
University of Karlsruhe (TH)

A flexible and scalable
peer-to-peer multicast application

using Bamboo

Studienarbeit at the Institute of Telematics
Prof. Dr. M. Zitterbart

Department of Computer Science
University of Karlsruhe (TH)

and

Systems Research Group
Computer Laboratory

University of Cambridge

by

cand. inform.
Marcel Dischinger

Supervisors:

Prof. Dr. J. Crowcroft
Prof. Dr. M. Zitterbart
Dipl.-Inform. Uwe Walter

Date: June, 27th 2004

Systems Research Group Institute of Telematics

Contents

1 Introduction 1

1.1 Goals of the project . 2

1.2 Peer-to-peer systems . 2

1.3 Bamboo . 2

1.4 Document outline . 4

2 Design 5

2.1 The whiteboard application . 5

2.2 The Bamboo API . 6

2.3 The multicast protocol . 7

2.3.1 Topic management . 8

2.3.2 Membership management . 8

2.3.3 Message publishing . 9

2.3.4 Repairing the multicast tree 9

3 Implementation 11

3.1 A Bamboo stage . 11

3.2 Messages . 12

3.2.1 Local messages . 12

3.2.2 Inter-node messages . 13

3.3 The whiteboard . 14

3.3.1 GUI and communication interface 14

3.3.2 The canvas . 16

3.3.2.1 The PanelTracker . 16

3.3.2.2 Local data processing: CanvasDrawer 16

3.4 The multicast stage: ComCore . 17

ii Contents

3.4.1 The ComManagement messages 17

3.4.2 Protocol implementation . 18

3.4.2.1 Protocol procedure 18

3.4.2.2 Multicast group management 19

3.4.2.3 Multicast group maintainance 20

3.4.3 Special issues . 21

4 Evaluation 23

4.1 PlanetLab . 23

4.2 Preparation for experiments: EvaluationApp 23

4.3 Experiment: Tree-build evaluation . 24

4.3.1 Comparison between IP and overlay multicast 25

4.3.2 Conclusions from the experiment 26

4.3.3 Bamboo delay . 27

5 Conclusions and outlook 29

Bibliography 31

1. Introduction

The Internet is nowadays used by millions of people. Changing basic mechanisms
of the Internet (the basic protocols,even just adding additional features to them) is
not easy to accomplish, as this could mean changing the protocol implementation
on every node.

Because of this overlay networks are very popular, especially in the scientific en-
vironment. Overlays offer a virtual network “over” the underlying topology, with
their own routing schemes and often their own address space. They are situated at
the application level of the TCP/IP model. Examples are Virtual Private Networks
(VPNs), and many peer-to-peer systems using overlays.

Peer-to-peer overlays do not use centralized services and do not need any support
from Internet Service Providers (ISPs). They help deploy novel required services
like multicast and anycast in today’s environment.

Group communication means the communication between several partners where
each node acts as a sender, listener or both. The notion multicast stands for
the communication of a single sender with multiple listeners (1:n or singlepoint-to-
multipoint communication) whereas multipeer means a n:m relationship (or multi-
point-to-multipoint communication) of senders to listeners. You want such a service
for video conferences or online computer games. The idea behind these schemes is
to aggregate several flows to a single flow, as long as they are taking the same path
through the network to save bandwidth. IP multicast is the proposal to implement
such a service in the IP layer of the Internet (see RFC988, RFC1054, RFC1112).

When speaking of multicast in this report it means the “any source multicast” and
not the “single source multicast” model.

As native IP Multicast deployment is not very widespread, overlays allow a more in-
dependent way for implementing multicast services and applications using the exist-
ing internet infrastructure. Peer-to-peer overlays are especially popular in computer
science research.

2 1. Introduction

1.1 Goals of the project

The goal of this project is the implementation and evaluation of a scalable and
flexible whiteboard multicast application based on the Bamboo peer-to-peer system.

The application should provide basic functionality like subscribing to an arbitrary
topic and publishing changes on the canvas to the multicast group associated to the
topic. The multicast groups are meant to be dynamic. That means that you can
join and leave the groups at any time. The chosen multicast protocol should scale
for large groups and be able to repair its multicast tree automatically due to changes
in membership.

Because of the limited time to complete this project it was not a goal to provide
any security mechanism for either the protocol or the whiteboard application, such
as secure transmissions or access control.

1.2 Peer-to-peer systems

In general, a peer-to-peer computer network does not have fixed clients and servers
but a number of peer nodes that function as both client and server to any other node
of the network, so any node is able to initiate or complete any supported transaction.

Peer-to-peer is a class of applications that takes advantage of resources storage,
cycles, content, human presence available at the edge of the Internet. Because ac-
cessing these decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, peer-to-peer nodes must operate out-
side the DNS system and have significant or total autonomy from central servers
[Shir00].

Popular examples of peer-to-peer systems are instant messaging clients like ICQ or
file sharing networks like Gnutella or Napster (beside Napster and ICQ use a client-
server system for searching). Another example is the SETI@Home project which
is a scientific experiment that uses Internet-connected computers in the search for
extraterrestrial intelligence. But like Napster it is only partly a real peer-to-peer
system: The computation is done peer-to-peer like, while the data distribution is
done using a client-server-scheme.
The most common peer-to-peer system today is IP routing, by the way.

Peer-to-peer systems are a quite popular research field in computer science and
are often used to realize completely decentralized networks of peers. In this terms
there are applications for group communication, archival storage, content distri-
bution and resource sharing. Popular examples are Chord [SMKK+01], Pastry
[CDHR02], [RoDr01] and Tapestry [ZHSR+04].

In this work, I used a pretty new peer-to-peer system called Bamboo-DHT [Rhea04b].

1.3 Bamboo

Bamboo is a peer-to-peer system primarily written by Sean Rhea of UC Berkeley,
but it is based heavily on the OceanStore [KBCC+00] and the libasync [ZYDM+03]
projects. It is written in Java and is available as open source.

1.3. Bamboo 3

Figure 1.1: Routing table of a Bamboo node with node ID 83bx and b=4. Digits
are in base 16, x represents an arbitrary suffix

The development of Bamboo focused on a system that can handle high levels of
churn. Churn is the continuous process of node arrival and departure. This is
implemented by optimizing the bandwith usage which scales for Bamboo logarith-
mically the number of nodes. The main advantage of Bamboo compared to other
popular scientific peer-to-peer systems like Pastry or Chord, is that it does not break
down on high churn rates.

Bamboo itself is based on Pastry, but re-engineers its protocols. Compared to Pastry,
the algorithms are more incremental, a difference that allows Bamboo to better
withstand large membership changes as well as continuous churn in membership,
especially in bandwidth-limited environments [RGRK03]. Beside of that it uses the
same mechanism, such as the routing algorithm, and the join and leave behaviour.

Bamboo assigns to each of its node an unique, 160-bit node ID. The set of existing
node IDs is uniformly distributed, achieved by using a secure hash (e.g. SHA-1) to
generate it either of the IP address and port number or of a public key. A message
addressed to a certain key is then reliably routed to the node with the node ID
numerically closest to that key among all live nodes. Within a network of N nodes
a message can be routed to any node in less than dlog2b Ne steps on average (with
b a configurable parameter that effects the routing table size with respect to its
granularity, and is typically 4).

Each node in the Bamboo network maintains a leaf set of 2k nodes immediately
proceding and following it in the circular identifier space with default size of 16
nodes (k=8). Additional, each Bamboo node maintains a routing table, too (see
figure 1.1). Each node ID is treated as a sequence of digits of base 2b denoting the
entry (l,i) of the matrix the entry is chosen as a node whose identifier matches its
own in exactly l digits and whose (l+1)th digit is i. The node closest to itself in
network latency is picked from all nodes that can fill a certain routing table entry.
The routing table is continuously improved by measuring the latency to neighbour
nodes and updating the table with the new data.

4 1. Introduction

Bamboo uses recursive routing to submit a message. Given a message with key D,
routing is done by first calculating the longest matching prefix between D and the
node’s ID. Then it checks if the key lies within the leaf set, and if so forwards it
to the numerically closest node. Routing terminates if this node is the local node
itself (note that the local node is part of its own leaf set). If this fails it tries to find
another node matching in a longer prefix than itself and forwards it to this node. If
the search fails (because there is no entry of such a node) the message is forwarded
to the numerical closest node of the leaf set.

Bamboo is written in an event-driven, single-threaded programming style [Rhea04a].
In first place it inherits its structure from SEDA, which stands for the Staged, Event-
Driven Architecture [WeCB01]. As the name suggests, each part of a Bamboo appli-
cation is a stage. Communication is done by passing events to every stage while the
whole application is single-threaded. A stage registers itself to Bamboo and can also
subscribe to events it want to receive and send messages to other stages or nodes.
In the following I will use the notions “event” and “message” as synonyms.

1.4 Document outline

In chapter 2 I will describe the design of the implemented multicast protocol and
the whiteboard application. Details of the implementation of these and the proto-
col mechanism in particular are described in chapter 3. In chapter 4 I will present
the results of some experiments to analyse the behaviour of the implemented multi-
cast protocol. Finally chapter 5 gives an outlook regards to the original goals, and
possible future work and an overall conclusion of the whole project work.

2. Design

This chapter will give an overview of the design principles of the application, but
will not deal with implementation details (you will find that in chapter 3).

This project can be divided into two parts: The multicast protocol layer and the
whiteboard application. A main issue was to create as flexible a design as possible;
therefore a very modular structure is needed. The advantage of this is that it is easy
to replace a module by a different implementation, or to extend the whole applica-
tion. For example, it is easy to replace the whiteboard with another application to
just use the multicast layer as I have done in chapter 4 for evaluation.

As the Bamboo peer-to-peer system should be used, at least the multicast protocol
layer must be implemented as a Bamboo stage. This stage must also provide a
communication interface so that an application can use its services.

There are also several multicast protocols available like the reverse-path forwarding
algorithm or Steiner minimal trees, for example. In fact there is no “best solution”
for this kind of purpose at the moment. But the idea is to use the abilities of the
Bamboo overlay network – like locality issues and routing – to build up a multicast
tree.

2.1 The whiteboard application

A whiteboard application can have a lot of features. At least it must provide a canvas
where the user can draw at and automatically publish these strokes to the multicast
group. Furthermore it should be possible to switch the topic. When subscribing to
a topic the current content of the canvas should be requested from another node and
displayed.

Additional functionalities could be the provision of different colours to draw with,
an erase function and the ability to insert text with the keyboard. Someone would
also like to see a list of all currently subscribed nodes of a topic. You can think of
plenty more features that might be useful to have with a whiteboard application.

6 2. Design

Figure 2.1: Routing a message from node 65a1fe with key d46a1c.

2.2 The Bamboo API

The multicast part of this application will use the Bamboo peer-to-peer system for
message sending and receiving. Therefore it is a good idea to get an overview of the
supported API of Bamboo.

Bamboo exports a message sink to its stages. Messages can be dispatched to this
sink in order to get sent. On the other hand applications can register their sink to
Bamboo to receive messages. Furthermore – if you want to get messages routed by
Bamboo – you have to register your application and get a unique appID that acts
like a TCP/UDP port number, so that you can address a certain application on a
Bamboo node.

In the following I will describe the provided message types for sending (and the
according incoming messages), simplified for clarity.

Applications can use the following message types to send events:

• BambooRouteInit(key, appID, msg) if the application wishes to let Bam-
boo route that message to the node numerically closest to key and subscribed
to the ID appID. A flag can be set to enable upcalls on all passing nodes.

• BambooRouteContinue(msg) is used to resend a message after an upcall.

• NetworkMessage(address, msg) can be used to send a message directly to
an address. The transmission will fail if no node with the specified address is
available.

The following messages are sent to the applications of a node by Bamboo:

• BambooRouteDeliver(key, msg) is sent by Bamboo if this node is the goal
of a message (numerically closest to its key). It is only delivered to stages that
match the appID.

• BambooRouteUpcall(key, msg) is sent by Bamboo if this node is on the
way of the message and has a stage which matches the appID. The node can
change the content of the message and have to resend it (if wished) using the
BambooRouteContinue message.

2.3. The multicast protocol 7

Figure 2.2: Sequence diagram of the multicast protocol.

• NetworkMessage(msg) is received when some node sent a message direct
to a node without routing it through Bamboo.

• NetworkMessageResult(success, returnObject) is received for confirma-
tion of a sent NetworkMessage and will contain a flag that informs about suc-
cessful or unsuccessful transmission.

In figure 2.1 you can see an example for routing a message through Bamboo (by
using the BambooRouteInit message type). The dots depict live nodes in Bamboo’s
circular namespace. The node IDs are shortened to 128 bit for simplification. If you
would use a NetworkMessage to send this message it would fail, because there is no
node alive with the specified key.

2.3 The multicast protocol

I chose to implement the same type of multicast protocol as Scribe – a reverse-
path forwarding algorithm. Scribe is a multicast implementation for Pastry and is
proofed to scale for large groups of nodes [RKCD02].

As this protocol is originally implemented using a peer-to-peer system it should be
easy to port it to the Bamboo system. Especially as the underlaying system provides
informations about locality which can be used easily to build a pretty good multicast
tree.

The protocol offeres a simple API to its applications:

• create(topicID) creates a topic with name topicID.

• subscribe(topicID) causes the local node to subscribe to a topic with name
topicID. All subsequently received messages for that topic are passed to that
node and send to the local subscribed applications.

8 2. Design

• unsubscribe(topicID) causes the local node to unsubscribe from a topic
named topicID.

• publish(topicID) causes the message to be published to the topic represen-
tated by a topicID.

You can see a sequence diagram of the protocol in figure 2.2 that gives you an
overview of the protocol flow which I will describe in the following briefly. A detailed
description of the implemented API (specific in context of a Bamboo stage) can be
found in section 3.4.

2.3.1 Topic management

Each topic has a unique topic ID which is associated with its own multicast group.
Therefore I will use the notions topic and multicast group as synonyms. The topic
ID is created from the textural name of the topic by using a collision resistant hash
function (e.g. SHA-1) and is 160-bit long.

To create a topic (figure 2.2a), a create message is routed through Bamboo with
the topic ID as the key. Bamboo will deliver the message to the node numerically
closest to the topic ID. The so chosen node adds the topic to its list of known topics
and acts as from now as the root of the multicast tree for that topic. This node is
furthermore the rendez-vous point for all published messages for this group.

2.3.2 Membership management

The tree itself is created using a scheme similar to reverse path forwarding [DaMe78].
A node which wants to subscribe to a topic (figure 2.2b) routes a subscribe mes-
sage towards the topics rendez-vous point with the topic ID as the key and upcalls
enabled. So the message is routed by Bamboo and upcalls on every node which the
message passes. These nodes then look up if they already know the topic and if so,
the sender is added as a child and the message is terminated.
Otherwise a new topic structure is created – with the sender added as a child –
and then inserted in the list of known topics. Afterwards the node routes a new
subscribe message towards the rendez-vous point (again with upcalls enabled) and
tries to subscribe itself.

The message is terminated either when a node already knows the topic (and thus
is already subscribed to it) or when it is delivered to the root itself (by a Bamboo-

RouteDeliver event then).

The unsubscription is done quite similar (figure 2.2d). The topic is marked as not
locally subscribed any more. If there are no entries in the children table for that
topic, a unsubscribe message is sent to the parent node associated with this topic.
The message then proceeds recursively up the multicast tree, until a node is reached
that still has entries in the children table after removing the departing child or the
root is reached.

The locality properties of Bamboo ensure that the network routes from the root
to each subscriber are short with respect to the proximity metric. This is because
Bamboo updates its routing table all the time by sending its own, special ping

messages to measure the delay to the other nodes of the network.

2.3. The multicast protocol 9

2.3.3 Message publishing

If the publisher is aware of the rendez-vous point, it sends the publish message
directly to it (figure 2.2c). The rendez-vous point sends the message to all its children
then. The message proceeds recursively down the multicast tree, until a leaf node is
reached. The caching of the rendez-vous point’s address is an optimization, to avoid
repeated routing through Bamboo, which is apparently slow compared to direct
sending.

If the root of the multicast tree is not know by the publisher, it routes its mes-
sage through Bamboo to that node. The rendez-vous point will send back an
acknowledgement message to inform the publisher about its address.

As there is one rendez-vous point for every message, it is easy to add some access
control to the protocol. By using a hash function that provides uniform distribution
of the topic ID representation – and the same is true for the node ID of Bamboo
– the roots of the topics will be uniformly distributed over all live nodes and the
protocol will scale for large numbers of topics [RKCD02].

2.3.4 Repairing the multicast tree

Periodically, each non-leaf node in the tree sends a heartbeat message to its chil-
dren. These messages can be avoided if there are frequently published events. A
child suspects that its parent is faulty when it fails to get heartbeat messages for
a configurable duration of time. In this case it will route a new subscribe message
through Bamboo to find a new parent.

If a child receives a heartbeat it sends back an acknowledgement message to its
parent. The children tables are periodically refreshed by these messages. Children
which fail to send an acknowledgement are discarded from the children table after
some period.

If the rendez-vous point changes, then the old root can forward the publish message
to the new one. If a root fails, the publisher can route to a new rendez-vous point
through Bamboo. Also the recent root regulary sends discovery messages to search
for a node numerically closer to the topicID than itself.

This tree repair mechanism scales well, because fault detection is done by sending
messages only to a small number of nodes. Recovery from faults is local and only a
small number of nodes is involved.

In the following chapter I will present in more detail the implementation of this
protocol.

10 2. Design

3. Implementation

The application should be implemented in Java, on one side because Bamboo itself is
written in Java, on the other side to remain platform independent. The system will
be deployed in a Linux environment. Because I am using the Java logging facility,
at least version 1.4 of the JDK is needed to run the application.

To make the application as flexible as possible, I implemented the project in two
independent parts. One is the multicast stage, called ComCore, the other the white-
board application. As mentioned in chapter 2, at least the multicast part must be
a Bamboo stage. In order to ease the communication between the two parts, I also
implemented the whiteboard as a Bomboo stage, but with some slight differences
which I will describe in section 3.3. In section 3.4 I will describe the details of the
multicast protocol implementation.

But first I want to point out to some specialties of Bamboo you have to be aware of
when you want to use it for application development.

3.1 A Bamboo stage

As Bamboo is a single-threaded, event-driven application you must be aware that
every blocking or time-consuming process in a Bamboo stage will also block the whole
event handler – means the whole Bamboo node. To prevent that it is necessary to
use an own thread to wrap such code.

But using threaded code together with Bamboo causes other problems. Bamboo
prevents the usage of its sending sink by other threads than the main thread. You
have to use the dispatch_later(message, time) function in order to dispatch
events from another thread than the Bamboo main thread, using a time value of 0.
The normal dispatch(message) function is not working and will cause an exception.
That is so because dispatch_later() ist the only thread-safe function in Bamboo
and was made thread-safe just for this purpose [Rhea04a].

As mentioned before, your Bamboo application is a stage of Bamboo’s event-driven
architecture. If a new event occurs, it is passed sequentially to each registered stage.

12 3. Implementation

PublishMsg IncomingMsg

ComCore

Whiteboard

Figure 3.1: Local communication

Figure 3.2: Locally used messages

So, a Bamboo application consists mainly of an eventHandler(QueueElementIF

event) method that processes all incoming events [Disc04].

You can dispatch events only for the local node or for a distant node. Events can
normally carry an arbitrary payload. Payloads must serialize their content into a
buffer so that it can be sent. There are existing methods for serializing the basic
Java types like boolean, int or String. Other objects must be converted to the
supported types, otherwise they cannot be dispatched.

In order to receive an event, you have to register your event sink to Bamboo and
subscribe for all the events you want to receive. If you also subscribe to the messages
routed by Bamboo (see section 2.2) you need to request an application ID which acts
like a TCP/UDP port. You will only receive Bamboo messages that are sent to your
application ID. This is not true for all other types of events.

3.2 Messages

Before describing the details of the whiteboard application and the multicast layer I
want to give an overview of the messaging system. This means the different message
types and payloads that are used for special purposes.

3.2.1 Local messages

The local communication between the multicast layer and the application, which is
using it, are done by using Bamboo to deliver them. As you can see in figure 3.1, there

3.2. Messages 13

<<Child>>

ComCore

<<Parent>>

ComCore

MCastMsg NodeMsg /
BambooRouteInit

Figure 3.3: Communication between ComCore nodes

are two different messages, PublishMsg for messages from the application to the mul-
ticast layer and IncomingMsg for events from the mulitcast layer to an application.
Both messages implement the seda.sandStorm.api.QueueElementIF interface so
that they can be sent through Bamboo.

• PublishMsg is used to send messages to the multicast layer; e.g. containers
with new strokes from the canvas or commands to subscribe or unsubscribe
from a topic.

• IncomingMsg is used by the multicast layer to send events to all listening
applications, e.g. containers with strokes from other whiteboards.

Each application that wants to use the multicast layer subscribes to IncomingMsg

events. These events are broadcasted to all local listeners. Each of them has to sort
out the messages it is subscribed to by the included topicID.

As you can see in figure 3.2, the two event types contain the topicID and a payload.
How the communication works in detail will be described in the following sections.

3.2.2 Inter-node messages

In figure 3.3 you can see the two different types of communication between ComCore
nodes: Up and down the tree. The main difference between these two directions is
that we want the upgoing messages to be reliable while we not really care about the
downgoing ones – as loosing a parent is serious, loosing a child is not a problem for
a local node. The child itself has to take care that it is connected to the multicast
tree.

For all messages going down the tree – normally messages from a parent to its
children – ComCore uses MCastMsg messages. Its UML diagram is shown in fig-
ure 3.4. The message type NetworkMessage from which MCastMsg extends is not
routed through Bamboo but sent directly to the specified address. You can choose if
Bamboo should report back if the transmission was successful or not. This is turned
off by default in MCastMsg messages.

If ComCore needs to send messages up the tree you have to differentiate between
two possibilities: You know your goal or not. If you do not know your goal – e.g.

14 3. Implementation

Figure 3.4: Message types for direct sending to an address

when you try to subscribe to a group or want to publish the first time – you have to
use Bamboo to route the message by using a BambooRouteInit message. As routing
through Bamboo is significant slower than direct sending you want to avoid that as
often as possible. So the address of the parent and the address of the rendez-vous
point of a topic is cached. NodeMsg messages are used to send messages directly up
the tree. In this case you will get a message back if the transmission was successful
or not and can react on that. This is because it is critical if we loose the rendez-vous
point of our group or even our parent.

3.3 The whiteboard

The whiteboard should be a very simple application that uses the multicast layer.
At this time it supports only basic features.

I divided the whiteboard application into two parts, one is the GUI and the interface
to the multicast layer, the other is the canvas where you can draw at.

3.3.1 GUI and communication interface

The GUI is kept very simple, as you can see in figure 3.5. There is the canvas where
you can draw at. At the right side are a few buttons to choose between draw- and
erase-mode and to switch the topic. It is written using the Java Swing extension.

Bamboo is used for local communication with the multicast layer, but the white-
board is subscribed only to IncomingMsg events. The inter-node communication is
completely done by the multicast layer.

If one arrives, it checks the topic ID of the message and if it matches the topic that
the whiteboard is subscribed to, it passes the included container to the canvas to
draw it.

If there are new strokes drawn, the canvas calls the whiteboard and passes a container
with vectors of the strokes. The container is then enveloped into a PublishMsg

message and sent to the multicast layer. I will describe the containers in a while.

3.3. The whiteboard 15

Figure 3.5: The GUI of the whiteboard

Figure 3.6: Simplified UML diagram of the Canvas class

16 3. Implementation

Figure 3.7: The LineContainer for sending multiple lines

3.3.2 The canvas

In figure 3.6 you can see a slightly simplified UML diagram of the Canvas class.
It extends from the PanelTracker class which is meant to manage all user input.
Within the Canvas class there are also two inline classes: One for drawing new
strokes to the canvas and one for managing to send new strokes to the network.

If new data arrives for the whiteboard it calls the newData() function of the canvas
and passes the container with the new data. In order not to block the whiteboard
(and with it the whole Bamboo node) a new thread is started to process that data
and to draw it on the canvas finally.

3.3.2.1 The PanelTracker

The PanelTracker class encapsulates all event listeners, e.g. the mouse listeners
or keyboard listeners. All user input is processed by this class. It saves the last
position in its variables lastX and lastY by calling the function saveCoords(int x,

int y).

For mouse input the according listeners call the abstract method processCoords()

which must be implemented by an extending class. Its parameters are the start and
the end of a line, which are saved to reproduce and draw the line.

So far, only mouse drawing is supported. But it is easy to extend this class to process
keyboard input, for example.

3.3.2.2 Local data processing: CanvasDrawer

To support a smooth maintainance of the canvas another thread is started, called
CanvasDrawer. It has two tasks: Make sure that the input is drawn to the canvas
and that the local input is published to the network.

The core of the thread is an inifinite loop. To save CPU time the thread sleeps half
a second within each cylce and tries to do some work then. This sleep is interrupted
if there are new lines to draw.

The locally drawn lines are saved in a linked list. When this list extends more than
15 saved lines they are sent and the list is cleared. Anyway the lines in the list are
sent after half a second. The list must be synchronized as the input of new lines and
the sending of them are done by different threads. I chose to use two lists and to
swap them if the recent list has to be cleared. The swapping and inserting is done
by the synchronized method processList().

3.4. The multicast stage: ComCore 17

Figure 3.8: UML diagram of the ComManagement class

If data is ready for sending it has to be packed into a container (see figure 3.7.
The container must be of type QuickSerializable so that it can be sent through
Bamboo. Also it has to implement the empty interface Container to be accepted by
the multicast layer. The usage of this interface allows transparent sending of data
from application to application over the multicast layer.

The LineContainer supports packing of multiple lines with a color value for each.
The start and end points of the lines and the color values are saved in simple integer
arrays. The variable quantum saves how many lines are stored in the container.

The container is then passed to the Whiteboard class for publishing.

3.4 The multicast stage: ComCore

The multicast layer is implemented as a full Bamboo stage. It is transparent to
upper layers (applications) and provides multicast service for multiple groups. After
the more formal description of the algorithm in section 2.3 I will now point to specific
issues of the implementation here.

3.4.1 The ComManagement messages

To maintain the multicast groups the ComManagement class is used for communica-
tion (see figure 3.8). It provides fields for the concerned topic (the multicast group
respectively), for the source of this message and for a command. The supported
commands are added as constant variables: create, subscribe, unsubscribe,

heartbeat, ack, discover, newroot.

The commands create, subscribe, unsubscribe are also used by the applica-
tions using ComCore to create, subscribe and unsubscribe a topic. I want to give
here a brief overview:

• create is used to create a new multicast group.

• subscribe is used to subscribe to a multicast group.

• unsubscribe is used to unsubscribe from a multicast group.

• heartbeat is sent by a parent to its children to give a life sign.

• ack is sent by the children to their parent to give a life sign.

18 3. Implementation

create

BambooRouteInit(create)
subscribe

BambooRouteInit(subscribe)

BambooRouteInit(subscribe)

Application ComCore ComCore <<root>>
ComCore

publish
BambooRouteInit(publish) /

 NodeMsg(publish)

MCastMsg(publish)

MCastMsg(publish)

publish

[MCastMsg(newroot)]

Figure 3.9: Sequence diagram of the protocol

• discover is sent by the root of a multicast group to discover if there is a node
numerically closer to the topic ID then itself and therefore should become root.

• newroot is sent when the root of a multicast tree wants to inform someone
of its address.

3.4.2 Protocol implementation

In the following I will describe how the reverse path forward protocol has been
implemented.

3.4.2.1 Protocol procedure

Figure 3.9 visualizes the mechanisms of the multicast protocol. It is slighlty sim-
plified for clarity, all messages from an application to the multicast layer are ment
to be PublishMsg events, messages from the multicast layer to the application are
IncomingMsg events.

First a create message is sent to the multcast layer and routed through Bamboo
to the node numerically closest to the topicID (without upcalls). Afterwards the
application sends a subscribe message. Again it is routed through Bamboo, but
this time with upcalls enabled. A node inbetween gets the upcall and as it does not
recognize the topic so far (in this case) it discards the subscribe message, adds the
source to its children for that group and tries to subscribe itself. Finally, the message
hits the rendez-vous point. The source of the message is added to the children of
the rendez-vous point.

Then the application publishes a new message to the group. If it would know the
root’s address it could use a NodeMsg message and send it directly. But in this case

3.4. The multicast stage: ComCore 19

Figure 3.10: Class to store multicast group informations

– as the node does not know it – it is routed through Bamboo with no upcalls. The
message reaches the root of the multicast tree and a MCastMsg with the address of
the root is returned to the sender. Then the message is distributed to the children
of the rendez-vous point and so on. When the node is locally subscribed to that
group – which means that there is an application on that node that belongs to that
group – the message is also sent to the local applications.

3.4.2.2 Multicast group management

Every node stores its information about the known – and therefore also subscribed
– topics in a linked list. The needed informations about a topic is stored in a topic-
object which you can see in figure 3.10. No node knows the whole multicast group
but only the needed information like the address of the parent or the root and its
children to this group. A node saves such an object if either it is root and called to
create a new topic or if it gets a subscribe message and has not known the topic
before.

The topic class has fields to store the address of a parent, the address of the root of
the multicast tree and an array for the addresses of all children. activeParent and
activeChildren store information if there was a life-sign recently to detect failures,
either of a child or a parent.

The use_count variable counts the number of locally subscribed applications. The
boolean heartbeat indicates if heartbeat messages should be sent to the children
of this topic. This is an optimiziation switch, because normal publish messages act
as heartbeats, too, and can replace explicit heartbeat messages, especially when
there are frequently published events for a group.

20 3. Implementation

The function trimChildren() purges all children from which there was no lifesign
recently from the children’s array.

To enable a consistent group management, the following rules have to be obeyed per
group:

• It is assumed that root-nodes have no parent, but store their own address in
the root variable.

• Every time a message from a parent is received, its address is written with
setParent(address); this also sets the parent active.

• You must prevent to add your own node to the children’s array, otherwise you
will get an infinite sending loop.

3.4.2.3 Multicast group maintainance

There are two mechanisms in ComCore that maintain the multicast tree: A so called
ChildAlarm and the MCastRepairAlarm.

The ChildAlarm makes sure that a heartbeat is sent to each children of each group
known by the local node. Also acknowledgements are passed to a parent if there was
none already within the last time periode. By default this alarm is initiated every
ten seconds.

The MCastRepairAlarm – as the name suggests – tries to detect failures of children
or parents and to repair the multicast tree afterwards. It is run every 30 seconds by
default.

If a child fails, which means the node has not got an ackowledgment message from
it since the last run, the child is deleted from the children table. This is done by the
trimChildren() method of each topic object. If the child is marked as inactive, it
is removed. Otherwise the active flag is set to false. Topics with an empty children
table and no local subscription are deleted and the node unsubscribes from that
topic.

The same happens for a parent of a topic. If it is set inactive, which means there
has been no heartbeat or publish message since the last run, a new subscribe

message is sent to find a new parent. Otherwise the active flag of the parent is set
to false.

Furthermore, a rendez-vous point sends a discover message to look if there is a
“better” root out there. This is important, because if a new node joins the Bamboo
network and its node ID is numerically closer to a topic ID than every other live
node, BambooRouteInit messages to the rendez-vous point of a certain topic will be
routed to this new node. But this node does not know of that topic and, of course,
has no children to publish this messages to. This mechanism should prevent such
problems.

All of these group repair and maintainance mechanisms rely on the choice of good
parameters for the regular alarms (MCastRepairAlarm and ChildAlarm) as they
indicate, how fast a failure can be detected. Using long durations between two
timeouts result in very low maintainance overhead but in slow failure detection and

3.4. The multicast stage: ComCore 21

Figure 3.11: PublishContainer

repair. On the other hand, using very low timeouts result in fast detection but
significant more overhead of maintainance messages. It was no goal of this project
to optimize these parameters. Ten seconds were chosen for the ChildAlarm and
thirty seconds for the MCastRepairAlarm. During the evaluation these parameters
worked fine, but I did not look more closely on this – also as these durations are
similar to those Pastry SCRIBE uses.

3.4.3 Special issues

The only time a node has the chance to cache the address of the actual root is,
if it gets a newroot message as an answer of a routed publish message. But
BambooRouteInit messages do not support to add a sender address. But as Net-

workMessages do, I found it no good solution to extend each container with a source
address, also as the application not necessarily knows the network address of the lo-
cal node. Furthermore the usage of the multicast layer should be transparent and
so ComCore does not need to know all the different containers that are published to
the network – and so should not look inside them to gather information.

Figure 3.11 shows the payload I created to solve that problem. The necessary in-
formation for that event – topic ID and source address – are added and a payload
can be inserted. The PublishContainer itself is then added as a payload to a Bam-

booRouteInit message. This is transparent for the application using the multicast
layer, because ComCore automatically wraps containers that must be routed and
the root of the tree unwraps them again before publishing to the network.

As there is no access control implemented for the protocol so far, the create mes-
sage is not necessary. The protocol works fine without it at the moment, but in
order to fulfill the API provided in the Scribe specification and to allow extending
my implementation with some access control.

You must be very strict with your implementation in order to avoid severe failures.
You have to avoid any cycles like adding the local node to its own children table
which will cause an infinite sending loop. You have to make sure that there is only
one root per group and avoid impossible states, like a root with a parent, at any
time.

In the following chapter I will talk about the evaluation of the ComCore multicast
layer and its interworking with the Bamboo peer-to-peer system.

22 3. Implementation

4. Evaluation

In this chapter I will describe the evaluation of the multicast layer of my project.
There exist measurements for Pastry Scribe and as I implemented its multicast
protocol using Bamboo it is an interesting issue how my implementation will com-
pare to the original one. As the protocol heavily depends on the routing mechanism
of the underlying peer-to-peer system and its handling of locality this evaluation
will also give conclusions about Bamboo and how its structure supports multicast
applications.

4.1 PlanetLab

As a testbed I used the PlanetLab network. PlanetLab currently consists of over
350 nodes on more than 150 sites spanning about 20 countries. It is mostly hosted
by research institutions. It provides a testbed for overlay networks and due to its
structure a more realistic internet environment than testbeds in laboratories.

PlanetLab creates a unique environment in which to conduct experiments at Internet
scale. All nodes are running on a common software package that includes a Linux-
based operating system. A user can allocate slices of PlanetLab’s network-wide
hardware resources to an application and then perform experiments in a planetary-
scale dimension, including real-world conditions of the network.

Real-world conditions also includes node failures and firewall problems which inter-
fered my experiments several times. It is also not that easy to handle a large number
of nodes. Already for 20 nodes it gets quite complex: You have to set up all nodes
with the required software (in this case a Java Runtime Environment and Bamboo)
and manage to start the experiments almost simultaneously. Furtunately there is
pssh, a nice and useful Python script, that enables parallel ssh and scp execution
and can be found on the PlanetLab website [Plan].

4.2 Preparation for experiments: EvaluationApp

The main goal of the experiments was to evaluate the implemented multicast layer.
Therefore I needed an evaluation application to measure message delays and to

24 4. Evaluation

Figure 4.1: PlanetLab nodes

dump the created multicast tree. As I implemented the whole project in a layered
structure, it was quite easy to replace the whiteboard with an evaluation application.

I also implemented an extended LineContainer with added sequence numbers and a
timestamp. So the application measures the roundtrip time of a published message
from its sending till its reception through the multicast tree. It then writes this
value to a file.

Furthermore I added several triggers to affect the behaviour of the application, which
can be set in the configuration file:

• topic sets the topic name.

• listener controls if packages should be sent by this instance or if it just should
listen to a topic.

• changeOffset increases the time between regular actions (like topic changes
and message publishing) in seconds.

• topicChange sets the probability for a topic change in terms (1 / topicCha-
nge). 0 means no topic changes.

• duration sets the length of the breaks between two publishs.

• runningTime sets the time the evaluation should run in minutes. The node
shuts down after that time.

I also extended the ComCore class so that it dumps all its multicast group tables
every 30 seconds to a file. So it is easy to reconstruct the used multicast tree.

4.3 Experiment: Tree-build evaluation

The goal of this experiment was to compare the implemented peer-to-peer multicast
communication approach with an IP multicast implementation in terms of tree build-
up.

4.3. Experiment: Tree-build evaluation 25

Figure 4.2: Internet2 IP multicast tree

Figure 4.3: Internet2 ComCore multicast tree

Every node acted as an active sender to one common topic. Each node published a
burst of 8 LineContainers to the group every 40 seconds. The experiment ran 60
minutes and the multicast group remained static during this time.

4.3.1 Comparison between IP and overlay multicast

The measurement of the IP multicast part is done by using traceroute to determine
the routes from the rendez-vous point to each node. It is defined by the node chosen
by Bamboo (numerically closest to the selected group ID).

As PlanetLab is very widespread over the planet I took for the multicast comparison
experiment nodes that are assumed to use a quite common infrastructure – in this
case 10 nodes from the Internet2 network located in the USA. This should make
sure that a dense multicast group is formed.

The comparison of the both resulting multicast trees can be seen in figures 4.2
and 4.3. The ComCore multicast tree results in a root with 9 leaves, while the IP
multicast tree offers some common links to aggregate flows. As ComCore only sees
the overlay network formed by Bamboo, the result is as good as expected, as in the

26 4. Evaluation

Figure 4.4: ComCore multicast tree for 19 nodes

IP multicast tree the routers that aggregate and deaggregate the flows are not nodes
of the Bamboo peer-to-peer network.

I also need to note that 9 nodes is a very small network and fits without a problem
into the routing table and the leaf-set of each node, so that every node is reachable
within an one hop range. This causes in every case a very flat multicast tree.

4.3.2 Conclusions from the experiment

In figure 4.4 you can see the resulting multicast tree of another experiment. This
time there are 19 nodes arbitrary chosen and spread over the planet. As you can
see the tree is higher this time. Taking a closer look at the tree reveals that the
tree cannot be optimal. Routing a message from Lancaster (UK) via Korea, Brasil
and Hong Kong to Cambridge (UK) does not seem to be very good (you can find
more of these examples in the tree). As the implemented multicast protocol uses the
Bamboo routing to build its tree, it depends heavily on its locality issues. As Bamboo
uses ping messages to measure delays and choose nodes for a certain position in its
routing table, many of these examples may be all right as the delay between those
nodes is low.

But this does not explain that a message between Lancaster and Cambridge is
routed once around the planet. In fact this is also an issue of the multicast protocol
implementation, as there is no parent optimization. This means that a child keeps its
parent until there is a problem with the parent node. So the shape of the multicast
tree also depends on when a node joins the network.

Parent optimization on the other hand is not easy to achieve in terms of scalability
and tree maintainance. It would also increase the complexity of the protocol a lot.
Every child node would need to search periodically for a new node which increases
the bandwith consumption. After discovering a “better”parent the local node would

4.3. Experiment: Tree-build evaluation 27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

de
la

y
(m

se
c)

package number

delay per package

Figure 4.5: Delay for published packages (1 hop)

need to unsubscribe from its former parent and subscribe to the new one. In the worst
case this can produce cycles for some short times while the node is subscribed to two
nodes, or, in the other case, the node and all of its children would be disconnected
from the multicast group for a while and lose packets.

Furthermore I discovered problems with the Java Virtual Machine if a node is flodded
with packages, which can happen for a rendez-vous point of a large group with many
published data at the same time. But this behaviour might only happen under
extreme conditions, in this case 18 nodes publishing 16 packages each 8 seconds,
which was due to a typo in the config file. This observation confirmed my decision
to aggregate strokes and send them in bursts.

4.3.3 Bamboo delay

I finally took a look at the delay for sending messages to the rendez-vous point. In
figure 4.5 you can see the delay of the node planetlab1.wash.internet2.planet-lab.org
as an example. The peak at the beginning are the first 8 packages that are routed
by Bamboo to the rendez-vous point and as expected this is a lot slower than direct
sending, even – like in this case – when it reaches its goal within one hop. Afterwards
the address of the root of the multicast tree is cached and the delay is a lot smaller.
Compared to the traceroute roundtrip time for this path it is about double in length
(that is the same for all leaf-nodes of the tree), at average a little more. This is called
the Relative Delay Penalty (RDP) which is in the same dimension as evaluated for
SCRIBE [CJKR+03].

In case of Bamboo, this delay is also related to the single-threaded architecture, so
that every delay in the event handler also delays the processing of a package. In
this case it should not affect the results, but it would be interesting to measure the
delay for nodes with more than one application using Bamboo, so that more than
one event handler is called when a message arrives.

28 4. Evaluation

5. Conclusions and outlook

This three months of project work in Cambridge increased my experience a lot in
scientific research and work.

I had absolute freedom in my project work which I appreciated. So it was my task to
choose a topic for my project and design it – there was only a framework provided
by my supervisor. First I had to get into the topic of peer-to-peer systems and
multicast networking. And as the underlying peer-to-peer system Bamboo lacks a
lot of documentation I was forced to browse through the source code to learn how
to use it which finally resulted in a tutorial that is now available at the Bamboo
website [Disc04].

Several of my goals for that project are reached finally. I created a working multicast
layer based on the Bamboo peer-to-peer system which can be used by different
applications, not only by the whiteboard I implemented. The multicast protocol
itself seems to work fine, also on a larger network like PlanetLab – even if I had not
the time to deploy it on a large number (more than a hundred) of nodes – and the
whiteboard is at least usable for simple tasks.

But especially the whiteboard lacks some features, for example that a new joining
node gets the recent content of the canvas. It turned out that this is not easy to
achieve, because of the strict seperation of multicast and application level I designed.
As the multicast level works transparently for all using applications it cannot store
any context for them (e.g. the current “official” content of the canvas at the root
of the multicast tree). The new node has to find another node of the network that
also runs a whiteboard application with the same topic and requests the content of
the whiteboard from it. For this you can just go up the tree until you reach either
a suitable node or a node with more than one child for that topic. At least in the
leaves of the tree there are whiteboard applications situated that can be used. But
it could happen that this node is also new in the network and requestes the actual
content itself.

This problem would need some more consideration which I were not able to do
because of lack of time. I already built a container class to transport the content
of the canvas (called ImageContainer) for this purpose. While testing this, I found

30 5. Conclusions and outlook

out that Bamboo is not fragmenting its messages (maximum message size is 16 KB),
so this has to be done by the whiteboard itself.

Apart from that there are several ideas of how to go on. It would be pretty interest-
ing to implement another multicast algorithm and compare it to the one used now.
Another very interesting concept are Internet coordination systems which try to pro-
vide “real” locality to overlay networks. This would possibly improve the multicast
trees a lot.

It would also be interesting to see other applications use my multicast layer. Actually
the code will possibly be reused to implement video streaming on Bamboo. There
was also the idea to use peer-to-peer multicast to interconnect IP multicast networks
by tunneling non-multicast capable networks.

Bibliography

[CDHR02] M. Castro, P. Druschel, Y.C. Hu und A. Rowstron. Topology-aware
routing in structured peer-to-peer overlay networks. http://research.
microsoft.com/˜antr/Pastry/, 2002.

[CJKR+03] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Row-
stron, Marvin Theimer, Helen Wang und Alec Wolman. An Evaluation
of Scalable Application-level Multicast Built Using Peer-to-peer over-
lays. In Infocom’03, Apr 2003.

[DaMe78] Yogen K. Dalal und Robert Metcalfe. Reverse path forwarding of broad-
cast packets. Communications of the ACM 21(12), 1978, S. 1040–1048.

[Disc04] Marcel Dischinger. Bamboo: A Tutorial. http://www.bamboo-dht.
org/tutorial.html, Apr 2004.

[KBCC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells und
B. Zhao. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS 2000), Banff, Canada, Nov 2000.

[Plan] PlanetLab Website. http://www.planet-lab.org.

[RGRK03] Sean C. Rhea, Dennis Geels, Timothy Roscoe und John Kubiatowicz.
Handling Churn in a DHT. Technischer Bericht UCB//CSD-03-1299,
University of California, Berkely and Intel Research, Berkely, Dec 2003.

[Rhea04a] Sean Rhea. Bamboo: Programmer’s guide. http://www.bamboo-dht.
org/programmers-guide.html, 2004.

[Rhea04b] Sean Rhea. Bamboo Website. http://www.bamboo-dht.org, 2004.

[RKCD02] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro und Peter
Druschel. Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Communica-
tions (JSAC) 20(8), Oct 2002.

[RoDr01] A. Rowstron und P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov 2001.

32 Bibliography

[Shir00] Clay Shirky. What is P2P... And what isn’t? http://www.openp2p.
com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html, Nov 2000.

[SMKK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek und Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. In Proceedings of the ACM SIGCOMM ’01 Confer-
ence, San Diego, California, August 2001.

[WeCB01] Matt Welsh, David Culler und Eric Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. In Proceedings of the
Eighteenth Symposium on Operating Systems Principles (SOSP-18),
Oct 2001.

[ZHSR+04] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph und J.D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service de-
ployment. IEEE Journal on selected areas in communications 22(1),
Jan 2004.

[ZYDM+03] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert T. Morris,
David Mazières und M. Frans Kaashoek. Multiprocessor support for
event-driven programs. In In Proceedings of the 2003 USENIX Tech-
nical Conference, San Antonio, Texas, Jun 2003. S. 239–252, section
2.

