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Abstract

Studying the design and implementation of a number of computer has led to some general hints
for system design. They are described here and illustrated by many examples, ranging from
hardware such as the Alto and the Dorado to application programs such as Bravo and Star.

1. Introduction

Designing a computer system is very different from designing an algorithm:

The exernal interface (batis, the requiement) is less preaely defined, nore conplex, and
more subject to change.

The systmhas nuch nore internal stucture, and hence any internal interfaces.
The neasure of successmuch less ckar.

The designer usually finds himself floundering in a sea of possibilities, unclear about how one
choice will limit his freedom to mé&e othe choices, or dfect the size and peformance of the

entire system. There probably isa ‘best’ way to build the system, or even any major part of it;
much more important is to avoid choosing a terrible way, and to have clear division of
responsibilities among the parts.

| have designeal and built anumbe of compute systens, someha worked and someha didn't.

I have also used and studied many other systems, both successful and unsuccessful. From this
expeience come somegenera hints for deigning sucessful systens. | daim no origindity for

them; most are part of the folk wisdom of experienced designers. Nonetheless, even the expert
often forgets, and after the second system [6] comes the fourth one.

Disdaimer: These are not
novel (with a few exceptions),
foolproof recipes,
laws of system design or operation,
precsely formulated,
consistent,
always appropriate,
approved by all the leading experts, or
guaranteed to work.

! This paper was oliginally presented a the 9thACM Synposiumon Qperating Systens Pinciples and gpeared in
Operating Systems Reviewb, 5, Oct. 1983,p 3348. The present version is slightly evised.
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They are just hints. Some are quite general and vague; others are specific techniques which are
more widely applicable than many people know. Both the hints and the illustrative examples are
necessarily oversimplified. Many are controversial.

| have tried to avoid exhortations to modularity, methodologies for top-down, bottom-up, or
iterative design, techniques for data abstraction, and other schemes that have already been widely
disseminated. Sometimes | have pointed out pitfalls in the reckless application of popular

methods for system design.

Thehints ae illustrated by anumbe of examples, mostly dravn from systens | have worked on.

They range from hardware such as the Ethernet local area network and the Alto and Dorado
personal computers, through operating systems such 883840 and the Alto operating

system and programming systems such as Lisp and Mesa, to application programs such as the
Bravo editor and the Star office system and network servers such as the Dover printer and the
Grapevine mail system. | have tried to avoid the most obvious examples in favor of others which
show unexpected uses for some well-known methods. There are references for nearly all the
specific examples but for only a few of the ideas; many of these are part of the folklore, and it
would t&ke alot of work to trak down thér multiple soures.

And tese éw preceps in thy memory
Look thou character.

It seemed appropriate to decorate a guide to the doubtful process of system design with
guotations fromHamlet.Unless otherwise indicated, they are taken from Polbadsce D

Laertes (I iii 58-82). Some quotations are from other sources, as noted. Each one is intended to
apply to thetext which follows it.

Each hint is summarized by a slogan that when properly interpreted reveals the essence of the
hint. Figure 1 organizes the slogans along two axes:

Whyit helps in making a good system: with functionality (does it work?), speed (is it fast
enough?), or fault-tolerance (does it keep working?).

Wherein the system design it helps: in ensuring completeness, in choosing interfaces, or in
devising implementations.

Fat lines connect repetitions of the same slogan, and thin lines connect related slogans.

The body of the paper is in three sections, according whlgéeadings: fundiondity (section
2), speed (section 3), and fault-tolerance (section 4).

2. Functionality

The most importat hints, ad thevaguest, have to do with obtaning theright fundiondity from

a system, that is, with getting it to do the things you want it to do. Most of these hints depend on
the notion of annterface tha sgarates an implementation of someabstrection from theclients

who use the abstraction. The interface between two programs consists of the set of assumptions
that each programmer needs to make about the other program in order to demonstrate the
correchess of s program(paraphrased froffb]). Defining interfaces § the nostimportant part

of system design. Usually it is also the most difficult, since the interface design must satisfy three
conflicting requirements: an interface should be simple, it should be complete, and it should
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Why? Fundionality Speed Fault-tolerance

Does it work? Is it fast enough? Does it keep working?
Where?
Compleeness | Separate normal a Shed lbad
worst case End-to-ende———— End-to-end
Safety first
Interface Do one thing well—— Make it fast———— End-to-end
Dorit generalize Split resoures Log updates
Get it right Static anaysis Make actions atomic
Don’t hide power Dynamic translation
Use procedure arguments
Leave it to theclient
Keep basi interfaces sable
Keep a phce b stand
Implementation | Plan to throw one away Cache answers Make actions atomic
Keep secret Use hints Use hints
Use a good idea again Use brute force
Divide and conquer Compute in background
Batch processing

Figure 1: Summary of the slogans

admit a sufficiently small and fast implementation. Alas, all too often the assumptions embodied
in an nterface trn outto be msconcepions nstead. Rrnas classc paper [38] and a ane recent
one on dewe nterfaces [5] offer excéént practcal advice on his subpct

The main reason interfaces are difficult to design is that each interface is a small programming
language: it defines a set of objects and the operations that can be used to manipulate the objects.
Concrete syntax is not an issue, but every other aspect of programming language design is
present. Hoare’s hints on language design [19] can thus be read as a supplement to this paper.

2.1 Keepit simple

Perfection is reached not when there is no longer anything to add,
but when there is no longer anything to take awgy. Saint-Exupery

Those friends thou hast, and their adoption tried,
Grapple them unto thy soul with hoops of steel;
But do not dull thy palm with entertainment

Of each newhatch’d unfledg’d comrade.

» Do one thing at a time, and do it wellin interface should capture thenimumessentials of an
abstractionDon’t generalizegeneralizations are generally wrong.
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We are faced with an insurmountable opportunitfW. Kelley)

When an interface undertakes to do too much its implementation will probably be large, slow and
complicated. An interface is a contract to deliver a certain amount of service; clients of the
interface depend orhé contact which is usualy docunented in the interface spedicaion.

They dso dgend on inarring areasonable cost (in timeor othe sarce resoures) for using the
interface; the definition of ‘reasonable’ is usually not documented anywhere. If there are six
levels of abstraction, and each costs 50% more than is ‘reasonable’, the service delivered at the
top will miss by moreghan afactor of 10.

Kiss:Keep It Simple, Stupid(Anonymous)
If in doubt, leave if out. (Anonymous)
Exterminate features. (C. Thacker)
On the other hand,
Everything should be made as simple as possible, but no simferEinstein)

Thus, serke nust have a faly predctable cost and he interface must not promse more than

the implementer knows how to deliéspecially, it should not promise features needed by only
a few clients, unless the implementer knows how to provide them without penalizing others. A
better implementer, or one who comes along ten years later whgmolihem is better

understood, might be able to deliver, but untbssone you havean do so, it is wise to reduce
your aspirations.

For exanple,PL/1 got into serious trouble by attempting to provide consistent meanings for a

large number of generic operations across a wide variety of data types. Early implementations
tended to handle all tloases inefficiently, but even with theoptimizing compilers of 15 yars

later, it is had for theprogranme to tdl what will be fast and wha will be slow [31]. A

language like Bscal or C is much easier to use, because every construct has a roughly constant
cost that is independent of context or arguments, and in fact most constructs have about the same
cost

Of course, these observations apply most strongly to interfaces that clients use heavily, such as
virtual memory, files, display handling, or arithmetic. It is all right to sacrifice some performance
for functionality in a seldom used interface such as password checking, interpreting user
commands, or printing 72 point characters. (What this really means is that though the cost must
still be predictable, it can be many times theminimum &hievable cost.) And sub cautious rules

don’t apply to research whose object is learning how to make better implementations. But since
research may well fail, others mustn’t depend on its success.

Algol 60 was not only an improvement on its predecessors,
but also on nearly all its successors. (C. Hoare)

Examples of offering too much are legion. The Alto operating system [29] has an ordinary
read/write-n-bytes nterface b files, and was eghded for Inérlisp-D [7] with an ordhary pagng
sysemthat stores each viual page on a dedatd dsk page. Bth have smll implementations

(about 900 lines of code for files, 500 for paging) and are fast (a page fault takes one disk access
and has a constant computing cost that is a small fraction of the disk access time, and the client
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can farly easly run e disk atfull speed). TheiRot sysem[42] which succeededé Alto OS

follows Multics and severa othe systens in dlowing virtua pages to bemgopel to file pages,

thus subsuming file input/output within the virtual memory system. The implementation is much
larger (about 11,000 lines of code) and slower (it often incurs two disk accesses to handle a page
fault and cannot run the disk at full speed). The extra functionality is bought at a high price.

This is not to say that a good implementation of this interface is impossible, merely that it is

hard. This system was designed and coded by several highly competent and experienced people.
Part of the problem is avoiding circularity: the file system would like to use the virtual memory,
but virtual memory depends on files. Quite general ways are known to solve this problem [22],
butthey are ticky and easy lead b greaer costand corplexity in the nornmal case.

And, in this upshot, purposes mistook
Fall’n on th’ inventors’ heads. (V ii 387)

Anothe example illustrates how @sily generaity can lead to unexpected complexity. The Tenex
system [2] has the following innocent-looking combination of features:

It reports a reference to an unassigned virtual page by a trap to the user program.

A sysemcal isviewed as a achne instruction for an extnded nachine, and any reference
it makes to a unassignel virtud pageis thus similay reported to theuse program.

Large arguments to system calls, including strings, are passed by reference.

There & a sysem cal CONNECTtO obtain accessatanoher drecory; one of ts argunensis
a string containing the password for the directory. If the password is wrong, the call fails after
a three second delay, to prevent guessing passwords at high speed.

CONNECTIs implemented by a loop of the form

for i := Oto LengthdirectoryPassworjldo
if directoryPassword] # passwordArgumefi{ then
Wait three seconds; retuBadPassword
end if
end loop;
connect to directory; returuccess

The following trick finds a password of lengttin 64n tries on he average, raer than 1282
(Tenex uses 7 bcharactrs n strings). Arrangehe passwordArgumersto hatits first characer
is the last characér of a page andh¢ nextpage $ unassijned, andryy each posbie charaar as
the first. IfCONNECTreportsBadPasswordthe guess was wrong; if the system reports a
reference to an unassigned page, it was correct. Now arrarggstveordArgumerso tha its
second character is the last character of the page, and proceed in the obvious way.

This obscure and amusing bug went unnoticed by the designers because the interface provided by
a Tenex systen call is quite complex: it includes thepossibility of areported rference to an

unassigned page. Or looked at another way, the interface provided by an ordinary memory
reference instrudion in systen codeis quitecomplex: it includes thepossibility tha an imprope

reference will be reported to the client without any chance for the system code to get control first.
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An engineer is a man who can do for a dime
what any fool can do for a dollar. (Anonymous)

At times, howeer, it's worth a lot of work to make a fast implementation of a clean and

powerful interface. If the interface is used widely enough, the effort put into designing and
tuning the implementation can pay off many times over. But do this only for an interface whose
importance is already known from existing uses. And be sure that you know how to make it fast.

For exanple, he BitBlt or RasterOpnterface for manipulating raster images [21, 37] was

devised by Dan Ingalls after several years of experimenting with the Alto’s high-resolution
interactive display. Its implementation costs about as much microcode as the entire emulator for
the Alto’s standad instrudion se and required alot of skill and experience to mnstrud. But the
performance is nearly as good as the special-purpose character-to-raster operations that preceded
it, and its simpligty and generality have madeit much easier to build displg applications.

The Dorado ramory sysem|[8] contins a cache and a separaigh-bandwiith pah for fast
inpufoutput It provides a cache read or terin every 64 ns cyel, bgeher with 500

MBits/second of 1/0 bandwidth, virtual addressing from both cache and I/O, and no special cases
for the microprogrammer to worry about. However, the implementation takess3sips and
consume several man-years of design time This @uld only bgustified by etensiveprior

experience (30 years!) with this interface, and the knowledge that memory access is usually the
limiting factor in peformance. Even so, it sems in rérospet that the high 1/0 baadwidth is not

worth the cost; it is used mainly for displays, and a dual-ported frame buffer would almost
certainly be beter.

Finally, lest this advice seem too easy to take,

» Get it right.Neither astraction nor simplidty is asubstitutefor geting it right. In fact,
abstraction can beasoure of severe difficulties, & this autionary tale shows. VWrd proessing
and office information systems usually have provision for embedding named fields in the
documents they handle. For example, a form letter might have ‘address’ and ‘salutation’ fields.
Usually a document is represented as a sequence of characters, and a field is encoded by
somehing like {name content}. Among other operations, there is a procedtirelNamedField
tha finds thefield with agiven nane Onemgor commercial systan for sometime useal a
FindNamedFielgproceduretha ran in timeO(n®), wheren is the length of the document. This
remarkable result was achieved by first writing a proceBurélthFieldto find theith field
(which must t&e time O(n) if there is no auxiliary daa strudure), and then implementing
FindNamedFielhamg with the very natural program

for i ;= 0 tonumbeofFields do
FindlthField; if its nameis namethen ext
end loop

Once bhe (unweely chosen) absacion FindIthFieldis avalable, onl a lively awareness ofs
cost will avoid this disaster. Of course, this is not an argument against abstraction, but it is well
to be aware of its dangers.
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2.2 Corollaries

The rule about simplicity and generalization has many interesting corollaries.

Costly thy habit as thy purse can buy,
But not expresd in fancy; rich, not gaudy.

* Make it fast,ratherthan general or powerful. If it's fast, the client can program the function it
wants, and another client can program some other function. It is much better to have basic
operations executed quickly than more powerful ones that are slower (of course, a fast, powerful
operation is best, if you know how to get it). The trouble with slow, powerful operations is that
the client who doesn’t want the power pays more for the basic function. Usually it turns out that
the powerful operation is not the right one.

Had | but time (as this fell sergeant, death,
Is strict in his arrest) O, | couldetl you —
But l¢ it be (Vi 339)

For example, many studies (such as [23, 51, 52]) have shown that programs spend most of their
time doing vey simplethings: loals, stors, tests for gudity, adding one Machines like the801

[41] or therISC[39] with instructions that do these simple operations quickly can run programs
faster (for the same amount of hardware) than machines likatheith moregeneral and

powerful instructions that take longer in the simple cases. It is easy to lose a factor of two in the
running time of a program, with the same amount of hardware in the implementation. Machines
with still more grandiose ideas about what the client needs do even worse [18].

To find the places where time is being spent in a large system, it is necessary to have
measurement tools that will pinpoint the time-consuming code. Few systems are well enough
understood to be properly tuned without such tools; it is normal for 80% of the time to be spent
in 20% of the code, b priori analysis or intuition usually can’t find the 20% with any

certainty. The performance tuning of Interlisp-D sped it up by a factor of 10 using one set of
effective tools [7].

» Don’t hide powerThis slogan is closely related to the last one. When a low level of abstraction
allows something to be done quickly, higher levels should not bury this power inside something
more generalThe purpose of alisicions 5 to conceaundesirableproperties; desirable ones

should not be hidden. Sometimes, of course, an abstraction is multiplexing a resource, and this
necessarily has some cost. But it should be possible to deliver all or nearly all of it to a single
client with only slight loss of performance.

For example, the Alto disk hardware [53] can transfer a full cylinder at disk speed. The basic file
systen [29] can transfer suaessivefile pages to dient memory a full disk sped, with timefor

the clent to do sone conputing on each seat; thus wih a few seairs of bufferng the enire

disk @an besannal a disk sped. This faility has been usal to write avariety of goplications,

ranging from a scavenger that reconstructs a broken file system, to programs that search files for
substrings that match a pattern. The stream level of the file system can read byt to or

from client memory; any portions of tinebytes that occupy full disk sectors are transferred at

full disk speed. Loaders, compilers, editors and many other programs depend for their
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peformance on this dility to read largefiles quikly. At this level the client gives up thefacility
to see the pages as they arrive; this is the only price paid for the higher level of abstraction.

» Use procedure argumentts provide flexibility in an interface. They can be restricted or

encodd in vaious was if necessay for protection or portaility. This techniquecan greatly

simplify an interface, eliminating a jumble of parameters that amount to a small programming
language. A simple example is an enumeration procedure that returns all the elements of a set
satisfying some property. The cleanest interface allows the client to pass a filter procedure that
tests for the property, rather than defining a special language of patterns or whatever.

But this thene has many vaiations. A morenteresting xample is theSpy systen monitoring

facility in the 940 system at Berkeley [10], which allows an untrusted user program to plant
patches in the code of the supervisor. A patch is coded in machine language, but the operation
that installs it checks that it does no wild branches, contains no loops, is not too long, and stores
only into a designated region of memory dedicated to collecting statistics. Using the Spy, the
student of the system can fine-tune his measurements without any fear of breaking the system, or
even perturbing its operation much.

Another unusual example that illustrates the power of this methodFREIRURNmMechansm

in the Cd time-shaing systen for thecbc 6400 [30]. From any supervisor céliit is possibleto
make another on€F that execués exadly like C in the normal case, but sends control to a
designated failure handler@f gives an error return. THeF operation can do more (for example,
it can extend files on afast, limited-capacity storage device to larger files on aslowe device),

but it runs as fast &in the (hopefully) normal case.

It may be better to have a specialized language, however, if it is more amenable to static analysis
for optimization. This is a major criterion in the design of database query languages, for example.

» Leawe it to thedlient. As long as it is cheap to pass control back and forth, an interface can
combinesimpliaty, flexibility and high peformance by solving only ongroblem and leaving

the rest to the client. For example, many parsers confine themselves to doing context free
recogntion and all client-suppliel “semantic routines’ to record theresults of theparse This

has obvious advantages over always building a parse tree that the client must traverse to find out
what happened.

The success of monitors [20, 25] as a synchronization device is partly due to the fact that the
locking and signéing mechanisms do vey little, leaving dl the real work to theclient prograns

in themonitor proedures. This simplifies themonitor implenentation and keeps it fast; if the

client needs buffer allocation, resource accounting or other frills, it provides these functions itself
or cdls othe library facilities, and pgs for wha it needs. Thefact tha monitors giveno @ntrol

over the scheduling of processes waiting on monitor locks or condition variables, often cited as a
drawback, is actually an advantage, since it leaves the client free to provide the scheduling it
needs (using a separate condition variable for each class of process), without having to pay for or
fight with somebuilt-in mechanism thd is unlikdy to do theright thing.

The Unix system [44] encourages the building of small programs that take one or more character
streams as input, produce one or more streams as output, and do one operation. When this style is
imitated properly, each program has a simple interface and does one thing well, leaving the client
to combine a set of such programs with its own code and achieve precisely the effect desired.
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Theend-to-endslogan discussed in section 3 is another corollary of keeping it simple.

2.3 Continuity

There is aconstant tension béween the desireto improvea design and theneed for staility or
continuity.

» Keep basic interfaces stabince an interface embodies assumptions that are shared by more
than onepat of asysten, and somémes by agreat many pats, it is vey desirable not to tiange

the interface. When the system is programmed in a language without type-checking, it is nearly
out of the quesbn o change any puid interface becauséd¢re 5 no way of tacking down is

clients and checking for dementary incompaibilitie s, sut as disagreements on thenumbe of
arguments or confusion between pointers and integers. With a language like Mesa [15] that has
complete type-checking and language support for interfaces, it is much easier to change an
interface without causing the system to collapse. But even if type-checking can usually detect
that an assumption no longer holds, a programmer must still correct the assumption. When a
system grows to more than 250K lines of code the amount of change becomes intolerable; even
when there is no doubt about what has to be done, it takes too long to do it. There is no choice
butto break bhe syseminto smaller pieces redted only by interfaces hat are sable for years.
Traditionally only the interface defined by a programming language or operating system kernel is
this stéle.

» Keep a place to stantlyou do have to change interfaces. Here are two rather different
examples to illustrée this idex Oneis thecompdibility package, which implements an old

interface on op of a new sysim This allows progrars that depend onhie old interface b

continue working. Many new operating systems (including Tenex [2] and Cal [50]) have kept old
software usable by simulating the supervisor calls of an old syst&Ps {0 and Scope,
respectively). Usually these simulators need only a small amount of effort compared to the cost
of reimplementing the old sofivare, andtiis nothard b getaccepdble perfornance. Ata

different level, thaBm 360/370 systems provided emulation of the instruction sets of older
machines like the 1401 and 7090. Taken a little further, this leads to virtual machines, which
simulate (severakopies of) a mchne on he machne itself [9].

A rather different example is the world-swap debugger, which works by writing the real memory
of the target system (the one being debugged) onto a secondary storage device and reading in the
debugging system in its place. The debugger then provides its user with complete access to the
target world, mapping each target memory address to the proper place on secondary storage.
With care it is possible to swap the target back in and continue execution. This is somewhat
clumsy, but it allows very low levels of a system to be debugged conveniently, since the
debugger does not depend on the correct functioning of anything in the target except the very
simple world-swap mechanism. It is especially useful during bootstrapping. There are many
variations. For instance, the debugger can run on a different machine, with delmall

debugging’ nub in the target world that can interieadWordWriteWord StopandGo

commands arriving from the debugger over a network. Or if the target is a process in a time-
sharing system, the debugger can run in a different process.
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2.4 M aking implementations wor k

Perfection must be reached by degrees; she requires the slow hand of time.
(Voltaire)

 Plan to throw one awayou will anyhow [6]. If there is anything new about the function of a
systemthefirst implementation will have to be redone completely to achieve a satisfactory (that
is, acceptably small, fast, and maintainable) result. It costs a lot less if you plan to have a
prototype Unfortundely, someimes two prototype ae nesded, especidly if thereis alot of

innovation. If you are lucky you can copy a lot from a previous system; thus Tenex was based on
thesDs 940[2]. This can even work even if the previous system was too grandiose; Unix took
many ideas from Multics [44].

Even when an implementation is successful, it pays to revisit old decisions as the system
evolves; in paticular, optimizations for paticular propeties of theload or theenvironment
(memory siz, for example) often cometo befar from optima.

Give thy thoughts no tongue,
Nor any unproportioid thought his act.

» Keep secratof the implementation. Secrets are assumptions about an implementation that
client programs are not allowed to make (paraphrased from [5]). In other words, they are things
that can change; the interface defines the things that cannot change (without simultaneous
changes to both implementation and client). Obviously, it is easier to program and modify a
system if its parts make fewer assumptions about each other. On the other hand, the system may
not be easier to design—it’s hard to design a good interface. And there is a tension with the
desire not to hide power.

An efficient program is an exercise in logical brinkmanship. (E. Dijkstra)

There is another danger in keeping secrets. One way to improve performaroerisagethe

number of assumptions that one part of a system makes about another; the additional
assumptions often allow less work to be done, sometimes a lot less. For instance, if a set of size
is known to be sorted, a membership test takes time tdper than n. This technique is very
important in the design of algorithms and the tuning of small modules. In a large system the
ability to improve each part separately is usually more important. Striking the right balance
remans an art.

O throw away the worser part of it,
And live the purer with the other half. (Il iv 157)

« Divide and conquerThis is a well known method for solving a hard problem: reduce it to
several easier ones. Theresulting progran is usudly recursive When resoures are limited the
method takes a slightly different form: bite off as much as will fit, leaving the rest for another
iteration.

A good example is in the Alto’s Scavenger program, which scans the disk and rebuilds the index
and directory structures of the file system from the file identifier and page number recorded on
each dsk seabr [29]. A recentewrite of this programhas a phase which it builds a daa

structure in main storage, with one entry for each contiguous run of disk pages that is also a
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contiguous set of pages in a file. Normally files are allocated more or less contiguously and this
strudureis not too lage If the disk is bally fragmented, howerer, thestrudurewill not fit in

storage. When this happens, the Scavenger discards the information for half the files and
continues with theothe hdf. After theindex for these files is réuilt, theproaess is r@eated for

the other files. If necessary the work is further subdivided; the method fails only if a sirigle file
index won't fit.

Another interesting example arises in the Dover raster printer [26, 53], which scan-converts lists
of charactrs and reeinglkes nto a largem x n array of bits, in which ones correspond to spots of
ink on the paper and zeros to spots without ink. In this pmat&300 anda=4200, so the array
contans fourten million bits and is too lageto storein manory. Theprinter consume bits

faster than the available disks can deliver them, so the array cannot be stored on disk. Instead, the
entire array is divided into 164200 bit slices called bands, and the printer electronics contains
two one-band buffers. The chaerstand reeingkes are soed nto buckes, one for each band;
bucket receives the objects that start in the corresponding baarmdc&nversion proceeds by

filling one band buffe from its buket, and then playing it out to theprinte and zroing it while

filling the othe buffer from thenext budet. Objects thd spill ove theedgeof oneband ae

added to the next bucket; this is the trick that allows the problem to be subdivided.

Sometimes it is convenient to artificially limit the resourcegbgntizingit in fixed-size units;

this simplifies bookkeeping and prevents one kind of fragmentation. The classical example is the
use of fixed-size pages for virtual memory, rather than variable-size segments. In spite of the
apparent advantages of keeping logically related information together, and transferring it

between main storage and backing storage as a unit, paging systems have worked out better. The
reasons for this are complex and have not been systematically studied.

And maks us rathe bear thoseills we hawe
Than fly to others that we know not of. (Il i 81)

» Use a good idea againstead of generalizing it. A speialized implementaion of theidea may

be nmuch nore effecive than a generadne. The dicusson of cachng bebw gives several

examples of applying this general principle. Another interesting example is the notion of
replicating data for reliability. A small amount of data can easily be replicated locally by writing

it on two or more disk drives [28]. When the amount of data is large or the data must be recorded
on separate machines, it is not easy to ensure that the copies are always the same. Gifford [16]
shows how to solve this problem by building replicated data on top of a transactional storage
system, which allows an arbitrarily large update to be done as an atomic operation (see section
4). The transactional storage itself depends on the simple local replication scheme to store its log
reliably. There is no circularity here, since only ithea is used twice, not the code. A third way

to usereplication in this ©ntext is to storethe commit record on s&eral machines [27].

The usernterface for he Sar office sysem[47] has a sl setof operaitons (ype €xt, move,

copy, delete, show properties) that apply to nearly all the objects in the system: text, graphics,

file folders and file drawers, record files, printers, in and out baskets, etc. The exact meaning of

an opeaation varies with theclass of objet, within thelimits of wha the use might find naurd.

For instance, copying a document to an out basket causes it to be sent as a message; moving the
endpoint of a line causes the line to follow like a rubber band. Certainly the implementations are
quite different in many cases. But the generic operations do not simply make the system easier to
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use;they represer view of whatoperatons are poskle and howhe implementaton of each
class of object should be organized.

2.5 Handling all the cases

Diseases desperate grown
By desperate appliance areliev'd
or not at all. (M vii 9)

Therebre this project
Should have a back or second, that might hold,
If this should blast in proof. (IV iii 151)

» Handle normal and worst cases separatdya ru, becausetie requrements for the wo are
quite different:

The normal case must be fast.
The worst case must make some progress.

In most systems it is all right to schedule unfairly and give no service to some of the processes,
or even to deadlock the entire system, as long as this evetddedeutomaicaly and doen’t

happen too often. The usual recovery is by crashing some processes, or even the entire system.
At first this sounds terrible, but one crash a week is usually a cheap price to pay for 20% better
performance. Of courséné sysem must have decengrror recovery (an agphion of he end-o-

end principle; see section 4), but that is required in any case, since there are so many other
possble causes of a crash.

Caches and his (sedton 3) are exaples of spedil treatnent for the norna case, buthere are

many others. The Interlisp-D and Cedar programming systems use a reference-counting garbage
collector [11] that has an important optimization of this kind. Pointers in the local frames or
activation records of procedures are not counted; instead, the frames are scanned whenever
garbage is collected. This saves a lot of reference-counting, since most pointer assignments are to
local variables. Thee are not vey many frames, so thdimeto s@n them is smdl and the

collector is nexly rea-time. Cedar goes father and doe not kep track of which local variables

contain pointers; instead, it assumes that they all do. This means that an integer that happens to
contain the address of an object which is no longer referenced will keep that object from being
freed. Measurements show that less than 1% of the storage is incorrectly retained [45].

Reference-counting makes it easy to have an incremental collector, so that computation need not
stop during collection. However, it cannot reclaim circular structures that are no longer
reachable. Cedar therefore has a conventional trace-and-sweep collector as well. This is not
suitable for real time applications, since it stops the entire system for many seconds, but in
interacive appicaions it can be used dumg coffee breaktreckim accunulated circular

structures.

Another problem with reference-counting is that the count may overflow the space provided for
it. This happens very sebm, because ogla few obgcts have rore than o or tree references.

It is simple to make the maximum value sticky. Unfortunately, in some applications the root of a
large structure is referenced from many places; if the root becomes sticky, a lot of storage will
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unexpectedly become permanent. An attractive solution is to hdgeeaflow count’ table,

which is a hash table keyed on the address of an object. When the count reaches its limit it is
reduced by half, the overflow count is increased by one, and an overflow flag is set in the object.
When the count reaches zero, the process is reversed if the overflow flag is set. Thus even with
as few as four bits there is room to count up to seven, and the overflow table is touched only in
the rare case that the count swings by more than four.

There are many cases when resources are dynamically allocated and freed (for example, real
memory in apaging systen), and somémes alditiond resoures are needed temporaily to free

an item (some table might have to be swapped in to find out where to write out a page). Normally
there Ba cushon (clean pagedatcan be freed wh no work), butin the worstcase e cushon

may disappear (all pages are dirty). The trick here is to keep a little something in reserve under a
mattress, bringing it out only in a crisis. It is necessary to bound the resources needed to free one
item; this determines the size of the reserve under the mattress, which must be regarded as a
fixed cost of the resource multiplexing. When the crisis arrives, only one item should be freed at
atime, so thatheentire resaveis devoted to thd job; this mg slow things down ot but it

ensures thd progress will bemade

Somdimes raically different straegies are gopropride in thenorma and worst eses. TheBravo

editor [24] uses a ‘mce dble’ to representhe docunentbeing edted. Thisis an array of pces,

pointers b stings of charaetrs sbred n a file; each pece cordins he file address offe first

character in the string and its length. The strings are never modified during normal editing.
Instead, when somcharactrs are deted, for exanple, the piece coraining the dekted

characters is split into two pieces, one pointing to the first undeleted string and the other to the
second. Characters inserted from the keyboard are appended to the file, and the piece containing
the insertion point is split into three pieces: one for the preceding characters, a second for the
inserted characters, and a third for the following characters. After hours of editing there are
hundreds of pieces and things start to bog down. It is then time for a cleanup, which writes a new
file containing al the charaatrs of he docunentin order. Now e piece &ble can be repked

by a single piece pointing to the new file, and editing can continue. Cleanup is a specialized kind
of garbage collection. It can be done in background so that the user doesn’'t have to stop editing
(though Bravo doesn’t do this).

3. Speed

This section describes hints for making systems faster, forgoing any further discussion of why
this is important. Bentley’s excellent book [55] says more about some of these ideas and gives
many others.

Neither a borrower, nor a lender be;
For loan oft loses both itself and friend,
And borrowing dulleth edge of husbandry.

* Split resouraesin a fixed way if in doubt, rather than sharing them. It is usually faster to

allocate dedcatkd resourcest is often faser © accesstem, and he behawr of the alocabr is

more predictable. The obvious disadvantage is that more total resources are needed, ignoring
multiplexing overheads, than if all come from a common pool. In many cases, however, the cost
of the extra resources is small, or the overhead is larger than the fragmentation, or both.
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For exanple, it is always faser o accessriformation in the regsters of a processondn D getit

from memory, even f the machne has a lgh-perfornance cache. &jisters have goén a bad

name because it can be tricky to allocate them intelligently, and because saving and restoring
them across proedurecalls may nggae thar speed advantages. But when prograns ae written

in the approved modern style with lots of small procedures, 16 registers are nearly always
enough for all the local variables and temporaries, so that allocation is not a problemsgéith

of registers arranged in a stack, saving is needed only when tharsumeessive calls without a
return [14, 39].

Input/output bannds, floding-point @proessors, ad simila speiaized computing deices are

other applications of this principle. When extra hardware is expensive these services are provided
by multiplexing asingleprocessor, but whe it is cheap, stdic alocation of cmmputing powe for

various purposes is worthwhile.

The Interlisp virtual memory system mentioned earlier [7] needs to keep track of the disk address
corresponding to each virtual address. This information could itself be held in the virtual memory
(as itis in several systems, including Pilot [42]), but the need to avoid circularity makes this
rather complicated. Instead, real memory is dedicated to this purpose. Unless the disk is
ridiculously fragmented the spacehus consurad s less han he space fortie code ¢ prevent

circularity.

» Use static analysisg you can; this is a generalization of the last slogan. Static analysis
discovers properties of the program that can usually be used to improve its performance. The
hooker is “if you can”; when a good static analysis is not possible, don’t delude yourself with a
bad one, but fall back on a dynamic scheme.

The remarks about registers above depend on the fact that the compiler can easily decide how to
alocate them, simply by putting thdéocal variables and tanporaies thee. Most mahines lack

multiple sets of registers or lack a way of stacking them efficiently. Good allocation is then much
more diffi cult, requiring an ehborage inter-procedurabnaysis that may notsucceed, anchiany

case must be redone each time the program changes. So a little bit of dynamic analysis (stacking
the registers) goes a long way. Of course the static analysis can still pay off in a large procedure
if the compiler is dever.

A program can read data much faster when it reads the data sequentially. This makes it easy to
predict wha daawill be needed next and read it ahead into abuffer. Often thedaa can be

allocated sequentially on a disk, which allows it to be transferred at least an order of magnitude
faster. These performance gains depend on the fact that the programmer has arranged the data so
thatit is accessed accordj o sone predctable patern, thatis, so hat static anay/sis is possble.

Many atempts hae been madeto analyze prograns dter thefact and optimiz thedisk

transfers, but as far as | know this has never worked. The dynamic analysis done by demand
paging is always at least as good.

Somekinds of stéic analysis eploit thefact tha someinvariant is mantained. A systen tha
depends on such facts may be less robust in the face of hardware failures or bugs in software that
falsify the invariant.

* Dynamic translatiorfrom a convenient (compact, easily modified or easily displayed)
representation to one that can be quickly interpreted is an important variation on the old idea of
compiling. Translating a bit at a time is the idea behind separate compilation, which goes back at
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leastto Fortran 2. Increrantl conpilers do t aubmaticaly when a sitement procedure or

whatever is changed. Mitchell investigated smooth motion on a continuum between the
convenient and the fast representation [34]. A simpler version of his scheme is to always do the
translation on demand and cache the result; then only one interpreter is required, and no
decsions are needed excdpt cache reglcenent

For example, an experimental Smalltalk implementation [12] uses the bytecodes produced by the
standard Smalltalk compiler as the convenient (in this case, compact) representation, and
translates a single procedure from byte codes into machine language when it is invoked. It keeps
a cache with room for a few thousand instructions of translated caddeFscheme to pay off,

the cache must be large enough that on the average a procedure is executettambésast

wheren is theratio of translation timeto execution timefor theuntranslaed code

The Gmachie stck cache [14] prodes a rdter differentexanple. In his device hstructions

are fethed nto an nstruction cacheas hey are baded, any operand addrelatts relative

the local frame pointer FP is converted into an absolute address, using the current value of FP
(which remains constant during execution of the procedure). In addition, if the resulting address
isin the range of addresses curtgnh the sack daa cache,lte operands changedd regster

mode; later execution of the instruction will then access the register directly in the data cache.
The FP value is concaénaed wih the instruction addressotform the key of he transhted

instruction in the cache, so that multiple activations of the same procedure will still work.

If thou didst ever hold me in thy heart. (Vi 349)

» Cache answrs to expensive computations, rather than doing them over. By storing thefiriple [
X, f(x)] in an assoaitive sbre wih fandx as keys, we can retrieff&) with a lookup. This is

faster iff(x) is needed again before it gets replaced in the cache, which presumably has limited
capacity. How much faster depends on how expensive it is to coff)ute serious problem is

that whenf'is not functional (can give different results with the same arguments), we need a way
to invalidate or updata cache emny if the vale off(x) changes. Updating depends on an

equation of the formi(x + A) = g(x, A, f(x)) in which g is much cheapera conpute thanf. For
exanple,x might be an array of 1000 numbefthe sumof the array e¢tments, andA a new

value for one of them, that is, a painf. Theng(x, [i, v], sunm) issum -x, + V.

A cacle tha is too smt to hold dl the ‘active’ vaues will thrash, and if recomputingf is

expensive performance will suffer badly. Thus it is wise to choose the cache size adaptively,
making it bigger when the hit rate decreases and smaller when many entries go unused for a long
time.

The chsst exanple of cachmg is hardwarehat speeds up accessrhain siorage;its enties are
triples [Fetch,address, contents of address]. He¢échoperation is certainly not functional:
Fetchx) gives a different answer afi®toréx) has been done. Hence the cache must be updated
or invdidated after a store Virtual memory systens do &actly the samething; man storae

plays he rok of the cache, dik plys te roke of main siorage, andhe unt of transfer § the

page, segment or whatever.

But nearly every non-trivial system has more specialized applications of caching. This is
especidly true for interactive or real-time systens, in whid thebasic problem is to
incrementally update a complex state in response to frequent small changes. Doing this in an ad -
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hoc way is extremely error-prone. The best organizing principle is to recompute the entire state
after each change but cache all the expensive results of this computation. A change must
invalidate atleastthe cache enies tatit rendersnvalid; if these aredo hard ¢ idenify

precisdy, it may invdidate moreentries & the price of morecomputing to restablish them. The
secretof successsito organze he cache sahat small changesrivalidate only a few enties.

For example, the Bravo editor [24] has a functimsplayLine(document, firstCharthat returns

the bitmap for theline of text in thedisplayed doament tha has documerifirstChar] as its first
characer. Italso retrnslastCharandlastCharUsedthe numbers of the last character displayed

on theline and thelast daracter examined in computing thebitmgp (theseare usudly not the

same, since it is necessary to look past the end of the line in order to choose the line break). This
function computes line breaks, does justification, uses font tables to map characters into their
raser pictures, et. There $ a cache wh an enty for eachiine currenly displayed on he screen,

and sometimes a few lines just above or below. An edit that changes chartctarghj

invalidates any cache emtfor which [firstChar .. lastCharUseldintersects [i .. j]. The display is
recomputed by

loop
(bitMap, lastChar,) := DisplayLine(document, firstChar Paint(bitMap);
firstChar := lastChar+ 1

end loop

The cal of DisplayLineis shortcircuited by usng the cache eny for [document, firstChgnf it

exists. At the end any cache entthat has nobeen usedsidiscardedthese enies are not

invalid, but they are no longer interesting because the line breaks have changed so that a line no
longer begins at these points.

The same idea can be applied in a very different setting. Bravo allows a document to be
structured into paragraphs, each with specified left and right margins, inter-line leading, etc. In
ordinary page layout all the information about the paragraph that is needed to do the layout can
be represented very compactly:

the number of lines;

the heght of eachilne (nornally all lines aretie sane heght);
any keep properties;

the pre and post leading.

In the usual case this can be encoded in three or four bytes. A 30 page chapter has perhaps 300
paragraphs, so about 1k bytes are required for all this data; this is less information than is
required to specify the characters on a page. Since the layout computation is comparable to the
line layout computation for a page, it should be possible to do the pagination for this chapter in
less time than is required to render one page. Layout can be done independently for each chapter.

Whatmakes hisidea work ¢ a cache offaragraph, ParagraphShagearagraph)] entries. If

the paragraph is edited, the cache entry is invalid and must be recomputed. This can be done at
thetime of theedit (reasonable if the paragraph is on thesaeen, as is usudly the case, but not so

good for a global substitute), in background, or only when repagination is requested.
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For the apparel oft proclaims the man.

» Use hintgo speed up normal execution. A hint, like a cache entry, is the saved result of some
computation. It is different in two ways: it may be wrong, and it is not necessarily reached by an
associative lookup. Because a hint may be wrong, there must be a way to check its correctness
before taking any unrecoverable action. It is checked againstutig, information that must be
correct but can be optimized for this purpose rather than for efficient execution. Like a cache
entry, the purpose of a hint is to make the system run faster. Usually this means that it must be
correct nearly all the time.

For exanple, in the Alto [29] and Hlot [42] operaiting syseéns each fie has a urgue dentfier,

and each disk page has a ‘label’ field whose contents can be checked before reading or writing
the data without slowing down the data transfer. The label contains the identifier of the file that
confins he page andie nunber of hat page n the file. Page zero of eachli&is caled the

‘leader page’ and contains, among other things, the directory in which the file resides and its
string name in that directory. This is the truth on which the file systems are based, and they take
greatpans o keep t correct

With only this information, however, there is no way to find the identifier of a file from its name

in a directory, or to find the disk address of pagxcept to search the entire disk, a method that
works butis unaccepbly slow. Each systmtherefore naintains hints to speed uphese

operations. Both systems represent directory by a file that contains triples [string name, file
identifier, address of first page]. Each file has a data structure that maps a page number into the
disk address oht page. The Ab uses aihk in each &bel that points o the nextlabel; this

makes it fast to g& from payen to pagen + 1. Pilot use a B-tree tha implements themap

directly, taking advantage of the common case in which consecutive file pages occupy
consecutive disk pages. Information obtained from any of these hints is checked when it is used,
by checking the label or reading the file name from the leader page. If it proves to be wrong, all
of it can bereconstruded by s@nning thedisk. Similaly, the bit teble tha keeps track of free

disk pages is a hint; the truth is represented by a special value in the label of a free page, which is
checked when thepageis dlocated and bdore thelabd is ovewritten with afile identifier and

page number.

Another example of hints is the store and forward routing first used in the Arpanet [32]. Each

node in the network keeps a table that gives the best route to each other node. This table is
updated by periodic broadcasts in which each node announces to all the other nodes its opinion
about the quality of its links to its neighbors. Because these broadcast messages are not
synchronized and are not guaranteed to be delivered, the nodes may not have a consistent view at
any instant. The truth in this case is that each node knows its own identity and hence knows

when t receves a packedesined for iself. For the rest the routng doestie besit can;when

things aen't changing too fat it is nerly optimd.

A more curious example is the Ethernet [33], in which lack of a carrier signal on the cable is used
as ahint tha a packet can besent. If two sende's t&ke the hint simultaneously, thee is acollision

that both can detect; both stop, delay for a randomly chosen interval, and then try again. If
sucessivecallisions ocur, this is t&en as a hint tha thenumbe of sende's is Z, and each

sender sets the mean of its random delay intervdlttm@s its initial value. This ‘exponential

backoff’ ensures that the net does not become overloaded.
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A very different gpplication of hints speds up &ecution of Smditalk prograns [12]. In

Smalltalk the code executed when a procedure is called is determined dynamically by the type of
the first argument. ThuBrint(x, forma) invokes thePrint procedure that is part of the typexof

Sine Smdltalk has no delarations, thetypeof x is not known statically. Instead, each object has

a pointer to a table of pairs [procedure name, address of code], and when this call is executed,
Print is looked upx's table(l have normalized the unusual Smalltalk terminology and syntax,

and oversimplified a bit). This is expensive. It turns out that usually the typis tiesaneas it

was last time So thecodefor thecall Print(x, forma) can be arranged like this:

push format push x;
push lastType call lastProc

and eachPrint procedure begins with
lastT := Pop(); x := Pop(); t := type ofx;
if t # lastT then LookupAndCall, “Print”) else the body of the procedusad if.

HerelastTypeandlastProcare immediate vaues storel in thecode Theideais tha
LookupAndCalkhould store the type &fand the code address it finds back intoléséTypeand
lastProcfields. If thetypeis thesame next time, theprocdureis clled directly. Measurements

show that this cache hits about 96% of the time. In a machine with an instruction fetch unit, this
scheme has the nice property that the transfiastBroccan proceed dtll speedthus whenhe

hint is correct the call is as fast as an ordinary subroutine call. The checkastT can be

arranged so that it normally does not branch.

The same idea n a diferentguise s used in the S1 [48], which has an exa bi for each

instruction in itsinstruction cache. Itlears be bi when he instruction isloaded, setit when he
instruction causes a branch to be taken, and uses it to choose the path that the instruction fetch
unit follows. If the prediction turns out to be wrong, it changes the bit and follows the other path.

* When in doubt, use brute fordgspecally as he costof hardware deates, a stightforward,

easly anayzed saltion that requres a ¢t of specal-purpose comuting cyckes s beter than a

complex, poorly characterized one that may work well if certain assumptions are satisfied. For
example, Ken Thompson’s chess machine Belle relies mainly on special-purpose hardware to
generate moves and evaluate positions, rather than on sophisticated chess strategies. Belle has
won theworld coompute chess diampionships seera times. Anothe instrudive example is the

sucess of pesond computes ove time-shaing systens; thelatter includemud more

cleverness and have many fewer wasted cycles, but the former are increasingly recognized as the
most ost-dfective way to do inteactive computing.

Even an asymptotically faster algorithm is not necessarily better. There is an algorithm that
multiplies twon x n marices faste than O(n*°), but theconstant factor is prohibitive On amore
mundane note, the 7040 Watfor compiler uses linear search to look up symbols; student
prograns have so fev symbols thathe seaup timefor abeter dgorithm @n't be recovered.

» Compute in backgrounathen possible. In an interactive or real-time system, it is good to do as
little work as possible before responding to a request. The reason is twofold: first, a rapid
response is better for the users, and second, the load usually varies a great deal, so there is likely
to be idle processor time later in which to do background work. Many kinds of work can be
deferred to background. The Interlisp and Cedar garbage collectors [7, 11] do nearly all their
work this way. Many paging systems write out dirty pages and prepare candidates for
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replacement in background. Electronic mail can be delivered and retrieved by background
processes, since delivery within an hour or two is usually acceptable. Many banking systems
consolidate the data on accounts at night and have it ready the next morning. These four ex-
amples have successively less need for synchronization between foreground and background
tasks. As the amount of synchronization increases more care is needed to avoid subtle errors; an
extreme example is the on-the-fly garbage collection algorithm given in [13]. But in most cases a
simple producer-consumer relationship between two otherwise independent processes is possible.

» Use batch processirifjpossible. Doing things incrementally almost always costs more, even
aside fromthe factthat disks anddpes work nuch beter when accessed sequely. Also,

bach proessing pemits mud simple error recovery. TheBank of Ameica has an interactive

system that allows tellers to record deposits and check withdrawals. It is loaded with current
account balances in the morning and does its best to maintain them during the day. But early the
nextmorning the on-ine datis discarded and repted wih the resuls of nights batch run. This
design makes it much easier to meet the bank’s requirements for trustworthy long-term data, and
there is no significant loss in function.

Bewary then; best safgy lies in fear. (I'iii 43)

» Safety firstin dlocating resoures, striveto avoid disate rather than to atain an optimum.

Many years of experience with virtual memory, networks, disk allocation, database layout, and
other resource allocation problems has made it clear that a general-purpose system cannot
optimize the use of resources. On the other hand, it is easy enough to overload a system and
drastically degrade the service. A system cannot be expected to function well if the demand for
any resource exceedsd-thirds of he capady, unless he load can be charaaized extemely

well. Fortunately hardware is cheap and getting cheaper; we can afford to provide excess
capacdiy. Menory is espeally cheap, wtth is espeally fortunae since b somne extent plenty

of memory can allow other resources like processor cycles or communication bandwidth to be
utilized morefully.

The sad truth about optimization was brought home by the first paging systems. In those days
memory was very expenge, and peog had vsions of squeerg the most out of every bye by

clever optimization of theswagping: putting réated proedures on thesame page, predicting the

next pages to be referenced from previous references, running jobs together that share data or
code, etc. No one ever learned how to do this. Instead, memory got cheaper, and systems spent it
to provide enough cushion for simple demand paging to work. We learned that the only

important thing is to avoid thrashing, or too much demand for the available memory. A system

tha thrashes spends dl its time waiting for thedisk.

The only systems in which cleverness has worked are those with very well-known loads. For
instance, the 360/56PL sysem [4] has he sane size workspace for each user and omn

system code for all of them. It makes all the system code resident, allocates a contiguous piece of
disk for each user, and overlaps a swap-out and a swap-in with each unit of computation. This
works fine.

The nicest thing about the Alto is that it doesn’t run faster at night. (J. Morris)

A similar lesson was learned about processor time. With interactive use the response time to a
demand for computing is important, since a person is waiting for it. Many attempts were made to
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tune the processor scheduling as a function of priority of the computation, working set size,
memory loading, past history, likelihood of an 1/0O request, etc.. These efforts failed. Only the
crudest parameters produce intelligible effects: interactive vs. non-interactive computation or
high, foreground and background priority levels. The most successful schemes give a fixed share
of the cycks b each pb and doit allocate more than 100%; unused cycles are wasted or, with

luck, consumed by a background job. The natural extension of this strategy is the personal
computer, in which each user has kastone processonthimself.

Give every marhy ear, butfew thy voice;
Take each mas censure, but reserve thy judgment.

» Shed loado control demand, rather than allowing the system to become overloaded. This is a
corolary of the prevous ruk. There are rmny ways b shed bad. An nteracive sysemcan

refusenew uses, or &en deny sevice to existing one. A memory manager can limit the jobs

being served so that all their working sets fit in the available memory. A network can discard
packes. If it comes 1 the worst the sysemcan crash andat over nore prudery.

Bob Morris suggested that a shared interactive system should have a large red button on each
terminal. The user pushes the button if he is dissatisfied with the service, and the system must
either improve he servce or hrow the user off;it makes an equéble chote over a suftienty

long period. The idea is to keep people from wasting their time in front of terminals that are not
delivering a useful amount of service.

The orpinal speciicaion for he Arpane{32] was hat a packeticceptd by he netis

guaranteed to be delivered unless the recipient machine is down or a network node fails while it
is holding the packet. Thisrned out to be a bad idea. This rule makes it very hard to avoid
deadlock in theworst @se, and d@tempts to obg it lead to many complications and indficiencies

even in thenorma case. Furthemore theclient does not badfit, since it still has to del with

packets lost by host or network failure (see section 4 on end-to-end). Eventually the rule was
abandoned. The Pup internet [3], faced with a much more variable set of transport facilities, has
always ruthlessly discarded packets at the first sign of congestion.

4. Fault-tolerance

The unavoidable price of reliability is simplicity. (C. Hoaré

Making a system reliable is not really hard, if you know how to go about it. But retrofitting
reliability to an existing design is vey difficult.

This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

» End-to-endError reovery a theapplication level is asolutdy necessay for ardliable systen,
and any other error detection or recovery is not logically necessary but is strictly for
performance. This observation was first made by Saltzer [46] and is very widely applicable.

For example, consider the operation of transferring a file from a file system on a disk attached to
machine A, to another file system on another disk attached to machine B. To be confident that
the right bits are really on’8disk, you must read the file from B’s disk, compute a checksum of
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reasonable length (say 64 bits), and find that it is equal to a checkshenbits on A’s disk.

Checking the transfer from A’s disk to A’s memory, from A over the network to B, or from B’s
memory to B’s disk is not sufficient, since there might be trouble at some other point, the bits
might be clobbered while sitting in memory, or whatever. These other checks are not necessary
either, shce T the end-b-end check fas the enire transfer can be repeat Of coursehisis a lot

of work, and if errors are frequent, intermediate checks can reduce the amount of work that must
berepeated. But this is stritty a question of peformance, irrelevant to therdiability of the file

transfer. Indeed, in the ring based system at Cambridge it is customary to copy an entire disk
pack of 58 MBytes with only an end-to-end check; errors are so infrequent that the 20 minutes of
work very seldom needs to be repeated [36].

Many uses of hints are applications of this idea. In the Alto file system described earlier, for
exanple, the check oftie label on a dsk seabr before wriing the secbr ensureshiat the disk
address forlte write is correct Any precaubns gken b make it more likely that the addresssi
correct may beimportant, or even critical, for peformance, but the do not dfect therdiability

of thefile systen.

The Pup internet [4] adopts the end-to-end strategy at several levels. The main service offered by
the network is transport of a data packet from a source to a destination. The packet may traverse
a number of networks with widely varying error rates and other properties. Internet nodes that
store and forward packets may run short of space and be forced to discard packets. Only rough
estimates of the best route for a packet are available, and these may be wildly wrong when parts
of the network fail or resume operation. In the face of these uncertaintiespth@d?net

provides good service with a simple implementation by attempting only “best efforts” delivery.

A packet may be lost with no notice to the sender, and it may be corrupted in transit. Clients
must provide their own error control to deal with these problems, and indeed highédievel
protocols do provide more complex services such as reliable byte streams. However, the packet
transport does attempt to report problems to its clients, by providing a modest amount of error
control (a 16-bit checksum), notifying senders of discarded packets when possible, etc. These
services arentended b improve perfornance n the face of unreéble communicaion and

overloading; since they too are best efforts, they don’t complicate the implementation much.

There are two problems with the end-to-end strateiggt, it requires a cheap test for success.
Second, it can lead to working systems with severe performance defects that may not appear until
the system becomes operational and is placed under heavy load.

Remember thee?
Yea, from the table of my memory
r'll wipe away all trivial fond records,
All saws of books, all forms, all pressures past,
That youth and observation copied there;
And thy commandment all alone shall live
Within the book and volume of my brain,
Unmix’d with baser matter (Iv97)

* Log updateso record the truth about the state of an object. A log is a very simple data structure
tha can berdiably written and read, and cheaply forced out onto disk or othestable storaye tha
can survive a crash. Because it is append-only, the amount of writing is minimized, and it is
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fairly easy ¢ ensureltat the log is valid no nmetter when a crash occurs.iftalso easy and cheap

to duplicate the log, write copies on tape, or whatever. Logs have been used for many years to
ensure that information in a data base is not lost [17], but the idea is a very general one and can
be used in ordinary file systems [35, 49] and in many other less obvious situations. When a log
holds the truth, the current state of the objeatary much like a hint (it isn’t exactly a hint
becausehere B no cheap wayotcheck is correchess).

To use the technique, record every update to an object as a log entry consisting of the name of
the update procedure and its arguments. The procedure nfuathbenal when gpplied to the

same arguments it must always have the same effect. In other words, there is no state outside the
argunent that affecs the operabn of he procedure. Thimeans hat the procedure chl

specified by the log entry can be re-executed later, and if the object being updated is in the same
state as when the update was first done, it will end up in the same state as after the update was
first done. By induction, this means that a sequence of log entries can be re-executed, starting
with the same objects, and produce the same objects that were produced in the original

executon.

For this to work, two requirements must be satisfied:
* The update procedure must be a true function:
Its result does not depend on any state outside its arguments.
It has no side effects, except on the object in whose log it appears.
» The arguments must balues one of:

Immediate vaues, sut as integers, strings, &. An immeliate vaue can bea
large thing, like an array or even a list, but the entire value must be copied into the
log entry.

References tammutableobjects.

Most objects of course are not immutable, since they are updated. However, a pagisidar

of an object is immutable; changes made to the object change the version. A simple way to refer
to an object version unambiguously is with the pair [object identifier, number of updates]. If the
object identifier leads to the log for that object, then replaying the specified number of log entries
yields the particular version. Of course doing this replay may require finding some other object
versions, but as long as each update refers only to existing versions, there won’t be any cycles
and this proess will taminate.

For example, the Bravo editor [24] has exactly two update functions for editing a document:

Replacéold: Interval, new Interval)
ChangePropertigwheae: Interval, what FormattingOp

An Intervalis a triple [document version, first character, last charactdfhriattingOpis a

function from properties to properties; a property mighitdde or leftMargin, and a
FormattingOpmight beleftMargin: = leftMargin + 10 oritalic: = true. Thus only two kinds of

log entries are needed. All the editing commands reduce to applications of these two functions.
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Beware
Of entrance to a quarrel, but, being in,
Bear’t that th’ opposed may beware of thee.

» Make actions atomic or restartabl&n atomic action (often calledteansactior) is one that

either completes or has no effect. For example, in most main storage systems fetching or storing
a word is atomic. The advantages of atomic actions for fault-tolerance are obvious: if a failure
occurs during the action it has no effect, so that in recovering from a failure it is not necessary to
deal with any of the intermediate states of the action [28]. Database systems have provided
atomidty for sometime [17], using dog to storegheinformation nesded to cmmplete or cancel

an action. The basic idea is to assign a unique identifier to each atomic action and use it to label
all the log entries associated with that action. A commit record for the action [42] tells whether it
is in progress, committed (logically complete, even if some cleanup work remains to be done), or
aborted (logically canceled, even if some cleanup remains); changes in the state of the commit
record are also recorded as log entries. An action cannot be committed unless there are log
entries for all of its updates. After a failure, recovery applies the log entries for each committed
action and undoes the updates for each aborted action. Many variations on this scheme are
possible [54].

For this to work, a log entry usually needs to be restartable. This means that it can be partially
executed any number of times before a complete execution, without changing the result;
someaimes sut an action is @lled ‘idempotent’. For example, storing a set of values into a set of
variables is a restartable action; incrementing a variable by one is not. Restartable log entries can
be applied to the current state of the object; there is no need to recover an old state.

This basic method can be used for any kind of permanent storage. If things are simple enough a
rather distorted version will work. The Alto file system described above, for example, in effect
uses the disk labels and leader pages as a log and rebuilds its other data structures from these if
necessary. As in most file systems, it is only the file allocation and directory actions that are
atomic; the file system does not help the client to make its updates atomic. The Juniper file
system [35, 49] goes much further, allowing each client to make an arbitrary set of updates as a
single atomic action. It uses a trick known as ‘shadow pages’, in which data pages are moved
from thelog into thefiles simply by tanging thepointes to then in the B-tree tha implements

thema from file addresses to disk ddresses; this trik was first use in theCd system [50].
Cooperating clients of an ordinary file system can also implement atomic actions, by checking
wheter recoverys needed before each accesa file; when t is they carry outhe enties in

specially named log files [40].

Atomic actions are not trivial to implement in general, although the preceding discussion tries to
show that they are not nearly as hard as their public image suggests. Sometimes a weaker but
cheaper method will do. The Grapevine mail transport and registration system [1], for example,
maintains a replicated data base of names and distribution lists on a large number of machines in
a nationwide network. Updates are made at one site and propagated to other sites using the mail
system itself. This guarantees that the updates will eventually arrive, but as sites fail and recover
and the network partitions, the order in which they arrive may vary greatly. Each update message
is time-stamped, and the latest one wins. After enough time has passed, all the sites will receive
all the updates and will all agree. During the propagation, however, the sites may disagree, for

Hints for Conpute Systen Design July 1983 23



example about whether a person is a member of a certain distributiondisto&asional
disagreements and delays are not very important to the usefulness of this particular system.

5. Conclusion

Most humbly do | take my leave, my lord.

Such a collection of good advice and anecdotes is rather tiresome to read; perhaps it is best taken
in small doses at bedtime. In extenuation | can only plead that | have ignored most of these rules
at least once, and nearly always regretted it. The references tell fuller stories about the systems or
techniques that | have only sketched. Many of them also have more complete rationalizations.

All the slogans are collected in Figure 1 near the beginning of the paper.
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