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Abstract

Studying the design and implementation of a number of computer has led to some general hints
for system design. They are described here and illustrated by many examples, ranging from

�

hardware such as the Alto and the Dorado to application programs such as Bravo and Star.

1. Introduction

Designing a computer system is very different from designing an algorithm:

The external interface (that is, the requirement) is less precisely defined, more complex, and
more subject to change.�

The system has much more internal structure, and hence many internal interfaces.

The m
�

easure of success is much less clear.

The designer usually finds himself floundering in a sea of possibilities, unclear about how one
choice will limit his freedom to make other choices, or affect the size and performance of the
entire system. There probably isn’t a ‘best’ way to build the system, or even any major part of it;
much more important is to avoid choosing a terrible way, and to have clear division of
responsibilities among the parts.�

I have designed and built a number of computer systems, some that worked and some that didn’t.
I have also used and studied many other systems, both successful and unsuccessful. From this

�

experience come some general hints for designing successful systems. I claim no originality for
them; most are part of the folk wisdom of experienced designers. Nonetheless, even the expert

	

often forgets, and after the second system [6] comes the fourth one.

Disclaimer: These are not
novel (with a few exceptions),


foolproof recipes,
�

laws of system design or operation,
preci� sely formulated,
consistent,
always appropriate,
approved by all the leading experts, or
guaranteed to work.

                                                
1 This paper was originally presented at the. 9th ACM Symposium on Operating Systems Principles and appeared in
Op
�

erating Systems Review 15


,�  5, Oct. 1983, p 33-48. The present version is slightly revised.
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They are just hints. Some are quite general and vague; others are specific techniques which are
more widely applicable than many people know. Both the hints and the illustrative examples are
necessarily oversimplified. Many are controversial.


I have tried to avoid exhortations to modularity, methodologies for top-down, bottom-up, or
iterative design, techniques for data abstraction, and other schemes that have already been widely

�

disseminated. Sometimes I have pointed out pitfalls in the reckless application of popular
methods for system design.

The
�

 hints are illustrated by a number of examples, mostly drawn from systems I have worked on.
They range from hardware such as the Ethernet local area network and the Alto and Dorado
personal computers, through operating systems such as the � SDS

�  940 and the Alto operating
system and programming systems such as Lisp and Mesa, to application programs such as the
Bravo editor and the Star office system and network servers such as the Dover printer and the
Grapevine mail system. I have tried to avoid the most obvious examples in favor of others which
show unexpected uses for some well-known methods. There are references for nearly all the
specific examples but for only a few of the ideas; many of these are part of the folklore, and it
would take a lot of work to track down their multiple sources.

And these few precepts in thy memory
Look thou character.

�

It seemed appropriate to decorate a guide to the doubtful process of system design with
quotations from Hamlet. 

�
Unless otherwise indicated, they are taken from Polonius

�
’ advice to

Laertes (I iii 58-82). Some quotations are from other sources, as noted. Each one is intended to
apply to the text which follows it.

Each hint is summarized by a slogan that when properly interpreted reveals the essence of the
�

hint. Figure 1 organizes the slogans along two axes:

Why it helps in making a good system: with functionality (does it work?), speed (is it fast
�

enough?), or fault-tolerance (does it keep working?).

Where in the system design it helps: in ensuring completeness, in choosing interfaces, or in
devising implementations.

Fat lines connect repetitions of the same slogan, and thin lines connect related slogans.

The body of the paper is in three sections, according to the 
�

why�  he
�

adings: functionality (section
2), speed (section 3), and fault-tolerance (section 4).

2. Functionality

The most important hints, and the vaguest, have to do with obtaining the right functionality from
a system, that is, with getting it to do the things you want it to do. Most of these hints depend on
the notion of an

	
 interface tha

	
t separates an implementation of some abstraction from the clients

who use the abstraction. The interface between two programs consists of the set of assumptions
that each programmer needs to make about the other program in order to demonstrate the

	

correctness of his program (paraphrased from [5]). Defining interfaces is the most important part
of system design. Usually it is also the most difficult, since the interface design must satisfy three
conflicting requirements: an interface should be simple, it should be complete, and it should
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admit a sufficiently small and fast implementation. Alas, all too often the assumptions embodied
in an interface turn out to be misconceptions instead. Parnas’ classic paper [38] and a more recent
one on device interfaces [5] offer excellent practical advice on this subject.

The main reason interfaces are difficult to design is that each interface is a small programming
�

language: it defines a set of objects and the operations that can be used to manipulate the objects.
Concrete syntax is not an issue, but every other aspect of programming language design is
present. Hoare’s hints on language design [19] can thus be read as a supplement to this paper.�

2.1 Keep it simple
�

Perfection is reached not when there is no longer anything to add,
�

but when there is no longer anything to take away.  (A. Saint-Exupery)
�

Those friends thou hast, and their adoption tried,
Grapple them unto thy soul with hoops of steel;
But do not dull thy palm with entertainment
Of each new-hatch’d unfledg’d comrade.

�

• Do one thing at a time, and do it well. An interface should capture the minimum � essentials of an
abstraction. Don’t generalize; generalizations are generally wrong.

          Why? Func
�

tionality
Does it work?

�
Speed

�

Is it fast enough?
�

Fault-tole
�

rance
Does it keep working?

�

Wh
�

ere?

Completeness Separate normal and
    worst case

Shed load
End-to-end
Safety first

End-to-end

Interface Do one thing well:
        Don’t generalize
        Get it right
    Don’t hide power
    Use procedure arguments
    Leave it to the client
Keep basic interfaces stable
Keep a place to stand

Make it fast
Split resources
Static analysis
Dynamic translation

End-to-end
Log updates
Make actions atomic

 

Implementation Plan to throw one away
Keep secrets
Use a good idea again

�

Divide and conquer
�

Cache answers
Use hints        

�

Use brute force
�

Compute in background
Batch processing

�

Make actions atomic
Use hints

�

Figure 1: Summary of the slogans
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We are faced with an insurmountable opportunity.  (W. Kelley)

When an interface undertakes to do too much its implementation will probably be large, slow and
!

complicated. An interface is a contract to deliver a certain amount of service; clients of the
interface depend on the contract, which is usually documented in the interface specification.
The

�
y also depend on incurring a reasonable cost (in time or other scarce resources) for using the

interface; the definition of ‘reasonable’ is usually not documented anywhere. If there are six
levels of abstraction, and each costs 50% more than is ‘reasonable’, the service delivered at the
top will miss by more

	
 than a factor of 10.

KISS: Keep It Simple, Stupid.(Anonymous)

If in doubt, leave if out.
"

(Anonymous)

Exterminate features. (C. Thacker)

On the other hand,

Everything should be made as simple as possible, but no simpler.
#

(A. Einstein)

Thus, service must have a fairly predictable cost, and the interface must not promise more than�

the implementer knows how to deliver. Especially, it should not promise features needed by only
�

a few clients, unless the implementer knows how to provide them without penalizing others. A
better implementer, or one who comes along ten years later when the

$
 problem is better�

understood, might be able to deliver, but unless % the one you have can do so, it is wise to reduce
your aspirations.&

F
'

or example, PL
( /1 got into serious trouble by attempting to provide consistent meanings for a

)

large number of generic operations across a wide variety of data types. Early implementations
tended to handle all the

	
 cases ineffic iently, but even with the optimizing compilers of 15 years

la
*

ter, it is hard for the programmer to tell what will be fast and what will be slow [31]. A
language like Pascal or C is much easier to use, because every construct has a roughly constant
cost that is independent of context or arguments, and in fact most constructs have about the same
cost.

Of course, these observations apply most strongly to interfaces that clients use heavily, such as
virtual memory, files, display handling, or arithmetic. It is all right to sacrifice some performance+

for functionality in a seldom used interface such as password checking, interpreting user
commands, or printing 72 point characters. (What this really means is that though the cost must
still be predictable, it can be many times the minimum achievable cost.) And such cautious rules
don’t apply to research whose object is learning how to make better implementations. But since
research may well fail, others mustn’t depend on its success.�

Algol 60 was not only an improvement on its predecessors,
but also on nearly all its successors. (C. Hoare)

Examples of offering too much are legion. The Alto operating system [29] has an ordinary
read/write-n, -bytes interface to fi les, and was extended for Interlisp-D [7] with an ordinary paging
system that stores each virtual page on a dedicated disk page. Both have small implementations
(about 900 lines of code for files, 500 for paging) and are fast (a page fault takes one disk access
and has a constant computing cost that is a small fraction of the disk access time, and the client
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can fairly easily run the disk at full speed). The Pilot system [42] which succeeded the Alto OS
follows Multics and several other systems in allowing virtual pages to be mapped to file pages,
thus subsuming file input/output within the virtual memory system. The implementation is much

	

larger (about 11,000 lines of code) and slower (it often incurs two disk accesses to handle a page
fault and cannot run the disk at full speed). The extra functionality is bought at a high price.

�

This is not to say that a good implementation of this interface is impossible, merely that it is
hard. This system was designed and coded by several highly competent and experienced people.
Part of the problem is avoiding circularity: the file system would like to use the virtual memory,

-

but virtual memory depends on files. Quite general ways are known to solve this problem [22],
$

but
$

 they are tricky and easily lead to greater cost and complexity in the normal case.

And, in this upshot, purposes mistook
Fall’n on th’ inventors’ heads.  (V ii 387)

Anothe
.

r example illustrates how easily generality can lead to unexpected complexity. The Tenex
system [2] has the following innocent-looking combination of features:

It reports a reference to an unassigned virtual page by a trap to the user program.
�

A system call is viewed as a machine instruction for an extended machine, and any reference
it makes to an unassigned virtual page is thus similarly reported to the user program.

Large arguments to system calls, including strings, are passed by reference.
/

There is a system call CONNECT 
0

t
	
o obtain access to another directory; one of its arguments is

a string containing the password for the directory. If the password is wrong, the call fails after
a three second delay, to prevent guessing passwords at high speed.

CONNECT 
0

is implemented by a loop of the form

for 
1

i := 0 to
2

 Length(directoryPassword
3

) do
if directoryPassword[i] ≠ passwordArgument4 [i] th

2
en

Wait three seconds; return 
!

BadPassword
5

end if
end loop;
connect to directory; return Success

�

The following trick finds a password of length n,  in 64n,  tries on the average, rather than 128n
6
/2

)

(Tenex uses 7 bit characters in strings). Arrange the passwordArgument 4 so that its first character
is the last character of a page and the next page is unassigned, and try each possible character as
the first. If 

	
CONNECT 
0

reports BadPassword, the guess was wrong; if the system reports a
	

reference to an unassigned page, it was correct. Now arrange the � passwordArgument 4 so that its
second character is the last character of the page, and proceed in the obvious way.

This obscure and amusing bug went unnoticed by the designers because the interface provided by
�

a Tenex system call is quite complex: it includes the possibility of a reported reference to an
unassigned page. Or looked at another way, the interface provided by an ordinary memory%

re� ference instruction in system code is quite complex: it includes the possibility that an improper
reference will be reported to the client without any chance for the system code to get control first.
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An engineer is a man who can do for a dime
what any fool can do for a dollar. � (Anonymous)

At time
.

s, however, it’s worth a lot of work to make a fast implementation of a clean and
powerful interface. If the interface is used widely enough, the effort put into designing and�

tuning the implementation can pay off many times over. But do this only for an interface whose
	

importance is already known from existing uses. And be sure that you know how to make it fast.

For example, the BitBlt or RasterOp interface for manipulating raster images [21, 37] was
devised by Dan Ingalls after several years of experimenting with the Alto’s high-resolution
interactive display. Its implementation costs about as much microcode as the entire emulator for
the

	
 Alto’s standard instruction set and required a lot of skill and experience to construct. But the

performance is nearly as good as the special-purpose character-to-raster operations that preceded�

it, and its simplicity and generality have made it much easier to build display applications.

The Dorado m
�

emory system [8] contains a cache and a separate high-bandwidth path for fast
input/output. It provides a cache read or write in every 64 ns cycle, together with 500
MBits/second of I/O bandwidth, virtual addressing from both cache and I/O, and no special cases

 

for the microprogrammer to worry about. However, the implementation takes 850 MSI chips and
consumed several man-years of design time. This could only be justified by extensive prior
experience (30 years!) with this interface, and the knowledge that memory access is usually the
limiting factor in performance. Even so, it seems in retrospect that the high I/O bandwidth is not
worth the cost; it is used mainly for displays, and a dual-ported frame buffer would almost
certainly be better.

Finally, lest this advice seem too easy to take,
'

• Get it right. Ne
7

ither abstraction nor simplicity is a substitute for getting it right. In fact,
abstraction can be a source of severe difficulties, as this cautionary tale shows. Word processing
and office information systems usually have provision for embedding named fields in the
documents they handle. For example, a form letter might have ‘address’ and ‘salutation’ fields.
Usually a document is represented as a sequence of characters, and a field is encoded by

�

something like {name, : contents}. Among other operations, there is a procedure FindNamedField
�

tha
	

t finds the field with a given name. One major commercial system for some time used a
FindNamedField 

�
proc� edure that ran in time O(n, 2

8
), where n,  is the length of the document. This

remarkable result was achieved by first writing a procedure FindIthField to find the 
	

ith fie
	

ld
(which must take time O(n, ) if there is no auxiliary data structure), and then implementing
FindNamedField

�
(name, ) with the very natural program

for i := 0 to numbe, rofFields do
FindIthField

�
; if its name is name,  then exit

end loop

Once the (unwisely chosen) abstraction FindIthField is available, only a lively awareness of its
cost will avoid this disaster. Of course, this is not an argument against abstraction, but it is well
to be aware of its dangers.

	



H
�

ints for Computer System Design July 1983 7

2.2 Corollaries

The rule about simplicity and generalization has many interesting corollaries.

Costly thy habit as thy purse can buy,
But not express

5
’d in fancy; rich, not gaudy.

• Make it fast, rather than general or powerful. If it’s fast, the client can program the function it
	

wants, and another client can program some other function. It is much better to have basic
operations executed quickly than more powerful ones that are slower (of course, a fast, powerful
operation is best, if you know how to get it). The trouble with slow, powerful operations is that
the client who doesn’t want the power pays more for the basic function. Usually it turns out that

	

the powerful operation is not the right one.
	

Had I but time (as this fell sergeant, death,
�

Is strict in his arrest) O, I could tell you —
But let it be.  (V ii 339)

For example, many studies (such as [23, 51, 52]) have shown that programs spend most of their
'

time
	

 doing very simple things: loads, stores, tests for equality, adding one. Machines like the 801
[41] or the RI

9
SC [39] with instructions that do these simple operations quickly can run programs

faster (for the same amount of hardware) than machines like the VAX 
: with more general and

powerful instructions that take longer in the simple cases. It is easy to lose a factor of two in the�

running time of a program, with the same amount of hardware in the implementation. Machines�

with still more grandiose ideas about what the client needs do even worse [18].

To find the places where time is being spent in a large system, it is necessary to have
�

measurement tools that will pinpoint the time-consuming code. Few systems are well enough
understood to be properly tuned without such tools; it is normal for 80% of the time to be spent%

in 20% of the code, but 
�

a priori ; analysis or intuition usually can’t find the 20% with any
certainty. The performance tuning of Interlisp-D sped it up by a factor of 10 using one set of
effective tools [7].

• Don’t hide power. This slogan is closely related to the last one. When a low level of abstraction
allows something to be done quickly, higher levels should not bury this power inside something
m� ore general. The purpose of abstractions is to conceal undesirable properties; desirable ones�

should not be hidden. Sometimes, of course, an abstraction is multiplexing a resource, and this
necessarily has some cost. But it should be possible to deliver all or nearly all of it to a single


client with only slight loss of performance.

For example, the Alto disk hardware [53] can transfer a full cylinder at disk speed. The basic file
'

system [29] can transfer successive file pages to client memory at full disk speed, with time for
t

	
he client to do some computing on each sector; thus with a few sectors of buffering the entire

disk can be scanned at disk speed. This facility has been used to write a variety of applications,
ranging from a scavenger that reconstructs a broken file system, to programs that search files for
substrings that match a pattern. The stream level of the file system can read or write n,  bytes to or
from client memory; any portions of the 

�
n,  bytes that occupy full disk sectors are transferred at

full disk speed. Loaders, compilers, editors and many other programs depend for their
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pe� rformance on this ability to read large files quickly. At this level the client gives up the facility
to see the pages as they arrive; this is the only price paid for the higher level of abstraction.

	

• Use procedure arguments to provide flexibility in an interface. They can be restricted or
	

encoded in various ways if necessary for protection or portability. This technique can greatly
simplify an interface, eliminating a jumble of parameters that amount to a small programming
language. A simple example is an enumeration procedure that returns all the elements of a set
satisfying some property. The cleanest interface allows the client to pass a filter procedure that
tests for the property, rather than defining a special language of patterns or whatever.

	

But this theme has many variations. A more interesting example is the Spy system monitoring
facility in the 940 system at Berkeley [10], which allows an untrusted user program to plant

�

patches in the code of the supervisor. A patch is coded in machine language, but the operation�

that installs it checks that it does no wild branches, contains no loops, is not too long, and stores
	

only into a designated region of memory dedicated to collecting statistics. Using the Spy, the
student of the system can fine-tune his measurements without any fear of breaking the system, or
even perturbing its operation much.

Another unusual example that illustrates the power of this method is the FRETURN mechanism
in the Cal time-sharing system for the CDC

0
 6400 [30]. From any supervisor call C it is possible to

make another one � CF that executes exactly like C in the normal case, but sends control to a
designated failure handler if C gives an error return. The CF operation can do more (for example,
it c

�
an extend files on a fast, limited-capacity storage device to larger files on a slower device),

but it runs as fast as 
$

C in the (hopefully) normal case.

It may be better to have a specialized language, however, if it is more amenable to static analysis
�

for optimization. This is a major criterion in the design of database query languages, for example.
�

• Leave it to the client. As long as it is cheap to pass control back and forth, an interface can
combine simplicity, flexibility and high performance by solving only one problem and leaving
the rest to the client. For example, many parsers confine themselves to doing context free

	

recogni� tion a
	

nd call client-supplied “semantic routines”  to record the results of the parse. This
has obvious advantages over always building a parse tree that the client must traverse to find out

�

what happened.

The success of monitors [20, 25] as a synchronization device is partly due to the fact that the
�

locking and signaling mechanisms do very little, leaving all the real work to the client programs
in the

�
 monitor procedures. This simplifies the monitor implementation and keeps it fast; if the

client needs buffer allocation, resource accounting or other frills, it provides these functions itself
or calls other library facilities, and pays for what it needs. The fact that monitors give no control
over the scheduling of processes waiting on monitor locks or condition variables, often cited as a
drawback, is actually an advantage, since it leaves the client free to provide the scheduling it
needs (using a separate condition variable for each class of process), without having to pay for or


fight with some
�

 built-in mechanism that is unlikely to do the right thing.

The Unix system [44] encourages the building of small programs that take one or more character
streams as input, produce one or more streams as output, and do one operation. When this style is
imitated properly, each program has a simple interface and does one thing well, leaving the client
to combine a set of such programs with its own code and achieve precisely the effect desired.
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The end-to-end slogan discussed in section 3 is another corollary of keeping it simple.

2.3 Continuity
�

The
�

re is a constant tension between the desire to improve a design and the need for stability or
continuity.

• Keep basic interfaces stable. Since an interface embodies assumptions that are shared by more
tha

	
n one part of a system, and sometimes by a great many parts, it is very desirable not to change

the interface. When the system is programmed in a language without type-checking, it is nearly
	

out of the question to change any public interface because there is no way of tracking down its
clients and checking for elementary incompatibilities, such as disagreements on the number of
arguments or confusion between pointers and integers. With a language like Mesa [15] that has
complete type-checking and language support for interfaces, it is much easier to change an
interface without causing the system to collapse. But even if type-checking can usually detect
that an assumption no longer holds, a programmer must still correct the assumption. When a

	

system grows to more than 250K lines of code the amount of change becomes intolerable; even
when there is no doubt about what has to be done, it takes too long to do it. There is no choice
but

$
 to break the system into smaller pieces related only by interfaces that are stable for years.

Traditionally only the interface defined by a programming language or operating system kernel is
this sta

	
ble.

• Keep a place to stand if you do have to change interfaces. Here are two rather different
examples to illustrate this idea. One is the compatibility package, which implements an old
i

�
nterface on top of a new system. This allows programs that depend on the old interface to

continue working. Many new operating systems (including Tenex [2] and Cal [50]) have kept old
software usable by simulating the supervisor calls of an old system (TOPS-10 and Scope,
respectively). Usually these simulators need only a small amount of effort compared to the cost�

of reimplementing the old software, and it is not hard to get acceptable performance. At a
different level, the IB<

M 360/370 systems provided emulation of the instruction sets of older
machines like the 1401 and 7090. Taken a little further, this leads to virtual machines, which
simulate (several copies of) a machine on the machine itself [9].

A rather different example is the world-swap debugger, which works by writing the real memory
.

of the target system (the one being debugged) onto a secondary storage device and reading in the
debugging system in its place. The debugger then provides its user with complete access to the
target world, mapping each target memory address to the proper place on secondary storage.

	

With care it is possible to swap the target back in and continue execution. This is somewhat
!

clumsy, but it allows very low levels of a system to be debugged conveniently, since the
debugger does not depend on the correct functioning of anything in the target except the very
simple world-swap mechanism. It is especially useful during bootstrapping. There are many
variations. For instance, the debugger can run on a different machine, with a small + ‘tele-
debugging’ nub in the target world that can interpret ReadWord, WriteWord, Stop

�
 and Go

commands arriving from the debugger over a network. Or if the target is a process in a time-
sharing system, the debugger can run in a different process.
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2.4 Making implementations work

Perfection must be reached by degrees; she requires the slow hand of time.
(Voltaire)

• Plan to throw one away; you will anyhow [6]. If there is anything new about the function of a
system, the 

= first implementation will have to be redone completely to achieve a satisfactory (that
is, acceptably small, fast, and maintainable) result. It costs a lot less if you plan to have a

�

prototype� . Unfortunately, sometimes two prototypes are needed, especially if there is a lot of
innovation. If you are lucky you can copy a lot from a previous system; thus Tenex was based on
the

	
 SDS

�  940 [2]. This can even work even if the previous system was too grandiose; Unix took
many ideas from Multics [44].

Even when an implementation is successful, it pays to revisit old decisions as the system
�

evolves; in particular, optimizations for particular properties of the load or the environment
(memory size, for example) often come to be far from optimal.

  Give thy thoughts no tongue,
Nor any unproportion

>
’d thought his act.

• Keep secrets of the implementation. Secrets are assumptions about an implementation that
client programs are not allowed to make (paraphrased from [5]). In other words, they are things
that can change; the interface defines the things that cannot change (without simultaneous

	

changes to both implementation and client). Obviously, it is easier to program and modify a
system if its parts make fewer assumptions about each other. On the other hand, the system may
not be easier to design—it’s hard to design a good interface. And there is a tension with the


desire not to hide power.

An efficient program is an exercise in logical brinkmanship. 
?

(E. Dijkstra)

There is another danger in keeping secrets. One way to improve performance is to 
�

increase the
number of assumptions that one part of a system makes about another; the additional
assumptions often allow less work to be done, sometimes a lot less. For instance, if a set of size n,

is known to be sorted, a membership test takes time log n,  rather than n, . This technique is very
important in the design of algorithms and the tuning of small modules. In a large system the

�

ability to improve each part separately is usually more important. Striking the right balance
remains an art.

O throw away the worser part of it,
And live the purer with the other half. (III iv 157)

• Divide and conquer. This is a well known method for solving a hard problem: reduce it to
several easier ones. The resulting program is usually recursive. When resources are limited the
method takes a slightly different form: bite off as much as will fit, leaving the rest for another
ite

�
ration.

A good example is in the Alto’s Scavenger program, which scans the disk and rebuilds the index
and directory structures of the file system from the file identifier and page number recorded on
each disk sector [29]. A recent rewrite of this program has a phase in which it builds a data
structure in main storage, with one entry for each contiguous run of disk pages that is also a
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contiguous set of pages in a file. Normally files are allocated more or less contiguously and this
structure is not too large. If the disk is badly fragmented, however, the structure will not fit in
storage. When this happens, the Scavenger discards the information for half the files and
continues with the other half. After the index for these files is rebuilt, the process is repeated for
the other files. If necessary the work is further subdivided; the method fails only if a single file

	
’s

index won’t fit.

Another interesting example arises in the Dover raster printer [26, 53], which scan-converts lists
of characters and rectangles into a large m�  × n,  array of bits, in which ones correspond to spots of
ink on the paper and zeros to spots without ink. In this printer m� =3300 and n, =4200, so the array
contains fourteen million bits and is too large to store in memory. The printer consumes bits
faster than the available disks can deliver them, so the array cannot be stored on disk. Instead, the
entire array is divided into 16 × 4200 bit slices called bands, and the printer electronics contains
t

	
wo one-band buffers. The characters and rectangles are sorted into buckets, one for each band; a

bucket receives the objects that start in the corresponding band. S
$

can conversion proceeds by
filling one

�
 band buffer from its bucket, and then playing it out to the printer and zeroing it while

filling the other buffer from the next bucket. Objects that spill over the edge of one band are
added to the next bucket; this is the trick that allows the problem to be subdivided.

Sometimes it is convenient to artificially limit the resource, by quantizing it in fixe
�

d-size units;
this simplifies bookkeeping and prevents one kind of fragmentation. The classical example is the

	

use of fixed-size pages for virtual memory, rather than variable-size segments. In spite of the%

apparent advantages of keeping logically related information together, and transferring it
between main storage and backing storage as a unit, paging systems have worked out better. The

$

reasons for this are complex and have not been systematically studied.�

And makes us rather bear those ills we have
Than fly to others that we know not of.  (III i 81)

• Use a good idea again instead of generalizing it. A specialized implementation of the idea may
be m

$
uch more effective than a general one. The discussion of caching below gives several

examples of applying this general principle. Another interesting example is the notion of
replicating data for reliability. A small amount of data can easily be replicated locally by writing
it on two or more disk drives [28]. When the amount of data is large or the data must be recorded

�

on separate machines, it is not easy to ensure that the copies are always the same. Gifford [16]
shows how to solve this  problem by building replicated data on top of a transactional storage
system, which allows an arbitrarily large update to be done as an atomic operation (see section
4). The transactional storage itself depends on the simple local replication scheme to store its log
reliably. There is no circularity here, since only the � idea is used twice, not the code. A third way

�

to use
	

 replication in this context is to store the commit record on several machines [27].

The user interface for the Star office system [47] has a small set of operations (type text, move,
copy, delete, show properties) that apply to nearly all the objects in the system: text, graphics,
file folders and file drawers, record files, printers, in and out baskets, etc. The exact meaning of
an operation varies with the class of object, within the limits of what the user might find natural.
For instance, copying a document to an out basket causes it to be sent as a message; moving the
endpoint of a line causes the line to follow like a rubber band. Certainly the implementations are
quite different in many cases. But the generic operations do not simply make the system easier to
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use;%  they represent a view of what operations are possible and how the implementation of each
class of object should be organized.

2.5 Handling all the cases

Diseases desperate grown
@

By desperate appliance are reliev’d
or not at all. (III vii 9)

Therefore this project
Should have a back or second, that might hold,

�

If this should blast in proof.
"

(IV iii 151)

• Handle normal and worst cases separately as a rule, because the requirements for the two are
quite different:

The normal case must be fast.

The worst case must make some progress.

In most systems it is all right to schedule unfairly and give no service to some of the processes,
�

or even to deadlock the entire system, as long as this event is dete
	

cted automatically and doesn’t
happen too often. The usual recovery is by crashing some processes, or even the entire system.

�

At first this sounds terrible, but one crash a week is usually a cheap price to pay for 20% better
perform� ance. Of course the system must have decent error recovery (an application of the end-to-
end principle; see section 4), but that is required in any case, since there are so many other
possi� ble causes of a crash.

Caches and hints (section 3) are examples of special treatment for the normal case, but there are
many others. The Interlisp-D and Cedar programming systems use a reference-counting garbage
collector [11] that has an important optimization of this kind. Pointers in the local frames or
activation records of procedures are not counted; instead, the frames are scanned whenever
garbage is collected. This saves a lot of reference-counting, since most pointer assignments are to
loc

*
al variables. There are not very many frames, so the time to scan them is small and the

collector is nearly real-time. Cedar goes farther and does not keep track of which local variables
contain pointers; instead, it assumes that they all do. This means that an integer that happens to
contain the address of an object which is no longer referenced will keep that object from being
freed. Measurements show that less than 1% of the storage is incorrectly retained [45].

Reference-counting makes it easy to have an incremental collector, so that computation need not
A

stop during collection. However, it cannot reclaim circular structures that are no longer
reachable. Cedar therefore has a conventional trace-and-sweep collector as well. This is not
suitable for real time applications, since it stops the entire system for many seconds, but in
interactive applications it can be used during coffee breaks to reclaim accumulated circular
structures.

Another problem with reference-counting is that the count may overflow the space provided for
it. This happens very seldom, because only a few objects have more than two or three references.
It is simple to make the maximum value sticky. Unfortunately, in some applications the root of a

�

large structure is referenced from many places; if the root becomes sticky, a lot of storage will
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unexpectedly become permanent. An attractive solution is to have an % ‘overflow count’ table,
which is a hash table keyed on the address of an object. When the count reaches its limit it is
reduced by half, the overflow count is increased by one, and an overflow flag is set in the object.�

When the count reaches zero, the process is reversed if the overflow flag is set. Thus even with
!

as few as four bits there is room to count up to seven, and the overflow table is touched only in
the rare case that the count swings by more than four.

	

There are many cases when resources are dynamically allocated and freed (for example, real
me� mory in a paging system), and sometimes additional resources are needed temporarily to free
an item (some table might have to be swapped in to find out where to write out a page). Normally
t

	
here is a cushion (clean pages that can be freed with no work), but in the worst case the cushion

may disappear (all pages are dirty). The trick here is to keep a little something in reserve under a
mattress, bringing it out only in a crisis. It is necessary to bound the resources needed to free one
item; this determines the size of the reserve under the mattress, which must be regarded as a

�

fixed cost of the resource multiplexing. When the crisis arrives, only one item should be freed at
a time, so that the entire reserve is devoted to that job; this may slow things down a lot but it
ensures that progress will be made.

Sometimes radically different strategies are appropriate in the normal and worst cases. The Bravo
editor [24] uses a ‘piece table’ to represent the document being edited. This is an array of pieces,
poi� nters to strings of characters stored in a file; each piece contains the file address of the first
character in the string and its length. The strings are never modified during normal editing.
Instead, when some characters are deleted, for example, the piece containing the deleted
characters is split into two pieces, one pointing to the first undeleted string and the other to the
second. Characters inserted from the keyboard are appended to the file, and the piece containing
the insertion point is split into three pieces: one for the preceding characters, a second for the

	

inserted characters, and a third for the following characters. After hours of editing there are
�

hundreds of pieces and things start to bog down. It is then time for a cleanup, which writes a new
fi le containing all the characters of the document in order. Now the piece table can be replaced
by a single piece pointing to the new file, and editing can continue. Cleanup is a specialized kind

$

of garbage collection. It can be done in background so that the user doesn’t have to stop editing
(though Bravo doesn’t do this).

3. Speed

This section describes hints for making systems faster, forgoing any further discussion of why
�

this is important. Bentley’s excellent book [55] says more about some of these ideas and gives
	

many others.

Neither a borrower, nor a lender be;
>

For loan oft loses both itself and friend,
And borrowing dulleth edge of husbandry.

?

• Split resources in a fixed way if in doubt, rather than sharing them. It is usually faster to
allocate dedicated resources, it is often faster to access them, and the behavior of the allocator is
more predictable. The obvious disadvantage is that more total resources are needed, ignoring�

multiplexing overheads, than if all come from a common pool. In many cases, however, the cost
of the extra resources is small, or the overhead is larger than the fragmentation, or both.
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For example, it is always faster to access information in the registers of a processor than to get it
from memory, even if the machine has a high-performance cache. Registers have gotten a bad
name because it can be tricky to allocate them intelligently, and because saving and restoring


the
	

m across procedure calls may negate their speed advantages. But when programs are written
in the approved modern style with lots of small procedures, 16 registers are nearly always

�

enough for all the local variables and temporaries, so that allocation is not a problem. With n,  sets
of registers arranged in a stack, saving is needed only when there are n,  successive calls without a
return [14, 39].�

Input/output channels, floating-point coprocessors, and similar specialized computing devices are
other applications of this principle. When extra hardware is expensive these services are provided
by multiple

$
xing a single processor, but when it is cheap, static allocation of computing power for

various purposes is worthwhile.+

The Interlisp virtual memory system mentioned earlier [7] needs to keep track of the disk address
�

corresponding to each virtual address. This information could itself be held in the virtual memory
(as it is in several systems, including Pilot [42]), but the need to avoid circularity makes this
rather complicated. Instead, real memory is dedicated to this purpose. Unless the disk is
ridiculously fragmented the space thus consumed is less than the space for the code to prevent
circularity.

• Use static analysis if you can; this is a generalization of the last slogan. Static analysis
discovers properties of the program that can usually be used to improve its performance. The
hooker is “if you can”; when a good static analysis is not possible, don’t delude yourself with a
bad one, but fall back on a dynamic scheme.

$

The remarks about registers above depend on the fact that the compiler can easily decide how to
�

allocate them, simply by putting the local variables and temporaries there. Most machines lack
multiple sets of registers or lack a way of stacking them efficiently. Good allocation is then much�

more diffi cult, requiring an elaborate inter-procedural analysis that may not succeed, and in any
case must be redone each time the program changes. So a little bit of dynamic analysis (stacking
the registers) goes a long way. Of course the static analysis can still pay off in a large procedure

	

if the compiler is clever.

A program can read data much faster when it reads the data sequentially. This makes it easy to
.

pre� dict what data will be needed next and read it ahead into a buffer. Often the data can be
allocated sequentially on a disk, which allows it to be transferred at least an order of magnitude
faster. These performance gains depend on the fact that the programmer has arranged the data so

�

t
	
hat it is accessed according to some predictable pattern, that is, so that static analysis is possible.

Ma
 

ny attempts have been made to analyze programs after the fact and optimize the disk
transfers, but as far as I know this has never worked. The dynamic analysis done by demand

	

paging is always at least as good.�

Some kinds of static analysis exploit the fact that some invariant is maintained. A system that
depends on such facts may be less robust in the face of hardware failures or bugs in software that
fa

�
lsify the invariant.

• Dynamic translation from a convenient (compact, easily modified or easily displayed)
representation to one that can be quickly interpreted is an important variation on the old idea of
compiling. Translating a bit at a time is the idea behind separate compilation, which goes back at
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least to Fortran 2. Incremental compilers do it automatically when a statement, procedure or
whatever is changed. Mitchell investigated smooth motion on a continuum between the
convenient and the fast representation [34]. A simpler version of his scheme is to always do the
translation on demand and cache the result; then only one interpreter is required, and no

	

decisions are needed except for cache replacement.

For example, an experimental Smalltalk implementation [12] uses the bytecodes produced by the
standard Smalltalk compiler as the convenient (in this case, compact) representation, and
translates a single procedure from byte codes into machine language when it is invoked. It keeps

	

a cache with room for a few thousand instructions of translated code. For the scheme to pay off,
the cache must be large enough that on the average a procedure is executed at least 

	
n,  times,

where n,  is the ratio of translation time to execution time for the untranslated code.

The C-machine stack cache [14] provides a rather different example. In this device instructions
are fetched into an instruction cache; as they are loaded, any operand address that is relative to
the local frame pointer FP is converted into an absolute address, using the current value of FP

	

(which remains constant during execution of the procedure). In addition, if the resulting address
is in the range of addresses currently in the stack data cache, the operand is changed to register
mode; later execution of the instruction will then access the register directly in the data cache.
The F

�
P value is concatenated with the instruction address to form the key of the translated

instruction in the cache, so that multiple activations of the same procedure will still work.

If thou didst ever hold me in thy heart.
"

 (V ii 349)

• Cache answers to expensive computations, rather than doing them over. By storing the triple [
	

f
B
,

x,C  f
B
(xC )] in an associative store with f 

B
and x as keys, we can retrieve f

B
(xC ) with a lookup. This is

faster if 
�

f
B
(xC ) is needed again before it gets replaced in the cache, which presumably has limited

capacity. How much faster depends on how expensive it is to compute f
B
(xC ). A serious problem is

t
	
hat when f 

B
is not functional (can give different results with the same arguments), we need a way

�

to invalidate or update
	

 a cache entry if the value of f
B
(xC ) changes. Updating depends on an

equation of the form  f(x C + ∆) = gD (x, C ∆, fE (xC )) in which gD  is much cheaper to compute than f
B
. For

example, xC  might be an array of 1000 numbers, f
B
 the sum of the array elements, and ∆

F
 a new

value for one of them, that is, a pair [+ i, v]. Then gD (x, C [i, v], sumE ) is sum -G  xC i
H  + v.

A cach
.

e that is too small to hold all the ‘active’  values will thrash, and if recomputing f
B
 is

expensive performance will suffer badly. Thus it is wise to choose the cache size adaptively,
making it bigger when the hit rate decreases and smaller when many entries go unused for a long
time

	
.

The classic example of caching is hardware that speeds up access to main storage; its entries are
triple

	
s [Fetch, 

�
address, contents of address]. The Fetch operation is certainly not functional:

Fetch(xC ) gives a different answer after Store
�

(xC ) has been done. Hence the cache must be updated
or invalidated after a store. Virtual memory systems do exactly the same thing; main storage
pl� ays the role of the cache, disk plays the role of main storage, and the unit of transfer is the
page, segment or whatever.�

But nearly every non-trivial system has more specialized applications of caching. This is
�

especially true for interactive or real-time systems, in which the basic problem is to
incrementally update a complex state in response to frequent small changes. Doing this in an ad -
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hoc way is extremely error-prone. The best organizing principle is to recompute the entire state
after each change but cache all the expensive results of this computation. A change must
i

�
nvalidate at least the cache entries that it renders invalid; if these are too hard to identify

pre� cisely, it may invalidate more entries at the price of more computing to reestablish them. The
secret of success is to organize the cache so that small changes invalidate only a few entries.

For example, the Bravo editor [24] has a function DisplayLine(document, firstChar
3

) that returns
the

	
 bitmap for the line of text in the displayed document that has document

3
[firstChar

B
] as its first

character. It also returns lastChar and lastCharUsed, the numbers of the last character displayed
	

on the line and the last character examined in computing the bitmap (these are usually not the
same, since it is necessary to look past the end of the line in order to choose the line break). This
function computes line breaks, does justification, uses font tables to map characters into their
raster pictures, etc. There is a cache with an entry for each line currently displayed on the screen,
and sometimes a few lines just above or below. An edit that changes characters i through j

I

invalidates any cache entry for which [firstChar .. lastCharUsed
B

] intersects [i .. j
I
]. The display is

recomputed by�

loop
(bitMap, lastChar,  ) := DisplayLine(document, firstChar

3
); Paint(bitMap);

firstChar
B

 := lastChar + 1
end loop

The cal
�

l of Display
@

Line i
�
s short-circuited by using the cache entry for [document, firstChar

3
] if it

exists. At the end any cache entry that has not been used is discarded; these entries are not
invalid, but they are no longer interesting because the line breaks have changed so that a line no
longer begins at these points.

*

The same idea can be applied in a very different setting. Bravo allows a document to be
structured into paragraphs, each with specified left and right margins, inter-line leading, etc. In
ordinary page layout all the information about the paragraph that is needed to do the layout can
be represented very compactly:

$

the number of lines;
	

t
	
he height of each line (normally all lines are the same height);

any keep properties;
the pre and post leading.

	

In the usual case this can be encoded in three or four bytes. A 30 page chapter has perhaps 300
paragraphs, so about 1k bytes are required for all this data; this is less information than is�

required to specify the characters on a page. Since the layout computation is comparable to the
line layout computation for a page, it should be possible to do the pagination for this chapter in

*

less time than is required to render one page. Layout can be done independently for each chapter.

What
!

 makes this idea work is a cache of [paragraph, ParagraphShape4 (paragraph4 )] entries. If
the paragraph is edited, the cache entry is invalid and must be recomputed. This can be done at

	

the
	

 time of the edit (reasonable if the paragraph is on the screen, as is usually the case, but not so
good for a global substitute), in background, or only when repagination is requested.
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For the apparel oft proclaims the man.

• Use hints to speed up normal execution. A hint, like a cache entry, is the saved result of some
	

computation. It is different in two ways: it may be wrong, and it is not necessarily reached by an
associative lookup. Because a hint may be wrong, there must be a way to check its correctness
before taking any unrecoverable action. It is checked against the 

$
‘truth’, information that must be

correct but can be optimized for this purpose rather than for efficient execution. Like a cache
entry, the purpose of a hint is to make the system run faster. Usually this means that it must be
correct nearly all the time.

For example, in the Alto [29] and Pilot [42] operating systems each file has a unique identifier,
and each disk page has a ‘label’ field whose contents can be checked before reading or writing
the data without slowing down the data transfer. The label contains the identifier of the file that

	

contains the page and the number of that page in the file. Page zero of each file is called the
‘leader page’ and contains, among other things, the directory in which the file resides and its
string name in that directory. This is the truth on which the file systems are based, and they take
great pains to keep it correct.

With only this information, however, there is no way to find the identifier of a file from its name
!

in a directory, or to find the disk address of page i, except to search the entire disk, a method that
works but is unacceptably slow. Each system therefore maintains hints to speed up these
operations. Both systems represent directory by a file that contains triples [string name, file
identifier, address of first page]. Each file has a data structure that maps a page number into the

�

disk address of the page. The Alto uses a link in each label that points to the next label; this
makes it fast to get from page n , to page 

	
n , + 1. Pilot uses a B-tree that implements the map

directly, taking advantage of the common case in which consecutive file pages occupy
consecutive disk pages. Information obtained from any of these hints is checked when it is used,
by checking the label or reading the file name from the leader page. If it proves to be wrong, all

$

of it can be reconstructed by scanning the disk. Similarly, the bit table that keeps track of free
disk pages is a hint; the truth is represented by a special value in the label of a free page, which is
checked when the page is allocated and before the label is overwritten with a file identifier and
page number.�

Another example of hints is the store and forward routing first used in the Arpanet [32]. Each
.

node in the network keeps a table that gives the best route to each other node. This table is
updated by periodic broadcasts in which each node announces to all the other nodes its opinion%

about the quality of its links to its neighbors. Because these broadcast messages are not
synchronized and are not guaranteed to be delivered, the nodes may not have a consistent view at
any instant. The truth in this case is that each node knows its own identity and hence knows
when it receives a packet destined for itself. For the rest, the routing does the best it can; when
things a

	
ren’t changing too fast it is nearly optimal.

A more curious example is the Ethernet [33], in which lack of a carrier signal on the cable is used
.

as a hint that a packet can be sent. If two senders take the hint simultaneously, there is a collision
that both can detect; both stop, delay for a randomly chosen interval, and then try again. If

	
 n

successive collisions occur, this is taken as a hint that the number of senders is 2n6 , and each
sender sets the mean of its random delay interval to 2n6  times its initial value. This ‘exponential
backoff’ ensures that the net does not become overloaded.

$
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A very different application of hints speeds up execution of Smalltalk programs [12]. In
Smalltalk the code executed when a procedure is called is determined dynamically by the type of
the first argument. Thus 

	
Print

�
(x, formatC ) invokes the Print 

�
procedure that is part of the type of � xC .

Since Smalltalk has no declarations, the type of xC  is not known statically. Instead, each object has
a pointer to a table of pairs [procedure name, address of code], and when this call is executed,
Print is looked up xC ’s table (I have normalized the unusual Smalltalk terminology and syntax,
and oversimplified a bit). This is expensive. It turns out that usually the type of xC  is the same as it
was last time. So the code for the call Print

�
(x, formatC ) can be arranged like this:

pushJ  format
B

; pushJ  xC ;
pushJ  lastType; call lastProc

and each Print procedure begins with�

lastT := Pop(); x C := Pop(); t := type of xC ;
if

K
 t ≠ lastT th

2
en LookupAndCall

�
(xC , “Print”) else the body of the procedure end if.

Here lastType and lastProc are immediate values stored in the code. The idea is that
LookupAndCall

�
 should store the type of xC  and the code address it finds back into the lastType and

lastProc fields. If the type is the same next time, the procedure is called directly. Measurements
show that this cache hits about 96% of the time. In a machine with an instruction fetch unit, this
scheme has the nice property that the transfer to lastProc can proceed at full speed; thus when the
hint is correct the call is as fast as an ordinary subroutine call. The check of t ≠ lastT can be
arranged so that it normally does not branch.

The same idea in a different guise is used in the S-1 [48], which has an extra bit for each
instruction in its instruction cache. It clears the bit when the instruction is loaded, sets it when the
instruction causes a branch to be taken, and uses it to choose the path that the instruction fetch

�

unit follows. If the prediction turns out to be wrong, it changes the bit and follows the other path.%

• When in doubt, use brute force. Especi
�

ally as the cost of hardware declines, a straightforward,
easily analyzed solution that requires a lot of special-purpose computing cycles is better than a
complex, poorly characterized one that may work well if certain assumptions are satisfied. For
example, Ken Thompson’s chess machine Belle relies mainly on special-purpose hardware to
generate moves and evaluate positions, rather than on sophisticated chess strategies. Belle has
won the world computer chess championships several times. Another instructive example is the
success of personal computers over time-sharing systems; the latter include much more
cleverness and have many fewer wasted cycles, but the former are increasingly recognized as the
most c� ost-effective way to do interactive computing.

Even an asymptotically faster algorithm is not necessarily better. There is an algorithm that
multiplie� s two n,  × n,  matrices faster than O(n, 2.

8
5), but the constant factor is prohibitive. On a more

mundane note, the 7040 Watfor compiler uses linear search to look up symbols; student
progra� ms have so few symbols that the setup time for a better algorithm can’t be recovered.

• Compute in background when possible. In an interactive or real-time system, it is good to do as
little work as possible before responding to a request. The reason is twofold: first, a rapid
response is better for the users, and second, the load usually varies a great deal, so there is likely�

to be idle processor time later in which to do background work. Many kinds of work can be
	

deferred to background. The Interlisp and Cedar garbage collectors [7, 11] do nearly all their
work this way. Many paging systems write out dirty pages and prepare candidates for
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replacement in background. Electronic mail can be delivered and retrieved by background
processes, since delivery within an hour or two is usually acceptable. Many banking systems�

consolidate the data on accounts at night and have it ready the next morning. These four ex-
amples have successively less need for synchronization between foreground and background
tasks. As the amount of synchronization increases more care is needed to avoid subtle errors; an

	

extreme example is the on-the-fly garbage collection algorithm given in [13]. But in most cases a
simple producer-consumer relationship between two otherwise independent processes is possible.

• Use batch processing if possible. Doing things incrementally almost always costs more, even
�

aside from the fact that disks and tapes work much better when accessed sequentially. Also,
ba

$
tch processing permits much simpler error recovery. The Bank of America has an interactive

system that allows tellers to record deposits and check withdrawals. It is loaded with current
account balances in the morning and does its best to maintain them during the day. But early the
next
  morning the on-line data is discarded and replaced with the results of night’s batch run. This
design makes it much easier to meet the bank’s requirements for trustworthy long-term data, and
there is no significant loss in function.

	

Be wary then; best safety lies in fear. (I iii 43)

• Safety first. In allocating resources, strive to avoid disaster rather than to attain an optimum.
Many years of experience with virtual memory, networks, disk allocation, database layout, and

 

other resource allocation problems has made it clear that a general-purpose system cannot
optimize the use of resources. On the other hand, it is easy enough to overload a system and
drastically degrade the service. A system cannot be expected to function well if the demand for
any resource exceeds two-thirds of the capacity, unless the load can be characterized extremely
well. Fortunately hardware is cheap and getting cheaper; we can afford to provide excess
capacity. Memory is especially cheap, which is especially fortunate since to some extent plenty
of memory can allow other resources like processor cycles or communication bandwidth to be
utiliz% ed more fully.

The sad truth about optimization was brought home by the first paging systems. In those days
m� emory was very expensive, and people had visions of squeezing the most out of every byte by
clever optimization of the swapping: putting related procedures on the same page, predicting the
next pages to be referenced from previous references, running jobs together that share data or


code, etc. No one ever learned how to do this. Instead, memory got cheaper, and systems spent it
to provide enough cushion for simple demand paging to work. We learned that the only

	

important thing is to avoid thrashing, or too much demand for the available memory. A system
�

tha
	

t thrashes spends all its time waiting for the disk.

The only systems in which cleverness has worked are those with very well-known loads. For
�

instance, the 360/50 APL system [4] has the same size workspace for each user and common
system code for all of them. It makes all the system code resident, allocates a contiguous piece of
disk for each user, and overlaps a swap-out and a swap-in with each unit of computation. This
works fine.

The nicest thing about the Alto is that it doesn’t run faster at night. (J. Morris)

A similar lesson was learned about processor time. With interactive use the response time to a
demand for computing is important, since a person is waiting for it. Many attempts were made to
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tune the processor scheduling as a function of priority of the computation, working set size,
	

memory loading, past history, likelihood of an I/O request, etc.. These efforts failed. Only the
crudest parameters produce intelligible effects: interactive vs. non-interactive computation or
high, foreground and background priority levels. The most successful schemes give a fixed share
of the cycles to each job and don’t allocate more than 100%; unused cycles are wasted or, with
luck, consumed by a background job. The natural extension of this strategy is the personal
computer, in which each user has at least one processor to himself.

Give every man thy ear, but few thy voice;
Take each man’s censure, but reserve thy judgment.

• Shed load to control demand, rather than allowing the system to become overloaded. This is a
	

corollary of the previous rule. There are many ways to shed load. An interactive system can
refuse new users, or even deny service to existing ones. A memory manager can limit the jobs
being served so that all their working sets fit in the available memory. A network can discard

$

packet� s. If it comes to the worst, the system can crash and start over more prudently.

Bob Morris suggested that a shared interactive system should have a large red button on each
�

terminal. The user pushes the button if he is dissatisfied with the service, and the system must
	

either improve the service or throw the user off; it makes an equitable choice over a sufficiently
long period. The idea is to keep people from wasting their time in front of terminals that are not

*

delivering a useful amount of service.

The ori
�

ginal specification for the Arpanet [32] was that a packet accepted by the net is
guaranteed to be delivered unless the recipient machine is down or a network node fails while it
is holding the packet. This turned out to be a bad idea. This rule makes it very hard to avoid

	

deadlock in the worst case, and attempts to obey it lead to many complications and ineffic iencies
even in the normal case. Furthermore, the client does not benefit, since it still has to deal with
packets lost by host or network failure (see section 4 on end-to-end). Eventually the rule was�

abandoned. The Pup internet [3], faced with a much more variable set of transport facilities, has
always ruthlessly discarded packets at the first sign of congestion.

4. Fault-tolerance

The unavoidable price of reliability is simplicity. (C. Hoare)
�

Making a system reliable is not really hard, if you know how to go about it. But retrofitting
 

reliability to an existing design is very difficult.

This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

• End-to-end. Error recovery at the application level is absolutely necessary for a reliable system,
and any other error detection or recovery is not logically necessary but is strictly for
performance. This observation was first made by Saltzer [46] and is very widely applicable.�

For example, consider the operation of transferring a file from a file system on a disk attached to
machine A, to another file system on another disk attached to machine B. To be confident that
the right bits are really on B

	
’s disk, you must read the file from B’s disk, compute a checksum of
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reasonable length (say 64 bits), and find that it is equal to a checksum of the bits on A’s disk.
Checking the transfer from A’s disk to A’s memory, from A over the network to B, or from B’s
memory to B’s disk is not sufficient, since there might be trouble at some other point, the bits�

might be clobbered while sitting in memory, or whatever. These other checks are not necessary
either, since if the end-to-end check fails the entire transfer can be repeated. Of course this is a lot
of work, and if errors are frequent, intermediate checks can reduce the amount of work that must
be

$
 repeated. But this is strictly a question of performance, irrelevant to the reliability of the file

transfer. Indeed, in the ring based system at Cambridge it is customary to copy an entire disk
	

pack of 58 MBytes with only an end-to-end check; errors are so infrequent that the 20 minutes of�

work very seldom needs to be repeated [36].

Many uses of hints are applications of this idea. In the Alto file system described earlier, for
example, the check of the label on a disk sector before writing the sector ensures that the disk
address for the write is correct. Any precautions taken to make it more likely that the address is
correct may be important, or even critical, for performance, but they do not affect the reliability
of the file system.

The Pup internet [4] adopts the end-to-end strategy at several levels. The main service offered by
the network is transport of a data packet from a source to a destination. The packet may traverse

	

a number of networks with widely varying error rates and other properties. Internet nodes that
store and forward packets may run short of space and be forced to discard packets. Only rough
estimates of the best route for a packet are available, and these may be wildly wrong when parts
of the network fail or resume operation. In the face of these uncertainties, the Pup internet
provides good service with a simple implementation by attempting only “best efforts” delivery.�

A packet may be lost with no notice to the sender, and it may be corrupted in transit. Clients
.

must provide their own error control to deal with these problems, and indeed higher-level Pup
protocols do provide more complex services such as reliable byte streams. However, the packet�

transport does attempt to report problems to its clients, by providing a modest amount of error
	

control (a 16-bit checksum), notifying senders of discarded packets when possible, etc. These
services are intended to improve performance in the face of unreliable communication and
overloading; since they too are best efforts, they don’t complicate the implementation much.

There are two problems with the end-to-end strategy. F
�

irst, it requires a cheap test for success.
Second, it can lead to working systems with severe performance defects that may not appear until
the system becomes operational and is placed under heavy load.

	

            Remember thee?
Yea, from the table of my memory
I’ll wipe away all trivial fond records,

"

All saws of books, all forms, all pressures past,
That youth and observation copied there;
And thy commandment all alone shall live

?

Within the book and volume of my brain,
Unmix’d with baser matter. (I v 97)

• Log updates to record the truth about the state of an object. A log is a very simple data structure
	

tha
	

t can be reliably written and read, and cheaply forced out onto disk or other stable storage that
can survive a crash. Because it is append-only, the amount of writing is minimized, and it is
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fairly easy to ensure that the log is valid no matter when a crash occurs. It is also easy and cheap
to duplicate the log, write copies on tape, or whatever. Logs have been used for many years to

	

ensure that information in a data base is not lost [17], but the idea is a very general one and can
be used in ordinary file systems [35, 49] and in many other less obvious situations. When a log

$

holds the truth, the current state of the object i
�

s very much like a hint (it isn’t exactly a hint
because t

$
here is no cheap way to check its correctness).

To use the technique, record every update to an object as a log entry consisting of the name of
the update procedure and its arguments. The procedure must be 

	
functional

B
: when applied to the

same arguments it must always have the same effect. In other words, there is no state outside the
arguments that affects the operation of the procedure. This means that the procedure call
specified by the log entry can be re-executed later, and if the object being updated is in the same
state as when the update was first done, it will end up in the same state as after the update was
first done. By induction, this means that a sequence of log entries can be re-executed, starting

�

with the same objects, and produce the same objects that were produced in the original
execution.

For this to work, two requirements must be satisfied:

• The update procedure must be a true function:

Its result does not depend on any state outside its arguments.
�

It has no side effects, except on the object in whose log it appears.

• The arguments must be 
�

values, one of:

Immediate values, such as integers, strings, etc. An immediate value can be a
large thing, like an array or even a list, but the entire value must be copied into the
log entry.

*

References to immutable objects.

Most objects of course are not immutable, since they are updated. However, a particular 
 

version
of an object is immutable; changes made to the object change the version. A simple way to refer
to an object version unambiguously is with the pair [object identifier, number of updates]. If the

	

object identifier leads to the log for that object, then replaying the specified number of log entries
yields the particular version. Of course doing this replay may require finding some other object&

versions, but as long as each update refers only to existing versions, there won’t be any cycles+

and this process will terminate.

For example, the Bravo editor [24] has exactly two update functions for editing a document:

Replace
L

(old: Interval
"

, new, : Interval
"

)
ChangeProperties(whe� re: Interval, what� : FormattingOp)

An 
.

Interval
"

 is a triple [document version, first character, last character]. A FormattingOp
�

 is a
function from properties to properties; a property might be italic or leftMargin, and a
FormattingOp might be leftMargin: = leftMargin + 10 or italic: = true. Thus only two kinds of
log entries are needed. All the editing commands reduce to applications of these two functions.

*
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Beware
Of entrance to a quarrel, but, being in,
Bear 

5
’t that th’ opposed may beware of thee.

• Make actions atomic or restartable. An atomic action (often called a transaction) is one that
either completes or has no effect. For example, in most main storage systems fetching or storing
a word is atomic. The advantages of atomic actions for fault-tolerance are obvious: if a failure
occurs during the action it has no effect, so that in recovering from a failure it is not necessary to
deal with any of the intermediate states of the action [28]. Database systems have provided
atomicity for some time [17], using a log to store the information needed to complete or cancel
an action. The basic idea is to assign a unique identifier to each atomic action and use it to label
all the log entries associated with that action. A commit record for the action [42] tells whether it
is in progress, committed (logically complete, even if some cleanup work remains to be done), or
aborted (logically canceled, even if some cleanup remains); changes in the state of the commit
record are also recorded as log entries. An action cannot be committed unless there are log
entries for all of its updates. After a failure, recovery applies the log entries for each committed
action and undoes the updates for each aborted action. Many variations on this scheme are
possible [54].�

For this to work, a log entry usually needs to be restartable. This means that it can be partially
'

executed any number of times before a complete execution, without changing the result;
sometimes such an action is called ‘idempotent’. For example, storing a set of values into a set of
variables is a restartable action; incrementing a variable by one is not. Restartable log entries can+

be applied to the current state of the object; there is no need to recover an old state.
$

This basic method can be used for any kind of permanent storage. If things are simple enough a
�

rather distorted version will work. The Alto file system described above, for example, in effect
uses the disk labels and leader pages as a log and rebuilds its other data structures from these if%

necessary. As in most file systems, it is only the file allocation and directory actions that are
atomic; the file system does not help the client to make its updates atomic. The Juniper file
system [35, 49] goes much further, allowing each client to make an arbitrary set of updates as a
single atomic action. It uses a trick known as ‘shadow pages’, in which data pages are moved
from the

�
 log into the files simply by changing the pointers to them in the B-tree that implements

the
	

 map from file addresses to disk addresses; this trick was first used in the Cal system [50].
Cooperating clients of an ordinary file system can also implement atomic actions, by checking
whether recovery is needed before each access to a file; when it is they carry out the entries in
specially named log files [40].

Atomic actions are not trivial to implement in general, although the preceding discussion tries to
.

show that they are not nearly as hard as their public image suggests. Sometimes a weaker but
cheaper method will do. The Grapevine mail transport and registration system [1], for example,
maintains a replicated data base of names and distribution lists on a large number of machines in�

a nationwide network. Updates are made at one site and propagated to other sites using the mail
system itself. This guarantees that the updates will eventually arrive, but as sites fail and recover
and the network partitions, the order in which they arrive may vary greatly. Each update message
is time-stamped, and the latest one wins. After enough time has passed, all the sites will receive
all the updates and will all agree. During the propagation, however, the sites may disagree, for
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example about whether a person is a member of a certain distribution list. Such occasional
disagreements and delays are not very important to the usefulness of this particular system.

5. Conclusion

Most humbly do I take my leave, my lord.

Such a collection of good advice and anecdotes is rather tiresome to read; perhaps it is best taken
in small doses at bedtime. In extenuation I can only plead that I have ignored most of these rules
at least once, and nearly always regretted it. The references tell fuller stories about the systems or
techniques that I have only sketched. Many of them also have more complete rationalizations.

	

All the slogans are collected in Figure 1 near the beginning of the paper.
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