragment, making the st
unrealistically full, but it provides an upper limit of the overhead caused by cleanin
stripe, and allows the marginal cost per block to be determined.

Table 6-2 breaks down the processing overhead of cleaning into five categories,
upon the operations the cleaner must perform to clean a stripe. First, the cleaner

Activity Per-Block (s)
Per-Stripe

(ms)
Total
(ms)

Sort stripes 0.1 0 9 4

Process status files 175 22.1 35.9 2204 711

Sort blocks 38 4.8 1.1 475 7

Initiate syscall 35 4.4 3.8 442 73

Miscellaneous 2 1

Total 248 31.2 7.6 3131 761

Table 6-2. Cleaning overhead.
The overhead of cleaning 100 stripes containing 126 blocks each is shown. The benchmark
was run 10 times and the average values shown. The costs are broken down per block and pe
stripe, when appropriate. The per-block and per-stripe costs for sorting are somewhat
misleading because the cost of sorting is not linear in the number of items sorted.
129

The
ed to
t into
l costs
le with
vious

st of
s this
CPU

med to
e rate

width,
cleaner.
time it
cessing

to the
ock is
ut 10
compute the priority of all existing stripes, then sort them based upon their priorities.
highest priority stripes are chosen to be cleaned, and their status files process
determine which blocks are live. The blocks are then sorted so that they are brough
the cache sequentially, and the system call is initiated to clean the blocks. The actua
of reading and writing the blocks are not shown in the table because these costs sca
the number of servers in the system, and have already been quantified in the pre
section.

As the table illustrates, it requires 248 sof processing to clean a file block, mo
which is spent processing the contents of the stripe status file. For 4-Kbyte file block
allows live data to be cleaned at the rate of 16 Mbytes/second before the cleaner’s
saturates due the overhead of cleaning. If the stripes that are cleaned are assu
contain 5% live data, this means that the cleaner can generate free stripes at th
320 Mbytes/second before its processor saturates.

6.4.2.3 Delta Processing

The rate at which the cleaner processes deltas also limits the overall system band
since the clients cannot generate deltas faster than they can be processed by the
Table 6-3 shows the overhead of this processing, as determined by measuring the
takes the cleaner to process 50000 deltas. As can be seen, the marginal cost of pro
a delta is 96 s.In the steady state, the cleaner processes two deltas per block written
client logs: one to create the block and one to delete it. Thus the overhead for each bl
192 s.This translates into a data rate of 20 Mbytes/second for 4-Kbyte blocks, or abo
clients writing at their maximum bandwidth.

Activity
Per-Delta

(s)
Per-Stripe

(ms)
Total
(ms)

Get deltas 20 2.5 1.2 1001 30

Process deltas 74 9.4 1.5 3726 31

Stripe overhead 2 0.3 0.0 124 2

Miscellaneous 16 1

Total 96 12.2 2.0 4868 48

Table 6-3. Stripe cleaner delta processing.
This benchmark measured the time for the stripe cleaner to process deltas. The results are the
average of 10 runs of the benchmark in which the cleaner processed 50000 deltas stored in 397
stripes in a single client log.
130

the
ble 6-
th the
clean

uding
cing
stripe
riting

help

be
isms
s the
overy
6.4.3 Scalability Summary

The scalability results suffer from the lack of a real workload to measure, hence
need to perform bottleneck analysis to determine how large the system can scale. Ta
4 summarizes the results of this analysis. As can be seen, delta processing on bo
stripe cleaner and the file manager are concerns, as is the bandwidth required to
blocks. The delta processing overhead can be reduced in several ways, incl
modifying the delta format so that a single delta refers to a range of file blocks, redu
the per-block cost of processing the deltas. Also, the use of stripe status files by the
cleaner results in overheads associated with opening and closing status files and w
the deltas to them. Simply storing deltas from multiple stripes in the same file would
reduce the processing overhead.

6.5 Availability

Zebra provides highly-available file service, allowing any single machine failure to
masked. This ability does not come without a price, however. The availability mechan
incur overheads both in processing and in storage space. This section quantifie
overheads associated with storing parity and the overhead of the checkpoint/rec
mechanisms used to make the file manager and stripe cleaner highly available.

Activity Limiting Resource

Maximum System
Bandwidth

(Mbytes/second)

Delta processing by stripe cleaner Stripe cleaner CPU 20

Reading and writing file blocks
during cleaning.

Stripe cleaner CPU 20*

Delta processing by file manager File manager CPU 40

Responding to lock pointer requests File manager CPU 220r

Controlling the cleaning process Stripe cleaner CPU 320*

Receiving deltas from clients File manager
network interface

680

Putting deltas into delta buffer File manager CPU 780

Table 6-4. Scalability limits.
This table summarizes those system activities that are performed on a centralized resource and
therefore limit the overall scalability of the system. For each activity the resource that saturates
is identified, as well as the overall system bandwidth that results. The activities are sorted
based upon the resulting bandwidths, so that the biggest bottlenecks appear first. Bandwidths
tagged with an ‘r’ are read bandwidths, all others are write bandwidths. Bandwidths tagged
with ‘*’ are based on an average of 5% live data in stripes that are cleaned.
131

parity,
f the
are in
rity is

izes of
since
ervers
made

also
arity
ts. In a
rity is
the
was
ether
will

th is
stem
ithout
ich

everal
anager
e file
rrent
The
most
ple,
ytes.
rage
ad of
head
. The
verall

still
int its

log,
6.5.1 Parity

There is overhead in the parity mechanism both in the space required to store the
and in the cost of computing the parity and writing it to the storage servers. One o
advantages of log-based striping is that these overheads are smaller than they
systems that used file-based striping. In Zebra, the storage overhead required for pa
proportional to the number of servers spanned by each stripe, independent of the s
the files stored. If there are N data fragments in a stripe, the parity overhead is 1/N
each parity fragment protects N data fragments. For example, if there are ten data s
the overhead of storing the parity is 10%. The parity storage overhead can thus be
arbitrarily small by striping across more servers.

The cost of computing parity fragments and writing them to the storage servers is
proportional to the number of servers in a stripe. As the stripe width grows, the p
overhead decreases because each parity fragment protects more data fragmen
system with N data servers, the performance is reduced by a factor N/(N+1) when pa
written, since a total N+1 fragments must be written for every N data fragments. If
client is not saturated this overhead may simply increase the client’s utilization, as
seen in Figure 6-6, in which the bandwidth with a single data server was the same wh
or not parity was computed. If the client is saturated, however, the parity overhead
cause a reduction in the client’s write bandwidth, since some of the raw bandwid
consumed by writing parity. This effect can also be seen in Figure 6-6, in which a sy
with 4 data servers and a single client achieves a data rate of 2.2 Mbytes/second w
parity, and 1.8 Mbytes/second with parity, the ratio of which is 1.8/2.2 or 82%, wh
agrees with a predicted overhead of 4/5 or 80%.

6.5.2 File Manager Checkpoint and Recovery

The checkpoint mechanism used to make the file manager highly available has s
overheads. First, the checkpoints consume space on the storage servers. A file m
checkpoint contains three pieces of information: a list of log offsets that represent th
manager’s current progress in processing deltas from the client logs, a list of cu
version numbers for each file in the system, and the block map for the virtual disk.
progress list is the smallest of the three, consuming only 4 bytes per client. Thus, for
systems the progress list will only be a few Kbytes in size. In the prototype, for exam
the maximum number of clients is 200, so that the size of the progress list is 800 b
The file version list requires 4 bytes per file, thus the overhead is function of the ave
size of the files stored. If the average file size is 20 Kbytes, for example, the overhe
the version numbers is 0.02% of the total size of the file data stored. Finally, the over
of the virtual disk block map is approximately 0.0004%, as described in Section 5.4.3
net result is that a file manager checkpoint consumes a negligible percentage of the o
storage space.

A checkpoint may be small relative to the amount of storage space, but its size is
important because it determines the time required to create a checkpoint. To checkpo
state the file manager must force any dirty blocks for the virtual disk file to its client
132

mer
is a
the
n the

ring a

tself.
ith a
ytes),
rtual
r the
y do,
uted,

mple,
ize of
ess
ap.
ation
map.
gle

with
oint

it
be in
ut in
then write a checkpoint region to the log. The time required to complete the for
operation is difficult to determine, since the number of dirty blocks in the cache
function of the workload, the locality of writes to the virtual disk, the effectiveness of
file cache, and the time since the last checkpoint. I have not run any real workloads o
prototype, therefore I have not measured the time required to flush the cache du
checkpoint.

I have measured, however, the time it takes to write out the checkpoint region i
Table 6-5 shows the time required to create and write out a checkpoint in a system w
single data server. The checkpoint contains the delta progress for 200 clients (800 b
the version numbers for 100 files (400 bytes), and the block map for an 80-Mbyte vi
disk file (160 Kbytes). These numbers are simply the default parameters I chose fo
prototype, and are not meant to represent the configuration of a real system. The
however, allow the marginal costs of each component of the benchmark to be comp
which in turn allows the checkpoint costs for larger systems to be estimated. For exa
consider a system with 1000 clients, 1 Tbyte of storage space, and an average file s
20 Kbytes. A checkpoint in this system would require 4 Kbytes for the progr
information, 216 Mbytes for the file version numbers, and 4 Mbytes for the block m
Based upon the numbers in the table, it would take 3 ms to put the progress inform
into the checkpoint, 54 seconds for the version numbers, and 4 seconds for the block
The checkpoint would require approximately 4 minutes to write if there was a sin
storage server, and proportionally less time with more servers.

This calculation of the checkpoint cost in a large system reveals several problems
the checkpoint implementation in the prototype. The file manager checkp
implementation in the prototype favored simplicity over performance, making
inefficient to use in a real system. First, there is no reason for the version numbers to
the checkpoint. In a real system I would expect them to be stored in the file inodes, b

Activity
Elapsed Time

(ms)

Put progress into checkpoint 0.7 0.0

Put file versions into checkpoint 0.1 0.0

Put disk metadata into checkpoint 89.4 0.1

Store checkpoint in log 1.6 1.1

Flush log to server 240.7 9.4

Miscellaneous 0.01 0.0

Total 332.6 8.5

Table 6-5. File manager checkpoint.
The elapsed time for the file manager to create and write a checkpoint. The system measured
had 200 clients, 100 files, an 80-Mbyte virtual disk, and a single data server. The average and
standard deviations were computed from nine runs of the benchmark.
133

ting
p in
el of
lock
nt by
ager

file
annot

time
the

own
n the

state
g its

from
gment

the
cause
the

tion
ime to
the prototype I stored them in the checkpoint because I didn’t want to modify the exis
LFS disk layout. Second, it is probably unwise to store the entire virtual disk block ma
the checkpoint. A better solution, discussed in Section 5.4.4, is to add another lev
indirection and store the virtual disk block map in a special file, and store that file’s b
map in the checkpoint. This would reduce the size of the block map in the checkpoi
two orders of magnitude. With these changes, I would expect the size of the file man
to be less than one Mbyte, even for systems with one Tbyte of storage space.

Another overhead related to file manager availability is the time required for the
manager to recover from a crash. While the file manager is recovering, the clients c
open and close files, leaving the file system unusable. The file manager recovery
indirectly affects normal system operation, since the recovery time is proportional to
checkpoint interval. Frequent checkpointing reduces the recovery time, but it slows d
the normal processing. The choice of the checkpoint interval is a trade-off betwee
recovery time and the overhead of checkpointing.

The file manager recovery consists of two phases: initializing the file manager
from the most recent checkpoint, and processing the deltas in the client logs to brin
state up-to-date. Table 6-6 shows the time for the file manager to initialize its state
the same checkpoint used to create Table 6-5. The checkpoint is stored in the last fra
of the log, so that the deltas of only one fragment need to be examined to find
checkpoint file. Once again, the time to process the checkpoint is excessively long be
the prototype stores the file version numbers and the virtual disk block map in
checkpoint. I would expect a production version of Zebra to store this informa
elsewhere, reducing the size of a checkpoint to less than one Mbyte, and thus the t
process it during recovery.

Activity
Elapsed Time

(ms)

Find checkpoint deltas 332.2 10.1

Read checkpoint blocks 358.5 77.0

Initialize delta progress 12 0.1

Initialize file versions 0.2 0.0

Initialize disk block map 73 0.1

Miscellaneous 1.2 0.0

Total 781.1 11.0

Table 6-6. File manager recovery
The elapsed time for the file manager to find and read the most recent checkpoint, and initialize
its state from the contents.
134

ype.
find
e file
eltas.

in the
point,
ment
single
ese

from
alone
rom

ss the
ctly,
other
ance

tween
e most
at time
ss the
time
ta at
econd
as
deltas
en by
nd,
gh a
the

m to
its

le. The
this
crash

nt of
es of
has
The breakdown of the recovery time uncovers another inefficiency in the protot
Even though the checkpoint is only 161 Kbytes in length, it takes a total of 690 ms to
the checkpoint in the log and read it. There are two reasons for this anomaly. First, th
manager reads deltas from the log by reading whole fragments and extracting the d
Thus to find the deltas for the checkpoint the file manager reads the last fragment
log, requiring 332 ms. Then, once the file manager has found the deltas for the check
it reads the checkpoint blocks from the log one at a time, even though the entire frag
has already been read. At the very least, it makes sense to read the checkpoint in a
large transfer, rather than many small ones to read individual blocks. With th
corrections, I would expect the file manager to find and read a 161-Kbyte checkpoint
a single data server in less than 200 ms, instead of the 690 ms now required. This
would reduce the time to initialize the file manager’s state from the checkpoint f
781 ms to less than 300 ms.

The second part of the recovery overhead is the time for the file manager to proce
deltas in the client logs to bring itself up-to-date. I have not measured this time dire
because it is dependent on the workload. It can be estimated, however, from
measurements. First, if the file manager delta processing is the system’s perform
bottleneck, then the time to replay the deltas will take at least as long as the time be
the last checkpoint and the crash. For example, if ten seconds elapse between th
recent checkpoint and the crash, and the file manager has been saturated during th
processing deltas, then it will take at least ten seconds for the file manager to proce
deltas during recovery. Another way to look at the problem is to determine recovery
as a function of the client data rate, and the checkpoint interval. For a client to write da
the rate of 1 MByte/second, the file manager must process deltas at the rate of 512/s
(256 blocks/second * 2 deltas/block). The marginal cost of processing a delta w
computed to be about 50 s,so it takes the file manager about 26 ms to process the
generated by a data rate of 1 Mbyte/second. Thus the recovery time in seconds is giv
the function 0.026 * W * I/2, where W is the system write bandwidth in Mbytes/seco
and I is the interval between checkpoints (on average a crash will occur halfway throu
checkpoint interval). For example, if the write bandwidth is 10 Mbytes/second, and
checkpoint interval is 60 seconds, the expected recovery time is 7.8 seconds.

6.5.3 Stripe Cleaner Checkpoint and Recovery

Like the file manager, the stripe cleaner uses a checkpoint/roll-forward mechanis
provide high availability. The striper cleaner creates a checkpoint by writing out
progress in processing deltas and the stripe statistics database to a regular Zebra fi
file is then forced through to the log, allowing the cleaner to read its initial state from
file following a crash. The cleaner alternates between two checkpoint files so that a
during a checkpoint does not prevent the cleaner from being able to recover.

The first overhead associated with the stripe cleaner checkpoints is the amou
storage space consumed by a checkpoint file. A checkpoint file contains two piec
information: a list of log offsets for each client that indicates how far the cleaner
135

ize of
this
tics

tem.
t are

ystem
ta to

gible.

f time
h the
ipes.
ms to

the
he file
rk was
server

were
rrect.
bably
nted.
ully

ost
LFS
hen

mally
be
gotten in processing the deltas, and a list of statistics for each existing stripe. The s
the delta progress information is 8 bytes per client, so that in the prototype
information requires a total of 1600 bytes in the file. The size of the stripe statis
information is much larger, since it is proportional to the number of stripes in the sys
Each stripe requires a total of 12 bytes to record its stripe ID, the number of bytes tha
alive, and the age of those bytes. For example, the stripe cleaner checkpoint in a s
with 200,000 stripes is about 2.5 Mbytes in size. While this is a sizeable amount of da
write during a checkpoint, its overhead in terms of storage space consumed is negli

The second overhead caused by the stripe cleaner checkpoints is the amount o
required to write a checkpoint. Table 6-7 shows the results of an experiment in whic
stripe cleaner wrote out a checkpoint file for a system with 200 clients and 1000 str
The total size of the checkpoint file is about 14 Kbytes, and it takes the cleaner 557
create and write the file. Most of the time is spent in opening the file and in flushing
log to the storage server, taking 247 ms and 204 ms, respectively. The time to open t
is excessively long, probably because the file cache was cold each time the benchma
run. This forces the file manager to fetch the inodes and directories from the storage
during the name lookup. The length of the open indicates that about ten accesses
required, but I have not instrumented the benchmark to determine if this is indeed co
The excessive length of time to flush the checkpoint file to the storage server was pro
caused by the underlying LFS file system on which the Zebra file system is impleme
The current LFS implementation lacks the roll-forward mechanism that allows it to f
recover from a crash. Instead, it simply reinitializes its state to that found in the m
recent checkpoint. Thus, to ensure that a file that is forced to disk is safely written,
issues a checkpoint after writing the file. This means that LFS writes a checkpoint w
the stripe cleaner forces its checkpoint file through to the servers, causing the abnor
large time to write the checkpoint file. This is another problem that I would expect to
fixed in a production version of Zebra.

Activity
Elapsed Time

(ms)

Open checkpoint file 247.2 50.1

Write delta progress to file 1.2 0.4

Write stripe statistics to file 98.2 8.6

Flush log to storage server 204.6 26.8

Miscellaneous 6.0 0.8

Total 557.2 57.4

Table 6-7. Stripe cleaner checkpoint.
This table shows the time it takes the stripe cleaner to checkpoint its state. The system had
1000 stripes, 200 clients, and a single storage server. The benchmark was run nine times and
the averages and standard deviations computed.
136

ry is
sed to
s and
ning
this
the

mber
lizing
34 ms,

s for a
the

conds.

some
arge,
e file
ily for
tripe
would
pect
not

educe
uced

a
ame-

state
recent
d the
few
The time required for the stripe cleaner to process a checkpoint file during recove
shown in Table 6-8. The checkpoint file used in the experiments was the same one u
collect the checkpoint measurements, containing the delta progress for 200 client
statistics for 1000 stripes. More than two-thirds of the recovery time is spent in ope
the checkpoint file. Like the checkpoint benchmarks, the file cache was cold when
benchmark was run, forcing the file manager to fetch inodes and directories from
storage server to perform the name-lookup during the open. I have not verified the nu
of accesses that are actually done. The remainder of the recovery time is spent initia
the delta progress and the stripe statistics database. Processing the deltas requires
or 170 s/client,and processing the stripe statistics requires 32 ms, or 32 s/stripe.Thu
hypothetical system with 1000 clients and 200,000 stripes the total time to initialize
delta progress and stripe statistics database would be 170 ms + 6.4 seconds = 6.6 se

The measurements of the stripe cleaner checkpoint and recovery times illustrate
obvious performance problems in the prototype. Not only are the checkpoint files l
but this causes the checkpointing and recovery times to be excessively long. Like th
manager, the checkpoint mechanism for the stripe cleaner was implemented primar
simplicity, rather than performance. In a production system I would expect the s
statistics database to be stored in a separate file, rather than in the checkpoint. This
significantly reduce the time to create and process a checkpoint file. Also, I would ex
the time to open the checkpoint file to be smaller than in the prototype. I have
instrumented the kernel to determine where the time is going and make changes to r
it. If my hypothesis about the name-lookup is correct, the open time could be red
simply by moving the checkpoint file to the root of the file system, or by providing
means of opening a file based upon its file number rather than its name, so that n
lookup is avoided altogether.

The remaining issue in the stripe cleaner recovery is the time it takes to bring its
up-to-date by processing the deltas in the client logs that were created after the most
checkpoint, but before the crash. This time is a function of the checkpoint interval an
workload, since a small interval and light workload means that there are relatively

Activity
Elapsed Time

(ms)

Open checkpoint file 228.4 37.8

Read delta progress 34.2 4.6

Read stripe statistics 32.3 1.0

Miscellaneous 13.9 8.2

Total 308.8 43.4

Table 6-8. Stripe cleaner recovery.
This table shows the average time for the stripe cleaner to recover from a crash by opening the
checkpoint file, read the progress for 200 clients, and read the statistics for 1000 stripes. The
benchmark was run ten times.
137

r, as a
ilar

er to
uced to
conds,
e
ts in
and a
from

m are
point
kpoint
than
stripe

points
tored
the
d in a
deltas to be processed. The expected recovery time can be expressed, howeve
function of the system’s write bandwidth and the checkpoint interval, in a manner sim
to that done for the file manager. The marginal time required for the stripe clean
process a delta was computed to be 96 s,or about 49 ms to process the deltas prod
write 1 Mbyte of data in the steady state. Thus the time to processes the deltas, in se
is given by the equation 0.049 * W * I/2, where W is the average write-bandwidth of th
system in Mbytes/second, and I is the interval between stripe cleaner checkpoin
seconds. Thus a system that has an average write bandwidth of 10 Mbytes/second
60-second stripe cleaner checkpoint interval will require about 15 seconds to recover
a stripe cleaner crash.

6.5.4 Availability Summary

While the storage and computation overheads associated with the parity mechanis
in line with what is predicted by the Zebra architecture, the overheads of the check
and recovery mechanisms are excessive. The underlying problem is that the chec
mechanisms used in the prototype were designed primarily for simplicity, rather
speed. If the system size is scaled up to 1 Tbyte of storage, the file manager and
cleaner checkpoint sizes are 224 Mbytes and 2.5 Mbytes, respectively. Both check
contain information that is not strictly needed to be in the checkpoint itself, and was s
there only for simplicity. The prototype implementation is good enough to show that
checkpoint and recovery mechanisms are feasible, but they would need to be reworke
production system.
138

cted
ility
may

is not
uted
than

le file
y the

of the
r file.

to non-
ore

erver

ems.
and
rove
ia a
rver

it has

ltiple
of an

d to a
rs in
imilar
rallel
7 Conclusion

The great promise of distributed computing is that a collection of computers conne
by a network can provide higher performance, higher availability, and better scalab
than a single main-frame or supercomputer, and do it for less money. This promise
have been achieved in some realms of computing, but as of yet network file systems
one of them. Current network file systems represent very loosely-coupled distrib
systems: file service is provided by a collection of separate file servers, rather
seamless pool of servers working together. Each file is stored in its entirety on a sing
server. This means that the performance obtained when accessing a file is limited b
file server that stores it. Additional servers may improve the aggregate performance
file system, but do not necessarily improve the performance of accessing a particula
This configuration also leads to hotspots, as server loads become unbalanced due
uniform accesses within the file system. Servers that store popular files will be m
heavily loaded that those that don’t. Furthermore, the restriction of a file to a single s
leaves it vulnerable to server failures.

Many attempts have been made to rectify these problems with network file syst
Most of these previous efforts tackle only one of the related problems of availability
scalability. There are many examples of network file systems that replicate files to imp
availability. If the primary server for a file is unavailable the file can be accessed v
backup copy. Replication allows the system to survive an arbitrary number of se
failures and network partitions (provided there are enough replicas of each file), but
high overheads in terms of storage space and in keeping the replicas up-to-date.

File systems have also been designed that allow files to be striped across mu
storage devices, thus decoupling the file access performance from the performance
individual storage device. Most of these file systems stripe across disks connecte
single host computer, but there are examples of file systems for parallel compute
which file data are striped across I/O nodes of the computer. These systems are all s
in that they are designed to operate in a tightly-coupled environment, such as a pa
computer. No effort is made to provide highly-available service.
139

able
e file
erver
scale
not

and
riping
elated

rrows
file
, and
key

client
riping
se of
rs to

iping
the

rk file
ssages
rder in
t since
nicate
s and
stripe

te, and
d by the
e.

fined
r from

deltas
int its
ssing
int or
more,
h it is
tripe
eltas
chine
uch
There is one existing network file system, however, that provides both highly avail
and scalable file service. Swift [Cabrera91][Montague93] stripes files across multipl
servers and uses parity to provide highly available service even in the face of s
failures. This design allows the file access performance of each file in the system to
with the number of servers, without compromising availability. High availability does
come cheaply, however. The way in which Swift stripes files across the servers
maintains their parity leads to a performance overhead of 47% when compared to st
without parity. Furthermore, the Swift architecture leaves unanswered some issues r
to storage allocation and name space management.

This dissertation has presented a new network file system called Zebra. Zebra bo
ideas from RAID and LFS and applies them to network file systems, resulting in a
system that provides scalable performance by striping files across multiple servers
highly-available service by maintaining the parity of the file system contents. Zebra’s
technology is the use of log-based striping to store files on the file servers. Each
forms file data into a log and stripes the log across the servers, rather than st
individual files. As the log is created the client computes and stores its parity. The u
log-based striping allows Zebra to batch together many small writes into large transfe
the servers, improving small write performance and server efficiency. Log-based str
also simplifies the parity mechanism, because it avoids partial stripe writes and
associated overhead for updating parity.

The use of logs to store data has many advantages in the design of a netwo
system. The logs can be used as reliable communication channels, by appending me
to the end of the logs. The recipient is guaranteed to receive the messages in the o
which they were sent, and furthermore, there is no danger of the messages being los
the log is reliable. Thus the various Zebra components can use the logs to commu
changes in the system’s distributed state. Deltas describe changes in block location
are used to communicate these changes between the clients, file manager and
cleaner. The file manager uses the deltas to keep the file system metadata up-to-da
the stripe cleaner uses them to manage the system’s free space. Deltas are also use
stripe cleaner and the file manager to coordinate the garbage collection of free spac

The use of deltas to communicate state changes leads to simple and well-de
interfaces between the components, and makes it easy for the components to recove
failures. For example, the file manager updates the files’ block maps based on the
stored in the client logs. Crash recovery is handled by having it occasionally checkpo
state to the log. After a crash it simply reads this state from the log, then begins proce
deltas where it left off. No special effort needs to be made to ensure that the checkpo
the deltas will be available after the crash, since they are stored in the logs. Further
the file manager software has no dependencies on the physical machine on whic
running. It can easily be restarted on another machine should its current host fail. S
cleaner availability is handled in a similar manner. The net result is that the logs and d
make it easy to maintain the distributed state of the file system, even in the face of ma
failures. Without the highly-available logs, distributed state management would be m
more complicated, particularly if it is to be fault tolerant.
140

rvers
lients

file
that a
ored.
n-use,
euse
ion are
m in a

an be
s were
poor
truly
ients
esses

a well-
f the

lock
This
way
r and
des

ient,
ate a
use it

n out
ds of

data
e that
ork
ance

uld be
ments
d be
nts
Finally, the use of a log abstraction at the interface between the clients and the se
makes it possible to distribute the tasks of managing the system’s storage space. C
implicitly allocate storage through the act of storing file blocks in their logs. The
manager uses the deltas in the log to keep track of where file blocks are located, so
client that wishes to access a particular file block can easily determine where it is st
The stripe cleaner uses the deltas to keep track of which data in the stripes are still i
and which are not. This information is used to clean stripes, allowing the system to r
the unused space that they contain. Thus the tasks associated with storage allocat
easily distributed among the components of the system, instead of concentrating the
single file server as is currently done.

7.1 Future Research in Zebra

There are several ways in which the current Zebra architecture and prototype c
improved. In most cases these improvements are needed because simplification
made in the prototype to make it easier to implement, which in some cases led to
performance. A production version of Zebra would need to fix these to make Zebra
usable. The first improvement is the addition of name-caching. In the prototype, cl
must contact the file manager each time a file is opened or closed. For small file acc
these open and close costs dominate the time to access the file. Name caching is
understood mechanism; it was not implemented in the prototype simply because o
effort required to add it to the underlying Sprite operating system.

The Zebra prototype also has a very inefficient metadata implementation. The b
pointers for each Zebra file are currently stored in an associated Sprite file.
organization made it easier to add Zebra to Sprite, but it leads to inefficiencies in the
in which metadata is stored on the disk and transferred between the file manage
clients. A production version of Zebra would want to store the block pointers in the ino
directly.

The checkpoint and recovery mechanisms used in the prototype are similarly ineffic
both in the space required to store a checkpoint and the times required to cre
checkpoint and recover from a crash. The current implementation was chosen beca
was simple, not because it was efficient. It would be an easy task to move informatio
of the checkpoint that is not strictly needed to be there, greatly reducing the overhea
the checkpoints.

Flow control is also a weak point in the Zebra prototype. The data path via which
flow between the clients and the storage server disks can be thought of as a pipelin
includes the client CPU, client memory, client network interface, network, server netw
interface, server memory, server CPU, and server disk subsystem. Maximum perform
is achieved when each one of these components is kept busy, and flow control sho
provided across the entire channel. For example, if the server disk is busy then frag
should back up onto the client, at which point the application writing the data shoul
blocked. In the current prototype flow control is provided via careful coding of the clie
141

ervers
This

ssing
as a

nt at a
f data
lution
tarted

pport
oads
rized

ting
ingle

ere is
er93]
nd the

ading
reby
the
s for
that

that
ality
pes

ghly-
sting
ebra
ther
ger

buted
adata
stems
ed for

ating
lerate
lient

buted,
and servers and by discarding data when a resource is overrun. The clients and s
implicitly understand each other’s capabilities and are careful not to exceed them.
solution isn’t even entirely correct because it does not handle multiple clients acce
the same server. Discarding data is a simple way of dealing with flow control, but it h
large impact on system performance. When data is discarded it will need to be rese
later time, after an appropriate time-out period. This not only increases the amount o
transferred, but leads to long delays as the time-out period expires. A much better so
is to provide flow control between the client and the servers so that a transfer is not s
unless there are sufficient resources to complete it.

The Zebra architecture itself has room for further improvement. One area is in su
for transaction processing workloads. I expect Zebra to work well on the same workl
as LFS, which include most workstation applications. These workloads are characte
by short file lifetimes, sequential access to files, and very little modification of exis
files. In a transaction processing environment, on the other hand, there is typically a s
large long-lived file (the database) that is overwritten and accessed randomly. Th
little experience with LFS in such an environment, and Seltzer’s measurements [Seltz
suggest that there may be performance problems. More work is needed to understa
problems and see if there are simple solutions.

Zebra may also suffer performance problems under workloads characterized by re
many small files. Zebra’s log-based striping allows small file writes to be batched, the
improving their performance, but Zebra currently does not do anything to improve
performance of small file reads. Doing so requires a prefetch mechanism that allow
read-ahead among files as well as within a file. Such a mechanism would allow files
will be read in the future to be brought into the client’s cache while the application
will read them is processing the current files. One interesting possibility is that the loc
in reading files is similar to the locality in writing them, so that prefetching whole stri
of files will provide a substantial performance improvement.

7.2 Related Research

Zebra provides a basis for a network file system that provides scalable and hi
available file service. Zebra has its limitations, however, and there is plenty of intere
research that could be done to eliminate them and examine the feasibility of the Z
ideas in different computing environments. The most enticing of these is to fur
improve Zebra’s scalability by eliminating its few centralized services. The file mana
and stripe cleaner both limit the scalability of the system because they are not distri
services. The file manager provides a centralized synchronization point for met
updates and for maintaining the consistency of client caches. Future network file sy
could have the clients update the file system metadata themselves, eliminating the ne
the file manager to do the job. Deltas might still be maintained as a way of communic
state changes to other clients, and as a way of doing write-ahead logging to to
failures. The role of the file manager would then be reduced to ensuring that the c
caches remain consistent. This cache management function could then be distri
142

hared-

ight-
cale

of
y in
ticular
out.
or a
file.
ight
way

etter
ntially
se it
out

same
mption
er of
s are
igned
are

ible to
g the
in a
nge if
final
this

itten
ed by
lients

ibute
width

locks
n the
ve a
ervice
perhaps using some of the techniques used to provide cache consistency on s
memory multiprocessors.

Distribution is also desirable for the stripe cleaner. Section 4.5.8 touched on stra
forward ways of doing this distribution. Future research might explore solutions that s
better, perhaps distributing the cleaning functionality to all of the clients.

Zebra is also lacking in support for parallel computing. The use of networks
workstations to perform parallel computations almost certainly will become a realit
the near future. Zebra is not designed to support these parallel computations; in par
it does not support concurrent write-sharing nor application-directed file lay
Concurrent write-sharing is rare in the UNIX workstation environment; it is unusual f
file to be open simultaneously open by several clients, one of whom is writing the
This is probably not the case in a parallel computation, in which many processors m
cooperate to produce the output file. These applications may also wish to specify the
in which the file data should be laid out on the storage servers, to provide b
performance on later accesses. Zebra implicitly assumes that files will be read seque
and in their entirety. If the application program has knowledge that this is not the ca
should be possible to provide this information to the file system so that the file is laid
properly.

Another limitation in Zebra is that the storage servers are assumed to have the
capabilities, in terms of processor speed, I/O speed, and storage capacity. This assu
is likely to be false in large-scale distributed file systems, due to the sheer numb
servers involved. The server configurations will change frequently as processor
upgraded, disks break, memory is added, etc. A distributed file system should be des
to ensure that all servers are fully utilized, even if their capabilities differ and
constantly changing.

The use of log-based striping in Zebra is also interesting because it makes it poss
use compression as a way of not only reducing storage space, but also of reducin
network bandwidth requirements. One of the problems with using compression
traditional storage manager is that the compressed size of a block of data may cha
the block is updated. This makes it difficult to allocate space for a block because its
size is not known, and the size will change as the block is modified. LFS solves
problem by appending new data to the end of the log. If a block is modified and rewr
its new compressed image is simply appended to the log, and the old copy is reclaim
the stripe cleaner. Zebra pushes the log mechanism back to the clients, allowing the c
to compress the log before writing it to the storage servers. Not only does this distr
the compression mechanism nicely, but it also reduces the amount of network band
required to transfer the log fragments.

Finally, Zebra does not provide guaranteed service when accessing a file. File b
are transferred as quickly as possible, but there is no limit on the variance betwee
service time for different blocks. Applications such as real-time video may prefer to ha
limited variance between file blocks, perhaps as the expense of a higher average s
143

a file

uted
em to
akes
f the
m, by
imple
r, and
basis
time. It would be interesting to see how such service guarantees could be added to
system such as Zebra.

7.3 Closing Comments

Zebra is one step in the evolution of network file systems from centralized to distrib
systems. It has shown that striping and parity can be combined in a network file syst
improve its performance, scalability, and availability. The use of log-based striping m
it feasible to use parity to provide high-availability, but one of the biggest surprises o
project was that it also makes it easy to maintain the distributed state of the syste
providing a reliable communication channel between the components. Deltas are a s
means of communicating changes in block locations between the clients, file manage
stripe cleaner. Much work is left to be done, but I believe that Zebra serves as a solid
for the network file systems of the future.
144

ff,
m”,
iples

st
,

on-

r

.D.
y,

.
l in

, “A

and
le

nd
ort
ber

e

Bibliography

[Baker91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirri
and John K. Ousterhout, “Measurements of a Distributed File Syste
Proceedings of the 13th Symposium on Operating Systems Princ
(SOSP), Asilomar, CA, October 1991, 198-212. Published asACM
SIGOPS Operating Systems Review 25, 5.

[Baker92a] Mary Baker and Mark Sullivan, “The Recovery Box: Using Fa
Recovery to Provide High Availability in the UNIX Environment”
Proceedings of the Summer 1992 USENIX Conference, June 1992, 31-43.

[Baker92b] Mary Baker, Satoshi Asami, Etienne Deprit, and John Ousterhout, “N
Volatile Memory for Fast, Reliable File Systems”,Proceedings of the
Fifth International Conference on Architectural Support fo
Programming Languages and Operating Systems (ASPLOS), Boston,
MA, October 1992, 10-22.

[Baker94] Mary Baker, “Fast Crash Recovery in Distributed File Systems”, Ph
Thesis, Computer Science Division, University of California, Berkele
January 1994. Also available as Technical Report UCB/CSD 94/787

[Bernstein81] Philip A. Bernstein and Nathan Goodman, “Concurrency Contro
Distributed Database Systems”,ACM Computing Surveys 13, 2 (June
1981), 185-222.

[Bhide91a] Anupam Bhide, Elmootazbellah N. Elnozahy, and Stephen P. Morgan
Highly Available Network File Server”,Proceedings of the Winter 1991
USENIX Conference, Dallas, TX, January 1991, 199-205.

[Bhide91b] Anupam Bhide, Elmootazbellah N. Elnozahy, Stephen P. Morgan,
Alex Siegel, “A Comparison of Two Approaches to Build Reliab
Distributed File Servers”,International Conference on Distributed
Computing Systems (ICDCS), 1991.

[Birman84] Kenneth P. Birman, Amr El Abbadi, Wally Dietrich, Thomas Joseph, a
Thomas Raeuchle, “An Overview of the Isis Project”, Technical Rep
84-642, Department of Computer Science, Cornell University, Octo
1984.

[Brown85] Mark R. Brown, Karen N. Koling, and Edward A. Taft, “The Alpine Fil
System”,ACM Transactions on Computer Systems 3, 4 (1985), 261-293.
145

ed

in a
l

A

ms

r,
ard

-
l

Jr.,
cus
IX

sing
n

.

nd
ho
n

an
X

ls,
cale

ilis
W.
em
IX

”,

iuba
”,
iples
[Cabrera91] Luis-Felipe Cabrera and Darrell D. E. Long, “Swift: Using Distribut
Disk Striping to Provide High I/O Data Rates”,Computing Systems 4, 4
(Fall 1991), 405-436.

[Chen90] Peter M. Chen and David A. Patterson, “Maximizing Performance
Striped Disk Array”, Proceedings of the 17th Annual Internationa
Symposium of Computer Architecture, May 1990, 322-331.

[Dibble90] Peter C. Dibble, Michael L. Scott, and Carla Schlatter Ellis, “Bridge:
High-Performance File System for Parallel Processors”,Proceedings of
the 8th International Conference on Distributed Computing Syste
(ICDCS), 1988, 154-161.

[Drapeau94] Ann L. Drapeau, Ken Shirriff, John H. Hartman, Ethan L. Mille
Srinivasan Seshan, Randy H. Katz, Ken Lutz, David A. Patterson, Edw
K. Lee, Peter M. Chen, and Garth A. Gibson, “RAID-II: A High
Bandwidth Network File Server”,Proceedings of the 21st Annua
International Symposium of Computer Architecture, April 1994.

[Guy90] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page,
Gerald J. Popek, and Dieter Rothmeier, “Implementation of the Fi
Replicated File System”,Proceedings of the Summer 1990 USEN
Conference, Anaheim, CA, June 1990, 63-71.

[Hagmann87] Robert Hagmann, “Reimplementing the Cedar File System U
Logging and Group Commit”,Proceedings of the 131h Symposium o
Operating Systems Principles (SOSP),November, 1987, 155-162
Published as ACM SIGOPS Operating Systems Review 21, 5.

[Hartman93] John H. Hartman and John K. Ousterhout, Letter to the Editor,ACM
SIGOPS Operating Systems Review 27, 1 (January 1993), 7-10.

[Hisgen89] Andy Hisgen, Andrew Birrell, Timothy Mann, Michael Schroeder, a
Garret Swart, “Availability and Consistency Tradeoffs in the Ec
Distributed File System”,Proceedings of the Second Workshop o
Workstation Operating Systems, September 1989, 49-54.

[Hitz94] Dave Hitz, James Lau, and Michael Malcolm, “File System Design for
NFS File Server Appliance”,Proceedings of the Winter 1994 USENI
Conference, San Francisco, CA, January 1994, 235-246.

[Howard88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nicho
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West, “S
and Performance in a Distributed File System”,ACM Transactions on
Computer Systems 6, 1 (February 1988), 51-81.

[Kazar90] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson, Vas
Apostolides, Beth A. Bottos, Sailesh Chutani, Craig F. Everhart,
Anthony Mason, Shu-Tsui Tu, Edward R. Zayas, “DEcorum File Syst
Architectural Overview”,Proceedings of the Summer 1990 USEN
Conference, Anaheim, CA, June 1990, 151-163.

[Koch87] Philip D. L. Koch, “Disk File Allocation Based on the Buddy System
ACM Transactions on Computer Systems 4, 5 (1987), 32-370.

[Liskov91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, L
Shrira, and Michael Williams, “Replication in the Harp File System
Proceedings of the 13th Symposium on Operating Systems Princ
(SOSP), Asilomar, CA, October 1991, 226-238. Published asACM
SIGOPS Operating Systems Review 25, 5.
146

ift/

im,

ce

S.
r

m
X

king
ing

nal
nth

g in
r

, and

Fast
ce

ald J.
ted

for

ass
n

and

s

[Long94] Darrell D. E. Long, Bruce R. Montague, and Luis-Felipe Cabrera, “Sw
RAID: A Distributed RAID System”,Computing Systems 7, 3 (Summer
1994), 333-359.

[Lo Verso93] Susan J. Lo Verso, Marshall Isman, Andy Nanopoulos, William Neshe
Ewan D. Milne, and Richard Wheeler,“sfs: A Parallel File System for the
CM-5”, Proceedings of the Summer 1993 USENIX Conferen,
Cincinnati, OH, June 1993, 291-305.

[McKusick84] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert
Fabry, “A Fast File System for UNIX”,ACM Transactions on Compute
Systems 2, 3 (August 1984), 181-197.

[McVoy91] Larry W. McVoy and Steve R. Kleiman, “Extent-like Performance fro
a UNIX File System”, Proceedings of the Winter 1991 USENI
Conference, Dallas, TX, January 1991, 33-43.

[Moran90] J. Moran, R. Sandberg, D. Coleman, J. Kepecs, and B. Lyon, “Brea
Through the NFS Performance Barrier”, Proceedings of EUUG Spr
1990, Munich, Germany, April 1990, 199-206.

[Nelson93] Bruce Nelson and Raphael Frommer, “An Overview of Functio
Multiprocessing for NFS Network Servers”, Technical Report 1, Seve
Edition, Auspex Systems Inc., October 1993.

[Nelson88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout, “Cachin
the Sprite Network File System”,ACM Transactions on Compute
Systems 6, 1 (February 1988), 134-154.

[Ousterhout88] John Ousterhout, Andrew Cherenson, Fred Douglis, Mike Nelson
Brent Welch, “The Sprite Network Operating System”,IEEE Computer
21, 2 (February 1988), 23-36.

[Ousterhout90] John Ousterhout, “Why Aren’t Operating Systems Getting Faster As
As Hardware?”,Proceedings of the Summer 1990 USENIX Conferen,
Anaheim, CA, June 1990, 247-256.

[Page91] Thomas W. Page, Jr., Richard G. Guy, John S. Heidemann, Ger
Popek, Wai Mak, and Dieter Rothmeier, “Management of Replica
Volume Location Data in the Ficus Replicated File System”,Proceedings
of the Summer 1991 USENIX Conference, Nashville, TN, June 1991, 17-
29.

[Patterson88] David A. Patterson, Garth Gibson, and Randy H. Katz, “A Case
Redundant Arrays of Inexpensive Disks (RAID)”,Proceedings of the
1988 ACM Conference on Management of Data (SIGMOD), Chicago, IL,
June 1988, 109-116.

[Pierce89] Paul Pierce, “A Concurrent File System for a Highly Parallel M
Storage Subsystem”,Proceedings of the Fourth Conference o
Hypercubes, Monterey CA, March 1989.

[Rosenblum91] Mendel Rosenblum and John K. Ousterhout, “The Design
Implementation of a Log-Structured File System”,Proceedings of the
13th Symposium on Operating Systems Principles (SOSP), Asilomar, CA,
October 1991, 1-15. Published asACM SIGOPS Operating System
Review 25, 5.
147

ured
of
ort

s”,

Bob
”,

aria E.
file

uling

in,
,

nd

le
IX

t, “The
it

reg

ical
of

ry”,
alo

0s”
tems
[Rosenblum92] Mendel Rosenblum, “The Design and Implementation of a Log-struct
File System”, Ph.D. Thesis, Computer Science Division, University
California, Berkeley, June 1992. Also available as Technical Rep
UCB/CSD 92/696.

[Ruemmler93] Chis Ruemmler and John Wilkes, “UNIX disk access pattern
Proceedings of the Winter 1993 USENIX Conference, San Diego, CA,
January 1993, 405-420.

[Sandberg85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and
Lyon, “Design and Implementation of the Sun Network Filesystem
Proceedings of the Summer 1985 USENIX Conference, Portland, OR,
June 1985, 119-130.

[Satyanarayanan90] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, M
Okasaki, E. H. Siegel, and D. C. Steere, “Coda: a highly available
system for a distributed workstation environment”,IEEE Transactions on
Computers 39, 4 (April 1990), 447-459.

[Seltzer90] Margo Seltzer, Peter Chen, and John Ousterhout, “Disk Sched
Revisited”,Proceedings of the Winter 1990 USENIX Conference, January
1990, 313-324.

[Seltzer93] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Stael
“An Implementation of a Log-Structured File System for UNIX”
Proceedings of the Winter 1993 USENIX Conference, San Diego, CA,
January 1993, 307-326.

[Shirriff92] Ken Shirriff and John Ousterhout, “A Trace-driven Analysis of Name a
Attribute Caching in a Distributed File System”,Proceedings of the
Winter 1992 USENIX Conference, January 1992, 315-331.

[Siegel90] Alex Siegel, Kenneth Birman, and Keith Marzullo, “Deceit: A Flexib
Distributed File System”,Proceedings of the Summer 1990 USEN
Conference, Anaheim, CA, June 1990, 51-61.

[van Renesse88] Robbert van Renesse, Andrew S. Tanenbaum, and Annita Wilschu
Design of a High-Performance File Server”, IR-178, Vrije Universite
Amsterdam, November 1988.

[Walker83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and G
Thiel, “The LOCUS Distributed Operating System”,Proceedings of the
9th Symposium on Operating Systems Principles (SOSP), November
1983, 49-70. Published asACM SIGOPS Operating Systems Review 17, 5.

[Welch86] Brent B. Welch, “The Sprite Remote Procedure Call System”, Techn
Report UCB/CSD 86/302, Computer Science Division, University
California, Berkeley, June 1986.

[Wilkes89] John Wilkes, “DataMesh -- Scope and Objectives: A Commenta
Technical Report HPL-DSD-89-44, Hewlett-Packard Company, P
Alto, CA, July 19 1989.

[Wilkes91] John Wilkes, “DataMesh -- Parallel Storage Systems for the 199,
Proceedings of the Eleventh IEEE Symposium on Mass Storage Sys,
Monterey, CA, October 1991, 131-136.
148

	The Zebra Striped Network File System
	by
	John Henry Hartman
	Sc. B. (Brown University) 1987
	M.S. (University of California at Berkeley) 1990
	A dissertation submitted in partial satisfaction of the requirements for the degree of
	Doctor of Philosophy
	in
	Computer Science
	in the
	GRADUATE DIVISION
	of the
	UNIVERSITY of CALIFORNIA at BERKELEY
	1994
	The Zebra Striped Network File System
	Abstract
	The Zebra Striped Network File System
	by
	John Henry Hartman
	Doctor of Philosophy in Computer Science
	University of California at Berkeley
	Professor John Ousterhout, Chair

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1� Zebra
	1.2� Applicability
	1.3� Prototype
	1.4� Thesis Contributions
	1.5� Dissertation Outline

	2 Background
	2.1� File Systems
	Figure 2-1.� File implementation.
	2.1.1� File Caches
	2.1.2� File System Reliability and Crash Recovery

	2.2� Disk Storage Systems
	Figure 2-2.� Disk components.
	2.2.1� Disk Performance Improvements
	2.2.1.1� RAID
	Figure 2-3.� Striping with parity.
	Figure 2-4.� Striping unit reconstruction.
	Figure 2-5.� Partial stripe write.

	2.2.2� Disk Performance Optimization
	2.2.2.1� Disk Scheduling
	2.2.2.2� File Allocation
	2.2.2.3� File Clustering

	2.2.3� Log-Structured File Systems

	2.3� Network File Systems
	2.3.1� Network Disks
	2.3.2� File Block Access
	2.3.3� File System Namespace
	2.3.4� Client Cache Consistency
	2.3.5� Server Crash Recovery
	2.3.6� NFS
	2.3.7� Sprite
	2.3.8� AFS/DEcorum

	2.4� Network File System Performance Limitations
	2.4.1� File Server Bottlenecks
	2.4.1.1� Auspex NS 6000
	2.4.1.2� RAID-II
	2.4.1.3� DataMesh

	2.4.2� Hotspots

	2.5� Network File System Availability
	2.5.1� File Replication
	2.5.2� Dual-Ported Disks
	Figure 2-6.� Dual-ported disks.

	2.6� Striped File Systems
	2.6.1� File-Based Striping
	Figure 2-7.� File-based striping for a large file.
	Figure 2-8.� File-based striping for a small file.

	2.6.2� Parallel File Systems
	2.6.3� Swift
	Figure 2-9.� Swift architecture.

	2.7� Summary

	3 Zebra Fundamentals
	Figure 3-1.� Log-based striping.
	3.1� Parity Computation by Clients
	3.2� Non-Overwrite
	3.3� Write Batching
	3.4� Virtual Stripes
	3.5� Append-Only Writes
	3.6� Stripe Cleaning
	3.7� Centralized Metadata Management
	3.8� Consistency via Deltas
	3.9� Summary

	4 Zebra Architecture
	Figure 4-1.� Zebra components.
	4.1� Log Addresses
	Figure 4-2.� Log address parsing.

	4.2� Storage Servers
	4.2.1� Functionality
	4.2.2� Crash Recovery

	4.3� Clients
	4.3.1� Reading Files
	4.3.2� Writing Files
	4.3.3� Storage Server Crashes

	4.4� File Manager
	Figure 4-3.� Reading from a file.
	4.4.1� Client Cache Consistency
	4.4.2� Updating Block Maps via Deltas

	4
	4
	4
	4
	8
	8
	4
	4.4.3� Reading and Writing Revisited
	4.4.4� Performance
	4.4.5� Client Crashes
	4.4.6� File Manager Crashes
	Figure 4-4.� Requirements for deadlock.

	4.5� Stripe Cleaner
	Figure 4-5.� Stripe cleaning.
	4.5.1� Identifying Stripe Contents
	4.5.2� Choosing Stripes to Clean
	Figure 4-6.� Cleanable vs. uncleanable stripes.

	4.5.3� Synchronized Cleaning
	4.5.4� Optimistic Cleaning
	Figure 4-7.� Cleaner/client conflict.

	4.5.5� File Manager Recovery Revisited
	Figure 4-8.� Ordering deltas by their block pointers.

	4.5.6� Storage Server Crashes
	4.5.7� Cleaning Cost
	4.5.8� Distributed Stripe Cleaning
	4.5.9� Stripe Cleaning Alternatives
	4.5.10� Log Address Wrap

	4.6� System Reconfiguration
	4.6.1� Adding and Removing Clients
	4.6.2� Adding Storage Servers
	4.6.3� Removing a Storage Server
	4.6.4� Adding Disks to Servers
	4.6.5� Removing Disks from Servers

	4.7� Summary

	5 Zebra Prototype
	5.1� Log Address Format
	Figure 5-1.� Fragment ID.

	5.2� Fragment Creation
	5.2.1� Fragment Format
	Figure 5-2.� Data fragment format.

	5.2.2� Zebra Striper
	5.2.2.1� Filling Data Fragments
	5.2.2.2� Parity Fragments
	5.2.2.3� Flow-Control
	5.2.2.4� Striper Interface
	Figure 5-3.� Striper routines.
	Figure 5-4.� Striper callback.

	5.3� Data Transfer
	5.3.1� Remote Procedure Calls
	5.3.2� Asynchronous RPC
	5.3.3� Integrated Parity and Checksum Computations

	5.4� File System Metadata
	5.4.1� Block Map Implementation
	5.4.2� Block Maps and Clients
	5.4.3� Metadata Storage
	Figure 5-5.� Virtual disk implementation.

	5.4.4� File Manager Checkpoints
	Figure 5-6.� File manager checkpoint.

	5.4.5� File Manager Recovery
	5.4.6� Delta Buffer

	5.5� Client Cache
	5.5.1� Cache Block Writes
	5.5.2� Cache Block Reads

	5.6� Fragment Reconstruction
	5.7� Stripe Cleaner
	5.7.1� Cleaning
	5.7.2� Cleaner Checkpoint
	5.7.3� Cleaner Recovery
	5.7.4� Cleaner Improvements

	5.8� Storage Server
	5.8.1� Volumes
	5.8.2� Storage Management
	5.8.2.1� Frames

	4
	4
	4
	4
	4
	4
	4
	4
	4
	5.8.2.2� Fragment Map and Free Frame List
	5.8.2.3� Summary Table

	4
	4
	4
	4
	4
	4
	4
	4
	4
	5.8.2.4� Summary Table Consistency
	5.8.2.5� Implementation Alternatives
	5.8.3� Recovery
	5.8.4� RPC Interface
	5.8.4.1� Store Fragment

	4
	4
	4
	4
	4
	5.8.4.2� Retrieve Fragment

	4
	4
	4
	4
	4
	4/range
	5.8.4.3� Delete Fragments

	4
	4/ID
	5.8.4.4� Configuration
	5.8.5� Performance Optimizations
	5.9� Summary

	6 Prototype Measurements
	6.1� Experimental Setup
	6.2� Limiting Factors
	6.2.1� RPC Performance
	Figure 6-1.� Sprite RPC bandwidth.

	6.2.2� Disk Performance
	Figure 6-2.� Raw disk bandwidth.

	6.3� File Access Performance
	6.3.1� Performance vs. File Size
	Figure 6-3.� Throughput vs. file size.
	Figure 6-4.� Write resource utilizations.
	Figure 6-5.� Read resource utilizations.

	6.3.2� Large File Performance
	Figure 6-6.� Total system throughput for large file writes.
	Figure 6-7.� Total system throughput for large file reads.

	6.3.3� Small File Performance
	Figure 6-8.� Performance for small writes.

	6.3.4� Resource Utilizations
	Figure 6-9.� Resource utilizations.

	6.3.5� File Access Summary

	6.4� Scalability
	6.4.1� File Manager
	6.4.2� Stripe Cleaner
	6.4.2.1� Cleaning Bandwidth
	6.4.2.2� Cleaning Overhead
	6.4.2.3� Delta Processing

	20
	74
	2
	96
	6.4.3� Scalability Summary
	6.5� Availability
	6.5.1� Parity
	6.5.2� File Manager Checkpoint and Recovery
	6.5.3� Stripe Cleaner Checkpoint and Recovery
	6.5.4� Availability Summary

	7 Conclusion
	7.1� Future Research in Zebra
	7.2� Related Research
	7.3� Closing Comments

	Bibliography

